

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

FACTORIZATION OF POLYNOMIAL

Others

1. Show that $\left(x-2\right)$ is a factor of the polynomial

$$f(x) = 2x^3 - 3x^2 - 17x + 30$$
 and hence factorize $f(x)$.

2. What must be added to $3x^3+x^2-22x+9$ so that the result is exactly divisible by $3x^2+7x-6$?

Watch Video Solution

3. If both x-2 and $x-\frac{1}{2}$ are factors of $px^2+5x+r,$ show that p=r.

4. Find the values of a and b so that the polynomial x^3+10x^2+ax+b is exactly divisible by x-1 as well as x-2.

5. For what values of a is $2x^3 + ax^2 + 11x + a + 3$ exactly divisible by (2x-1)?

Watch Video Solution

6. Determine the value of a for which the polynomial $2x^4-ax^3+4x^2+2x+1$ is divisible by 2x+1.

Watch Video Solution

7. Find the value of a and b so that the polynomial $x^3-ax^2-13x+b$ has (x-1) and (x+3) as factors.

8. Without actual division prove that $2x^4-6x^3+3x^2+3x-2$ is exactly division by $x^2 - 3x + 2$.

Watch Video Solution

9. Find the value of a, if x-1 is a factor of $x^3 - a^2x + x + 2$.

Watch Video Solution

10. If the polynomials ax^3+3x^2-13 and $2x^3-5x+a$, when divided by $\left(x-2
ight)$ leave the same remainder, find the value of a .

Watch Video Solution

11. Show that (x-1) is a factor of $x^{10}-1$ and also of $x^{11}-1$.

Watch Video Solution

12. Identify polynomials in the following:

(i)
$$f(x) = 4x^3 - x^2 - 3x + 7$$

(ii)
$$g(x) = 2x^3 - 3x^2 + \sqrt{x} - 1$$

(iii)
$$p(x) = rac{2}{3}x^2 - rac{7}{4}x + 9$$

(iv)
$$q(x) = 2x^2 - 3x + \frac{4}{x} + 2$$

(v)
$$h(x)=x^4-x^{rac{2}{3}}+x-1$$

(vi)
$$f(x)=2+rac{3}{x}+4x$$

Watch Video Solution

13. Show that x=1 is a root of the polynomial $2x^3 - 3x^2 + 7x - 6$

Watch Video Solution

14. If $x = \frac{4}{3}$ is a root of the polynomial $f(x)=6x^3-11x^2+kx-20, ext{ find the value of } k$

A.
$$k=19$$

$$B.\,k=29$$

$$\mathsf{C}.\,k=9$$

$$D. k = 49$$

Answer: A

Watch Video Solution

15. If x=2 and x=0 are roots of the polynomial $f(x)=2x^3-5x^2+ax+b$. Find the values of a and b.

Watch Video Solution

16. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer:

(i)
$$3x^2-4x+15$$

(ii)
$$y^2+2\sqrt{3}$$

(iii)
$$3\sqrt{x}+\sqrt{2}x$$

(iv)
$$x-rac{4}{x}$$

(v)
$$x^{12} + y^3 + t^{50}$$

Watch Video Solution

17. Write the degrees of each of the following polynomials:

$$7x^3+4x^2-3x+12$$
 (ii) $12-x+2x^3$ (iii) $5y-\sqrt{2}$ (iv) 7

(v) 0

18. Classify the following polynomials as polynomials in one-variable, two variables etc.:

(i)
$$x^2 - xy + 7y^2$$

(ii)
$$x^2 - 2tx + 7t^2 - x + t$$

(iii)
$$t^3 - 3t^2 + 4t - 5$$

(iv)
$$xy + yz + zx$$

Watch Video Solution

19. Using factor theorem, factorize the polynomial $x^3-6x^2+11x-6$.

20. Find the rational roots of the polynomial $2x^3 + 3x^2 - 11x - 6$

21. If x=0 and x=-1 are the roots of the polynomial $f(x)=2x^3-3x^2+ax+b, ext{ find the value of } a ext{ and } b$

22. if $f(x) = x^4 - 2x^3 + 3x^2 - ax + b$ is a polynomial such that when it is divisible by x-1 and x+1 remainders are 5 and 19 respectively . determine remainder when it is divisible by x-1.

23. Using factor theorem, factorize the polynomial

$$x^4 - 2x^3 - 13x^2 + 14x + 24$$

24. Factorize : $2x^4 + x^3 - 14x^2 - 19x - 6$

 $x^2 - 3x + 2$.

25. Without actual division, prove that $2x^4-5x^3+2x^2-x+2$ is exactly divisible by

26. Factorize $x^3 + 13x^2 + 32x + 20$, if it is given that x+2 is its factor.

Watch Video Solution

27. If $x^2 - 1$ is a factor of $ax^4 + bx^3 + cx^2 + dx + e$, show that a+c+e=b+d

Watch Video Solution

28. What must be added to $x^4 + 2x^3 - 2x^2 + x - 1$ so that the result is exactly divisible by $x^2 + 2x - 3$.

29. Without actual division, prove that $x^4+2x^3-2x^2+2x-3$ is exactly divisible by x^2+2x-3 .

30. If is a factor of each of the following two polynomials, find the values of a in each case. x^3-2ax^2+ax-1 $x^5-3x^4-ax^3+3ax^2+2ax+4$

31. If $f(x)=x^4-2x^3+3x^2-ax+b$ is a polynomial such that when1 it is divided by x-1 and x+1 , remainders are 5 and 19 respectively.

32. Using factor theorem, factorize each of the following polynomials : $x^3 + 2x^2 - x - 2$

33. Use factor theorem to prove that (x+a) is a factor of $(x^n + a^n)$ for any odd positive integer n .

34. The polynomials ax^3+3x^2-13 and $2x^3-5x+a$ are divided by x+2, if the remainder in each case is the same, find the value of a

Watch Video Solution

35. If the polynomials ax^3+4x^2+3x-4 and x^3-4x+a leave the same remainder when divided by (x-3), find the value of a

36. Find the remainder when $f(x)=x^3-6x^2+2x-4$ is divided by g(x)=3x-1.

A.
$$-\frac{107}{27}$$

$$\mathsf{B.}-\frac{190}{56}$$

$$C. - \frac{179}{79}$$

D.
$$\frac{907}{25}$$

Answer: A

Watch Video Solution

37. Find the remainder when $p(x)=4x^2-2x^2+14x-3$ is divided by $g(x)=x-rac{1}{2}$

38. Find the remainder when $p(x) = x^3 - ax^2 + 6x - a$ is divided by (x-a).

Watch Video Solution

39. Find the integral roots of the polynomial $f(x) = x^3 + 6x^2 + 11x + 6$

Watch Video Solution

40. What must be subtracted from $x^3-6x^2-15x+80$ so that the result is exactly divisible by x^2+x-12 ?

41. If $x^3+ax^2-bx+10$ is divisible by x^2-3x+2 , find the values of a and b .

Watch Video Solution

42. What must be subtracted from $4x^4-2x^3-6x^2+x-5$ so that the result is exactly divisible by $2x^2+x-1$

43. If the polynomials $2x^3+ax^2+3x-5$ and x^3+x^2-4x+a leave the same remainder when divided by x-2, find the value of a.

44. Factorize $9z^3-27z^2-100z+300,\,\,$ if it is given that (3z+10) is a factor of it.

45. Using factor theorem, factorize each of the following polynomials : $x^4-2x^3-7x^2+8x+12$

46. Using factor theorem, factorize each of the following polynomials : $2x^4-7x^3-13x^2+63x-45$

Watch Video Solution

47. Using factor theorem, factorize each of the following polynomials : $3x^3-x^2-3x+1$

Watch Video Solution

48. Using factor theorem, factorize each of the following polynomials : $x^3-10x^2-53x-42$

49. Using factor theorem, factorize each of the following polynomials : $x^3 + 13x^2 + 32x + 20$

Watch Video Solution

50. Using factor theorem, factorize each of the following $\mathsf{polynomials}: x^3 + 2x^2 - x - 2$

Watch Video Solution

51. Which of the following expressions are polynomials in one variable and which are not? State reasons for your

answer : (i) $3x^2-4x+15$ (ii) $y^2+2\sqrt{3}$ (iii) $3\sqrt{x}+\sqrt{2}x$

(iv)
$$x-rac{4}{x}$$
 (v) $x^{12}+y^3+t^{50}$

Watch Video Solution

52. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer : (i) $3x^2-4x+15$ (ii) $y^2+2\sqrt{3}$ (iii) $3\sqrt{x}+\sqrt{2}x$ (iv) $x-\frac{4}{x}$ (v) $x^{12}+y^3+t^{50}$

53. Which of the following expressions are polynomials in one variable and which are not? State reasons for your

answer : (i) $3x^2-4x+15$ (ii) $y^2+2\sqrt{3}$ (iii) $3\sqrt{x}+\sqrt{2}x$

(iv)
$$x-rac{4}{x}$$
 (v) $x^{12}+y^3+t^{50}$

54. Write the coefficient of x^2 in each of the following:

$$17 - 2x + 7x^2$$
 (ii) $9 - 12x + x^3$

55. Write the coefficient of x^2 in each of the following:

$$rac{\pi}{6}x^2-3x+4$$
 (ii) $\sqrt{3}\,x-7$

56. Write the degrees of each of the following polynomials:

 $7x^3+4x^2-3x+12$ (ii) $12-x+2x^3$ (iii) $5y-\sqrt{2}$ (iv) 7

(v) 0

Watch Video Solution

57. Write the degrees of each of the following polynomials:

$$7x^3+4x^2-3x+12$$
 (ii) $12-x+2x^3$ (iii) $5y-\sqrt{2}$ (iv) 7 (v) 0

58. Classify the following polynomials as linear, quadratic, cubic and biquadratic polynomials: $x+x^2+4$ (ii)3x-2 (iii) $2x+x^2$

- (i), $x + x^2 + 4$, it is quadratic polynomial.
- (ii)3x 2,It is a linear polynomial.
- (iii) $2x + x^2$,It is a linear polynomial.

Watch Video Solution

59. Classify the following polynomials as linear, quadratic, cubic and biquadratic polynomials: 3y (ii) t^2+1 (iii)

$$7t^4 + 4t^3 + 3t - 2$$

Watch Video Solution

60. Classify the following polynomials as polynomials in one-variable, two variables etc.: $x^2-xy+7y^2$ (ii) $x^2 - 2tx + 7t^2 - x + t$

61. Classify the following polynomials as polynomials in one-variable, two variables etc.: t^3-3t^2+4t-5 (ii) xy+zy+zx

Watch Video Solution

62. Identify polynomials in the following: $f(x)=4x^3-x^2-3x+7$ $g(x)=2x^3-3x^2+\sqrt{x}-1$ $p(x)=rac{2}{3}x^2-rac{7}{4}x+9$ $q(x)=2x^2-3x+rac{4}{x}+2$ $h(x)=x^4-x^{rac{2}{3}}+x-1$ $f(x)=2+rac{3}{x}+4x$

63. Identify polynomials in the following:

Watch Video Solution

64. Identify polynomials in the following:

$$f(x) = 4x^3 - x^2 - 3x + 7 \;\; g(x) = 2x^3 - 3x^2 + \sqrt{x} - 1 \ p(x) = rac{2}{3}x^2 - rac{7}{4}x + 9 \;\;\;\;\;\;\; q(x) = 2x^2 - 3x + rac{4}{x} + 2$$

$$h(x) = x^4 - x^{\frac{2}{3}} + x - 1$$

65. Identify constant, linear, quadratic and cubic polynomials from the following polynomials: f(x) = 0 (ii) $g(x) = 2x^3 - 7x + 4$

Watch Video Solution

66. Identify constant, linear, quadratic and cubic polynomials from the following polynomials: $h(x)=\ -3x+rac{1}{2}$ (ii) $p(x)=2x^2-x+4$

Watch Video Solution

67. Identify constant, linear, quadratic and cubic polynomials from the following polynomials:

$$q(x)=4x+3$$
 (ii) $r(x)=3x^3+4x^2+5x-7$

68. Give one example each of a binomial of degree 35 and of a monomial of degree 100.

69. If
$$f(x) = 2x^3 - 13x^2 + 17x + 12$$
, find $f(2)$ (ii) $f(-3)$

70. Show that x=1 is a root of the polynomial $2x^3-3x^2+7x-6$

Watch Video Solution

71. If $x=rac{4}{3}$ is a root of the polynomial $f(x)=6x^3-11x^2+kx-20,$ find the value of k

Watch Video Solution

72. If x=2 and x=0 are roots of the polynomial $f(x)=2x^3-5x^2+az+b$. Find the values of a and b.

73. Find the integral roots of the polynomial $f(x) = x^3 - 6x^2 + 11x - 6$

Watch Video Solution

74. Find the rational roots of the polynomial $2x^3 + 3x^2 - 11x - 6$

Watch Video Solution

75. Find the zero (root) of the polynomial in each of the following cases: f(x) = x - 5 (ii) g(x) = 2x + 5

76. Find the zero (root) of the polynomial in each of the following cases: (i)h(x)=2x (ii) $p(x)=c\,x+d,\ \neq 0$ $(iii)p(x) = ax, \ a \neq 0$

Watch Video Solution

77. यदि $f(x) = 2x^3 - 13x^2 + 17x + 12$ हो, तो

$$f(i)$$
 $f(2)(ii)$ $f(-3)(iii)$ $f(0)$ ज्ञात कीजिए ।

78. Verify whether the indicated numbers are zeros of the polynomials corresponding to them in that cases: $f(x) = 3x + 1, \ x = -\frac{1}{3}$

79. Verify whether the indicated numbers are zeros of the polynomials corresponding to them in that cases: $f(x) = x^2 - 1, \ x = 1, -1$

80. Verify whether the indicated numbers are zeros of the polynomials corresponding to them in that cases:

$$g(x) = \ 3x^2 - 2, \ x = rac{2}{\sqrt{3}}, \ -rac{2}{\sqrt{3}}$$

81. Verify whether the indicated numbers are zeros of the polynomials corresponding to them in that cases: $p(x) = x^3 - 6x^2 + 11x - 6, x = 1, 2, 3$

Watch Video Solution

82. Verify whether the following are zeroes of the polynomial, indicated against them. (i)

$$p(x)=3x+1, x=-rac{1}{3}$$
 (ii) $p(x)=5x-\pi, x=rac{4}{5}$ (iii) $p(x)=x^2-1, x=1, \dots$ (iv)

$$p(x) = x^2 - 1, x = 1, -1$$
 (iv)

$$p(x)=(x+1)(x+2), x=-1,2$$
 (v) $p(x)=x^2, x=0$

(vi)
$$p(x)=lx+m, x=-rac{m}{l}$$
 (vii)

83. Verify whether the indicated numbers are zeros of the polynomials corresponding to them in that cases: $f(x) = x^2, x = 0$

Watch Video Solution

84. Verify whether the indicated numbers are zeros of the polynomials corresponding to them in that cases:

Watch Video Solution

85. Verify whether the indicated numbers are zeros of the polynomials corresponding to them in that cases: $f(x) = 2x + 1, \; x = \frac{1}{2}$

86. If
$$x=2$$
 is a root of the polynomial $f(x)=2x^2-3x+7a,$ find the value of a if $x=2,$ $f(x)=0$

87. If
$$x=-rac{1}{2}$$
 is a zero of the polynomial $p(x)=8x^3-ax^2-x+2,$ find the value of a

88. If x=0 and x=-1 are the roots of the polynomial $f(x)=2x^3-3x^2+ax+b, ext{ find the value of } a ext{ and } b$

Watch Video Solution

89. Find the integral roots of the polynomial $f(x) = x^3 - 6x^2 + 11x - 6$

90. Find rational roots of the polynomial $f(x) = 2x^3 + x^2 - 7x - 6$

Clearly f(x) is a cubic polynomial with integer coefficient.

91. Let $p(x)=x^4-3x^2+2x+5$. Find the remainder when p(x) is divided by (x-1).

Watch Video Solution

92. Find the remainder when $p(y)=y^3+y^2+2y+3$ is divided by y+2.

Watch Video Solution

93. Find the reminder when, $p(x) = x^4 - 3x^2 + 2x + 1$,is divided by (x-1)

94. Find the remainder when $p(x) = x^3 - ax^2 + 6x - a$ is divided by (x-a).

Watch Video Solution

95. Find the remainder when the polynomial f $f(x)=2x^4-6x^3+2x^2-x+2$ is divided by x+2divisor

Watch Video Solution

96. Find the remainder when $p(x)=4x^3-12x^2+14x-3$ is divided by

$$g(x)=x-rac{1}{2}$$

97. Find the remainder when $f(x)=x^3-6x^2+2x-4$ is divided by g(x)=3x-1.

98. Find the remainder when $f(x)=x^3-6x^2+2x-4$ is divided by g(x)=3x-1.

99. If the polynomials ax^3+4x^2+3x-4 and x^3-4x+a leave the same remainder when divided by (x-3), find the value of a.

Watch Video Solution

100. The polynomials ax^3+3x^2-13 and $2x^3-5x+a$ are divided by x+2, if the remainder in each case is the same, find the value of a.

Watch Video Solution

101. Let R_1 and R_2 are the remainders when the polynomials $x^3+2x^2-5ax-7$ and $x^3+ax^2-12x+6$

are divided by x+1 and x-2 respecti-vely. If $2R_1+R_2=6,$ find the value of $a\cdot$

102. If $f(x)=x^4-2x^3+3x^2-ax+b$ is a polynomial such that when it is divided by x-1 and x+1, the remainders are respectively 5 and 19. Determine the remainder when f(x) is divided by (x-2).

103.
$$f(x) = x^3 + 4x^2 - 3x + 10$$
, $g(x) = x + 4$

104. बहुपद f (x) को बहुपद g (x) से विभाजित करने पर शेषफल प्रमेय की सहायता से शेषफल ज्ञात कीजिए तथा परिणाम की पुष्टि वास्तविक भोजन द्वारा भी कीजिए।

$$f(x) = 4x^4 - 3x^3 - 2x^2 + x - 7, g(x) = x - 1$$

105.
$$f(x) = 4x^3 - 12x^2 + 14x - 3$$
, $g(x) = 2x - 1$

106.
$$f(x) = x^3 - 6x^2 + 2x - 4$$
, $g(x) = 1 - 2x$

107. Find the remainder when $f(x)=x^4-3x^2+4$ is divided by g(x)=x-2 is.

- **108.** $f(x) = 9x^3 3x^2 + x 5, g(x) = x \frac{2}{3}$
 - Watch Video Solution

- **109.** $f(x) = 3x^4 + 2x^3 \frac{x^2}{3} \frac{x}{9} + \frac{2}{27}, g(x) = x + \frac{2}{3}$
 - **Watch Video Solution**

110. If the polynomials ax^3+3x^2-13 and $2x^3-5x+a,$ when divided by (x-2) leave the same remainder, find the value of a .

Watch Video Solution

111. The polynomials ax^3+3x^2-3 and $2x^3-5x+a$ when divided by (x-4) leave the remainders R_1andR_2 respectively. Find the values of a in each of the following cases, if $R_1=R_2$ (ii) $R_1+R_2=0$ $2R_1-R_2=0$

112. If the polynomials ax^3+3x^2-13 and $2x^3-5x+a$, when divided by (x-2) leave the same remainder, find the value of a

Watch Video Solution

113. Find the remainder when x^3+3x^2+3x+1 is divided by (i) x+1 (ii) $x-\frac{1}{2}$ (iii) x (iv) $x+\pi$ (v) 5+2x

Watch Video Solution

114. Find the remainder when x^3+3x^2+3x+1 is divided by (i) x+1 (ii) $x-\frac{1}{2}$ (iii) x (iv) $x+\pi$ (v) 5+2x

115. Show that (x-3) is a factor of the polynomial $x^3-3x^2+4x-12$

Watch Video Solution

116. Show that (x-1) is a factor of $x^{10}-1$ and also of $x^{11}-1$.

Watch Video Solution

117. Show that x+1 and 2x-3 are factors of $2x^3-9x^2+x+12$

118. Without actual division prove that $2x^4-6x^3+3x^2+3x-2$ is exactly divisible by

 x^2-3x+2 is

Watch Video Solution

119. Find the value of a, if x-a is a factor of $x^3 - a^2x + x + 2$

Watch Video Solution

120. Find the value of k, if x+3 is a factor of $3x^2 + kx + 6.$

121. Determine the value of a for which the polynomial $2x^4-ax^3+4x^2+2x+1$ is divisible by 1-2x.

Watch Video Solution

122. Find the value of a and b so that the polynomial $x^3-ax^2-13x+b$ has (x-1) and (x+3) as factors.

Watch Video Solution

 x^3+10x^2+ax+b is exactly divisible by x-1 as well as

123. Find the values of a and b so that the polynomial

Watch Video Solution

124. For what values of a is $2x^3 + ax^2 + 11x + a + 3$ exactly divisible by (2x - 1)?

Watch Video Solution

125. If ax^3+bx^2+x-6 has x+2 as a factor and leaves a remainder 4 when divided by (x-2), find the value of a and b.

126. If both x-2 and $x-rac{1}{2}$ are factors of $px^2+5x+r,$ show that p=r.

127. If x^2-1 is a factor of $ax^4+bx^3+cx^2+dx+e$, show that a+c+e=b+d

128. Without actual division, prove that $2x^4-5x^3+2x^2-x+2$ is exactly divisible by x^2-3x+2 .

129. Without actual division, prove that $x^4+2x^3-2x^2+2x-3$ is exactly divisible by x^2+2x-3 .

130. In each of the following polynomials, find the value of a if x+a is a factor: $x^3+ax^2-2x+a+4$

131. In each of the following polynomials, find the value of a if x+a is a factor: $x^4-a^2x^2+3x-a$

132. Use factor theorem to verify that x+a is a factor of x^n+a^n for any odd positive integer.

Watch Video Solution

133. If $f(x)=x^4-2x^3+3x^2-ax+b$ is a polynomial such that when it is divided by x-1 and x+1, the remainders are respectively 5 and 19. Determine the remainder when f(x) is divided by (x-2).

134. What must be subtracted from $4x^4-2x^3-6x^2+x-5$ so that the result is exactly divisible by $2x^2 + x - 1$

Watch Video Solution

135. What must be added to $x^4+2x^3-2x^2+x-1$ so that the result is exactly divisible by $x^2 + 2x - 3$.

Watch Video Solution

136. $f(x) = x^3 - 6x^2 + 11x - 6$; g(x) = x - 3

137.
$$f(x) = 3x^4 + 17x^3 + 9x^2 - 7x - 10; g(x) = x + 5$$

138. check whether g(x) is a factor of f(x) or not f(x)= $x^5+3x^4-x^3-3x^2+5x+15$, g(x)=x+3

139.
$$f(x) = x^3 - 6x^2 - 19x + 84$$
, $g(x) = x - 7$

141. Using the remainder theorem, find out whether g(x) is factor of f(x) or not? $f(x) = 2x^3 - 9x^2 + x + 12, \ g(x) = 3 - 2x$

142.
$$f(x) = x^3 - 6x^2 + 11x - 6$$
, $g(x) = x^2 - 3x + 2$

143. Show that (x-2), (x+3) and (x-4) are factors of $x^3-3x^2-10x+24$.

144. Show that $(x+4),\ (x-3) and\ (x-7)$ are factors of $x^3-6x^2-19x+84$

145. For what value of a is (x-5) a factor of $x^3-3x^2+ax-10$?

146. Find the value of a such that (x-4) is a factor of $5x^3-7x^2-ax-28$

147. Find the value of a, if x+2 is a factor of $4x^4+2x^3-3x^2+8x+5a$

148. Find the value of k if x-3 is a factor of $k^2x^3-kx^2+3kx-k$

149. Find the values of a and b, if x^2-4 is a factor of $ax^4+2x^3-3x^2+bx-4$.

150. Find $lpha \ and \ eta$, if $x+1 \ and \ x+2$ are factors of $x^3+3x^2-2lpha x+eta$

151. Find the values of p and q so that $x^4 + px^3 + 2x^2 - 3x + q$ is divisible by $\left(x^2 - 1\right)$

152. Find the values of a and b so that (x+1)and (x-1) are factors of $x^4+ax^3-3x^2+2x+b$

153. If $x^3+ax^2-bx+10$ is divisible by x^2-3x+2 , find the values of a and b

154. if (x+1) and (x-1) are factors of $p(x)=ax^3+x^2-2x+b$ find the values of a&b

155. What must be added to $x^3-3x^2-12x+19$ so that the result is exactly divisibly by x^2+x-6 ?

156. What must be subtracted from $x^3-6x^2-15x+80$ so that the result is exactly divisible by x^2+x-12 ?

Watch Video Solution

157. What must be added to $3x^3 + x^2 - 22x + 9$ so that the result is exactly divisible by $3x^2 + 7x - 6$?

Watch Video Solution

158. If x-2 is a factor of each of the following two polynomials, find the values of a in each case. (i)

$$x^3 - 2ax^2 + ax - 1$$
 (ii)

$$x^5 - 3x^4 - ax^3 + 3ax^2 + 2ax + 4$$

Watch Video Solution

159. In each of the following two polynomials, find the value of a , if x-a is a factor: (i) $x^6-ax^5+x^4-ax^3+3x-a+2$

$$x^5 - a^2x^3 + 2x + a + 1$$

Watch Video Solution

160. In each of the following two polynomials, find the value of $a,\,$ if x+a is a factor. (i) $x^3+ax^2-2x+a+4$ (ii) $x^4-a^2x^2+3x-a$

161. Show that (x-2) is a factor of the polynomial $f(x)=2x^3-3x^2-17x+30$ and hence factorize f(x).

162. Using factor theorem, factorize the polynomial $x^3-6x^2+11x-6$.

163. Using factor theorem, factorize the polynomial $x^4 + x^3 - 7x^2 - x + 6$

164. Using factor theorem, factorize the polynomial $x^4 - 2x^3 - 13x^2 + 14x + 24$

165. Factorize : $2x^4 + x^3 - 14x^2 - 19x - 6$

166. Factorize $x^3 + 13x^2 + 32x + 20$, if it is given that x + 2 is its factor.

167. Factorize $9z^3 - 27z^2 - 100z + 300$, if it is given that (3z+10) is a factor of it.

Watch Video Solution

168. using factor theorm factorize the following $x^3 + 6x^2 + 11x + 6$

Watch Video Solution

169. Using factor theorem, factorize each of the following polynomials : $x^3 + 2x^2 - x - 2$

170. using factor theorm factorize the following $x^3 - 6x^2 + 3x + 10$

Watch Video Solution

171. Using factor theorem, factorize each of the following $\mathsf{polynomials}: x^4 - 2x^3 - 7x^2 + 8x + 12$

Watch Video Solution

172. Using factor theorem, factorize each of the following polynomials : $x^4-2x^3-7x^2+8x+12$

173. Using factor theorem, factorize the following polynomial : $x^4+10x^3+35x^2+50x+24$ Let $f(x)=x^4+10x^3+35x^2+50x+24$

Watch Video Solution

174. Using factor theorem, factorize each of the following ${\sf polynomials}: 2x^4-7x^3-13x^2+63x-45$

Watch Video Solution

175. Using factor theorem, factorize each of the following $\mathsf{polynomials}: 3x^3 - x^2 - 3x + 1$

176. Factorise $x^3 - 23x^2 + 142x - 120$

177. Using factor theorem, factorize the following polynomial : y^3-7y+6

178. Using factor theorem, factorize each of the following polynomials : $x^3-10x^2-53x-42$

179. using factor theorm factorize the following $y^3-2y^2-29y-42$

Watch Video Solution

180. Using factor theorem, factorize each of the following $\mathsf{polynomials}: x^3 - 10x^2 - 53x - 42$

Watch Video Solution

181. Favtorise $x^3 + 13x^2 + 32x + 20$

182. Factorise: (i)
$$x^3 - 2x^2 - x + 2$$
 (ii) $x^3 - 3x^2 - 9x - 5$

(iii)
$$x^3+13x^2+32x+20$$
 (iv) $2y^3+y^2-2y-1$

$$x^3 + 2x^2 - x - 2$$

$$x^3 - 2x^2 - x + 2 = (x^2 - 1)(x - 2)$$

Using the identity:
$$a^2-b^2=(a+b)(a-b)$$

$$\therefore (x^2-1)=(x+1)(x-1)$$

$$=(x-1)(x+1)(x-2)$$

 $=x(x^2-1)-2(x^2-1)$

ii)
$$x^3 - 3x^2 - 9x - 5$$

ii)
$$x^3 - 3x^2 - 9x - 5$$

$$x(x^2+2x+1) - 5((x^2+2x+1)$$

$$(x-5)ig(x^2+2x+1ig)$$
 The value of

$$x^3+13x^2+32x+20 is ig(x^3+x^2+12x^2+12x+20x+20ig)$$

$$egin{aligned} \Rightarrow x^2(x+1) + 12x(x+1) + 20(x+1) \ &\Rightarrow (x-1)(x^2+12x+20) \end{aligned}$$

$$(2x + 20)$$

$$\Rightarrow (x-1) (x^2 + 10x + 2x + 20)$$

 $\Rightarrow (x+1)(x(x+10) + 2(x+10))$

 $\Rightarrow (x+1)(x+2)(x+10)$

iv)Now Factorizing,
$$2y^3+y^2-2y-1$$
 $=y^2(2y+1)-1(2y+1)$

$$=(2y+1)ig(y^2\!\!-1ig)$$

$$=(2y+1)ig(y^2\!\!-1^2ig)$$

(2y+1)(y+1)(y-1)

184. Factorize : $x^3 - 2x^2 - x + 2$

Watch Video Solution

185. Factorize : $x^3+13x^2+31x-45$ given that x+9 is a factor

Watch Video Solution

186. Factorize: $4x^3 + 20x^2 + 33x + 18$ given that 2x + 3 is a factor

187. Zero of a Polynomial

Watch Video Solution

188. If $x=rac{1}{2}$ is a zero of the polynomial $f(x)=8x^3+ax^2-4x+2,$ find the value of a

Watch Video Solution

189. Write the remainder when the polynomial $f(x) = x^3 + x^2 - 3x + 2$ is a divided by x+1

190. Find the remainder when x^3+4x^2+4x-3 is divided by x

Watch Video Solution

191. If x+1 is a factor of x^3+a , then write the value of a

Watch Video Solution

192. If $f(x)=x^4-2x^3+3x^2-ax-b$ when divided by

x-1 , the remainder is 6 , then find the value of a+b

193. If x-2 is a factor of $x^2+3ax-2a$, then a=2 (b)

$$-2$$
 (c) 1 (d) -1

Watch Video Solution

194. If x^3+6x^2+4x+k , is exactly divisible by (x+2), then the value of k is:

$$x+2=0, x=-2$$

$$(-2)^3 + 6(-2)^2 + 4(-2) + k = 0$$

$$-8 + 24 - 8 + k = 0$$

$$8 + k = 0$$

$$k = -8$$

195. If x-a is a factor of $x^3-3x^2a+2a^2x+b, \,\,$ then the value of b is 0 (b) 2 (c) 1 (d) 3

$$x - a = 0, x = a$$

$$a^3 - 3a^2(a) + 2a^2(a) + b = 0$$

$$-3a^3 + 3a^3 + b = 0$$

$$b = 0$$

Watch Video Solution

196. If $x^{140}+2x^{151}+k$ is divisible by x+1 , then the value of k is=? (a)1 (b) -3 (c) 2 (d) -2

If x+2 and x-1 are the factors of $x^3+10x^2+mx+n,$ then the values of m and n are respectively=? (a)5 and -3 (b) 17 and -8 7 and -18 (d) 23and -19

Watch Video Solution

198. Let f(x) be a polynomial such that $f\Big(-rac{1}{2}\Big)=0,$ then a factor of f(x) is:? (a)2x-1 (b) 2x+1 (c)x-1 (d) x+1

Watch Video Solution

199. When x^3-2x^2+ax-b is divided by x^2-2x-3 , the remainder is x-6. The values of a and b are respectively.

- (a)-2, -6
- (b) 2, -6
- (c)-2, 6
- (d) 2, 6

Watch Video Solution

200. One factor of $x^4 + x^2 - 20$ is $x^2 + 5$. The other factor is $x^2 - 4$ (b) x - 4 (c) $x^2 - 5$ (d) x + 2

Watch Video Solution

201. If (x-1) is a factor of polynomial f(x) but not of g(x) , then it must be a factor of (a) f(x)g(x) (b)

 $-f\left(x
ight)+\ g(x)\left(\mathsf{c}
ight)f(x)-g(x)\left(\mathsf{d}
ight)\left\{f(x)+g(x)
ight\}g(x)$

if (x - 1) is a factor of polynomial f(x) but not of g(x)

Then it must be a factor of multiplication of f(x) and g(x).

i.e f(x)q(x)

.Option A is correct.

Watch Video Solution

202. (x+1) is a factor of x^n+1 only if (a)n is an odd integer (b) n is an even integer (c)n is a negative integer (d)n is a positive integer

203. If x+2 is a factor of $x^2+mx+14$, then m= (a)7

(b) 2 (c) 9 (d) 14

$$x+2=0, x=\,-\,2$$

$$(-2)^2 + m(-2) + 14 = 0$$

$$4 - 2m + 14 = 0$$

$$2m = 18$$

m=9 Hence ${
m c}$, is correct option.

204. If x-3 is a factor of $x^2-ax-15$, then a=

205. If x^2+x+1 is a factor of the polynomial $3x^3+8x^2+8x+3+5k$, then the value of k is 0 (b) $\frac{2}{5}$ (c) $\frac{5}{2}$ (d) -1

Watch Video Solution

206. If $(3x-1)^7 = a_7 x^7 + a_6 x^6 + a_5 x^5 + + a_1 x + a_0$ then

the value of $a_7+a_6.\ldots.a_0$

Watch Video Solution

207. If $x^{51}+51$ is divided by x+1 , the remainder is 0 (b) 1 (c) 49 (d) 50

If $x^{51}+51$ is divided by x+1,the remainder is 0.

208. If x + a is a factor of $x^4 - a^2x^2 + 3x - 6a$, then

209. Find the value of k, if x-1 is a factor of

$$50$$
 is correct answer.

x + 1 = 0, x = -1

 $(-1)^{51} + 51$

a = 0 (b) -1 (c) 1 (d) 2

Watch Video Solution

 $4x^3 + 3x^2 - 4x + k$

210. If both x-2 and $x-\frac{1}{2}$ are factors of $px^2+5x+r,$ show that p=r.

Watch Video Solution

211. If x^2-1 is a factor of $ax^4+bx^3+cx^2+dx+e$, show that a+c+e=b+d

Given , x^2-1 is a factor of $ax^4+bx^3+cx^2+dx+e$

$$(x-1)(x+1)$$
 divides $ax^4+bx^3+cx^2+dx+e$

When,
$$x = 1$$
, $a + b + c + d + e = 0(i)$

$$When, x = -1, thena-b+c-d+e = 0$$
(ii

$$a + c + e = b + d$$

