

MATHS

BOOKS - RD SHARMA MATHS (HINGLISH)

TRIANGLE AND ITS ANGLES

1. In a $ABC,\ \angle B=105^0,\ \angle C=50^0,\$ Find

the third angle.

3. Of the three angles of a triangle, one is twice the smallest and another is three times the smallest. Find the angles.

- 4. If the angle of a triangle are in the ratio
- 2:3:4, determine three angles.

5. The sum of two angles of a triangle is 80^0

and their difference is 20^0 . Find all the angles.

7. A, B, C are the three angles of a triangle. If

 $A-B=15^\circ,\;B-C=30^\circ,$ find

 $\angle A, \ \angle B \ and \ \angle C$

8. In Figure, ABDC . If $x=\frac{4y}{3}$ and $y=\frac{3z}{8}$, find $\angle BCD$, $\angle ABC$ and $\angle BAD$

Watch Video Solution

9. A triangle ABC is right angles at AAL is drawn perpendicular to BC . Prove that $\angle BAL = \angle ACB$

10. In Figure *PS* is the bisector of
$$\angle QPR$$
 and $PT \perp QR$. Show that $\angle TPS = \frac{1}{2}(\angle Q - \angle R)$ **Vatch Video Solution**

11. If two parallel lines are intersected by a transversal, prove that the bisectors of the interior angles on the same side of transversal intersect each other at right angles.

12. In Figure, TQ and TR are the bisectors of $\angle Q$ and $\angle R$ respectively. If $\angle QPR = 80^0$ and $\angle PRT = 30^0$, determine $\angle TQR$ and $\angle QTR$

Watch Video Solution

13. In Figure, m and n are two plane mirrors perpendicular to each other. Show that the incident ray CA is parallel to the reflected ray

BD

14. In ABC, $\angle B = 45^{\circ}$, $\angle C = 55^{\circ}$ and bisector of $\angle A$ meets BC at a point D. Find $\angle ADB$ and $\angle ADC$

Watch Video Solution

15. A, B, C, are three angles of a triangle. If $A-B=15^\circ, B-C=30^\circ, ~~{
m find}~~ ar{a}A, ar{a}B$ and $ar{a}C$

16. In a ABC, if $\angle A = 55^{\circ}$, $\angle B = 40^{\circ}$, find $\angle C$ Watch Video Solution

17. If the angles of a triangle are in the ratio

1:2:3, determine three angles.

18. The angles of a triangle are $(x - 40)^0$, $(x - 20)^0$ and $\left(\frac{1}{2}x - 10\right)^0$. find

the value of x.

Watch Video Solution

19. The angle of a triangle are arranged in ascending order of magnitude. If the difference between two consecutive angles is 10^0 , find the three angles.

20. Two angles of a triangle are equal and the third angle is greater than each of those angles by 30^{0} . Determine all the angles of the triangle.

Watch Video Solution

21. If one angle of a triangle is equal to the sum of the other two, show that the triangle is a right triangle.

22. ABC is a triangle in which $\angle A = 72^0$, the

internal bisectors of angles B and C meet in

O· Find the magnitude of $\angle BOC$

Watch Video Solution

23. The bisectors of base angles of a triangle

cannot enclose a right angle in any case.

24. If the bisectors of the base angles of a triangle enclose an angle of 135^0 , prove that the triangle is a right triangle.

25. In a ABC, $\angle ABC = \angle ACB$ and the bisectors of $\angle ABC$ and $\angle ACB$ intersect at O such that $\angle BOC = 120^{0}$. Show that $\angle A = \angle B = \angle C = 60^{0}$.

26. Can a triangle have: Two right angles? (ii) Two obtuse angles? Two acute angles (iv) All angles more than 60° ? All angles less than 60° ? (vi) All angles equal to 60°

Watch Video Solution

27. If each angle of a triangle is less than the sum of the other two, show that the triangle is acute angled.

28. An exterior angle of a triangle is 110^0 , and one of the interior opposite angles is 30^0 . Find the other two angles of the triangle.

Watch Video Solution

29. The sides BC, CA and AB of a ABC,

are produced in order, forming exterior angles

 $\angle ACD, \ \angle BAE \ and \ \angle CBF$. Show that

 $\angle ACD + \angle BAE + \angle CBF = 360^{\circ}$

31. In Figure, side QP and RQ of PQR are produced to point S and T respectively. If $\angle SPR = 135^0$ and $\angle PQT = 110^0, \ f \in d \angle PRQ$

32. In Fig. 6.40, $\angle X = 62^{\circ}, \angle XYZ = 54^{\circ}$. If YO and ZO are the bisectors of $\angle XYZ$ and $\angle XZY$ respectively of ΔXYZ , find $\angle OZY$

Watch Video Solution

and $\angle YOZ$.

Watch Video Solution

34. In Fig. 6.42, if lines PQ and RS intersect at point T, such that $\angle PRT = 40^{\circ}$, $\angle RPT = 95^{\circ}$ and $\angle TSQ = 75^{\circ}$, find $\angle SQT$

35. In Fig. 6.42, if lines PQ and RS intersect at point T, such that $\angle PRT = 40^{\circ}$, $\angle RPT = 95^{\circ}$ and $\angle TSQ = 75^{\circ}$, find $\angle SQT$

36. The side BC of a ABC is produced on both sides. Show that the sum of the exterior

angles so formed is greater than $\angle A$ by two

right angles.

37. Sides BC, CA and BA of a triangle ABC

are produced to D, Q, P respectively as

shown in Figure. If

 $\angle ACD = 100^{0} and \angle QAP = 35^{0}, ext{ find all the}$

angles of the triangle.

38. In Figure, the side BC of ABC is produced to form ray BD as shown. Ray CE is drawn parallel to BA. Show directly, without using the angle sum property of a triangle that $ACD = \angle A + \angle b$ and deduced that $\angle A + \angle B + \angle C = 180^{0}$.

Watch Video Solution

39. Prove that the angle between internal bisector of one base angle and the external

bisector of the other base angle of a triangle

is equal to one-half of the vertical angle.

41. The exterior angles, obtained on producing the base of a triangle both ways are 104^0 and 136^0 . Find all the angles of the triangle.

Watch Video Solution

42. An exterior angle of a triangle is 110^0 , and one of the interior opposite angles is 30^0 . Find

the other two angles of the triangle.

43. An exterior angle of a triangle is 110^0 , and one of the interior opposite angles is 30^0 . Find the other two angles of the triangle.

Watch Video Solution

44. Compute the value of x in each of the

following figures: (ii) (iv)

45. In Figure, AB divides $\angle DAC$ in the ratio

 $1:3 \ and \ AB = DB$. Determine the value of x

Watch Video Solution

46. ABC is a triangle. The bisector of the exterior angle at B and the bisector of $\angle C$ intersect each other at D. Prove that $\angle D = \frac{1}{2} \angle A$

47. The bisectors of base angles of a triangle

cannot enclose a right angle in any case.

48. If the bisectors of the base angles of a triangle enclose an angle of 135^0 , prove that the triangle is a right triangle.

50. In a parallelogram, the bisectors of any two

consecutive angles intersect at right angle.

51. Fill in the blanks to make the following statements true: Sum of the angles of a triangle is An exterior angle of a triangle is equal to the two opposite angles. An exterior angle of a triangle is always than either of the interior opposite angles. A triangle cannot have more than right angles. A triangles cannot have more than obtuse angles.

52. Fill in the blanks to make the following statements true: Sum of the angles of a triangle is An exterior angle of a triangle is equal to the two opposite angles. An exterior angle of a triangle is always than either of the interior opposite angles. A triangle cannot have more than right angles. A triangles cannot have more than obtuse angles.

54. Write the sum of the angles of an obtuse

triangle.

Watch Video Solution

55. Can the sum of the two angles of a triangle

be less than the third angles?

56. If the angle of a triangle are in the ratio 2:1:3, then find the measure of smallest angle.

57. If ABCD is a rectangle with $\angle BAC = 32^{\circ}$, find the measure of $\angle DBC$

58. In a parallelogram ABCD diagonals ACand BD intersect at O and AC = 6.8cm and BD = 13.6cm. Find the measures of OC and OD.

Watch Video Solution

59. State exterior angle theorem

60. If the side BC of ABC is produced on both sides, then write the difference between the sum of the exterior angles so formed and $\angle A$

Watch Video Solution

61. In a triangle ABC, if AB = AC and AB

is produced to D such that BD = BC, find

 $\angle ACD : \angle ADC$

62. The sum of two angles of a triangle is equal to its third angle. Determine the measure of the third angle.

63. In a rhombus ABCD, if $\angle ACB = 40^{\circ}$,

then $\angle ADB =$ (a) 70° (b) 45° (c) 50° (d) 60°

64. if ABDE and BDFG such that $\angle FGH = 125^0$ and $\angle B = 55^0$, find x and y

Watch Video Solution

65. side *BC* of *ABC* is produced to point *D* such that bisectors of $\angle ABC$ and $\angle ACD$ meet at a point *E*. If $\angle BAC = 68^{\circ}$, find $\angle BEC$

66. If all the three angles of a triangle are equal, then each one of them is equal to: 90^{0} (b) 45^{0} (c) 60^{0} (d) 30^{0}

Watch Video Solution

67. If two acute angles of a right triangle are equal, then each acute is equal to 30^0 (b) 45^0 (c) 60^0 (d) 90^0

68. An exterior angle of a triangle is equal to 100^{0} and two interior opposite angles are equal. Each of these angles is equal to 75^{0} (b) 80^{0} (c) 40^{0} (d) 50^{0}

69. If one angle of a triangle is equal to the sum of the other two angles, then the triangle is an isosceles triangle (b) an obtuse triangle an equilateral triangle (d) a right triangle

70. Side BC of a triangle ABC has been produced to a point D such that $\angle 120^{0}$. If $\angle B = \frac{1}{2} \angle A$, then $\angle A$ is equal to 80^{0} (b) 75^{0} (c) 60^{0} (d) 90^{0}

Watch Video Solution

71. In ABC, $\angle B = \angle C$ and ray AX bisects

the

exterior

angle

 ${
m $\angle DACIf {
m $\angle DAX = 70^0$}, then {
m $\angle ACB = $}}$

 35^0 (b) 90^0 (c) 70^0 (d) 55^0

Watch Video Solution

72. In a triangle, an exterior angle at a vertex is 95^0 and its one of the interior opposite angle is 55^0 , then the measure of the other interior angle is 55^0 (b) 85^0 (c) 40^0 (d) 90^0

73. If the sides of a triangle are produced in order, then the sum of the three exterior angles so formed is 90^0 (b) 180^0 (c) 270^0 (d) 360^0

Watch Video Solution

74. In ABC, if $\angle A = 100^0$, AD bisects $\angle A$ and $\angle AD \perp BC$. Then, $\angle B = 50^0$ (b) 90^0 (c) 40^0 (d) 100^0

75. An exterior angle of a triangle is 108^{0} and its interior opposite angles are in the ratio 4:5. The angles of the triangle are 48^{0} , 60^{0} , 72^{0} (b) 50^{0} , 60^{0} , 70^{0} 52^{0} , 56^{0} , 72^{0} (d) 42^{0} , 60^{0} , 76^{0}

Watch Video Solution

76. In a ABC, if $\angle A = 60^{0}$, $\angle B = 80^{0}$ and the bisectors of $\angle B$ and $\angle C$ meet at O, then $\angle BOC = 60^{0}$ (b) 120^{0} (c) 150^{0} (d) 30^{0}

77. If the bisectors of the acute angles of a right triangle meet at O, then the angle at O between the two bisectors is 45^0 (b) 95^0 (c) 135^0 (d) 90^0

Watch Video Solution

78. Line segments AB and CD intersect at O

such that $AC \mid DB$. If

 $\angle CAB = 45^0 and \angle CDB = 55^0,$ then

 $igta BOD=~100^0$ (b) 80^0 (c) 90^0 (d) 135^0

Watch Video Solution

79. The bisectors of exterior angles at $B \ and \ C$

of $\angle ABC$ meet at O. If $\angle A=x^0,$ then $\angle BOC=90^0+rac{x^0}{2}$ (b) $90^0-rac{x^0}{2}$ $180^0+rac{x^0}{2}$ (d) $180^0-rac{x^0}{2}$

80. In a ABC, $\angle A = 50^{0} and BC$ is produced to a point D. If the bisectors of $\angle ABC$ and $\angle ACD$ meet at E, then $\angle E =$ 25^{0} (b) 50^{0} (c) 100^{0} (d) 75^{0}

Watch Video Solution

81. The side BC of ABC is produced to a point D. The bisector of $\angle A$ meets side BC in L. If $\angle ABC = 30^0 and \angle ACD = 115^0$, then

these

82. In Figure, if $EC \mid \mid AB, \ \angle ECD = 70^0 AND \ \angle BDO = 20^0$, then $\angle OBD$ is: 20^0 (b) 50^0 (c) 60^0 (d) 70^0

83. If the measures of angles of a triangle are in the ratio of 3: 4: 5, what is the measure of the smallest angle of the triangle? 25^0 (b) 30^0 (c) 45^0 (d) 60^0

Watch Video Solution

84. The base BC of triangle ABC is produced both ways and the measure of exterior angles formed are 94^0 and 126^0 . Then $\angle BAC = 94^0$ (b) 54^0 (c) 40^0 (d) 44^0

