©゙ doubtnut

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

CONIC SECTIONS

Solved Examples And Exercises

1. Let $A(0,1), B(1,1), C(1,-1), D(-1,0)$ be four points. If P is any other point, then $P A+P B+P C P D \geq d$, when [d] is where [.] represents greatest integer.

- Watch Video Solution

2. If $\left(a \cos \theta_{1}, a \sin \theta_{1}\right),\left(a \cos \theta_{2}, a \sin \theta_{2}\right)$ and $\left(a \cos \theta_{3}, a \sin \theta_{3}\right)$ represent the vertices of an equilateral triangle inscribed in a circle, then (a)

$$
\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}=0 \quad \text { (b) } \quad \sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}=0
$$ $\tan \theta_{1}+\tan \theta_{2}+\tan \theta_{3}=0$ (d) $\cot \theta_{1}+\cot \theta_{2}+\cot \theta_{3}=0$

- Watch Video Solution

3. The area of triangle $A B C$ is $20 \mathrm{~cm}^{2}$ The coordinates of vertex A are $-5,0$) and those of B are $(3,0)$ The vertex C lies on the line $x-y=2$. The coordinates of C are $(5,3)(b)(-3,-5)(-5,-7)(d)(7,5)$

- Watch Video Solution

4. If a, b, c are the pth, q th, r th terms, respectively, of an $H P$, show that the points $(b c, p),(c a, q)$, and $(a b, r)$ are collinear.

- Watch Video Solution

5. Let $A B C D$ be a rectangle and P be any point in its plane. Show that

$$
A P^{2}+P C^{2}=P B^{2}+P D^{2}
$$

(D) Watch Video Solution

6. A rod of length k slides in a vertical plane, its ends touching the coordinate axes. Prove that the locus of the foot of the perpendicular from the origin to the rod is $\left(x^{2}+y^{2}\right)^{3}=k^{2} x^{2} y^{2}$

- Watch Video Solution

7. Prove that the circumcenter, orthocentre, incenter, and centroid of the triangle formed by the points $A(-1,11), B(-9,-8)$, and $C(15,-2)$ are collinear, without actually finding any of them.

- Watch Video Solution

8. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in GP with the same common ratio, then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ lie on a straight line lie on an ellipse lie on a circle (d) are the vertices of a triangle.
9. Statement 1 :If the lines $2 x+3 y+19=0$ and $9 x+6 y-17=0$ cut the $x-$ axis at A, B and the y-axis at C, D, then the points, A, B, C, D are concyclic. Statement 2 : Since $O A x O B=O C x O D$, where O is the origin, A, B, C, D are concyclic.

Watch Video Solution

10. If the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ are collinear show that $\frac{y_{2}-y_{3}}{x_{2} x_{3}}+\frac{y_{3}-y_{1}}{x_{3} x_{1}}+\frac{y_{1}-y_{2}}{x_{1} x_{2}}=0$

- Watch Video Solution

11. Let ` 0

- Watch Video Solution

12. The coordinates of A, B, C are $(6,3),(-3,5),(4,-2)$, respectively, and P is any point (x, y). Show that the ratio of the area of $P B C$ to that of $A B C$ is $\frac{|x+y-2|}{7}$.

- Watch Video Solution

13. A line cuts the x-axis at $A(7,0)$ and the y-axis at $B(0,-5) A$ variable line $P Q$ is drawn perpendicular to $A B$ cutting the x-axis in P and the y-axis in Q. If $A Q$ and $B P$ intersect at R, find the locus of R

- Watch Video Solution

14. Statement 1 : Let the vertices of a $A B C$ be $A(-5,-2), B(7,6)$, and $C(5,-4)$. Then the coordinates of the circumcenter are $(1,2)$ Statement 2: In a right-angled triangle, the midpoint of the hypotenuse is the circumcenter of the triangle.

- Watch Video Solution

15. If (x, y) and (x, y) are the coordinates of the same point referred to two sets of rectangular axes with the same origin and it $u x+v y$, where u and v are independent of xandy, becomes $V X+U Y$, show that $u^{2}+v^{2}=U^{2}+V^{2}$

- Watch Video Solution

16. $O X$ and $O Y$ are two coordinate axes. On $O Y$ is taken a fixed point $P(0, c)$ and on $O X$ any point Q On $P Q$, an equilateral triangle is described, its vertex R being on the side of $P Q$ away from O. Then prove that the locus of R is $y=\sqrt{3} x-\cdot$

- Watch Video Solution

17. Two vertices of a triangle are (5, -1) and $(-2,3)$ If the orthocentre of the triangle is the origin, find the coordinates of the third point.
18. The vertices of a triangle are $\left[a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right],\left[a t_{2} t_{3}, a\left(t_{2}+t_{3}\right)\right]$, $\left[a t_{3} t_{1}, a\left(t_{3}+t_{1}\right)\right]$ Then the orthocenter of the triangle is (a) $\left(-a, a\left(t_{1}+t_{2}+t_{3}\right)-a t_{1} t_{2} t_{3}\right) \quad$ (b) $\quad\left(-a, a\left(t_{1}+t_{2}+t_{3}\right)+a t_{1} t_{2} t_{3}\right)$
$\left(a, a\left(t_{1}+t_{2}+t_{3}\right)+a t_{1} t_{2} t_{3}\right)$ (d) $\left(a, a\left(t_{1}+t_{2}+t_{3}\right)-a t_{1} t_{2} t_{3}\right)$

- Watch Video Solution

19. If $(-6,-4),(3,5),(-2,1)$ are the vertices of a parallelogram, then the remaining vertex can be (a)(0,-1)(b) 7,9)(c)(-1,0)(d)(-11,-8)

- Watch Video Solution

20. The maximum area of the triangle whose sides a, b and c satisfy $0 \leq a \leq 1,1 \leq b \leq 2$ and $2 \leq c \leq 3$ is

- Watch Video Solution

21. If) $-4,0$) and $(1,-1)$ are two vertices of a triangle of area 4squnits, then its third vertex lies on $y=x$ (b) $5 x+y+12=0 x+5 y-4=0$ (d) $x+5 y+12=0$

- Watch Video Solution

22. Let $0 \equiv(0,0), A \equiv(0,4), B \equiv(6,0)$ Let P be a moving point such that the area of triangle $P O A$ is two times the area of triangle $P O B$. The locus of P will be a straight line whose equation can be

- Watch Video Solution

23. Through the point $P(\alpha, \beta)$, where $\alpha \beta>0$, the straight line $\frac{x}{a}+\frac{y}{b}=1$ is drawn so as to form a triangle of area S with the axes. If $a b>0$, then the least value of S is $\alpha \beta$ (b) $2 \alpha \beta$ (c) $3 \alpha \beta$ (d) none
24. The vertices A and D of square $A B C D$ lie on the positive sides of x-axis and y-axis, respectively. If the vertex C is the point $(12,17)$, then the coordinates of vertex B are
(a) $(14,16)$
(b) $(15,3) 17,5)(d)(17,12)$

D Watch Video Solution

25. A light ray emerging from the point source placed at $P(2,3)$ is reflected at a point Q on the y-axis. It then passes through the point
$R(5,10)$ The coordinates of Q are $(0,3)(b)(0,2)(0,5)(d)$ none of these

- Watch Video Solution

26. If the origin is shifted to the point $\left(\frac{a b}{a-b}, 0\right)$ without rotation, then the equation $(a-b)\left(x^{2}+y^{2}\right)-2 a b x=0 \quad$ becomes
$(a-b)\left(x^{2}+y^{2}\right)-(a+b) x y+a b x=a^{2} \quad$ (B) $(a+b)\left(x^{2}+y^{2}\right)=2 a b$
$\left(x^{2}+y^{2}\right)=\left(a^{2}+b^{2}\right)(\mathrm{D})(a-b)^{2}\left(x^{2}+y^{2}\right)=a^{2} b^{2}$

(D) Watch Video Solution

27. In $A B C$, the coordinates of B are $(0,0), A B=2, \angle A B C=\frac{\pi}{3}$, and the middle point of $B C$ has coordinates $(2,0)$ The centroid o the triangle is
(a) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ (b) $\left(\frac{5}{3}, \frac{1}{\sqrt{3}}\right)$ (c) $\left(4+\frac{\sqrt{3}}{3}, \frac{1}{3}\right)$ (d) none of these

- Watch Video Solution

28. If a triangle $A B C, A \equiv(1,10)$, circumcenter $\equiv\left(-\frac{1}{3}, \frac{2}{3}\right)$, and orthocentre $\equiv\left(\frac{11}{4}, \frac{4}{3}\right)$, then the coordinates of the midpoint of the side opposite to A are $\left(1,-\frac{11}{3}\right)(b)(1,5)(1,-3)(d)(1,6)$

- Watch Video Solution

29. A triangle $A B C$ with vertices $A(-1,0), B(-2,3 / 4) \& C(-3,7 / 6)$ has its orthocentre H , then the orthocentre of triangle BCH will be

Watch Video Solution

30. In $A B C$, if the orthocentre is $(1,2)$ and the circumcenter is $(0,0)$, then centroid of $A B C$) is $\left(\frac{1}{2}, \frac{2}{3}\right)$ (b) $\left(\frac{1}{3}, \frac{2}{3}\right)\left(\frac{2}{3}, 1\right)$ (d) none of these

- Watch Video Solution

31. If the vertices of a triangle are $(\sqrt{5,0}),(\sqrt{3}, \sqrt{2})$, and $(2,1)$, then the orthocentre of the triangle is $(\sqrt{5}, 0)$ (b) $(0,0)(\sqrt{5}+\sqrt{3}+2, \sqrt{2}+1)$ none of these

- Watch Video Solution

32. The vertices of a triangle are $\left.\left(p q, \frac{1}{p q}\right),(p q)\right),\left(q r, \frac{1}{q r}\right)$, and $\left(r q, \frac{1}{r p}\right)$, where p, q and r are the roots of the equation $y^{3}-3 y^{2}+6 y+1=0$. The coordinates of its centroid are (1, 2) (b) 2, - 1) (1, -1) (d) 2, 3)

- Watch Video Solution

33. If two vertices of a triangle are $(-2,3)$ and $(5,-1)$ the orthocentre lies at the origin, and the centroid on the line $x+y=7$, then the third vertex lies at $(a)(7,4)(b)(8,14)(c)(12,21)^{\prime}(\mathrm{d})$ none of these

- Watch Video Solution

34. P and Q are points on the line joining $A(-2,5)$ and $B(3,1)$ such that $A P=P Q=Q B$. Then, the distance of the midpoint of $P Q$ from the origin is (a)3(b) $\frac{\sqrt{37}}{2}$ (b) 4 (d) 3.5

- Watch Video Solution

35. The point $(4,1)$ undergoes the following three transformations successively: (a) Reflection about the line $\mathrm{y}=\mathrm{x}$ (b) Translation through a distance 2 units along the positive direction of the x-axis. (c) Rotation through an angle $\frac{\pi}{4}$ about the origin in the anti clockwise direction. The final position of the point is given by the co-ordinates.

- Watch Video Solution

36. If the vertices P, Q, R of a triangle $P Q R$ are rational points, which of the following points of the triangle POR is (are) always rational point(s) ?

- Watch Video Solution

37. If $P(1,2) Q(4,6), R(5,7)$, and $S(a, b)$ are the vertices of a parallelogram
PQRS, then
(a) $a=2, b=4$
(b) $\quad a=3, b=4$
(c) $a=2, b=3$
$a=1$ or $b=-1$

- Watch Video Solution

38. If the area of the triangle formed by the points $(2 a, b)(a+b, 2 b+a)$, and $(2 b, 2 a)$ is 2 qunits, then the area of the triangle whose vertices are $(a+b, a-b),(3 b-a, b+3 a)$, and $(3 a-b, 3 b-a)$ will be \qquad

Watch Video Solution

39. The incenter of the triangle with vertices $(1, \sqrt{3}),(0,0)$, and $(2,0)$ is
(a) $\left(1, \frac{\sqrt{3}}{2}\right)$ (b) $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$ (c) $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$ (d) $\left(1, \frac{1}{\sqrt{3}}\right)$

- Watch Video Solution

40. The locus of the moving point whose coordinates are given by $\left(e^{t}+e^{-t}, e^{t}-e^{-t}\right)$ where t is a parameter, is $x y=1$ (b) $x+y=2 x^{2}-y^{2}=4$
(d) $x^{2}-y^{2}=2$

- Watch Video Solution

41. The distance between the circumcenter and the orthocentre of the triangle whose vertices are $(0,0),(6,8)$, and $(-4,3)$ is L Then the value of $\frac{2}{\sqrt{5}} L$ is

- Watch Video Solution

42. A man starts from the point $P(-3,4)$ and reaches the point $Q(0,1)$ touching the x -axis at $R(\alpha, 0)$ such that $P R+R Q$ is minimum. Then $5|\alpha|$ (A) 3 (B) 5 (C) 4 (D) 2

- Watch Video Solution

43. Statement 1 : The area of the triangle formed by the points $A(1000,1002), B(1001,1004), C(1002,1003)$ is the same as the area formed by the point $A^{\prime}(0,0), B^{\prime}(1,2), C^{\prime}(2,1)$ Statement 2 : The area of the triangle is constant with respect to the translation of axes.
44. Consider three points $P=(-\sin (\beta-\alpha)$, $-\cos \beta), Q=(\cos (\beta-\alpha), \sin \beta)$, and $R=\left((\cos (\beta-\alpha+\theta), \sin (\beta-\theta))\right.$, where $0<\alpha, \beta, \theta<\frac{\pi}{4}$ Then

- Watch Video Solution

45. Each equation contains statements given in two columns which have to be matched. Statements (a,b,c,d) in column I have to be matched with Statements (p, q, r, s) in column II. If the correct match are $a \vec{p}, a \vec{s}, b \vec{q}, b \vec{r}, c \vec{p}, c \vec{q}$, and $d \vec{s}$, then the correctly bubbled $4 x 4$ matrix should be as follows: Figure Consider the lines represented by equation $\left(x^{2}+x y-x\right) x(x-y)=0$, forming a triangle. Then match the following: Column I|Column II Orthocenter of triangle |p. $\left(\frac{1}{6}, \frac{1}{2}\right)$ Circumcenter|q. $\left(1(2+2 \sqrt{2}), \frac{1}{2}\right)$ Centroid|r. $\left(0, \frac{1}{2}\right)$ Incenter|s. $\left(\frac{1}{2}, \frac{1}{2}\right)$

- Watch Video Solution

46. A straight line passing through $P(3,1)$ meets the coordinate axes at AandB. It is given that the distance of this straight line from the origin O is maximum. The area of triangle $O A B$ is equal to $\frac{50}{3}$ squnits (b) $\frac{25}{3}$ squnits $\frac{20}{3}$ squnits (d) $\frac{100}{3}$ squnits

(Watch Video Solution

47. Let $A \equiv(3,-4), B \equiv(1,2)$ Let $P \equiv(2 k-1,2 k+1)$ be a variable point such that $P A+P B$ is the minimum. Then k is $7 / 9$ (b) 0 (c) $7 / 8$ (d) none of these

- Watch Video Solution

48. If $\left|x_{1} y_{1} 1 x_{2} y_{2} 1 x_{3} y_{3} 1\right|=\left|a_{1} b_{1} 1 a_{2} b_{2} 1 a_{3} b_{3} 1\right|$ then the two triangles with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ and $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)$ are equal to area (b) similar congruent (d) none of these
49. $O P Q R$ is a square and M, N are the middle points of the sides $P Q a n d Q R$, respectively. Then the ratio of the area of the square to that of triangle $O M N$ is $4: 1$ (b) 2:1 (c) $8: 3$ (d) 7:3

- Watch Video Solution

50. Which of the following sets of points form an equilateral triangle?
$(1,0),(4,0),(7,-1)(0,0),\left(\frac{3}{2}, \frac{4}{3}\right),\left(\frac{4}{3}, \frac{3}{2}\right)\left(\frac{2}{3},\right),\left(0, \frac{2}{3}\right),(1,1)$ (d) None of these

- Watch Video Solution

51. A particle p moves from the point $A(0,4)$ to the point $10,-4)$. The particle P can travel the upper-half plane $\{(x, y) \mid y \geq\}$ at the speed of $1 \mathrm{~m} / \mathrm{s}$ and the lower-half plane $\{(x, y) \mid y \leq 0\}$ at the speed of $2 \mathrm{~m} / \mathrm{s}$. The coordinates of a point on the x-axis, if the sum of the squares of the
travel times of the upper- and lower-half planes is minimum, are $(1,0)(b)$ $(2,0)(c)(4,0)(d)(5,0)$

- Watch Video Solution

52. $A B C$ is an isosceles triangle. If the coordinates of the base are $B(1,3)$ and $C(-2,7)$, the coordinates of vertex A can be (1,6)(b) $\left(-\frac{1}{2}, 5\right)$ $\left(\frac{5}{6}, 6\right)$ (d) none of these

- Watch Video Solution

53. If two vertices of a triangle are $(1,3)$ and $(4,-1)$ and the area of triangle is 5 sq . units, then the angle at the third vertex lies in :

- Watch Video Solution

54. Number of points with integral co-ordinates that lie inside a triangle whose co-ordinates are $(0,0),(0,21)$ and $(21,0)$.

Watch Video Solution

55. Let $O(0,0), P(3,4)$, and $Q(6,0)$ be the vertices of triangle $O P Q$. The point R inside the triangle $O P Q$ is such that the triangles $O P R, P Q R, O Q R$ are of equal area. The coordinates of R are $\left(\frac{4}{3}, 3\right)$ (b) $\left(3, \frac{2}{3}\right)\left(3, \frac{4}{3}\right)$ $\left(\frac{4}{3}, \frac{2}{3}\right)$

- Watch Video Solution

56. The orthocentre of the triangle with vertices $(0,0),(3,4)$, and $(4,0)$ is
A. $\left(3, \frac{5}{4}\right)$
B. $(3,12)$
C. $\left(3, \frac{3}{4}\right)$
D. $(3,9)$

Answer: C

D Watch Video Solution

57. The area of a triangle is 5 . Two of its vertices are $A(2,1)$ and $B(3,-2)$. The third vertex C is on $y=x+3$. Find C

- Watch Video Solution

58. Statement 1 : If the vertices of a triangle are having rational coordinates, then its centroid, circumcenter, and orthocentre are rational.

Statement 2 : In any triangle, orthocentre, centroid,and circumcenter are collinear, and the centroid divides the line joining the orthocentre and circumcenter in the ratio 2:1.
59. If $A\left(1, p^{2}\right), B(0,1)$ and $C(p, 0)$ are the coordinates of three points, then the value of p for which the area of triangle $A B C$ is the minimum is $\frac{1}{\sqrt{3}}$ (b) $-\frac{1}{\sqrt{3}} \frac{1}{\sqrt{2}}$ (d) none of these

- Watch Video Solution

60. If the point $\left(x_{1}+t\left(x_{2}-x_{1}\right), y_{1}+t\left(y_{2}-y_{1}\right)\right)$ divides the join of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ internally, then $t<0(b){ }^{\prime} 01(d) \mathbf{t}=1^{\prime}$

- Watch Video Solution

61. $O P Q R$ is a square and M, N are the midpoints of the sides $P Q$ and $Q R$, respectively. If the ratio of the area of the square to that of triangle $O M N$ is $\lambda: 6$, then $\frac{\lambda}{4}$ is equal to 2 (b) 4 (c) 2 (d) 16
62. If $\sum_{i-1}(\xi 2+y i 2) \leq 2 x_{1} x_{3}+2 x_{2} x_{4}+2 y_{2} y_{3}+2 y_{1} y_{4}$, the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right),\left(x_{4}, y_{4}\right)$ are the vertices of a rectangle collinear the vertices of a trapezium none of these

- Watch Video Solution

63. In an acute triangle $A B C$, if the coordinates of orthocentre H are $(4, b)$, of centroid G are $(b, 2 b-8)$, and of circumcenter S are $(-4,8)$, then b cannot be 4 (b) 8 (c) 12 (d) -12 But no common value of b is possible.

- Watch Video Solution

64. Consider the points $O(0,0), A(0,1)$, and $B(1,1)$ in the x, y plane. Suppose that points $C(x, 1)$ and $D(1, y)$ are chosen such that ${ }^{\circ} 0$

- Watch Video Solution

65. If all the vertices of a triangle have integral coordinates, then the triangle may be (a) right-angle(b) equilateral (c) isosceles(d) none of these

- Watch Video Solution

66. The locus of a point reprersented by $x=\frac{a}{2}\left(\frac{t+1}{t}\right), y=\frac{a}{2}\left(\frac{t-1}{1}\right)$, where $t \in R-\{0\}$, is $x^{2}+y^{2}=a^{2}(\mathrm{~b}) x^{2}-y^{2}=a^{2} x+y=a(\mathrm{~d}) x-y=a$

- Watch Video Solution

67. The points $A(0,0), B(\cos \alpha, \sin \alpha)$ and $C(\cos \beta, \sin \beta)$ are the vertices of a right-angled triangle if (a) $\sin \left(\frac{\alpha-\beta}{2}\right)=\frac{1}{\sqrt{2}}$ (b) $\cos \left(\frac{\alpha-\beta}{2}\right)=-\frac{1}{\sqrt{2}}$ (c)
$\cos \left(\frac{\alpha-\beta}{2}\right)=\frac{1}{\sqrt{2}}$ (d) $\sin \left(\frac{\alpha-\beta}{2}\right)=-\frac{1}{\sqrt{2}}$

- Watch Video Solution

68. The ends of a diagonal of a square are $(2,-3)$ and $(-1,1)$ Another vertex of the square can be $\left(-\frac{3}{2},-\frac{5}{2}\right)$ (b) $\left(\frac{5}{2}, \frac{1}{2}\right)\left(\frac{1}{2}, \frac{5}{2}\right)$ (d) none of these

- Watch Video Solution

69. Point $P(p, 0), Q(q, 0), R(0, p), S(0, q)$ from parallelogram rhombus cyclic quadrilateral (d) none of these

- Watch Video Solution

70. A rectangular billiard table has vertices at $P(0,0), Q(0,7), R(10,7)$, and $S(10,0)$ A small billiard ball starts at $M(3,4)$, moves in a straight line to the top of the table, bounces to the right side of the table, and then comes to rest at $N(7,1)$. The y-coordinate of the point where it hits the right side is (a) 3.7 (b) 3.8 (c) 3.9 (d) 4
71. If one side of a rhombus has endpoints (4,5) and (1,1), then the maximum area of the rhombus is 50 sq. units
(b) 25 sq. units 30
sq. units
(d) 20 sq. units

- Watch Video Solution

72. A rectangle $A B C D$, where $A \equiv(0,0), B \equiv(4,0), C \equiv(4,2) D \equiv(0,2)$, undergoes the following transformations successively: $f_{1}(x, y) y, x$ $\left.f_{2}(x, y) x+3 y, y f_{3}(x, y)(x-y) / 2,(x+y) / 2\right)$ The final figure will be square (b) a rhombus a rectangle (d) a parallelogram

- Watch Video Solution

73. If a straight line through the origin bisects the line passing through the given points $(a \cos \alpha, a \sin \alpha)$ and $(a \cos \beta, a \sin \beta)$, then the lines (a)are
perpendicular (b)are parallel (c)have an angle between them of $\frac{\pi}{4}$ (d)none of these

- Watch Video Solution

74. Let $A_{r}, r=1,2,3$, be the points on the number line such that $O A_{1}, O A_{2}, O A_{3}$ are in $G P$, where O is the origin, and the common ratio of the $G P$ be a positive proper fraction. Let M, be the middle point of the
line segment $A_{r} A_{r+1}$. Then the value of $\sum_{r=1} O M_{r}$ is equal to

- Watch Video Solution

75. The vertices of a parallelogram $A B C D$ are $A(3,1), B(13,6), C(13,21)$,
and $D(3,16)$ If a line passing through the origin divides the parallelogram into two congruent parts, then the slope of the line is $\frac{11}{12}$
(b) $\frac{11}{8}$ (c) $\frac{25}{8}$ (d) $\frac{13}{8}$
76. Point A and B are in the first quadrant; point O is the origin. If the slope of $O A$ is 1 , the slope of $O B$ is 7 , and $O A=O B$, then the slope of $A B$ is $-\frac{1}{5}$ (b) $-\frac{1}{4}$ (c) $-\frac{1}{3}$ (d) $-\frac{1}{2}$

- Watch Video Solution

77. In a $A B C, A \equiv(\alpha, \beta), B \equiv(1,2), C \equiv(2,3)$, point A lies on the line $y=2 x+3$, where α, β are integers, and the area of the triangle is S such that $[S]=2$ where [.] denotes the greatest integer function. Then the possible coordinates of A can be (a)(-7, -11) (b) ($-6,-9$)(c)(2, 7) (d) $(3,9)$

- Watch Video Solution

78. $y=a e^{m x}+b e^{-m x}, \frac{d^{2} y}{d x^{2}}=m^{2}$ yisequal $\rightarrow m^{2}\left(a e^{m x}-b e^{m x}\right)$
79. The vertices of a triangle are $A(-1,-7), B(5,1)$ and $C(1,4)$ If the internal angle bisector of $\angle B$ meets the side $A C$ in D, then find the length $A D$

- Watch Video Solution

80. The points $\left(0, \frac{8}{3}\right),(1,3)$, and $(82,30)$ are the vertices of (A) an obtuse-angled triangle (B) an acute-angled triangle (C) a right-angled triangle (D) none of these

- Watch Video Solution

81. A point A divides the join of $P(-5,1)$ and $Q(3,5)$ in the ratio $k: 1$. Then the integral value of k for which the area of $A B C$, where B is $(1,5)$ and C is $(7,-2)$, is equal to 2 units in magnitude is
82. Find the equation of the circle having center at $(2,3)$ and which touches $x+y=1$

- Watch Video Solution

83. If the lines $x+y=6 a n d x+2 y=4$ are diameters of the circle which passes through the point (2,6), then find its equation.

- Watch Video Solution

84. Find the equation of the circle with radius 5 whose center lies on the x-axis and passes through the point $(2,3)$.

- Watch Video Solution

85. The line $2 x-y+1=0$ is tangent to the circle at the point $(2,5)$ and the center of the circle lies on $x-2 y=4$. Then find the radius of the

circle.

- Watch Video Solution

86. Find the image of the circle $x^{2}+y^{2}-2 x+4 y-4=0$ in the line $2 x-3 y+5=0$

- Watch Video Solution

87. If $x^{2}+y^{2}-2 x+2 a y+a+3=0$ represents the real circle with nonzero
radius, then find the values of a

- Watch Video Solution

88. Find the equation of the circle having radius 5 and which touches line $3 x+4 y-11=0$ at point $(1,2)$.
89. If the equation $p x^{2}+(2-q) x y+3 y^{2}-6 q x+30 y+6 q=0$ represents a circle, then find the values of pandq

- Watch Video Solution

90. If the lines $3 x-4 y+4=0$ and $6 x-8 y-7=0$ are tangents to a circle, then find the radius of the circle.

- Watch Video Solution

91. Find the area of the triangle formed by the tangents from the point (4,
3) to the circle $x^{2}+y^{2}=9$ and the line joining their points of contact.

- Watch Video Solution

92. Tangents are drawn to $x^{2}+y^{2}=1$ from any arbitrary point P on the line $2 x+y-4=0$. The corresponding chord of contact passes through a
fixed point whose coordinates are $\left(\frac{1}{2}, \frac{1}{2}\right)$ (b) $\left(\frac{1}{2}, 1\right)\left(\frac{1}{2}, \frac{1}{4}\right)$ (d) $\left(1, \frac{1}{2}\right)$

Watch Video Solution

93. Find the length of the tangent drawn from any point on the circle $x^{2}+y^{2}+2 g x+2 f y+c_{1}=0$ to the circle $x^{2}+y^{2}+2 g x+2 f y+c_{2}=0$

- Watch Video Solution

94. Find the locus of a point which moves so that the ratio of the lengths of the tangents to the circles $x^{2}+y^{2}+4 x+3=0$ and $x^{2}+y^{2}-6 x+5=0$ is $2: 3$.

- Watch Video Solution

95. The tangent at any point P on the circle $x^{2}+y^{2}=4$ meets the coordinate axes at AandB. Then find the locus of the midpoint of $A B$
96. If a line passing through the origin touches the circle $(x-4)^{2}+(y+5)^{2}=25$, then find its slope.

- Watch Video Solution

97. If the chord of contact of the tangents drawn from the point (h, k) to the circle $x^{2}+y^{2}=a^{2}$ subtends a right angle at the center, then prove that $h^{2}+k^{2}=2 a^{2}$

- Watch Video Solution

98. If the straight line $x-2 y+1=0$ intersects the circle $x^{2}+y^{2}=25$ at points P and Q, then find the coordinates of the point of intersection of the tangents drawn at P and Q to the circle $x^{2}+y^{2}=25$.

- Watch Video Solution

99. If the chord of contact of the tangents drawn from a point on the circle $x^{2}+y^{2}+y^{2}=a^{2}$ to the circle $x^{2}+y^{2}=b^{2}$ touches the circle $x^{2}+y^{2}=c^{2}$, then prove that a, b and c are in GP.

- Watch Video Solution

100. The lengths of the tangents from any point on the circle $15 x^{2}+15 y^{2}-48 x+64 y=0$ to the two circles
$5 x^{2}+5 y^{2}-24 x+32 y+75=0$
$5 x^{2}+5 y^{2}-48 x+64 y=0$ are in the ratio

- Watch Video Solution

101. Find the equation of the normal to the circle $x^{2}+y^{2}=9$ at the point
$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
102. Find the equations of tangents to the circle $x^{2}+y^{2}-22 x-4 y+25=0$ which are perpendicular to the line $5 x+12 y+8=0$

- Watch Video Solution

103. If the length tangent drawn from the point $(5,3)$ to the circle $x^{2}+y^{2}+2 x+k y+17=0$ is 7 , then find the value of k

- Watch Video Solution

104. A pair of tangents are drawn from the origin to the circle $x^{2}+y^{2}+20(x+y)+20=0$. Then find its equations.

- Watch Video Solution

105. Find the equation of the normal to the circle $x^{2}+y^{2}-2 x=0$ parallel to the line $x+2 y=3$.
106. Find the equation of the tangent to the circle $x^{2}+y^{2}+4 x-4 y+4=0$ which makes equal intercepts on the positive coordinates axes.

- Watch Video Solution

107. If the distances from the origin of the centers of three circles $x^{2}+y^{2}+2 \lambda x-c^{2}=0,(i=1,2,3)$, are in GP, then prove that the lengths of the tangents drawn to them from any point on the circle $x^{2}+y^{2}=c^{2}$ are in GP.

- Watch Video Solution

108. Find the equation of the normals to the circle $x^{2}+y^{2}-8 x-2 y+12=0$ at the point whose ordinate is -1
109. An infinite number of tangents can be drawn from $(1,2)$ to the circle $x^{2}+y^{2}-2 x-4 y+\lambda=0$. Then find the value of λ

- Watch Video Solution

110. If the circle $x^{2}+y^{2}-4 x-8 y-5=0$ intersects the line $3 x-4 y=m$ at two distinct points, then find the values of m

- Watch Video Solution

111. Find the equation of the circle which cuts the three circles $x^{2}+y^{2}-3 x-6 y+14=0, x^{2}+y^{2}-x-4 y+8=0$, and
$x^{2}+y^{2}+2 x-6 y+9=0$ orthogonally.

- Watch Video Solution

112. Find the equations to the common tangents of the circles $x^{2}+y^{2}-2 x-6 y+9=0$ and $x^{2}+y^{2}+6 x-2 y+1=0$

Watch Video Solution

113. Equation of the smaller circle that touches the circle $x^{2}+y^{2}=1$ and passes through the point $(4,3)$ is

- Watch Video Solution

114. Show that the circles $x^{2}+y^{2}-10 x+4 y-20=0$ and $x^{2}+y^{2}+14 x-6 y+22=0$ touch each other. Find the coordinates of the point of contact and the equation of the common tangent at the point of contact.

- Watch Video Solution

115. If the radical axis of the circles $x^{2}+y^{2}+2 g x+2 f y+c=0$ and $2 x^{2}+2 y^{2}+3 x+8 y+2 c=0$ touches the circle $x^{2}+y^{2}+2 x+1=0$, show that either $g=\frac{3}{4}$ or $f=2$

- Watch Video Solution

116. The equation of three circles are given $x^{2}+y^{2}=1, x^{2}+y^{2}-8 x+15=0, x^{2}+y^{2}+10 y+24=0$. Determine the coordinates of the point P such that the tangents drawn from it to the circle are equal in length.

- Watch Video Solution

117. If the circles $x^{2}+y^{2}+2 a^{\prime} x+2 b^{\prime} y+c^{\prime}=0$ and $2 x^{2}+2 y^{2}+2 a x+2 b y+c=0$ intersect othrogonally, then prove that $a a^{\prime}+$ $b b^{\prime}=c+\frac{c^{\prime}}{2}$.
118. A circle passes through the origin and has its center on $y=x$ If it cuts $x^{2}+y^{2}-4 x-6 y+10=-$ orthogonally, then find the equation of the circle.

- Watch Video Solution

119. Prove that the equation of any tangent to the circle $x^{2}+y^{2}-2 x+4 y-4=0$ is of the form $y=m(x-1)+3 \sqrt{1+m^{2}}-2$.

- Watch Video Solution

120. The tangent to the circle $x^{2}+y^{2}=5$ at (1, -2) also touches the circle $x^{2}+y^{2}-8 x+6 y+20=0$. Find the coordinats of the corresponding point of contact.

- Watch Video Solution

121. If $S_{1}=\alpha^{2}+\beta^{2}-a^{2}$, then angle between the tangents from (α, β) to the circle $x^{2}+y^{2}=a^{2}$, is

- Watch Video Solution

122. If $a>2 b>0$, then find the positive value of m for which $y=m x-b \sqrt{1+m^{2}}$ is a common tangent to $x^{2}+y^{2}=b^{2}$ and $(x-a)^{2}+y^{2}=b^{2}$

- Watch Video Solution

123. Find the angle between the two tangents from the origin to the circle $(x-7)^{2}+(y+1)^{2}=25$

- Watch Video Solution

124. Two circles C_{1} and C_{2} intersect at two distinct points PandQ in a line passing through P meets circles $C_{1} a n d C_{2}$ at $A a n d B$, respectively. Let Y be the midpoint of $A B$, andQY meets circles $C_{1} a n d C_{2}$ at $X a n d Z$, respectively.

Then prove that Y is the midpoint of $X Z$

(Watch Video Solution

125. Find the equation of the tangent at the endpoints of the diameter of circle $(x-a)^{2}+(y-b)^{2}=r^{2}$ which is inclined at an angle θ with the positive x-axis.

- Watch Video Solution

126. Find the equations of the tangents to the circle $x^{2}+y^{2}-6 x+4 y=12$ which are parallel to the straight line $4 x+3 y+5=0$

- Watch Video Solution

127. If from any point P on the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$, tangents are drawn to the circle $x^{2}+y^{2}+2 g x+2 f y+c \sin ^{2} \alpha+\left(g^{2}+f^{2}\right) \cos ^{2} \alpha=0$, then find the angle between the tangents.

- Watch Video Solution

128. The lengths of the tangents from $P(1,-1)$ and $Q(3,3)$ to a circle are $\sqrt{2}$ and $\sqrt{6}$, respectively. Then, find the length of the tangent from $R(-1,-5)$ to the same circle.

- Watch Video Solution

129. Which of the following is a point on the common chord of the circle $x^{2}+y^{2}+2 x-3 y+6=0$ and $x^{2}+y^{2}+x-8 y-31=0$? ($1,-2$) (b) $(1,4)$ $(1,2)(d) 1,4)$

- Watch Video Solution

130. If the circles $x^{2}+y^{2}+2 a x+c y+a=0$ and $x^{2}+y^{2}-3 a x+d y-1=0$ intersects at points P and Q , then find the values of a for which the line $5 x+b y-a=0$ passes through PandQ

- Watch Video Solution

131. Find the angle at which the circles $x^{2}+y^{2}+x+y=0$ and $x^{2}+y^{2}+x-y=0$ intersect.

- Watch Video Solution

132. Find the angle which the common chord of $x^{2}+y^{2}-4 x=0$ and $x^{2}+y^{2}=16$ subtends at the origin.

- Watch Video Solution

133. If the tangents are drawn to the circle $x^{2}+y^{2}=12$ at the point where it meets the circle $x^{2}+y^{2}-5 x+3 y-2=0$, then find the point of intersection of these tangents.

- Watch Video Solution

134. If the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ bisects the circumference of the circle $x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y+c^{\prime}=0$ then prove that $2 g^{\prime}\left(g-g^{\prime}\right)+2 f^{\prime}\left(f-f^{\prime}\right)=c-c^{\prime}$

- Watch Video Solution

135. Find the length of the common chord of the circles $x^{2}+y^{2}+2 x+6 y=0$ and $x^{2}+y^{2}-4 x-2 y-6=0$

- Watch Video Solution

136. If the circle $x^{2}+y^{2}=1$ is completely contained in the circle $x^{2}+y^{2}+4 x+3 y+k=0$, then find the values of k

- Watch Video Solution

137. Prove that the pair of straight lines joining the origin to the points of intersection of the circles $x^{2}+y^{2}=a$ and $x^{2}+y^{2}+2(g x+f y)=0$ is $a^{\prime}\left(x^{2}+y^{2}\right)-4(g x+f y)^{2}=0$

- Watch Video Solution

138. The circles $x^{2}+y^{2}-12 x-12 y=0$ and $x^{2}+y^{2}+6 x+6 y=0$. touch each other externally touch each other internally intersect at two points none of these

- Watch Video Solution

139. If θ is the angle between the two radii (one to each circle) drawn from one of the point of intersection of two circles $x^{2}+y^{2}=a^{2}$ and $(x-c)^{2}+y^{2}=b^{2}$, then prove that the length of the common chord of the two circles is $\frac{2 a b \sin \theta}{\sqrt{a^{2}+b^{2}-2 a b \cos \theta}}$

- Watch Video Solution

140. If the lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ cut the coordinae axes at concyclic points, then prove that $\left|a_{1} a_{2}\right|=\left|b_{1} b_{2}\right|$

- Watch Video Solution

141. A line is drawn through a fix point $\mathrm{P}(\alpha, \beta)$ to cut the circle $x^{2}+y^{2}=r^{2}$ at A and B. Then PA.PB is equal to :

(Watch Video Solution

142. Circles are drawn through the point $(2,0)$ to cut intercept of length 5 units on the x-axis. If their centers lie in the first quadrant, then find their equation.

- Watch Video Solution

143. Find the equation of the circle passing through the origin and cutting intercepts of lengths 3 units and 4 unitss from the positive exes.

- Watch Video Solution

144. Find the point of intersection of the circle $x^{2}+y^{2}-3 x-4 y+2=0$ with the x-axis.

- Watch Video Solution

145. Find the values of k for which the points $(2 k, 3 k),(1,0),(0,1), \operatorname{and}(0,0)$ lie on a circle.

- Watch Video Solution

146. If one end of the diameter is $(1,1)$ and the other end lies on the line $x+y=3$, then find the locus of the center of the circle.

- Watch Video Solution

147. Tangent drawn from the point $P(4,0)$ to the circle $x^{2}+y^{2}=8$ touches it at the point A in the first quadrant. Find the coordinates of another point B on the circle such that $A B=4$.

- Watch Video Solution

148. If the join of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ makes on obtuse angle at $\left(x_{3}, y_{3}\right)$, then prove than $\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)+\left(y_{3}-y_{1}\right)\left(y_{3}-y_{2}\right)<0$

- Watch Video Solution

149. Find the range of values of m for which the line $y=m x+2$ cuts the circle $x^{2}+y^{2}=1$ at distinct or coincident points.

- Watch Video Solution

150. Centre of the circle whose radius is 3 and which touches internally the circle $x^{2}+y^{2}-4 x-6 y-12=0$ at the point $(-1-1)$ is

- Watch Video Solution

151. Find the number of common tangents that can be drawn to the circles $x^{2}+y^{2}-4 x-6 y-3=0$ and $x^{2}+y^{2}+2 x+2 y+1=0$

152. Find the radical center of the circles $x^{2}+y^{2}+4 x+6 y=19, x^{2}+y^{2}=9, x^{2}+y^{2}-2 x-4 y=5$,

- Watch Video Solution

153. Two circles C_{1} and C_{2} intersect in such a way that their common chord is of maximum length. The center of C_{1} is $(1,2)$ and its radius is 3 units. The radius of C_{2} is 5 units. If the slope of the common chord is $\frac{3}{4}$, then find the center of C_{2}

- Watch Video Solution

154. The equation of a circle is $x^{2}+y^{2}=4$. Find the center of the smallest circle touching the circle and the line $x+y=5 \sqrt{2}$
155. Consider four circles $(x \pm 1)^{2}+(y \pm 1)^{2}=1$. Find the equation of the smaller circle touching these four circles.

- Watch Video Solution

156. Consider the circles $x^{2}+(y-1)^{2}=9,(x-1)^{2}+y^{2}=25$. They are such that these circles touch each other one of these circles lies entirely inside the other each of these circles lies outside the other they intersect at two points.

- Watch Video Solution

157. If the circles of same radius a and centers at $(2,3)$ and $(5,6)$ cut orthogonally, then find a.

- Watch Video Solution

158. If the two circles $2 x^{2}+2 y^{2}-3 x+6 y+k=0$ and $x^{2}+y^{2}-4 x+10 y+16=0$ cut orthogonally, then find the value of k.

- Watch Video Solution

159. Find the condition that the circle $(x-3)^{2}+(y-4)^{2}=r^{2}$ lies entirely within the circle $x^{2}+y^{2}=R^{2}$.

- Watch Video Solution

160. Find the locus of the center of the circle which cuts off intercepts of lengths 2aand2b from the x-and the y-axis, respectively.

- Watch Video Solution

161. Find the equation of the circle with center at (3, -1) and which cuts off an intercept of length 6 from the line $2 x-5 y+18=0$
162. Find the equation of the circle which touches both the axes and the line $x=c$

- Watch Video Solution

163. Find the equation of the circle which touches the x-axis and whose center is (1, 2).

- Watch Video Solution

164. Find the equations of the circles which pass through the origin and cut off chords of length a from each of the lines $y=x a n d y=-x$

- Watch Video Solution

165. Find the radius of the circle $(x-5)(x-1)+(y-7)(y-4)=0$.

- Watch Video Solution

166. Find the equation of the circle which passes through the points $(3,-2)$ and $(-2,0)$ and the center lies on the line $2 x-y=3$

- Watch Video Solution

167. Prove that the locus of the centroid of the triangle whose vertices are (acost, asint), (bsint, - bcost), and $(1,0)$, where t is a parameter, is circle.

- Watch Video Solution

168. If one end of the a diameter of the circle $2 x^{2}+2 y^{2}-4 x-8 y+2=0$ is
$(3,2)$, then find the other end of the diameter.
169. If a circle whose center is $(1,-3)$ touches the line $3 x-4 y-5=0$, then find its radius.

(Watch Video Solution

170. Prove that the locus of the point that moves such that the sum of the squares of its distances from the three vertices of a triangle is constant is a circle.

- Watch Video Solution

171. The number of integral values of λ for which the equation $x^{2}+y^{2}+\lambda x+(1-\lambda) y+5=0$ is the equation fo a circle whose radius cannot exceed 5 , is 14 (b) 18 (c) 16 (d) none of these

- Watch Video Solution

172. Let C_{1} and C_{2} be two circles whose equations are $x^{2}+y^{2}-2 x=0$ and $x^{2}+y^{2}+2 x=0$ and $P(\lambda, \lambda)$ is a variable point

- Watch Video Solution

173. Find the points on the circle $x^{2}+y^{2}-2 x+4 y-20=0$ which are the farthest and nearest to the point $(-5,6)$

(Watch Video Solution

174. If the line $x \cos \theta+y \sin \theta=2$ is the equation of a transverse common tangent to the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}-6 \sqrt{3} x-6 y+20=0$, then the value of θ is $\frac{5 \pi}{6}$ (b) $\frac{2 \pi}{3}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{6}$

- Watch Video Solution

175. Find the values of α for which the point $(\alpha-1, \alpha+1)$ lies in the larger segment of the circle $x^{2}+y^{2}-x-y-6=0$ made by the chord whose
equation is $x+y-2=0$

- Watch Video Solution

176. Statement 1 : The equation of chord through the point $(-2,4)$ which is farthest from the center of the circle $x^{2}+y^{2}-6 x+10 y-9=0$ is $x+y-2=0$. Statement $1:$ In notations, the equation of such chord of the circle $S=0$ bisected at $\left(x_{1}, y_{1}\right)$ must be $T=S$

- Watch Video Solution

177. Find the equations of the circles passing through the point $(-4,3)$ and touching the lines $x+y=2$ and $x-y=2$

- Watch Video Solution

178. Statement 1 : If two circles $x^{2}+y^{2}+2 g x+2 f y=0$ and $x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y=0$ touch each other, then $f^{\prime} g=f g^{\prime}$ Statement $2:$

Two circles touch other if the line joining their centers is perpendicular to all possible common tangents.

- Watch Video Solution

179. Find the greatest distance of the point $P(10,7)$ from the circle $x^{2}+y^{2}-4 x-2 y-20=0$

- Watch Video Solution

180. Statement 1 : If the circle with center $P(t, 4-2 t), t \in R$, cut the circles $x^{2}+y^{2}=16$ and $x^{2}+y^{2}-2 x-y-12=0$, then both the intersections are orthogonal. Statement 2 : The length of tangent from P for $t \in R$ is the same for both the given circles.

- Watch Video Solution

181. Find the area of the region in which the points satisfy the inequaties $4<x^{2}+y^{2}<16$ and $3 x^{2}-y^{2} \geq 0$.

- Watch Video Solution

182. If points AandB are $(1,0)$ and $(0,1)$, respectively, and point C is on the circle $x^{2}+y^{2}=1$, then the locus of the orthocentre of triangle $A B C$ is $x^{2}+y^{2}=4$ $x^{2}+y^{2}-x-y=0$ $x^{2}+y^{2}-2 x-2 y+1=0$ $x^{2}+y^{2}+2 x-2 y+1=0$

- Watch Video Solution

183. If the line $x+2 b y+7=0$ is a diameter of the circle $x^{2}+y^{2}-6 x+2 y=0$, then find the value of b

- Watch Video Solution

184. Find the number of point (x, y) having integral coordinates satisfying the condition $x^{2}+y^{2}<25$

- Watch Video Solution

185. The circle $x^{2}+y^{2}-6 x-10 y+k=0$ does not touch or intersect the coordinate axes, and the point $(1,4)$ is inside the circle. Find the range of value of k

- Watch Video Solution

186. Statement 1 :The circles $x^{2}+y^{2}+2 p x+r=0$ and $x^{2}+y^{2}+2 q y+r=0$ touch if $\frac{1}{p^{2}}+\frac{1}{q^{2}}=\frac{1}{e}$. Statement 2 : Two centers $C_{1} a n d C_{2}$ and radii r_{1} andr r_{2}, respectively, touch each other if $\left|r_{1} \pm r_{2}\right|=c_{1} c_{2}$

- Watch Video Solution

187. If the circle $x^{2}+y^{2}+2 x+3 y+1=0$ cuts $x^{2}+y^{2}+4 x+3 y+2=0$ at AandB , then find the equation of the circle on $A B$ as diameter.

- Watch Video Solution

188. If the radii of the circles $(x-1)^{2}+(y-2)^{2}+(y-2)^{2}=1$ and $(-7)^{2}+(y-10)^{2}=4$ are increasing uniformly w.r.t. time as 0.3 units $/ \mathrm{s}$ and 0.4 unit/s, respectively, then at what value of t will they touch each other?

- Watch Video Solution

189. AandB are two points in the $x y$-plane, which are $2 \sqrt{2}$ units distance apart and subtend an angle of 90° at the point $C(1,2)$ on the line $x-y+1=0$, which is larger than any angle subtended by the line segment $A B$ at any other point on the line. Find the equation(s) of the circle through the points $A, B a n d C$
190. Two circles with radii aandb touch each other externally such that θ is the angle between the direct common tangents, $(a>b \geq 2)$. Then prove that $\theta=2 \sin ^{-1}\left(\frac{a-b}{a+b}\right)$.

- Watch Video Solution

191. From the variable point A on circle $x^{2}+y^{2}=2 a^{2}$, two tangents are drawn to the circle $x^{2}+y^{2}=a^{2}$ which meet the curve at BandC Find the locus of the circumcenter of $A B C$

- Watch Video Solution

192. Two fixed circles with radii r_{1} andr $r_{2},\left(r_{1}>r_{2}\right)$, respectively, touch each other externally. Then identify the locus of the point of intersection of their direction common tangents.
193. If the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ is touched by $y=x$ at P such that $O P=6 \sqrt{2}$, then the value of c is 36 (b) 144 (c) 72 (d) none of these

(Watch Video Solution

194. Find the radius of the smallest circle which touches the straight line $3 x-y=6$ at $(1,-3)$ and also touches the line $y=x$. Compute up to one place of decimal only.

- Watch Video Solution

195. The number of points $P(x, y)$ lying inside or on the circle $x^{2}+y^{2}=9$ and satisfying the equation $\tan ^{4} x+\cot ^{4} x+2=4 \sin ^{2} y$ is \qquad
(Watch Video Solution
196. C_{1} and C_{2} are circle of unit radius with centers at $(0,0)$ and $(1,0)$, respectively, C_{3} is a circle of unit radius. It passes through the centers of the circles $C_{1} a n d C_{2}$ and has its center above the x-axis. Find the equation of the common tangent to C_{1} and C_{3} which does not pass through C_{2}

- Watch Video Solution

197. The area of the triangle formed by the positive x - axis and the normal and tangent to the circle $x^{2}+y^{2}=4$ at $(1, \sqrt{3})$ is (a) $2 \sqrt{3}$ squnits
(b) $3 \sqrt{2}$ squnits (c) $\sqrt{6}$ squnits (d) none of these

- Watch Video Solution

198. Find the equation of the smallest circle passing through the intersection of the line $x+y=1$ and the circle $x^{2}+y^{2}=9$
199. Let P be a point on the circle $x^{2}+y^{2}=9, Q$ a point on the line $7 x+y+3=0$, and the perpendicular bisector of $P Q$ be the line $x-y+1=0$. Then the coordinates of P are $(0,-3)(b)(0,3)\left(\frac{72}{25}, \frac{21}{35}\right)$ (d) $\left(-\frac{72}{25}, \frac{21}{25}\right)$

(Watch Video Solution

200. Show that the equation of the circle passing through $(1,1)$ and the points of intersection of the circles $x^{2}+y^{2}+13 x-13 y=0$ and $2 x^{2}+2 y^{2}+4 x-7 y-25=0$ is $4 x^{2}+4 y^{2}+30 x-13 y-25=0$.

- Watch Video Solution

201. A straight line moves such that the algebraic sum of the perpendiculars drawn to it from two fixed points is equal to $2 k$. Then, then straight line always touches a fixed circle of radius. $2 k$ (b) $\frac{k}{2}$ (c) k (d) none of these

(D) Watch Video Solution

202. Let S_{1} be a circle passing through $A(0,1)$ and $B(-2,2)$ and S_{2} be a circle of radius $\sqrt{10}$ units such that $A B$ is the common chord of S_{1} andS ${ }_{2}$

Find the equation of S_{2}

- Watch Video Solution

203. The coordinates of the middle point of the chord cut-off by $2 x-5 y+18=0$ by the circle $x^{2}+y^{2}-6 x+2 y-54=0$ are $(1,4)($ b) $(2,4)$ (c) $(4,1)(d)(1,1)$

- Watch Video Solution

204. A variable circle which always touches the line $x+y-2=0$ at (1, 1) cuts the circle $x^{2}+y^{2}+4 x+5 y-6=0$. Prove that all the common chords of intersection pass through a fixed point. Find that points.
205. The range of parameter ' a ' for which the variable line $y=2 x+a$ lies between the circles $x^{2}+y^{2}-2 x-2 y+1=0$ and $x^{2}+y^{2}-16 x-2 y+61=0$ without intersecting or touching either circle is $a \in(2 \sqrt{5}-15,0)$ $a \in(-\infty, 2 \sqrt{5}-15), a \in(0,-\sqrt{5}-1)$ (d) $a \in(-\sqrt{5}-1, \infty)$

- Watch Video Solution

206. Find the equation of the circle which is touched by $y=x$, has its center on the positive direction of the $\mathrm{x}=\mathrm{axis}$ and cuts off a chord of length 2 units along the line $\sqrt{3} y-x=0$

- Watch Video Solution

207. Find the locus of the centers of the circles $x^{2}+y^{2}-2 a x-2 b y+2=0$, where a and b are parameters, if the tangents from the origin to each of the circles are orthogonal.

- Watch Video Solution

208. A circle touches the y-axis at the point $(0,4)$ and cuts the x-axis in a chord of length 6 units. Then find the radius of the circle.

- Watch Video Solution

209. (C) 2 45. Three concentric circles of which the biggest is $x^{2}+y^{2}=1$, have their radii in A.P If the line $y=x+1$ cuts all the circles in real and distinct points. The interval in which the common difference of the A.P will lie is:

- Watch Video Solution

210. Tangents $P A a n d P B$ are drawn to $x^{2}+y^{2}=a^{2}$ from the point $P\left(x_{1}, y_{1}\right)$ Then find the equation of the circumcircle of triangle $P A B$
211. Let $A \equiv(-1,0), B \equiv(3,0)$, and $P Q$ be any line passing through $(4,1)$ having slope m Find the range of m for which there exist two points on $P Q$ at which $A B$ subtends a right angle.

- Watch Video Solution

212. If the abscissa and ordinates of two points PandQ are the roots of the equations $x^{2}+2 a x-b^{2}=0$ and $x^{2}+2 p x-q^{2}=0$, respectively, then find the equation of the circle with $P Q$ as diameter.

- Watch Video Solution

213. The equation of radical axis of two circles is $x+y=1$. One of the circles has the ends ofa diameter at the points $(1,-3)$ and $(4,1)$ and the other passes through the point (1, 2).Find the equating of these circles.
214. Find the parametric form of the equation of the circle $x^{2}+y^{2}+p x+p y=0$.

- Watch Video Solution

215. S is a circle having the center at $(0, a)$ and radius ${ }^{\mathrm{b}}(\mathrm{b}$

- Watch Video Solution

216. The point on a circle nearest to the point $P(2,1)$ is at a distance of 4 units and the farthest point is $(6,5)$. Then find the equation of the circle.

- Watch Video Solution

217. $S(x, y)=0$ represents a circle. The equation $S(x, 2)=0$ gives two identical solutions: $x=1$. The equation $S(1, y)=0$ given two solutions: $y=0,2$. Find the equation of the circle.
218. Find the length of intercept, the circle $x^{2}+y^{2}+10 x-6 y+9=0$ makes on the x-axis.

- Watch Video Solution

219. Find the equation of the family of circles touching the lines $x^{2}-y^{2}+2 y-1=0$.

- Watch Video Solution

220. Find the center of the circle $x=-1+2 \cos \theta, y=3+2 \sin \theta$

- Watch Video Solution

221. Find the equation of the circle which touches both the axes and the straight line $4 x+3 y=6$ in the first quadrant and lies below it.

- Watch Video Solution

222. If the intercepts of the variable circle on the x - and $y l$-axis are 2 units and 4 units, respectively, then find the locus of the center of the variable circle.

- Watch Video Solution

223. The angle between the pair of tangents drawn from a point P to the circle $x^{2}+y^{2}+4 x-6 y+9 \sin ^{2} \alpha+13 \cos ^{2} \alpha=0$ is 2α. then the equation of the locus of the point P is $x^{2}+y^{2}+4 x-6 y+4=0 x^{2}+y^{2}+4 x-6 y-9=0$ $x^{2}+y^{2}+4 x-6 y-4=0 x^{2}+y^{2}+4 x-6 y+9=0$

- Watch Video Solution

224. Two rods of lengths $a a n d b$ slide along the x - and $y-a \xi s$, respectively, in such a manner that their ends are concyclic. Find the locus of the center of the circle passing through the endpoints.

- Watch Video Solution

225. If a circle passes through the points of intersection of the coordinate axes with the lines $\lambda x-y+1=0$ and $x-2 y+3=0$, then the value of λ is \qquad

- Watch Video Solution

226. A circle with center at the origin and radius equal to a meets the axis of x at $\operatorname{AandBP}(\alpha)$ and $Q(\beta)$ are two points on the circle so that $\alpha-\beta=2 y$, where γ is a constant. Find the locus of the point of intersection of $A P$ and $B Q$
227. Two vertices of an equilateral triangle are ($-1,0$) and (1,0), and its third vertex lies above the x-axis. The equation of its circumcircel is

- Watch Video Solution

228. The locus of the point of intersection of the tangents to the circle $x^{2}+y^{2}=a^{2}$ at points whose parametric angles differ by $\frac{\pi}{3}$.

- Watch Video Solution

229. If two distinct chords, drawn from the point (p, q) on the circle $x^{2}+y^{2}=p x+q y($ where $p q \neq q)$ are bisected by the x-axis, then $p^{2}=q^{2}$ (b) $p^{2}=8 q^{2} p^{2}<8 q^{2}$ (d) $p^{2}>8 q^{2}$

- Watch Video Solution

230. Find the locus of the center of the circle touching the circle $x^{2}+y^{2}-4 y-2 x=4$ internally and tangents on which from $(1,2)$ are making of 60^{0} with each other.

- Watch Video Solution

231. If the line $a x+b y=2$ is a normal to the circle $x^{2}+y^{2}-4 x-4 y=0$ and a tangent to the circle $x^{2}+y^{2}=1$, then a and bare

- Watch Video Solution

232. If a line segement $A M=a$ moves in the plane $X O Y$ remaining parallel to $O X$ so that the left endpoint A slides along the circle $x^{2}+y^{2}=a^{2}$, then the locus of M

- Watch Video Solution

233. The ends of a quadrant of a circle have the coordinates $(1,3)$ and $(3$, 1). Then the center of such a circle is

Watch Video Solution

234. The tangents to $x^{2}+y^{2}=a^{2}$ having inclinations α and β intersect at
P If $\cot \alpha+\cot \beta=0$, then find the locus of P

- Watch Video Solution

235. If the length of a common internal tangent to two circles is 7, and that of a common external tangent is 11 , then the product of the radii of the two circles is (A) 36 (B) 9 (C) 18 (D) 4

- Watch Video Solution

236. If C_{1}, C_{2}, and C_{3} belong to a family of circles through the points $\left(x_{1}, y_{2}\right)$ and $\left(x_{2}, y_{2}\right)$ prove that the ratio of the length of the tangents from any point on C_{1} to the circles $C_{2} a n d C_{3}$ is constant.

- Watch Video Solution

237. Two circle are externally tangent. Lines $P A B$ and $P A^{\prime} B^{\prime}$ are common tangents with AandA' on the smaller circle and B^{\prime} and B^{\prime} the on the larger circle. If $P A=A B=4$, then the square of the radius of the circle is \qquad

- Watch Video Solution

238. Prove that quadrilateral $A B C D$, where $A B \equiv x+y-10, B C \equiv x-7 y+50=0, C D \equiv 22 x-4 y+125=0, a n d D A \equiv 2 x-4 y$
is concyclic. Also find the equation of the circumcircle of $A B C D$
239. Statement 1 : Let $S_{1}: x^{2}+y^{2}-10 x-12 y-39=0$, $S_{2} x^{2}+y^{2}-2 x-4 y+1=0 \quad$ and $\quad S_{3}: 2 x^{2}+2 y^{2}-20 x=24 y+78=0$. The radical center of these circles taken pairwise is $(-2,-3)$ Statement 2 : The point of intersection of three radical axes of three circles taken in pairs is known as the radical center.

- Watch Video Solution

240. Find the locus of the midpoint of the chords of the circle $x^{2}+y^{2}=a^{2}$
which subtend a right angle at the point $(c, 0)$

- Watch Video Solution

241. Let the lines $(y-2)=m_{1}(x-5)$ and $(y+4)=m_{2}(x-3)$ intersect at right angles at P (where m_{1} andm m_{2} are parameters). If the locus of P is $x^{2}+y^{2} g x+f y+7=0$, then the value of $|f+g|$ is \qquad
242. A variable circle passes through the point $A(a, b)$ and touches the x axis. Show that the locus of the other end of the diameter through A is $(x-a)^{2}=4 b y$

- Watch Video Solution

243. Find the equation of the circle if the chord of the circle joining $(1,2)$ and $(-3,1)$ subtents 90° at the center of the circle.

- Watch Video Solution

244. Find the equation of the circle which passes through $(1,0)$ and $(0,1)$ and has its radius as small as possible.

- Watch Video Solution

245. Tangents are drawn from the origin to the circle $x^{2}+y^{2}-2 h x-2 h y+h^{2}=0,(h \geq 0)$ Statement 1 : Angle between the tangents is $\frac{\pi}{2}$ Statement 2 : The given circle is touching the coordinate axes.

- Watch Video Solution

246. Let $A(-2,2)$ and $B(2,-2)$ be two points $A B$ subtends an angle of 45° at any points P in the plane in such a way that area of $\triangle P A B$ is 8 square unit, then number of possibe position(s) of P is

- Watch Video Solution

247. Consider the family of circles $x^{2}+y^{2}-2 x-2 \lambda y-8=0$ passing through two fixed points AandB. Then the distance between the points AandB is \qquad
248. If a circle passes through the point $(0,0),(a, 0) a n d(0, b)$, then find its center.

- Watch Video Solution

249. The line $3 x+6 y=k$ intersects the curve $2 x^{2}+3 y^{2}=1$ at points $A a n d B$. The circle on $A B$ as diameter passes through the origin. Then the value of k^{2} is \qquad

- Watch Video Solution

250. Find the equation of the circle which passes through the points (1, -2), (4, -3) and whose center lies on the line $3 x+4 y=7$.

- Watch Video Solution

251. If real numbers xandy satisfy $(x+5)^{2}+(y-12)^{2}=(14)^{2}$, then the minimum value of $\sqrt{x^{2}+y^{2}}$ is \qquad

Watch Video Solution

252. Show that a cyclic quadrilateral is formed by the lines $5 x+3 y=9, x=3 y, 2 x=y$ and $x+4 y+2=0$ taken in order. Find the equation of the circumcircle.

- Watch Video Solution

253. A circle $x^{2}+y^{2}+4 x-2 \sqrt{2} y+c=0$ is the director circle of the circle S_{1} andS S_{1} is the director circle of circle S_{2}, and so on. If the sum of radii of all these circles is 2 , then the value of c is $k \sqrt{2}$, where the value of k is \qquad

- Watch Video Solution

254. A point P moves in such a way that the ratio of its distance from two coplanar points is always a fixed number $(\neq 1)$. Then, identify the locus of the point.

- Watch Video Solution

255. The sum of the slopes of the lines tangent to both the circles $x^{2}+y^{2}=1$ and $(x-6)^{2}+y^{2}=4$ is \qquad

(Watch Video Solution

256. Prove that the maximum number of points with rational coordinates on a circle whose center is $(\sqrt{3}, 0)$ is two.

- Watch Video Solution

257. Let C_{1} and C_{2} are circles defined by $x^{2}+y^{2}-20 x+64=0$ and $x^{2}+y^{2}+30 x+144=0$. The length of the shortest line segment PQ that
is tangent to C_{1} at P and to C_{2} at Q is

- Watch Video Solution

258. Prove that for all values of θ, the locus of the point of intersection of the lines $x \cos \theta+y \sin \theta=a$ and $x \sin \theta-y \cos \theta=b$ is a circle.

- Watch Video Solution

259. The chord of contact of tangents from a point P to a circle passes
through Q If l_{1} andl $_{2}$ are the length of the tangents from PandQ to the circle, then $P Q$ is equal to $\frac{l_{1}+l_{2}}{2}$ (b) $\frac{l_{1}-l_{2}}{2} \sqrt{l 12+l 22}$ (d) $2 \sqrt{l 12+l 22}$

- Watch Video Solution

260. Find the length of the chord $x^{2}+y^{2}-4 y=0$ along the line $x+y=1$.

Also find the angle that the chord subtends at the circumference of the larger segment.

- Watch Video Solution

261. The chords of contact of tangents from three points A, BandC to the circle $x^{2}+y^{2}=a^{2}$ are concurrent. Then A, BandC will (a)be concyclic (b) be collinear (c)form the vertices of a triangle (d)none of these

- Watch Video Solution

262. Tangents are drawn to the circle $x^{2}+y^{2}=a^{2}$ from two points on the axis of x, equidistant from the point $(k, 0)$ Show that the locus of their intersection is $k y^{2}=a^{2}(k-x)$

- Watch Video Solution

263. The common chord of the circle $x^{2}+y^{2}+6 x+8 y-7=0$ and a circle passing through the origin and touching the line $y=x$ always passes through the point. $\left(-\frac{1}{2}, \frac{1}{2}\right)$ (b) $(1,1)\left(\frac{1}{2}, \frac{1}{2}\right)$ (d) none of these

- Watch Video Solution

264. P is the variable point on the circle with center at $C C A$ and $C B$ are perpendiculars from C on the x - and the y-axis, respectively. Show that the locus of the centroid of triangle $P A B$ is a circle with center at the centroid of triangle $C A B$ and radius equal to the one-third of the radius of the given circle.

- Watch Video Solution

265. If the angle between the tangents drawn to $x^{2}+y^{2}+2 g x+2 f y+c=0$ from $(0,0)$ is $\frac{\pi}{2}$, then $g^{2}+f^{2}=3 c g^{2}+f^{2}=2 c$ $g^{2}+f^{2}=5 c g^{2}+f^{2}=4 c$

- Watch Video Solution

266. Find the locus of center of circle of radius 2 units, if intercept cut on the x-axis is twice of intercept cut on the y-axis by the circle.

- Watch Video Solution

267. Any circle through the point of intersection of the lines $x+\sqrt{3} y=1$ and $\sqrt{3} x-y=2$ intersects these lines at points PandQ. Then the angle subtended by the arc $P Q$ at its center is 180° (b) 90° (c) 120° depends on center and radius

- Watch Video Solution

268. A straight line moves so that the product of the length of the perpendiculars on it from two fixed points is constant. Prove that the locus of the feet of the perpendiculars from each of these points upon the straight line is a unique circle.
269. The number of such points $(a+1, \sqrt{3} a)$, where a is any integer, lying inside the region bounded by the circles $x^{2}+y^{2}-2 x-3=0$ and $x^{2}+y^{2}-2 x-15=0$, is

- Watch Video Solution

270. A tangent is drawn to each of the circles $x^{2}+y^{2}=a^{2}$ and $x^{2}+y^{2}=b^{2}$ Show that if the two tangents are mutually perpendicular, the locus of their point of intersection is a circle concentric with the given circles.

- Watch Video Solution

271. Perpendiculars are drawn, respectively, from the points PandQ to the chords of contact of the points QandP with respect to a circle. Prove that the ratio of the lengths of perpendiculars is equal to the ratio of the distances of the points PandQ from the center of the circles.
272. Find the locus of the midpoint of the chord of the circle $x^{2}+y^{2}-2 x-2 y=0$, which makes an angle of 120° at the center.

- Watch Video Solution

273. Find the center of the smallest circle which cuts circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}+8 x+8 y-33=0$ orthogonally.

- Watch Video Solution

274. A point moves so that the sum of the squares of the perpendiculars let fall from it on the sides of an equilateral triangle is constant. Prove that its locus is a circle.

- Watch Video Solution

275. From a point P on the normal $y=x+c$ of the circle $x^{2}+y^{2}-2 x-4 y+5-\lambda^{2}-0$, two tangents are drawn to the same circle touching it at point BandC. If the area of quadrilateral $O B P C$ (where O is the center of the circle) is 36 sq . units, find the possible values of λ It is given that point P is at distance $|\lambda|(\sqrt{2}-1)$ from the circle.

- Watch Video Solution

276. The circle $x^{2}+y^{2}-4 x-4 y+4=0$ is inscribed in a variable triangle
$O A B$ Sides $O A$ and $O B$ lie along the x - and y-axis, respectively, where O is the origin. Find the locus of the midpoint of side $A B$

- Watch Video Solution

277. Consider three circles C_{1}, C_{2} and C_{3} such that C_{2} is the director circle of C_{1}, and C_{3} is the director circlĩ® of C_{2}. Tangents to C_{1}, from any point on C_{3} intersect C_{2}, at P^{2} and Q. Find the angle between the
tangents to C_{2}^{2} at P and Q. Also identify the locus of the point of intersection of tangents at P and Q.

- Watch Video Solution

278. The line $9 x+y-18=0$ is the chord of contact of the point $P(h, k)$
with respect to the circle $2 x^{2}+2 y^{2}-3 x+5 y-7=0$, for (a) $\left(\frac{24}{5},-\frac{4}{5}\right)$
$P(3,1)(\mathrm{c}) P(-3,1)$ (d) $\left(-\frac{2}{5}, \frac{12}{5}\right)$

- Watch Video Solution

279. A circle $x^{2}+y^{2}+4 x-2 \sqrt{2} y+c=0$ is the director circle of circle S_{1} and S_{2}, is the director circle of circle S_{1}, and so on. If the sum of radii of all these circles is 2 , then find the value of c.

- Watch Video Solution

280. Tangents are drawn to the circle $x^{2}+y^{2}=9$ at the points where it is met by the circle $x^{2}+y^{2}+3 x+4 y+2=0$. Find the point of intersection of these tangents.

- Watch Video Solution

281. Find the length of the chord of contact with respect to the point on the director circle of circle $x^{2}+y^{2}+2 a x-2 b y+a^{2}-b^{2}=0$.

- Watch Video Solution

282. The distance between the chords of contact of tangents to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ from the origin \& the point (g, f) is

- Watch Video Solution

283. If $3 x+y=0$ is a tangent to a circle whose center is $(2,-1)$, then find the equation of the other tangent to the circle from the origin.

- Watch Video Solution

284. Find the number of common tangent to the circles $x^{2}+y^{2}+2 x+8 y-23=0$ and $x^{2}+y^{2}-4 x-10 y+9=0$

- Watch Video Solution

285. Two variable chords $A B \operatorname{andBC}$ of a circle $x^{2}+y^{2}=r^{2}$ are such that $A B=B C=r$. Find the locus of the point of intersection of tangents at AandC

- Watch Video Solution

286. Find the equation of the chord of the circle $x^{2}+y^{2}=9$ whose middle point is (1, - 2)

- Watch Video Solution

287. Find the circle of minimum radius which passes through the point (4,
3) and touches the circle $x^{2}+y^{2}=4$ externally.

- Watch Video Solution

288. A variable chord is drawn through the origin to the circle $x^{2}+y^{2}-2 a x=0$. Find the locus of the center of the circle drawn on this chord as diameter.

- Watch Video Solution

289. The radius of the tangent circle that can be drawn to pass through the point $(0,1)$ and $(0,6)$ and touching the x-axis is(a) $5 / 2$ (b) $\hat{A} 3 / 2$ (c) $7 / 2$ (d) $9 / 2$

- Watch Video Solution

290. Find the equation of the chord of the circle $x^{2}+y^{2}=a^{2}$ passing through the point $(2,3)$ farthest from the center.

- Watch Video Solution

291. The lines $2 x-3 y=5$ and $3 x-4 y=7$ are the diameters of a circle of area 154 sq. units. Then the equation of the circle is $x^{2}+y^{2}+2 x-2 y=62$ $x^{2}+y^{2}+2 x-2 y=47 x^{2}+y^{2}-2 x+2 y=47 x^{2}+y^{2}-2 x+2 y=62$

- Watch Video Solution

292. Find the middle point of the chord of the circle $x^{2}+y^{2}=25$ intercepted on the line $x-2 y=2$

- Watch Video Solution

293. Find the area of the triangle formed by the tangents from the point
$(4,3)$ to the circle $x^{2}+y^{2}=9$ and the line joining their points of contact.

- Watch Video Solution

294. Find the equation of a circle with center $(4,3)$ touching the circle $x^{2}+y^{2}=1$

- Watch Video Solution

295. Find the equation of the tangent to the circle $x^{2}+y^{2}-2 a x-2 a y+a^{2}=0$ which makes with the coordinate axes a
triangle of area a^{2}.

- Watch Video Solution

296. Find the condition if the circle whose equations are $x^{2}+y^{2}+c^{2}=2 a x$ and $x^{2}+y^{2}+c^{2}-2 b y=0$ touch one another externally.

- Watch Video Solution

297. Through a fixed point (h, k) secants are drawn to the circle $x^{2}+y^{2}=r^{2}$. Then the locus of the mid-points of the secants by the circle is

- Watch Video Solution

298. A variable chord of the circle $x^{2}+y^{2}=4$ is drawn from the point
$P(3,5)$ meeting the circle at the point A and B A point Q is taken on the
chord such that $2 P Q=P A+P B$. The locus of Q is $x^{2}+y^{2}+3 x+4 y=0$ $x^{2}+y^{2}=36 x^{2}+y^{2}=16 x^{2}+y^{2}-3 x-5 y=0$

- Watch Video Solution

299. In triangle $A B C$, the equation of side $B C$ is $x-y=0$. The circumcenter and orthocentre of triangle are $(2,3)$ and $(5,8)$, respectively. The equation of the circumcirle of the triangle is $x^{2}+y^{2}-4 x+6 y-27=0$
$x^{2}+y^{2}-4 x-6 y-27=0$

$$
x^{2}+y^{2}+4 x+6 y-27=0
$$

$x^{2}+y^{2}+4 x+6 y-27=0$
A. $x^{2}+y^{2}-4 x+6 y-27=0$
B. null
C. null
D. null
300. Let $a a n d b$ represent the lengths of a right triangles legs. If d is the diameter of a circle inscribed into the triangle, and D is the diameter of a circle circumscribed on the triangle, the $d+D$ equals. (a) $a+b$ (b) $2(a+b)$ (c) $\frac{1}{2}(a+b)$ (d) $\sqrt{a^{2}+b^{2}}$

- Watch Video Solution

301. If the chord $y=m x+1$ of the circles $x^{2}+y^{2}=1$ subtends an angle of 45^{0} at the major segment of the circle, then the value of m is 2 (b) -2 (c)
-1 (d) none of these

- Watch Video Solution

302. $(-6,0), 0,6)$, and $(-7,7)$ are the vertices of a $A B C$. The incircle of the triangle has equation. $x^{2}+y^{2}-9 x-9 y+36=0 x^{2}+y^{2}+9 x-9 y+36=0$ $x^{2}+y^{2}+9 x+9 y-36=0 x^{2}+y^{2}+18 x-18 y+36=0$
303. If O is the origin and $O P a n d O Q$ are the tangents from the origin to the circle $x^{2}+y^{2}-6 x+4 y+8-0$, then the circumcenter of triangle $O P Q$ is $(3,-2)(b)\left(\frac{3}{2},-1\right)\left(\frac{3}{4},-\frac{1}{2}\right)$ (d) $\left(-\frac{3}{2}, 1\right)$

- Watch Video Solution

304. The range of values of r for which the point $\left(-5+\frac{r}{\sqrt{2}},-3+\frac{r}{\sqrt{2}}\right)$ is an interior point of the major segment of the circle $x^{2}+y^{2}=16$, cut-off by the line $x+y=2$, is:

- Watch Video Solution

305. A square is inscribed in the circle $x^{2}+y^{2}-2 x+4 y-93=0$ with its sides parallel to the coordinate axes. The coordinates of its vertices are

$$
\begin{aligned}
& (-6,-9),(-6,5),(8,-9),(8,5) \quad(-6,-9),(-6,-5),(8,-9),(8,5) \\
& (-6,-9),(-6,5),(8,9),(8,5)(-6,-9),(-6,5),(8,-9),(8,-5)
\end{aligned}
$$

306. Statement 1 : The least and greatest distances of the point $P(10,7)$ from the circle $x^{2}+y^{2}-4 x-2 y-20=0$ are 6 units and 15 units, respectively. Statement 2 : A point $\left(x_{1}, y_{1}\right)$ lies outside the circle $S=x^{2}+y^{2}+2 g x+2 f y+c=0$ if $S_{1}>0$, where
$S_{1}=x 12+y 12+2 g x_{1}+2 f y_{1}+\cdot$

- Watch Video Solution

307. Statement 1 : The number of circles passing through $(1,2),(4,8)$ and $(0,0)$ is one. Statement 2 : Every triangle has one circumcircle

- Watch Video Solution

308. The locus of the midpoint of a line segment that is drawn from a given external point P to a given circle with center O (where O is the orgin) and radius r is a straight line perpendiculat to $P O$ a circle with
center P and radius r a circle with center P and radius $2 r$ a circle with center at the midpoint $P O$ and radius $\frac{r}{2}$

- Watch Video Solution

309. The difference between the radii of the largest and smallest circles which have their centres on the circumference of the circle $x^{2}+y^{2}+2 x+4 y-4=0$ and passes through point (a, b) lying outside the circle is :

- Watch Video Solution

310. The center(s) of the circle(s) passing through the points $(0,0)$ and (1,
0) and touching the circle $x^{2}+y^{2}=9$ is (are) (a) $\left(\frac{3}{2}, \frac{1}{2}\right)$ (b) $\left(\frac{1}{2}, \frac{3}{2}\right)$ (c)
$\left(\frac{1}{2}, 2^{\frac{1}{2}}\right)$ (d) $\left(\frac{1}{2},-2^{\frac{1}{2}}\right)$

- Watch Video Solution

311. Each question has four choices a, b, c and d, out of which only one is correct. Each question contains STATEMENT 1 and STATEMENT 2. Both the statements are TRUE and STATEMENT 2 is the correct explanation of STATEMENT1. Both the statements are TRUE but STATEMENT 2 is NOT the correct explanation of STATEMENT 1. STATEMENT 1 is TRUE and STATEMENT 2 is FALSE. STATEMENT 1 is FALSE and STATEMENT 2 is TRUE. Statement 1 : $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))|-|A|^{n-1} \wedge 3$, where n is order of matrix A Statement 2: $|\operatorname{adj} A|=|A|^{n}$

- Watch Video Solution

312. Statement 1 : If the chords of contact of tangents from three points

A, BandC to the circle $x^{2}+y^{2}=a^{2}$ are concurrent, then A, Band C will be collinear. Statement 2 : Lines $\left(a_{1} x+b_{1} y+c_{1}\right)+k\left(a_{2} x+b_{2} y+c_{2}\right)=0$ alwasy pass through a fixed point for $k \in R$.

- Watch Video Solution

313. Statement 1: Circles $x^{2}+y^{2}=144$ and $x^{2}+y^{2}-6 x-8 y=0$ do not have any common tangent. Statement 2: If two circles are concentric, then they do not hav common tangents.

- Watch Video Solution

314. The locus of the point from which the lengths of the tangents to the circles $x^{2}+y^{2}=4$ and $2\left(x^{2}+y^{2}\right)-10 x+3 y-2=0$ are equal is a straight line inclined at $\frac{\pi}{4}$ with the line joining the centers of the circles a circle (c) an ellipse (d)a straight line perpendicular to the line joining the centers of the circles.

- Watch Video Solution

315. The locus of the center of the circle touching the line $2 x-y=1$ at $(1,1)$ is $(\mathrm{a}) x+3 y=2(\mathrm{~b}) x+2 y=2(\mathrm{c}) x+y=2(\mathrm{~d})$ none of these
316. The distance from the center of the circle $x^{2}+y^{2}=2 x$ to the common chord of the circles $x^{2}+y^{2}+5 x-8 y+1=0$ and $x^{2}+y^{2}-3 x+7 y-25=0$ is 2 (b) 4 (c) $\frac{34}{13}$ (d) $\frac{26}{17}$

- Watch Video Solution

317. The circle passing through the point $(-1,0)$ and touching the y-axis at $(0,2)$ also passes through the point (A) $(-3 / 2,0)(B)(-5 / 2,2)$ (C) $(-3 / 2,5 / 2)$ (D) $\left.(-4,0) \hat{a} \epsilon^{\sim} . .22\right)$

- Watch Video Solution

318. The equation of the circumcircle of an equilateral triangle is $x^{2}+y^{2}+2 g x+2 f y+c=0$ and one vertex of the triangle in (1, 1). The equation of the incircle of the triangle is $4\left(x^{2}+y^{2}\right)=g^{2}+f^{2}$ $4\left(x^{2}+y^{2}\right)=8 g x+8 f y=(1-g)(1+3 g)+(1-f)(1+3 f)$
$4\left(x^{2}+y^{2}\right)=8 g x+8 f y=g^{2}+f^{2}$ noneofthese

- Watch Video Solution

319. A circle with radius $|a|$ and center on the y-axis slied along it and a variable line through $(a, 0)$ cuts the circle at points PandQ. The region in which the point of intersection of the tangents to the circle at points P and Q lies is represented by $y^{2} \geq 4\left(a x-a^{2}\right) \quad$ (b) $y^{2} \leq 4\left(a x-a^{2}\right)$ $y \geq 4\left(a x-a^{2}\right)$ (d) $y \leq 4\left(a x-a^{2}\right)$

- Watch Video Solution

320. If the angle of intersection of the circle $x^{2}+y^{2}+x+y=0$ and $x^{2}+y^{2}+x-y=0$ is θ, then the equation of the line passing through (1, 2) and making an angle θ with the y-axis is (A) $x=1$ (B) $y=2$ (C) $x+y=3$
(D) $x-y=3$

- Watch Video Solution

321. The range of values of α for which the line $2 y=g x+\alpha$ is a normal to the circle $x^{2}=y^{2}+2 g x+2 g y-2=0$ for all values of g is (a) $[1, \infty)$ $[-1, \infty)(c)(0,1)(d)(-\infty, 1]$

- Watch Video Solution

322.) Six points($\mathrm{x}, \mathrm{y}), \mathrm{i}=1,2$, ,.., 6 are taken on the circle x 4 such that the circle $\mathrm{x} 2+\mathrm{y} 4$ such that $66 \mathrm{~J}: 1-8$ and $\Sigma, 4$. The line segment $\mathrm{X},=8$ and and $2-\mathrm{yi}=4$. The line segment $\mathrm{x} 1 \mathrm{i}=1$ joining orthocentre of a triangle formed by any three points and centroid of a triangle formed by other three points passes through a fixed $i=1$ points (h,k), then $h+k$ is A) 1 B) 2 C) 3 D) 4

- Watch Video Solution

323. Consider a circle $x^{2}+y^{2}+a x+b y+c=0$ lying completely in the first quadrant. If m_{1} andm m_{2} are the maximum and minimum values of $\frac{y}{x}$ for all
ordered pairs (x, y) on the circumference of the circle, then the value of $\left(m_{1}+m_{2}\right)$ is (a) $\frac{a^{2}-4 c}{b^{2}-4 c}$ (b) $\frac{2 a b}{b^{2}-4 c}$ (c) $\frac{2 a b}{4 c-b^{2}}$ (d) $\frac{2 a b}{b^{2}-4 a c}$

Watch Video Solution

324. The equation of the circle passing through the point of intersection of the circle $x^{2}+y^{2}=4$ and the line $2 x+y=1$ and having minimum possible radius is
(a) $5 x^{2}+5 y^{2}+18 x+6 y-5=0$
$5 x^{2}+5 y^{2}+9 x+8 y-15=0$
(c) $5 x^{2}+5 y^{2}+4 x+9 y-5=0$
$5 x^{2}+5 y^{2}-4 x-2 y-18=0$

- Watch Video Solution

325. The centers of a set of circles, each of radius 3 , lie on the circle $x^{2}+y^{2}=25$. The locus of any point in the set is $4 \leq x^{2}+y^{2} \leq 64$ $x^{2}+y^{2} \leq 25 x^{2}+y^{2} \geq 25$ (d) $3 \leq x^{2}+y^{2} \leq 9$

- Watch Video Solution

326. The coordinates of two points PandQ are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ andO is the origin. If the circles are described on OPandOQ as diameters, then the
length of their common chord is $\frac{\left|x_{1} y_{2}+x_{2} y_{1}\right|}{P Q}$ (b) $\frac{\left|x_{1} y_{2}-x_{2} y_{1}\right|}{P Q}$ $\frac{\left|x_{1} x_{2}+y_{1} y_{2}\right|}{P Q}$ (d) $\frac{\left|x_{1} x_{2}-y_{1} y_{2}\right|}{P Q}$

- Watch Video Solution

327. The area of the triangle formed by the positive x-axis with the normal and the tangent to the circle $x^{2}+y^{2}=4$ at $(1, \sqrt{3})$ is

- Watch Video Solution

328. If the circle $C_{1}: x^{2}+y^{2}=16$ intersects another circle C_{2} of radius 5 in such a manner that,the common chord is of maximum length and has a slope equal to $\frac{3}{4}$, then the co-ordinates of the centre of C_{2} are:
329. A circle touches the line $y=x$ at point P such that $O P=4 \sqrt{2}$, Circle contains ($-10,2$) in its interior \& length of its chord on the line $x+y=0$ is $6 \sqrt{2}$. Determine the equation of the circle

- Watch Video Solution

330. Let $A B$ be a chord of the circle $x^{2}+y^{2}=r^{2}$ subtending a right angle at the center. Then the locus of the centroid of the $\triangle P A B$ as P moves on the circle is (1) A parabola (2) A circle (3) An ellipse (4) A pair of straight lines

- Watch Video Solution

331. Let $P Q$ and $R S$ be tangent at the extremities of the diameter $P R$ of a circle of radius r. If $P \mathrm{~S}$ and $R Q$ intersect at a point X on the circumference of the circle, then prove that $2 r=\sqrt{P Q \times R S}$.
332. Find the coordinates of the point at which the circles $x^{2}-y^{2}-4 x-2 y+4=0$ and $x^{2}+y^{2}-12 x-8 y+36=0$ touch each other. Also, find equations of common tangents touching the circles the distinct points.

- Watch Video Solution

333. Let $A B$ be chord of contact of the point $(5,-5)$ w.r.t the circle $x^{2}+y^{2}=5$. Then find the locus of the orthocentre of the triangle $P A B$, where P is any point moving on the circle.

- Watch Video Solution

334. Let P be any moving point on the circle $x^{2}+y^{2}-2 x=1$. $A B$ be the chord of contact of this point w.r.t. the circle $x^{2}+y^{2}-2 x=0$. The locus of the circumcenter of triangle $\operatorname{CAB}(C$ being the center of the circle) is $2 x^{2}+2 y^{2}-4 x+1=0$ $x^{2}+y^{2}-4 x+2=0$ $x^{2}+y^{2}-4 x+1=0$
$2 x^{2}+2 y^{2}-4 x+3=0$

(D) Watch Video Solution

335. If eight distinct points can be found on the curve $|x|+|y|=1$ such that from eachpoint two mutually perpendicular tangents can be drawn to the circle $x^{2}+y^{2}=a^{2}$, then find the tange of a

- Watch Video Solution

336. A circle of radius 5 units has diameter along the angle bisector of the lines $x+y=2$ and $x-y=2$. If the chord of contact from the origin makes an angle of 45^{0} with the positive direction of the x-axis, find the equation of the circle.

- Watch Video Solution

337. A circle of radius 1 unit touches the positive x-axis and the positive y axis at AandB, respectively. A variable line passing through the origin
intersects the circle at two points DandE. If the area of triangle $D E B$ is maximum when the slope of the line is m, then find the value of m^{-2}

- Watch Video Solution

338. The number of rational point(s) [a point (a, b) is called rational, if a and b both are rational numbers] on the circumference of a circle having center (π, e) is at most one (b) at least two exactly two (d) infinite

- Watch Video Solution

339. $A B$ is a diameter of a circle. $C D$ is a chord parallel to $A B$ and $2 C D=A B$. The tangent at B meets the line $A C$ produced at E then $A E$ is equal to -

- Watch Video Solution

340. Two parallel tangents to a given circle are cut by a third tangent at the point RandQ. Show that the lines from RandQ to the center of the circle are mutually perpendicular.

- Watch Video Solution

341. If the equation of any two diagonals of a regular pentagon belongs to the family of lines $(1+2 \lambda) \lambda-(2+\lambda) x+1-\lambda=0$ and their lengths are $\sin 36^{\circ}$, then the locus of the center of circle circumscribing the given pentagon (the triangles formed by these diagonals with the sides of pentagon have no side common) is (a) $x^{2}+y^{2}-2 x-2 y+1+\sin ^{2} 72^{0}=0$ (b) $x^{2}+y^{2}-2 x-2 y+\cos ^{2} 72^{0}=0 \quad$ (c) $x^{2}+y^{2}-2 x-2 y+1+\cos ^{2} 72^{0}=0$
$x^{2}+y^{2}-2 x-2 y+\sin ^{2} 72^{0}=0$

- Watch Video Solution

342. If $O A a n d O B$ are equal perpendicular chords of the circles $x^{2}+y^{2}-2 x+4 y=0$, then the equations of $O A a n d O B$ are, where O is the
origin. $3 x+y=0$ and $3 x-y=03 x+y=0$ and $3 y-x=0 x+3 y=0$ and $y-3 x=0 x+y=0$ and $x-y=0$

- Watch Video Solution

343. $A B C D$ is a square of unit area. A circle is tangent to two sides of $A B C D$ and passes through exactly one of its vertices. The radius of the circle is $2-\sqrt{2}$ (b) $\sqrt{2}-11 / 2$ (d) $\frac{1}{\sqrt{2}}$

- Watch Video Solution

344. BandC are fixed points having coordinates $(3,0)$ and $(-3,0)$, respectively. If the vertical angle $B A C$ is 90°, then the locus of the centroid of $A B C$ has equation. (a) $x^{2}+y^{2}=1$ (b) $x^{2}+y^{2}=2$
$9\left(x^{2}+y^{2}\right)=1$ (d) $9\left(x^{2}+y^{2}\right)=4$
345. A straight line with slope 2 and y-intercept 5 touches the circle $x^{2}+y^{2}+16 x+12 y+c=0$ at a point Q Then the coordinates of Q are $(-6,11)(b)(-9,-13)(-10,-15)(d)(-6,-7)$

- Watch Video Solution

346. A pair of tangents is drawn to a unit circle with center at the origin and these tangents intersect at A enclosing an angle of 60°. The area enclosed by these tangents and the arc of the circle is $\frac{2}{\sqrt{3}}-\frac{\pi}{6}$ (b) $\sqrt{3}-\frac{\pi}{3}$ $\frac{\pi}{3}-\frac{\sqrt{3}}{6}$ (d) $\sqrt{3}\left(1-\frac{\pi}{6}\right)$

- Watch Video Solution

347. A line meets the coordinate axes at A and B. A circle is circumscribed about the triangle $O A B$ If $d_{1} a n d d_{2}$ are distances of the tangents to the
circle at the origin O from the points AandB, respectively, then the diameter of the circle is $\frac{2 d_{1}+d_{2}}{2}$ (b) $\frac{d_{1}+2 d_{2}}{2} d_{1}+d_{2}$ (d) $\frac{d_{1} d_{2}}{d_{1}+d_{2}}$

- Watch Video Solution

348. A circle of constant radius a passes through the origin O and cuts the axes of coordinates at points P and Q. Then the equation of the locus of the foot of perpendicular from O to $P Q$ is (A)
$\left(x^{2}+y^{2}\right)\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)=4 a^{2}$
(B) $\left(x^{2}+y^{2}\right)^{2}\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)=a^{2}$
$\left(x^{2}+y^{2}\right)^{2}\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)=4 a^{2}$ (D) $\left(x^{2}+y^{2}\right)\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)=a^{2}$

- Watch Video Solution

349. The equation of the line inclined at an angle of $\frac{\pi}{4}$ to the x-axis ,such that the two circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2} 10 x-14 y+65=0$ intercept
equal length on it, is (A) $2 x-2 y-3=0$ (B) $2 x-2 y+3=0$ (C) $x-y+6=0$ (D) $x-y-6=0$

- Watch Video Solution

350. If a circle of constant radius $3 k$ passes through the origin O and meets the coordinate axes at AandB, then the locus of the centroud of triangle $O A B$ is $(\mathrm{a}) x^{2}+y^{2}=(2 k)^{2}(\mathrm{~b}) x^{2}+y^{2}=(3 k)^{2}(\mathrm{c}) x^{2}+y^{2}=(4 k)^{2}$
$x^{2}+y^{2}=(6 k)^{2}$

- Watch Video Solution

351. A straight line l_{1} with equation $x-2 y+10=0$ meets the circle with equation $x^{2}+y^{2}=100$ at B in the first quadrant. A line through B perpendicular to l_{1} cuts the y-axis at $P(o, t)$. The value of t is 12 (b) 15 (c) 20 (d) 25

- Watch Video Solution

352. Let C be a circle with two diameters intersecting at an angle of $30^{\circ} \mathrm{A}$ circle S is tangent to both the diameters and to C and has radius unity. The largest radius of C is $1+\sqrt{6}+\sqrt{2}$ (b) $1+\sqrt{6}-\sqrt{2} \sqrt{6}+\sqrt{2}-11$ (d) none of these

- Watch Video Solution

353. If the circles $x^{2}+y^{2}+2 x+2 k y+6=0$ and $x^{2}+y^{2}+2 k y+k=0$ intersect orthogonally then kequals (A) 2 or $-\frac{3}{2}$ (B) -2 or $-\frac{3}{2}$ (C) 2 or $\frac{3}{2}$ (D) -2 or $\frac{3}{2}$

- Watch Video Solution

354. An acute triangle $P Q R$ is inscribed in the circle $x^{2}+y^{2}=25$. If Q and R have coordinates $(3,4)$ and $(-4,3)$ respectively, then find $\angle Q P R$.

- Watch Video Solution

355. A circle is given by $x^{2}+(y-1)^{2}=1$, another circle C touches it externally and also the x-axis, then the locus of center is:

- Watch Video Solution

356. If one of the diameters of the circle $x^{2}+y^{2}-2 x-6 y+6=0$ is a chord to the circle with centre $(2,1)$, then the radius of circle is:

- Watch Video Solution

357. The centre of circle inscribed in a square formed by lines $x^{2}-8 x+12=0$ and ${ }^{2}-14 y+45=0$ is $(4,7)(7,4)(9,4)(4,9)$

- Watch Video Solution

358. If the tangent at the point on the circle $x^{2}+y^{2}+6 x+6 y=2$ meets the straight ine $5 x-2 y+6=0$ at a point Q on the y - axis then the length of $P Q$ is

(D) Watch Video Solution

359. Consider square $A B C D$ of side length 1 . Let P be the set of all segments of length 1 with endpoints on the adjacent sides of square
$A B C D$. The midpoints of segments in P enclose a region with area A The value of A is (a) $\frac{\pi}{4}$ (b) $1-\frac{\pi}{4}$ (c) $4-\frac{\pi}{4}$ (d) none of these

- Watch Video Solution

360. The number of intergral value of y for which the chord of the circle $x^{2}+y^{2}=125$ passing through the point $P(8, y)$ gets bisected at the point $P(8, y)$ and has integral slope is 8 (b) 6 (c) 4 (d) 2

- Watch Video Solution

361. Statement 1 : The circle having equation $x^{2}+y^{2}-2 x+6 y+5=0$ intersects both the coordinate axes. Statement 2 : The lengths of xandy
intercepts made by the circle having equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ are $2 \sqrt{g^{2}-c}$ and $2 \sqrt{f^{2}-c}$, respectively.

- Watch Video Solution

362. Statement 1: The center of the circle having $x+y=3$ and $x-y=1$ as its normals is $(1,2)$ Statement 2 : The normals to the circle always pass through its center

- Watch Video Solution

363. Statement 1 : The equations of the straight lines joining the origin to the points of intersection of $x^{2}+y^{2}-4 x-2 y=4$ and $x^{2}+y^{2}-2 x-4 y-4=0$ is $x-y=0$. Statement $2: y+x=0$ is the common chord of $x^{2}+y^{2}-4 x-2 y=4$ and $x^{2}+y^{2}-2 x-4 y-4=0$

- Watch Video Solution

364. Statement 1 : Points $A(1,0), B(2,3), C(5,3)$, andD(6, 0$)$ are concyclic. Statement 2 : Points $A, B, C, a n d D$ form an isosceles trapezium or $A B a n d C D$ meet at E Then $E A E B=E C E D$

- Watch Video Solution

365. Statement I The chord of contact of tangent from three points A, B and C to the circle $x^{2}+y^{2}=a^{2}$ are concurrent, then A, B and C will be collinear. Statement II A, B and C always lie on the normal to the circle $x^{2}+y^{2}=a^{2}$.

- Watch Video Solution

366. Statement 1: The equation $x^{2}+y^{2}-2 x-2 a y-8=0$ represents, for different values of a, a system of circles passing through two fixed points lying on the x-axis. Statement $2: S=0$ is a circle and $L=0$ is a straight line. Then $S+\lambda L=0$ represents the family of circles passing through the
points of intersection of the circle and the straight line (where λ is an arbitrary parameter).

- Watch Video Solution

367. The circles having radii r_{1} andr r_{2} intersect orthogonally. The length of their common chord is `

- Watch Video Solution

368. Tangents $P A$ and $P B$ are drawn to $x^{2}+y^{2}=9$ from any arbitrary point P on the line $x+y=25$. The locus of the midpoint of chord $A B$ is $25\left(x^{2}+y^{2}\right)=9(x+y) \quad 25\left(x^{2}+y^{2}\right)=3(x+y) \quad 5\left(x^{2}+y^{2}\right)=3(x+y)$ noneofthese
369. The two circles which pass through $(0, a) a n d(0,-a)$ and touch the line $y=m x+c$ will intersect each other at right angle if (A)
$a^{2}=c^{2}(2 m+1)$
(B) $a^{2}=c^{2}\left(2+m^{2}\right)$
(C) $c^{2}=a^{2}\left(2+m^{2}\right)$
$c^{2}=a^{2}(2 m+1)$

- Watch Video Solution

370. If the pair of straight lines $x y \sqrt{3}-x^{2}=0$ is tangent to the circle at

PandQ from the origin O such that the area of the smaller sector formed
by CPandCQ is 3rsqunit, where C is the center of the circle, the $O P$
equals $\frac{(3 \sqrt{3})}{2}$ (b) $3 \sqrt{3}$ (c) 3 (d) $\sqrt{3}$

- Watch Video Solution

371. The locus of the midpoint of a chord of the circle $x^{2}+y^{2}=4$ which subtends a right angle at the origins is $x+y=2$
(b) $x^{2}+y^{2}=1$
$x^{2}+y^{2}=2$ (d) $x+y=1$

(D) Watch Video Solution

372. The condition that the chord $x \cos \alpha+y \sin \alpha-p=0$ of $x^{2}+y^{2}-a^{2}=0$ may subtend a right angle at the center of the circle is

- Watch Video Solution

373. Let the base $A B$ of a triangle $A B C$ be fixed and the vertex C lies on a fixed circle of radius r Lines through AandB are drawn to intersect CBandCA, respectively, at EandF such that $C E: E B=1: 2$ andCF: $F A=1: 2$. If the point of intersection P of these lines lies on the median through $A B$ for all positions of $A B$, then the locus of P is a circle of radius $\frac{r}{2}$ a circle of radius $2 r$ a parabola of latus rectum $4 r$ a rectangular hyperbola

- Watch Video Solution

374. If the chord of contact of tangents from a point P to a given circle passes through Q, then the circle on $P Q$ as diameter. cuts the given circle orthogonally touches the given circle externally touches the given circle internally none of these

Watch Video Solution

375. Statement 1 : The chord of contact of the circle $x^{2}+y^{2}=1$ w.r.t. the points $(2,3),(3,5)$, and $(1,1)$ are concurrent. Statement 2 : Points $(1,1),(2$, $3)$, and $(3,5)$ are collinear.

- Watch Video Solution

376. Statement 1 : The number of circles touching lines $x+y=1,2 x-y=5$, and $3 x+5 y-1=0$ is four Statement 2: In any triangle, four circles can be drawn touching all the three sides of the triangle.
377. The line $2 x-y+1=0$ is tangent to the circle at the point $(2,5)$ and the center of the circle lies on $x-2 y=4$. The radius of the circle is $3 \sqrt{5}$
(b) $5 \sqrt{3}$ (c) $2 \sqrt{5}$ (d) $5 \sqrt{2}$

- Watch Video Solution

378. The equation of the chord of the circle $x^{2}+y^{2}-3 x-4 y-4=0$, which passes through the origin such that the origin divides it in the ratio 4:1, is

- Watch Video Solution

379. A rhombus is inscribed in the region common to the two circles $x^{2}+y^{2}-4 x-12=0$ and $x^{2}+y^{2}+4 x-12=0$ with two of its vertices on the line joining the centers of the circles. The are of the rhombus is (A) $8 \sqrt{3}$ sq.units (B) $4 \sqrt{3}$ sq.units (C) $6 \sqrt{3}$ sq.units (D) none of these
380. In a triangle $A B C$, right angled at A, on the leg $A C$ as diameter, a semicircle is described. If a chord joins A with the point of intersection D of the hypotenuse and the semicircle, then the length of $A C$ is equal to
$\frac{A B A D}{\sqrt{A B^{2}+A D^{2}}}$ (b) $\frac{A B \dot{A D}}{A B+A D} \sqrt{A B A D}$ (d) $\frac{A B \dot{A D}}{\sqrt{A B^{2}-A D^{2}}}$

- Watch Video Solution

381. Two congruent circles with centered at $(2,3)$ and $(5,6)$ which intersect at right angles, have radius equal to $2 \sqrt{3}$ (b) 3 (c) 4 (d) none of these

- Watch Video Solution

382. The locus fo the center of the circles such that the point $(2,3)$ is the midpoint of the chord $5 x+2 y=16$ is (a) $2 x-5 y+11=0$
$2 x+5 y-11=0$ (c) $2 x+5 y+11=0$ (d) none of these
383. The value of 'c' for which the set
$\left\{(x, y) \mid x^{2}+y^{2}+2 x \leq 1\right\} \cap\{(x, y) \mid x-y+c \leq 0\}$ contains only one point in common is

Watch Video Solution

384. A circle of radius unity is centered at thet origin. Two particles tart moving at the same time from the point $(1,0)$ and move around the circle in opposite direction. One of the particle moves anticlockwise with constant speed v and the other moves clockwise with constant speed $3 v$.

After leaving (1,0), the two particles meet first at a point P, and continue until they meet next at point Q. The coordinates of the point Q are

- Watch Video Solution

385. Two circles with radii aandb touch each other externally such that θ is the angle between the direct common tangents, $(a>b \geq 2)$. Then prove that $\theta=2 \sin ^{-1}\left(\frac{a-b}{a+b}\right)$.

- Watch Video Solution

386. A circle is inscribed ti.e. touches all four sides) into a rhombous

ABCD with one angle $60 \hat{A}^{0}$. The distance from the centre of the circle to the nearest vertex is equal to 1 . If P is any point of the circle then $|P A|^{2}+|P B|^{2}+|P C|^{2}+|P D|^{2}$ is equal to:

- Watch Video Solution

387. Consider: $L_{1}: 2 x+3 y+p-3=0 L_{2}: 2 x+3 y+p+3=0$ where p is a real number and $C: x^{2}+y^{2}+6 x-10 y+30=0$ Statement 1 : If line L_{1} is a chord of circle C, then line L_{2} is not always a diameter of circle C Statement 2: If line L_{1} is a a diameter of circle C, then line L_{2} is not a
chord of circle C (A) Both the statement are True and Statement 2 is the correct explanation of Statement 1. (B) Both the statement are True but Statement 2 is not the correct explanation of Statement 1. (C) Statement 1 is True and Statement 2 is False. (D) Statement 1 is False and Statement 2 is True.

Watch Video Solution

388. The straight line $2 x-3 y=1$ divides the circular region $x^{2}+y^{2} \leq 6$ into
two parts. If $\mathrm{S}=\left\{\left(2, \frac{3}{4}\right),\left(\frac{5}{2}, \frac{3}{4}\right),\left(\frac{1}{4},-\frac{1}{4}\right),\left(\frac{1}{8}, \frac{1}{4}\right)\right\}$, then the number of point(s) in S lying inside the smaller part is

- Watch Video Solution

389. Let $A B C D$ be a quadrilateral with area 18 , side $A B$ parallel to the side $C D$, and $A B=2 C D$. Let $A D$ be perpendicular to $A B a n d C D$. If a circle is drawn inside the quadrilateral $A B C D$ touching all the sides, then its radius is 3 (b) 2 (c) $\frac{3}{2}$ (d) 1

- Watch Video Solution

390. Consider a family of circles which are passing through the point $(-1,1)$ and are tangent to the x-axis. If (h, k) are the coordinates of the center of the circles, then the set of values of k is given by the interval. $k \geq \frac{1}{2}$ (b) $-\frac{1}{2} \leq k \leq \frac{1}{2} k \leq \frac{1}{2}$ (d) ${ }^{\circ}$

- Watch Video Solution

391. If the conics whose equations are $S \equiv \sin ^{2} \theta x^{2}+2 h x y+\cos ^{2} \theta y^{2}+32 x+16 y+19=0, S^{\prime} \equiv \cos ^{2} \theta x^{2}+2 h^{\prime} x y+s \in^{2}$ intersect at four concyclic points, then, (where $\theta \in R$) $h+h^{\prime}=0$ (b) $h=h^{\prime} h+h^{\prime}=1$ (d) none of these

- Watch Video Solution

392. The range of values of $\lambda, \lambda>0$ such that the angle θ between the pair of tangents drawn from $(\lambda, 0)$ to the circle $x^{2}+y^{2}=4$ lies in $\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$ is
(a) $\left(\frac{4}{\sqrt{3}}, \frac{2}{\sqrt{2}}\right)$
(b) $(0, \sqrt{2})$
(c) (1, 2) (d) none of these

- Watch Video Solution

393. The equation of the incircle of equilateral triangle $A B C$ where $B \equiv(2,0), C \equiv(4,0)$, and A lies in the fourth quadrant is: (a) $x^{2}+y^{2}-6 x+\frac{2 y}{\sqrt{3}}+9=0$
(b) $x^{2}+y^{2}-6 x-\frac{2 y}{\sqrt{3}}+9=0$
$x^{2}+y^{2}+6 x+\frac{2 y}{\sqrt{3}}+9=0$ (d) none of these

- Watch Video Solution

394. $f(x, y)=x^{2}+y^{2}+2 a x+2 b y+c=0$ represents a circle. If $f(x, 0)=0$ has equal roots, each being 2 , and $f(0, y)=0$ has 2 and 3 as its roots,
then the center of the circle is $\left(2, \frac{5}{2}\right)$ (b) Data are not sufficient $\left(-2,-\frac{5}{2}\right)$ (d) Data are inconsistent

- Watch Video Solution

395. The area bounded by the curves $x^{2}+y^{2}=1, x^{2}+y^{2}=4$ and the pair of lines $\sqrt{3} x^{2}+\sqrt{3} y^{2}=4 x y$, in the first quadrant is (1) $\frac{\pi}{2}$ (2) $\frac{\pi}{6}$ (3) $\frac{\pi}{4}$ (4) $\frac{\pi}{3}$

- Watch Video Solution

396. The straight line $x \cos \theta+y \sin \theta=2$ will touch the circle $x^{2}+y^{2}-2 x=0$ if $\theta=n \pi, n \in I Q(b) A=(2 n+1) \pi, n \in I \theta=2 n \pi, n \in I$ (d) none of these

- Watch Video Solution

397. The centre of a circle passing through (0,0), (1,0) and touching the Circle $x^{2}+y^{2}=9$ is a. $\left(\frac{1}{2}, \sqrt{2}\right)$ b. $\left(\frac{1}{2}, \frac{3}{\sqrt{2}}\right)$ c. $\left(\frac{3}{2}, \frac{1}{\sqrt{2}}\right)$ d. $\left(\frac{1}{2},-\frac{1}{\sqrt{2}}\right)$

Watch Video Solution

398. The locus of the centre of a circle which touches externally the circle $x^{2}+y^{2}-6 x-6 y+14=0$ and also touches Y-axis, is given by the equation
(a) $x 2-6 x-10 y+14=0$ (b) $x 2-10 x-6 y+14=0$ (c) $y r_{-} 6 x-10 y+14-0$ (d) $y, 2-10 x-6 y+$ $14=0$

- Watch Video Solution

399. If the two circles $(x+1)^{2}+(y-3)=r^{2}$ and $x^{2}+y^{2}-8 x+2 y+8=0$ intersect in two distinct point,then (A) $r>2$ (B) $2<r<8$ (C) $r<2$ (D) $r=2$
400. Two circles, each of radius 5 units, touch each other at (1, 2). If the equation of their common tangents is $4 x+3 y=10$, find the equations of the circles.

- Watch Video Solution

401. The circle which can be drawn to pass through $(1,0)$ and $(3,0)$ and to touch the y -axis intersect at angle θ Then $\cos \theta$ is equal to (a) $\frac{1}{2}$ (b) $-\frac{1}{2}$ (c) 1
$\frac{1}{4}$ (d) $-\frac{1}{4}$

- Watch Video Solution

402. The locus of the midpoints of the chords of contact of $x^{2}+y^{2}=2$
from the points on the line $3 x+4 y=10$ is a circle with center P If O is
the origin, then $O P$ is equal to 2 (b) 3 (c) $\frac{1}{2}$ (d) $\frac{1}{3}$

- Watch Video Solution

403. A square is inscribed in the circle $x^{2}+y^{2}-2 x+4 y+3=0$. Its sides are parallel to the coordinate axes. One vertex of the square is $(1+\sqrt{2},-2)$ (b) $(1-\sqrt{2},-2)(1,-2+\sqrt{2})$ (d) none of these

(Watch Video Solution

404. Two circle $x^{2}+y^{2}=6$ and $x^{2}+y^{2}-6 x+8=0$ are given. Then the equation of the circle through their points of intersection and the point $(1,1)$ is $x^{2}+y^{2}-6 x+4=0 x^{2}+y^{2}-3 x+1=0 x^{2}+y^{2}-4 y+2=0$ none of these

(Watch Video Solution

405. The equation of the tangent to the circle $x^{2}+y^{2}=25$ passing through $(-2,11)$ is $4 x+3 y=25$ (b) $3 x+4 y=3824 x-7 y+125=0$ (d) $7 x+24 y=250$

- Watch Video Solution

406. If the area of the quadrilateral by the tangents from the origin to the circle $x^{2}+y^{2}+6 x-10 y+c=0$ and the radii corresponding to the points of contact is 15 , then a value of c is 9 (b) 4 (c) 5 (d) 25

- Watch Video Solution

407. If the circles $x^{2}+y^{2}-9=0$ and $x^{2}+y^{2}+2 a x+2 y+1=0$ touch each other, then α is $-\frac{4}{3}$ (b) 0 (c) 1 (d) $\frac{4}{3}$

- Watch Video Solution

408. Point M moves on the circle $(x-4)^{2}+(y-8)^{2}=20$. Then it brokes away from it and moving along a tangent to the circle, cuts the x-axis at the point $(-2,0)$. The co-ordinates of a point on the circle at which the moving point broke away is

- Watch Video Solution

409. The points on the line $x=2$ from which the tangents drawn to the circle $x^{2}+y^{2}=16$ are at right angles is (are) (a) $(2,2 \sqrt{7})$ (b) $(2,2 \sqrt{5})$ (c) $(2,-2 \sqrt{7})(\mathrm{d})(2,-2 \sqrt{5})$

- Watch Video Solution

410. Co-ordinates of the centre of a circle, whose radius is 2 unit and which touches the pair of lines ines $x^{2}-y^{2}-2 x+1=0$ is (are)

- Watch Video Solution

411. Three sided of a triangle have equations
$L_{1} \equiv y-m_{i} x=o ; i=1$, 2and3. Then $L_{1} L_{2}+\lambda L_{2} L_{3}+\mu L_{3} L_{1}=0 \quad$ where $\lambda \neq 0, \mu \neq 0$, is the equation of the circumcircle of the triangle if $1+\lambda+\mu=m_{1} m_{2}+\lambda m_{2} m_{3}+\lambda m_{3} m_{1} \quad m_{1}(1+\mu)+m_{2}(1+\lambda)+m_{3}(\mu+\lambda)=0$ $\frac{1}{m_{3}}+\frac{1}{m_{1}}+\frac{1}{m_{1}}=1+\lambda+\mu$ none of these
412. If the equation $x^{2}+y^{2}+2 h x y+2 g x+2 f y+c=0$ represents a circle, then the condition for that circle to pass through three quadrants only but not passing through the origin is $f^{2}>c$ (b) $g^{2}>2 c>0$ (d) $h=0$

- Watch Video Solution

413. Consider two circles $x^{2}+y^{2}-4 x-6 y-8=0$ and $x^{2}+y^{2}-2 x-3=0$ Statement 1 : Both the circles intersect each other at two distinct points.

Statement 2 : The sum of radii of the two circles is greater than the distance between their centers.

- Watch Video Solution

414. Statement-1: The point $(\sin \alpha, \cos a \alpha)$ does not lie outside the parabola $y^{2}+x-2=0$ when $\alpha \in\left[\frac{\pi}{2},\left(5 \frac{\pi}{6}\right] \cup\left[\pi, \frac{3 \pi}{2}\right]\right.$ Statement-2: The point $\left(x_{1}, y_{1}\right)$ lies outside the parabola $y^{2}=4 a x$ if $y_{1}^{2}-4 a x_{1}, 0$.
415. The equation of the circle which touches the axes of coordinates and the line $\frac{x}{3}+\frac{y}{4}=1$ and whose center lies in the first quadrant is $x^{2}+y^{2}-2 c x-2 c y+c^{2}=0$, where c is (a) 1 (b) 2 (c) 3 (d) 6

- Watch Video Solution

416. The equations of tangents to the circle $x^{2}+y^{2}-6 x-6 y+9=0$ drawn from the origin in $x=0$ (b) $x=y$ (c) $y=0$ (d) $x+y=0$

- Watch Video Solution

417. Statement 1 : Two orthogonal circles intersect to generate a common chord which subtends complimentary angles at their circumferences. Statement 2 : Two orthogonal circles intersect to generate a common chord which subtends supplementary angles at their centers.
418. Two circles C_{1} and C_{2} both pass through the points $A(1,2)$ andE $(2,1)$ and touch the line $4 x-2 y=9$ at BandD, respectively. The possible coordinates of a point C, such that the quadrilateral $A B C D$ is a parallelogram, are (a, b) Then the value of $|a b|$ is \qquad

- Watch Video Solution

419. A circle C_{1} of radius b touches the circle $x^{2}+y^{2}=a^{2}$ externally and has its centre on the positiveX-axis; another circle C_{2} of radius c touches the circle C_{1}, externally and has its centre on the positive x-axis. Given $a<b<c$ then three circles have a common tangent if $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in

- Watch Video Solution

420. If a circle passes through the point (a, b) and cuts the circle $x^{2}+y^{2}=k^{2}$ orthogonally, then the equation of the locus of its center is
421. Difference in values of the radius of a circle whose center is at the origin and which touches the circle $x^{2}+y^{2}-6 x-8 y+21=0$ is \qquad

- Watch Video Solution

422. A triangle is inscribed in a circle of radius 1. The distance between the orthocentre and the circumcentre of the triangle cannot be

- Watch Video Solution

423. Find the equation of the circle whose radius is 5and which touches the circle $x^{2}+y^{2}-2 x-4 y-20=0$ externally at the point $(5,5)$

- Watch Video Solution

424. Let $2 x^{2}+y^{2}-3 x y=0$ be the equation of pair of tangents drawn from the origin to a circle of radius 3 , with center in the first quadrant. If A is
the point of contact. Find OA

- Watch Video Solution

425. Find the equation of a circle which passes through the point $(2,0)$ and whose centre is the limit of the point of intersection of eth lines $3 x+5 y=1 \operatorname{and}(2+c) x+5 c^{2} y=1 \operatorname{asc} \overrightarrow{1}$.

- Watch Video Solution

426. Let T_{1}, T_{2} and be two tangents drawn from $(-2,0)$ onto the circle $C: x^{2}+y^{2}=1$. Determine the circles touching C and having T_{1}, T_{2} as their pair of tangents. Further, find the equations of all possible common tangents to these circles when taken two at a time

- Watch Video Solution

427. Let C_{1} be the circle with center $O_{1}(0,0)$ and radius 1 and C_{2} be the circle with center $O_{2}\left(t, t^{2}+1\right),(t \in R)$, and radius 2 . Statement 1 : Circles C_{1} and C_{2} always have at least one common tangent for any value of t Statement 2 : For the two circles $O_{1} O_{2} \geq\left|r_{1}-r_{2}\right|$, where $r_{1} a n d r_{2}$ are their radii for any value of t

- Watch Video Solution

428. From the point $P(\sqrt{2}, \sqrt{6})$, tangents $P A a n d P B$ are drawn to the circle $x^{2}+y^{2}=4$ Statement 1 :The area of quadrilateral $O A P B(O$ being the origin) is 4 . Statement 2 : The area of square is a^{2}, where a is the length of side.

- Watch Video Solution

429. C_{1} is a circle of radius 1 touching the x-and the y-axis. C_{2} is another circle of radius greater than 1 and touching the axes as well as the circle
C_{1}. Then the radius of C_{2} is $3-2 \sqrt{2}$ (b) $3+2 \sqrt{2} 3+2 \sqrt{3}$ (d) none of these

- Watch Video Solution

430. There are two circles whose equation are $x^{2}+y^{2}=9$ and $x^{2}+y^{2}-8 x-6 y+n^{2}=0, n \in Z$ If the two circles have exactly two common tangents, then the number of possible values of n is 2 (b) 8 (c) 9
(d) none of these

- Watch Video Solution

431. The line $x+3 y=0$ is a diameter of the circle $x^{2}+y^{2}-6 x+2 y=0$

- Watch Video Solution

432. No tangent can be drawn from the point $\left(\frac{5}{2}, 1\right)$ to the circumcircle of the triangle with vertices $(1, \sqrt{3}),(1,-\sqrt{3}),(3,-\sqrt{3})$.
433. A circle passes through the points $A(1,0) \operatorname{andB}(5,0)$, and touches the y-axis at $C(0, h)$ If $\angle A C B$ is maximum, then (a) $h=3 \sqrt{5}$ (b) $h=2 \sqrt{5}$ (c) $h=\sqrt{5}(\mathrm{~d}) h=2 \sqrt{10}$

- Watch Video Solution

434. The locus of a point which moves such that the sum of the square of its distance from three vertices of a triangle is constant is a/an
circle
(b) straight line
(c) ellipse
(d) none of these

- Watch Video Solution

435. The equation of four circles are $(x \pm a)^{2}+\left(y \pm a 2=a^{2}\right.$. The radius of a circle touching all the four circles is $(\sqrt{2}+2) a$ (b) $2 \sqrt{2} a(\sqrt{2}+1) a$ (d) $(2+\sqrt{2}) a$
436. An isosceles triangle $A B C$ is inscribed in a circle $x^{2}+y^{2}=a^{2}$ with the vertex A at $(a, 0)$ and the base angle BandC each equal 75°. Then the coordinates of an endpoint of the base are. $\left(-\frac{\sqrt{3 a}}{2}, \frac{a}{2}\right)$ (b) $\left(-\frac{\sqrt{3 a}}{2}, a\right)$ $\left(\frac{a}{2}, \frac{\sqrt{3 a}}{2}\right)$ (d) $\left(\frac{\sqrt{3 a}}{2},-\frac{a}{2}\right)$

- Watch Video Solution

437. A region in the $x-y$ plane is bounded by the curve $y=\sqrt{25-x^{2}}$ and the line $y=0$. If the point $(a, a+1)$ lies in the interior of the region, then $a \in(-4,3) \mathrm{b}) a \in(-\infty,-1) \in(3, \infty) a \in(-1,3)$ (d) none of these

(Watch Video Solution

438. If (α, β) is a point on the circle whose center is on the x-axis and which touches the line $x+y=0$ at $(2,-2)$, then the greatest value of α is

(a) $4-\sqrt{2}$ (b) 6 (c) $4+2 \sqrt{2}$ (d) $+\sqrt{2}$

- Watch Video Solution

439. The area of the triangle formed by joining the origin to the point of intersection of the line $x \sqrt{5}+2 y=3 \sqrt{5}$ and the circle $x^{2}+y^{2}=10$ is
(a)3
(b) 4
(c) 5
(d) 6

- Watch Video Solution

440. A circle with center (a, b) passes through the origin. The equation of the tangent to the circle at the origin is $a x-b y=0$ (b) $a x+b y=0$ $b x-a y=0$ (d) $b x+a y=0$

- Watch Video Solution

441. A particle from the point $P(\sqrt{3}, 1)$ moves on the circle $x^{2}+y^{2}=4$ and after covering a quarter of the circle leaves it tangentially. The equation of a line along with the point moves after leaving the circle is

- Watch Video Solution

442. The circles $x^{2}+y^{2}+2 x+4 y-20=0$ and $x^{2}+y^{2}+6 x-8 y+10=0$ a) are such that the number of common tangents on them is 2 b) are orthogonal c) are such that the length of their common tangents is
$5\left(\frac{12}{5}\right)^{\frac{1}{4}}$ d) are such that the length of their common chord is $5 \frac{\sqrt{3}}{2}$

- Watch Video Solution

443. If the circles $x^{2}+y^{2}-9=0$ and $x^{2}+y^{2}+2 a x+2 y+1=0$ touch each other, then α is $-\frac{4}{3}$ (b) 0 (c) 1 (d) $\frac{4}{3}$

- Watch Video Solution

444. The equation of a circle of radius 1 touching the circles $x^{2}+y^{2}-2|x|=0 \quad$ is $\quad x^{2}+y^{2}+2 \sqrt{2} x+1=0 \quad x^{2}+y^{2}-2 \sqrt{3} y+2=0$ $x^{2}+y^{2}+2 \sqrt{3} y+2=0 x^{2}+y^{2}-2 \sqrt{2}+1=0$

- Watch Video Solution

445. 26 Which of the following lines have the intercepts of equal lengths on the circle, $x^{2}+y^{2}-2 x+4 y=0 \quad$ (A) $3 x-y=0 \quad$ (B) $x+3 y=0$ (C) $x+3 y+10=0$ (D) $3 x-y-10=0$

- Watch Video Solution

446. If a circle passes through the point of intersection of the lines $x+y+1=0$ and $x+\lambda y-3=0$ with the coordinate axis, then value of λ is

- Watch Video Solution

447. The circles $x^{2}+y^{2}-2 x-4 y+1=0$ and $x^{2}+y^{2}+4 x+4 y-1=0$ touch internally touch externally have $3 x+4 y-1=0$ as the common tangent at the point of contact have $3 x+4 y+1=0$ as the common tangent at the point of contact

- Watch Video Solution

448. The equation of the line(s) parallel to $x-2 y=1$ which touch(es) the circle $x^{2}+y^{2}-4 x-2 y-15=0$ is (are) (a) $x-2 y+2=0$ (b) $x-2 y-10=0$ (c) $x-2 y-5=0$ (d) $3 x-y-10=0$

- Watch Video Solution

449. If the conics whose equations are
$S_{1}:\left(\sin ^{2} \theta\right) x^{2}+(2 h \tan \theta) x y+\left(\cos ^{2} \theta\right) y^{2}+32 x+16 y+19=0$
$S_{1}:\left(\sin ^{2} \theta\right) x^{2}-\left(2 h^{\prime} \cot \theta\right) x y+\left(\sin ^{2} \theta\right) y^{2}+16 x+32 y+19=0$ intersect at
four concyclic points, where $\theta\left[0, \frac{\pi}{2}\right]$, then the correct statement(s) can
be $h+h^{\prime}=0$ (b) $h-h^{\prime}=0 \theta=\frac{\pi}{4}$ (d) none of these

(Watch Video Solution

450. The range of values of a such that the angle θ between the pair of tangents drawn from $(a, 0)$ to the circle $x^{2}+y^{2}=1$ satisfies 'pi/2

- Watch Video Solution

451. From the point $\mathrm{A}(0,3)$ on the circle $x^{2}+4 x+(y-3)^{2}=0$ a chord AB is drawn \& extended to a M point such that $A M=2 A B$. The equation of the locus of M is: $\quad(\mathrm{A}) x^{2}+8 x+y^{2}=0 \quad$ (B) $x^{2}+8 x+(y-3)^{2}=0$
$(x-3)^{2}+8 x+y^{2}=0(\mathrm{D}) x^{2}+8 x+8 y=0$

- Watch Video Solution

452. Tangents are drawn from external poinl $P(6,8)$ to the circle $x^{2}+y^{2}=r^{2}$ find the radius r of the circle such that area of triangle formed by the tangents and chord of contact is maximum is (A) 25 (B) 15
(C) 5 (D) none

- Watch Video Solution

453. The radius of the of circle touching the line $2 x+3 y+1=0$ at $(1,-1)$ and cutting orthogonally the circle having line segment joining $(0,3)$ and $(-2,-1)$ as diameter is

- Watch Video Solution

454. If the abscissa and ordinates of two points PandQ are the roots of the equations $x^{2}+2 a x-b^{2}=0$ and $x^{2}+2 p x-q^{2}=0$, respectively, then find the equation of the circle with $P Q$ as diameter.
455. Line segments $A C$ and $B D$ are diameters of the circle of radius one. If $\angle B D C=60^{\circ}$, the length of line segment $A B$ is \qquad

Watch Video Solution

456. As shown in the figure, three circles which have the same radius r,have centres at $(0,0) ;(1,1)$ and $(2,1)$. If they have a common tangentline, as shown then, their radius ' r ' is -

- Watch Video Solution

457. The acute angle between the line $3 x-4 y=5$ and the circle $x^{2}+y^{2}-4 x+2 y-4=0$ is θ. Then $9 \cos \theta=$

- Watch Video Solution

458. If two perpendicular tangents can be drawn from the origin to the circle $x^{2}-6 x+y^{2}-2 p y+17=0$, then the value of $|p|$ is \qquad

- Watch Video Solution

459. Let $A(-4,0), B(4,0)$ Number of points $c=(x, y)$ on circle $x^{2}+y^{2}=16$ such that area of triangle whose verties are A, B, C is positive integer is:

- Watch Video Solution

460. If the circle $x^{2}+y^{2}+(3+\sin \beta) x+2 \cos \alpha y=0 \quad$ and $x^{2}+y^{2}+2 \cos \alpha x+2 c y=0$ touch each other, then the maximum value of c is

- Watch Video Solution

461. A tangent at a point on the circle $x^{2}+y^{2}=a^{2}$ intersects a concentric circle C at two points PandQ. The tangents to the circle X at PandQ meet at a point on the circle $x^{2}+y^{2}=b^{2}$ Then the equation of the circle is $x^{2}+y^{2}=a b x^{2}+y^{2}=(a-b)^{2} x^{2}+y^{2}=(a+b)^{2} x^{2}+y^{2}=a^{2}+b^{2}$

- Watch Video Solution

462. Tangent are drawn to the circle $x^{2}+y^{2}=1$ at the points where it is met by the circles $x^{2}+y^{2}-(\lambda+6) x+(8-2 \lambda) y-3=0, \lambda$ being the variable.

The locus of the point of intersection of these tangents is $2 x-y+10=0$
(b) $2 x+y-10=0 x-2 y+10=0$
(d) $2 x+y-10=0$

- Watch Video Solution

463. From the points (3,4), chords are drawn to the circle $x^{2}+y^{2}-4 x=0$. The locus of the midpoints of the chords is (a) $x^{2}+y^{2}-5 x-4 y+6=0$ (b)
$x^{2}+y^{2}+5 x-4 y+6=0$
(c) $x^{2}+y^{2}-5 x+4 y+6=0$
$x^{2}+y^{2}-5 x-4 y-6=0$

(D) Watch Video Solution

464. The angles at which the circles $(x-1)^{2}+y^{2}=10 \operatorname{and} x^{2}+(y-2)^{2}=5$ intersect is $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$

- Watch Video Solution

465. Two circles of radii 4 cm and 1 cm touch each other externally and θ is the angle contained by their direct common tangents. Then $\sin \theta$ is equal to $\frac{24}{25}$ (b) $\frac{12}{25} \frac{3}{4}$ (d) none of these

- Watch Video Solution

466. The locus of the midpoints of the chords of the circle $x^{2}+y^{2}-a x-b y=0$ which subtend a right angle at $\left(\frac{a}{2}, \frac{b}{2}\right)$ is $a x+b y=0$
$a x+b y=a^{2}=b^{2}$
$x^{2}+y^{2}-a x-b y+\frac{a^{2}+b^{2}}{8}=0$
$x^{2}+y^{2}-a x-b y-\frac{a^{2}+b^{2}}{8}=0$

Watch Video Solution

467. A is a point (a, b) in the first quadrant. If the two circles which passes through A and touches the coordinate axes cut at right angles then :

- Watch Video Solution

468. The number of common tangent(s) to the circles $x^{2}+y^{2}+2 x+8 y-23=0$ and $x^{2}+y^{2}-4 x-10 y-19=0$ is 1 (b) 2 (c) 3 (d) 4

- Watch Video Solution

469. If the tangents are drawn from any point on the line $x+y=3$ to the circle $x^{2}+y^{2}=9$, then the chord of contact passes through the point. (3,
5) (b) $(3,3)(c)(5,3)(d)$ none of these

- Watch Video Solution

470. If the radius of the circumcircle of the triangle $T P Q$, where $P Q$ is chord of contact corresponding to point T with respect to circle $x^{2}+y^{2}-2 x+4 y-11=0$, is 6 units, then minimum distances of T from the director circle of the given circle is

- Watch Video Solution

471. If the radius of the circumcircle of the triangle $T P Q$, where $P Q$ is chord of contact corresponding to point T with respect to circle $x^{2}+y^{2}-2 x+4 y-11=0$, is 6 units, then minimum distances of T from the director circle of the given circle is

- Watch Video Solution

472. The equation of the locus of the middle point of a chord of the circle $x^{2}+y^{2}=2(x+y)$ such that the pair of lines joining the origin to the
point of intersection of the chord and the circle are equally inclined to the x-axis is $x+y=2$ (b) $x-y=22 x-y=1$ (d) none of these

- Watch Video Solution

473. Two circles C_{1} and C_{2} intersect at two distinct points Pand Q in a line passing through P meets circles $C_{1} a n d C_{2}$ at AandB , respectively. Let Y be the midpoint of $A B$, andQY meets circles $C_{1} a n d C_{2}$ at XandZ , respectively. Then prove that Y is the midpoint of $X Z$

- Watch Video Solution

474. The two points A and B in a plane are such that for all points P lies on circle satisfied $P \frac{A}{P} B=k$, then k will not be equal to

- Watch Video Solution

475. The points of intersection of the line $4 x-3 y-10=0$ and the circle $x^{2}+y^{2}-2 x+4 y-20=0$ are \qquad and \qquad

Watch Video Solution

476. If the lines $3 x-4 y+4=0$ and $6 x-8 y-7=0$ are tangents to a circle, then find the radius of the circle.

- Watch Video Solution

477. find the area of the quadrilateral formed by a pair of tangents from the point $(4,5)$ to the circle $x^{2}+y^{2}-4 x-2 y-11=0$ and pair of its radii.

- Watch Video Solution

478. From the origin, chords are drawn to the circle $(x-1)^{2}+y^{2}=1$. The equation of the locus of the mid-points of these chords is circle with
radius

- Watch Video Solution

479. The equation of the circle passing through the point of intersection of the circles $x^{2}+y^{2}-4 x-2 y=8$ and $x^{2}+y^{2}-2 x-4 y=8$ and the point
$(-1,4)$ is
(a) $x^{2}+y^{2}+4 x+4 y-8=0$
$x^{2}+y^{2}+x+y=0(\mathrm{~d}) x^{2}+y^{2}-3 x-3 y-8=0$
(b) $x^{2}+y^{2}-3 x+4 y+8=0$

- Watch Video Solution

480. If the radii of the circle $(x-1)^{2}+(y-2)^{2}=1$ and $(x-7)^{2}+(y-10)^{2}=4$ are increasing uniformly w.r.t. times as $0.3 \mathrm{unit} / \mathrm{s}$ is and $0.4 \mathrm{unit} / \mathrm{s}$, then they will touch each other at t equal to 45 s (b) 90 s (c) 11s (d) 135s

- Watch Video Solution

481. The equation of the circle which has normals $x-1) \cdot(y-2)=0$ and a tangent $3 x+4 y=6$ is $x^{2}+y^{2}-2 x-4 y+4=0 \quad x^{2}+y^{2}-2 x-4 y+5=0$ $x^{2}+y^{2}=5(x-3)^{2}+(y-4)^{2}=5$

- Watch Video Solution

482. A wheel of radius 8 units rolls along the diameter of a semicircle of radius 25 units; it bumps into this semicircle. What is the length of the portion of the diameter that cannot be touched by the wheel? 12
15
(c) 17
(d) 20

- Watch Video Solution

483. The point $([\mathrm{p}+1],[\mathrm{p}])$ is lying inside the circle $x^{2}+y^{2}-2 x-15=0$. Then the set of all values of p is (where [.] represents the greatest integer function) (a)[-2,3)(b) (-2,3)(c)[-2,0) $\cup(0,3)(d)[0,3)$
484. The squared length of the intercept made by the line $x=h$ on the pair of tangents drawn from the origin to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ is $\frac{4 c h^{2}}{\left(g^{2}-c\right)^{2}}\left(g^{2}+f^{2}-c\right) \frac{4 c h^{2}}{\left(f^{2}-c\right)^{2}}\left(g^{2}+f^{2}-c\right)$ $\frac{4 c h^{2}}{\left(f^{2}-f^{2}\right)^{2}}\left(g^{2}+f^{2}-c\right)$ (d) none of these

- Watch Video Solution

485. Two parallel tangents to a given circle are cut by a third tangent at the points AandB If C is the center of the given circle, then $\angle A C B$ depends on the radius of the circle. depends on the center of the circle. depends on the slopes of three tangents. is always constant

- Watch Video Solution

486. Three equal circles each of radius r touch one another. The radius of the circle touching all the three given circles internally is $(2+\sqrt{3}) r$ (b)

$$
\frac{(2+\sqrt{3})}{\sqrt{3}} r \frac{(2-\sqrt{3})}{\sqrt{3}} r(\mathrm{~d})(2-\sqrt{3}) r
$$

(-) Watch Video Solution

487. If ($\mathrm{m}_{\mathbf{i}}, 1 / \mathrm{m}_{-}$) , $\mathrm{i}=1,2,3,4$ are concyclic points then the value of $m_{1} m_{2} m_{3} m_{4}$ is

- Watch Video Solution

488. The intercept on the line $y=x$ by the circle $x^{2}+y^{2}-2 x=0$ is AB. Equation of the circle with $A B$ as a diameter is (A)

$$
\begin{align*}
& \left(x-\frac{1}{2}\right)^{3}+\left(y-\frac{1}{2}\right)^{2}=\frac{1}{2} \quad \text { (B) } \quad\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}=\frac{1}{4} \tag{C}\\
& \left(x+\frac{1}{2}\right)^{2}+\left(y+\frac{1}{2}\right)^{2}=\frac{1}{2} \text { (D) }\left(x+\frac{1}{2}\right)^{2}+\left(y+\frac{1}{2}\right)^{2}=\frac{1}{4}
\end{align*}
$$

- Watch Video Solution

489. The equation of the locus of the mid-points of chords of the circle $4 x^{2}+4 y^{2}-12 x+4 y+1=0$ that subtends an angle of at its centre is $\frac{2 \pi}{3}$ at its centre is $x^{2}+y^{2}-k x+y+\frac{31}{16}=0$ then k is

- Watch Video Solution

490. The chords of contact of the pair of tangents drawn from each point on the line $2 x+y=4$ to the circle $x^{2}+y^{2}=1$ pass through the point (a, b) then $4(a+b)$ is

- Watch Video Solution

491. Let $S \equiv x^{2}+y^{2}+2 g x+2 f y+c=$ be a given circle. Find the locus of the foot of the perpendicular drawn from the origin upon any chord of S which subtends a right angle at the origin.

- Watch Video Solution

492. The circle $x^{2}+y^{2}-4 x-4 y+4=0$ is inscribed in a triangle which has two of its sides along the coordinate axes. The locus of the circumcenter of the triangle is $x+y-x y+k\left(x^{2}+y^{2}\right)^{\frac{1}{2}}=0$. Find k

- Watch Video Solution

493. Let a given line L_{1} intersect the X and Y axes at P and Q respectively. Let another line L_{2} perpendicular to L_{1} cut the X and Y -axes at Rand S , respectively. Show that the locus of the point of intersection of the line $P S$ and $Q R$ is a circle passing through the origin

- Watch Video Solution

494. Lines $5 x+12 y-10=0$ and $5 x-12 y-40=0$ touch a circle C1 of diameter 6 . If the centre of C 1 , lies in the first quadrant then the equation of the circle C2, which is concentric with C 1 , and cuts intercepts of length 8 on these lines is
495. From a point $R(5,8)$, two tangents $R P a n d R Q$ are drawn to a given circle $S=0$ whose radius is 5 . If the circumcenter of triangle $P Q R$ is $(2,3)$, then the equation of the circle $S=0$ is $x^{2}+y^{2}+2 x+4 y-20=0$ $x^{2}+y^{2}+x+2 y-10=0 x^{2}+y^{2}-x+2 y-20=0 x^{2}+y^{2}+4 x-6 y-12=0$

- Watch Video Solution

496. Find the equations of the circles passing through the point $(-4,3)$ and touching the lines $x+y=2$ and $x-y=2$

- Watch Video Solution

497. . Let A be the centre of the circle $x^{2}+y^{2}-2 x-4 y-20=0$ Suppose that the tangents at the points $B(1,7)$ and $D(4,-2)$ on the circle meet at the point C. Find the area of the quadrilateral $A B C D$
498. If r_{1} andr r_{2} are the radii of the smallest and the largest circles, respectively, which pass though $(5,6)$ and touch the circle $(x-2)^{2}+y^{2}=4$, then $r_{1} r_{2}$ is $\frac{4}{41}$ (b) $\frac{41}{4} \frac{5}{41}$ (d) $\frac{41}{6}$

- Watch Video Solution

499. From an arbitrary point P on the circle $x^{2}+y^{2}=9$, tangents are drawn to the circle $x^{2}+y^{2}=1$, which meet $x^{2}+y^{2}=9$ at AandB. The locus of the point of intersection of tangents at AandB to the circle $x^{2}+y^{2}=9$ is $x^{2}+y^{2}=\left(\frac{27}{7}\right)^{2}$ (b) $x^{2}-y^{2}\left(\frac{27}{7}\right)^{2} y^{2}-x^{2}=\left(\frac{27}{7}\right)^{2}$ (d) none of these

- Watch Video Solution

500. If $C_{1}: x^{2}+y^{2}=(3+2 \sqrt{2})^{2}$ is a circle and $P A$ and $P B$ are a pair of tangents on C_{1}, where P is any point on the director circle of C_{1}, then
the radius of the smallest circle which touches c_{1} externally and also the two tangents $P A$ and $P B$ is $2 \sqrt{3}-3$ (b) $2 \sqrt{2}-12 \sqrt{2}-1$ (d) 1

- Watch Video Solution

501. The minimum radius of the circle which is orthogonal with both the circles $x^{2}+y^{2}-12 x+35=0$ and $x^{2}+y^{2}+4 x+3=0$ is 4 (b) 3 (c) $\sqrt{15}$ (d) 1

- Watch Video Solution

502. If a circle of radius r is touching the lines $x^{2}-4 x y+y^{2}=0$ in the first quadrant at points AandB, then the area of triangle $\operatorname{OAB}(O$ being the origin) is (a) $3 \sqrt{3} \frac{r^{2}}{4}$ (b) $\frac{\sqrt{3} r^{2}}{4}$ (c) $\frac{3 r^{2}}{4}$ (d) r^{2}

- Watch Video Solution

503. Suppose $a x+b y+c=0$, where a, bandc are in $A P$ be normal to a
family of circles. The equation of the circle of the family intersecting the
circle $x^{2}+y^{2}-4 x-4 y-1=0$ orthogonally is (a) $x^{2}+y^{2}-2 x+4 y-3=0$ (b)
$x^{2}+y^{2}-2 x+4 y+3=0$
(c) $x^{2}+y^{2}+2 x+4 y+3=0$
$x^{2}+y^{2}+2 x-4 y+3=0$

(Watch Video Solution

504. Two circles of radii $a a n d b$ touching each other externally, are inscribed in the area bounded by $y=\sqrt{1-x^{2}}$ and the x-axis. If $b=\frac{1}{2}$, then a is equal to $\frac{1}{4}$ (b) $\frac{1}{8}$ (c) $\frac{1}{2}$ (d) $\frac{1}{\sqrt{2}}$

Watch Video Solution

505. Let P be any moving point on the circle $x^{2}+y^{2}-2 x=1 . A B$ be the chord of contact of this point w.r.t. the circle $x^{2}+y^{2}-2 x=0$. The locus of the circumcenter of triangle $C A B(C$ being the center of the circle) is $2 x^{2}+2 y^{2}-4 x+1=0$ $x^{2}+y^{2}-4 x+2=0$ $x^{2}+y^{2}-4 x+1=0$
$2 x^{2}+2 y^{2}-4 x+3=0$
506. C1 and C2 are two concentric circles, the radius of C2 being twice that of C 1 . From a point P on C 2 , tangents PA and PB are drawn to C 1 . Then the centroid of the triangle PAB (a) lies on C1 (b) lies outside C1 (c) lies inside C1 (d) may lie inside or outside C1 but never on C1

- Watch Video Solution

507. Let C be any circle with centre $(0, \sqrt{2})$ Prove that at most two rational points can be there on C (A rational point is a point both of whose coordinates are rational numbers)

- Watch Video Solution

508. Consider a curve $a x^{2}+2 h x y+b y^{2}=1$ and a point P not on the curve.

A line drawn from the point P intersect the curve at points Q and R. If he
product $P Q . P R$ is (A) a pair of straight line (B) a circle (C) a parabola (D) an ellipse or hyperbola

- Watch Video Solution

509. Let a circle be given by $2 x(x-a)+y(2 y-b)=0,(a \neq 0, b \neq 0)$. Find the condition on a and b if two chords each bisected by the x-axis, can be drawn to the circle from $\left(a, \frac{b}{2}\right)$

- Watch Video Solution

510. Consider a family of circles passing through the points $(3,7)$ and $(6,5)$. Answer the following questions. Number of circles which belong to the family and also touchingx- axis are

- Watch Video Solution

511. Let xandy be real variables satisfying $x^{2}+y^{2}+8 x-10 y-40=0$. Let
$a=\max \left\{\sqrt{(x+2)^{2}+(y-3)^{2}}\right\} \quad$ and $\quad b=\min \left\{\sqrt{(x+2)^{2}+(y-3)^{2}}\right\}$. Then $a+b=18$ (b) $a+b=\sqrt{2} a-b=4 \sqrt{2}$ (d) $a \dot{b}=73$

- Watch Video Solution

512. $A\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is a point on the circle $x^{2}+y^{2}=1$ and B is another point on the circle such that are length $A B=\frac{\pi}{2}$ units. Then, the coordinates of B can be $\left(\frac{1}{\sqrt{2}}, 1 \sqrt{2}\right)$ (b) $\left(-\frac{1}{\sqrt{2}}, 1 \sqrt{2}\right)\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ (d) none of these

- Watch Video Solution

513. Tangent drawn from the point $(a, 3)$ to the circle $2 x^{2}+2 y^{2}=25$ will be perpendicular to each other if a equals 5 (b) -4 (c) 4 (d) -5

- Watch Video Solution

514. Consider the circle $x^{2}+y^{2}-10 x-6 y+30=0$. Let O be the centre of the circle and tangent at $\mathrm{A}(7,3)$ and $\mathrm{B}(5,1)$ meet at C . Let $\mathrm{S}=0$ represents family of circles passing through A and B, then

- Watch Video Solution

515. If the circle $x^{2}+y^{2}+2 a_{1} x+c=0$ lies completely inside the circle $x^{2}+y^{2}+2 a_{2} x+c=0$ then

- Watch Video Solution

516. Let C, C_{1}, C_{2} be circles of radii $5,3,2$ respectively. C_{1} and C_{2}, touch each other externally and C internally. A circle C_{3} touches C_{1} and C_{2} externally and C internally. If its radius is $\frac{m}{n}$ where m and n are relatively prime positive integers, then $2 n-m$ is:
517. Let $A B C$ be a triangle right-angled at AandS be its circumcircle. Let S_{1} be the circle touching the lines $A B$ and $A C$ and the circle S internally. Further, let S_{2} be the circle touching the lines $A B$ and $A C$ produced and the circle S externally. If r_{1} and r_{2} are the radii of the circles S_{1} and S_{2}, respectively, show that $r_{1} r_{2}=4$ area ($A B C$)

- Watch Video Solution

518. $A B C D$ is a rectangle. A circle passing through vertex C touches the sides $A B$ and $A D$ at M and N respectively. If the distance lof the line $M N$ from the vertex C is P units then the area of rectangle $A B C D$ is

- Watch Video Solution

519. If the length of the common chord of two circles $x^{2}+y^{2}+8 x+1=0$ and $x^{2}+y^{2}+2 \mu y-1=0$ is $2 \sqrt{6}$, then the values of μ are ± 2 (b) ± 3 (c) ± 4
(d) none of these
520. The equation of circle of minimum radius which contacts the three circle
$x^{2}+y^{2}-4 y-5=0, x^{2}+y^{2}+12 x+4 y+31=0, x^{2}+y^{2}+6 x+12 y+36=0$
then the radius of given circle is $\left(l+\frac{m}{36} \sqrt{949}\right)$ then the value of $l+m$ is :

- Watch Video Solution

521. The locus of the midpoint of a chord of the circle $x^{2}+y^{2}=4$ which subtends a right angle at the origins is $x+y=2$
(b) $x^{2}+y^{2}=1$
$x^{2}+y^{2}=2$ (d) $x+y=1$

- Watch Video Solution

522. Tangents are drawn from the point $(17,7)$ to the circle $x^{2}+y^{2}=169$,

Statement I The tangents are mutually perpendicular Statement, Ils The locus of the points frorn which mutually perpendicular tangents can be
drawn to the given circle is $x^{2}+y^{2}=338$ (a) Statement \mid is correct, Statement II is correct; Statement II is a correct explanation for Statementl (b(Statement I is correct, Statement I| is correct Statement II is not a correct explanation for Statementl (c)Statement I is correct, Statement II is incorrect (d) Statement I is incorrect, Statement II is correct

- Watch Video Solution

523. The equation of the line passing through the points of intersection of the circles $3 x^{2}+3 y^{2}-2 x+12 y-9=0$ and $x^{2}+y^{2}+6 x+2 y-15=0$ is

- Watch Video Solution

524. The locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line $4 x-5 y=20$ to the circle $x^{2}+y^{2}=9$
is : (A) $20\left(x^{2}+y^{2}\right)-36+45 y=0$
(B) $20\left(x^{2}+y^{2}\right)+36-45 y=0$
$20\left(x^{2}+y^{2}\right)-20 x+45 y=0$ (D) $20\left(x^{2}+y^{2}\right)+20 x-45 y=0$
525. If the tangent at the point $P(2,4)$ to the parabola $y^{2}=8 x$ meets the parabola $y^{2}=8 x+5$ at $Q a n d R$, then find the midpoint of chord $Q R$

- Watch Video Solution

526. Find the locus of the midpoints of the portion of the normal to the parabola $y^{2}=4 a x$ intercepted between the curve and the axis.

- Watch Video Solution

527. An equilateral triangle is inscribed in the parabola $y^{2}=4 a x$, such that one vertex of this triangle coincides with the vertex of the parabola. Then find the side length of this triangle.

- Watch Video Solution

528. M is the foot of the perpendicular from a point P on a parabola $y^{2}=4 a x$ to its directrix and $S P M$ is an equilateral triangle, where S is the focus. Then find $S P$.

- Watch Video Solution

529. Find the locus of the middle points of the chords of the parabola $y^{2}=4 a x$ which subtend a right angle at the vertex of the parabola.

- Watch Video Solution

530. A quadrilateral is inscribed in a parabola $y^{2}=4 a x$ and three of its sides pass through fixed points on the axis. Show that the fourth side also passes through a fixed point on the axis of the parabola.

- Watch Video Solution

531. A right-angled triangle $A B C$ is inscribed in parabola $y^{2}=4 x$, where A is the vertex of the parabola and $\angle B A C=\frac{\pi}{2}$ If $A B=\sqrt{5}$, then find the area of $A B C$

- Watch Video Solution

532. Let there be two parabolas $y^{2}=4 a x$ and $y^{2}=-4 b x$ (where $a \neq b a n d a, b>0$). Then find the locus of the middle points of the intercepts between the parabolas made on the lines parallel to the common axis.

- Watch Video Solution

533. The equation of aparabola is $y^{2}=4 x P(1,3)$ and $Q(1,1)$ are two points in the $x y$-plane Then, for the parabola. (a) P and Q are exterior points. (b) P is an interior point while Q is an exterior point (c) P and Q are interior points. (d) P is an exterior point while Q is an interior point

- Watch Video Solution

534. $A P$ is perpendicular to $P B$, where A is the vertex of the parabola $y^{2}=4 x$ and P is on the parabola. B is on the axis of the parabola. Then find the locus of the centroid of $P A B$

- Watch Video Solution

535. Find the value of P such that the vertex of $y=x^{2}+2 p x+13$ is 4 units above the x-axis. (a) ± 2 (b) 4 (c) ± 3 (d) 5

- Watch Video Solution

536. The point $(a, 2 a)$ is an interior point of the region bounded by the parabola $y^{2}=16 x$ and the double ordinate through the focus. then find the values of a
537. Find the point where the line $x+y=6$ is a normal to the parabola
$y^{2}=8 x$

- Watch Video Solution

538. Find the equation of the tangent to the parabola $9 x^{2}+12 x+18 y-14=0$ which passes through the point $(0,1)$.

- Watch Video Solution

539. Find the angle between the tangents drawn to $y^{2}=4 x$, where it is intersected by the line $y=x-1$.

- Watch Video Solution

540. How many distinct real tangents that can be drawn from $(0,-2)$ to the parabola $y^{2}=4 x$?

- Watch Video Solution

541. Find the angle at which the parabolas $y^{2}=4 x$ and $x^{2}=32 y$ intersect.

- Watch Video Solution

542. If the tangents at the points PandQ on the parabola $y^{2}=4 a x$ meet at T, andS is its focus, the prove that $S P, S T$, andSQ are in GP.

- Watch Video Solution

543. The tangents to the parabola $y^{2}=4 x$ at the points $(1,2)$ and $(4,4)$ meet on which of the following lines?
544. From an external point P, a pair of tangents is drawn to the parabola $y^{2}=4 x$ If θ_{1} andth η_{2} are the inclinations of these tangents with the x-axis such that $\theta_{1}+\theta_{2}=\frac{\pi}{4}$, then find the locus of P

- Watch Video Solution

545. If the line $x+y=a$ touches the parabola $y=x-x^{2}$, then find the value of a

- Watch Video Solution

546. Find the slopes of the tangents to the parabola $y^{2}=8 x$ which are normal to the circle $x^{2}+y^{2}+6 x+8 y-24=0$.

- Watch Video Solution

547. Find the angle between the tangents drawn from $(1,3)$ to the parabola $y^{2}=4 x$

Watch Video Solution

548. Find the values of α so that the point $P\left(\alpha^{2}, \alpha\right)$ lies inside or on the triangle formed by the lines $x-5 y+6=0, x-3+2=0$ and $x-2 y-3=0$.

- Watch Video Solution

549. The locus of the centre of a circle the touches the given circle externally is a \qquad

- Watch Video Solution

550. If on a given base $B C$, a triangle is described such that the sum of the tangents of the base angles is m, then prove that the locus of the
opposite vertex A is a parabola.

- Watch Video Solution

551. The parametric equation of a parabola is $x=t^{2}+1, y=2 t+1$. Then find the equation of the directrix.

- Watch Video Solution

552. If the focus of a parabola is $(2,3)$ and its latus rectum is 8 , then find the locus of the vertex of the parabola.

- Watch Video Solution

553. $y^{2}+2 y-x+5=0$ represents a parabola. Find its vertex, equation of axis, equation of latus rectum, coordinates of the focus, equation of the directrix, extremities of the latus rectum, and the length of the latus rectum.
554. Find the equation of the parabola which has axis parallel to the y axis and which passes through the points (0,2), ($-1,0$), and $(1,6)$

- Watch Video Solution

555. Prove that the focal distance of the point (x, y) on the parabola $x^{2}-8 x+16 y=0$ is $|y+5|$

- Watch Video Solution

556. Find the points on the parabola $y^{2}-2 y-4 x=0$ whose focal length is 6.
557. If the length of the chord of circle $x^{2}+y^{2}=4$ and $y^{2}=4(x-h)$ is maximum, then find the value of h

- Watch Video Solution

558. From a variable point on the tangent at the vertex of a parabola $y^{2}=4 a x$, a perpendicular is drawn to its chord of contact. Show that these variable perpendicular lines pass through a fixed point on the axis of the parabola.

- Watch Video Solution

559. The locus of the middle points of the focal chords of the parabola, $y^{2}=4 x$ is:

- Watch Video Solution

560. If the distance of the point $(\alpha, 2)$ from its chord of contact w.r.t. the parabola $y^{2}=4 x$ is 4 , then find the value of α

- Watch Video Solution

561. $T P$ and $T Q$ are tangents to the parabola $y^{2}=4 a x$ at PandQ, respectively. If the chord $P Q$ passes through the fixed point $(-a, b)$, then find the locus of T

- Watch Video Solution

562. Find the locus of the midpoint of normal chord of parabola $y^{2}=4 a x$

- Watch Video Solution

563. If normal to the parabola $y^{2}-4 a x=0$ at α point intersects the parabola again such that the sum of ordinates of these two points is 3 ,
then show that the semi-latus rectum is equal to -1.5α

- Watch Video Solution

564. If the parabolas $y^{2}=4 a x$ and $y^{2}=4 c(x-b)$ have a common normal other than the x -axis (a, b, c being distinct positive real numbers), then prove that $\frac{b}{a-c}>2$.

- Watch Video Solution

565. Find the angle made by a double ordinate of length $8 a$ at the vertex of the parabola $y^{2}=4 a x$

- Watch Video Solution

566. The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being

30 m and the shortest being 6 m . Find the length of the supporting wire attached to the roadway 18 m from the middle.

- Watch Video Solution

567. If the chord of contact of tangents from a point P to the parabola
$y^{2}=4 a x$ touches the parabola $x^{2}=4 b y$, then find the locus of P

- Watch Video Solution

568. Tangents are drawn from any point on the line $x+4 a=0$ to the parabola $y^{2}=4 a x$ Then find the angle subtended by the chord of contact at the vertex.

- Watch Video Solution

569. If a normal to a parabola $y^{2}=4 a x$ makes an angle ϕ with its axis, then it will cut the curve again at an angle
570. Tangents are drawn to the parabola $y^{2}=4 a x$ at the point where the line $l x+m y+n=0$ meets this parabola. Find the point of intersection of these tangents.

- Watch Video Solution

571. Find the vertex of the parabola $x^{2}=2(2 x+y)$

- Watch Video Solution

572. Find the length of the common chord of the parabola $y^{2}=4(x+3)$ and the circle $x^{2}+y^{2}+4 x=0$.

- Watch Video Solution

573. Find the coordinates of any point on the parabola whose focus is (0 ,
1) and directrix is $x+2=0$

- Watch Video Solution

574. If the focus and vertex of a parabola are the points $(0,2)$ and $(0,4)$, respectively, then find the equation

- Watch Video Solution

575. Find the length of the latus rectum of the parabola whose focus is at $(2,3)$ and directrix is the line $x-4 y+3=0$.

- Watch Video Solution

576. The focal chord of the parabola $y^{2}=a x$ is $2 x-y-8=0$. Then find the equation of the directrix.
577. The vertex of a parabola is $(2,2)$ and the coordinats of its two extremities of latus rectum are $(-2,0)$ and $(6,0)$. Then find the equation of the parabola.

- Watch Video Solution

578. Find the equation of the directrix of the parabola $x^{2}-4 x-3 y+10=0$

- Watch Video Solution

579. Find the locus of the midpoint of chords of the parabola $y^{2}=4 a x$ that pass through the point ($3 a, a$)

- Watch Video Solution

580. In the parabola $y^{2}=4 a x$, then tangent at P whose abscissa is equal to the latus rectum meets its axis at T, and normal P cuts the curve again at Q Show that $P T: P Q=4: 5$.

- Watch Video Solution

581. If the normal to the parabola $y^{2}=4 a x$ at point t_{1} cuts the parabola again at point t_{2}, then prove that $t 22 \geq 8$.

- Watch Video Solution

582. If the normals from any point to the parabola $y^{2}=4 x$ cut the line $x=2$ at points whose ordinates are in AP, then prove that the slopes of tangents at the co-normal points are in GP.

- Watch Video Solution

583. If (h, k) is a point on the axis of the parabola $2(x-1)^{2}+2(y-1)^{2}=(x+y+2)^{2}$ from where three distinct normal can be drawn, then the least integral value of h is :

- Watch Video Solution

584. A ray of light moving parallel to the X-axis gets reflected from a parabolic mirror whose equation is $(y-2)^{2}=4(x+1)$. After reflection , the ray must pass through the point

- Watch Video Solution

585. A circle and a parabola $y^{2}=4 a x$ intersect at four points. Show that the algebraic sum of the ordinates of the four points is zero. Also show that the line joining one pair of these four points is equally inclined to the axis.
586. A parabola mirror is kept along $y^{2}=4 x$ and two light rays parallel to its axis are reflected along one straight line. If one of the incident light rays is at 3 units distance from the axis, then find the distance of the other incident ray from the axis.

- Watch Video Solution

587. If incident from point $(-1,2)$ parallel to the axis of the parabola $y^{2}=4 x$ strike the parabola, then find the equation of the reflected ray.

- Watch Video Solution

588. Find the equation of the parabola having focus $(1,1)$ and vertex at (-3,-3)

- Watch Video Solution

589. If the vertex of the parabola is $(3,2)$ and directrix is $3 x+4 y-\frac{19}{7}=0$, then find the focus of the parabola.

- Watch Video Solution

590. Find the value of λ if the equation $(x-1)^{2}+(y-2)^{2}=\lambda(x+y+3)^{2}$ represents a parabola. Also, find its focus, the equation of its directrix, the equation of its axis, the coordinates of its vertex, the equation of its latus rectum, the length of the latus rectum, and the extremities of the latus rectum.

- Watch Video Solution

591. The equation of the latus rectum of a parabola is $x+y=8$ and the equation of the tangent at the vertex is $x+y=12$. Then find the length of the latus rectum.

- Watch Video Solution

592. Prove that the locus of the center of a circle, which intercepts a chord of given length $2 a$ on the axis of x and passes through a given point on the axis of y distant b from the origin, is a parabola.

- Watch Video Solution

593. Find the value of λ if the equation $9 x^{2}+4 y^{2}+2 \lambda x y+4 x-2 y+3=0$ represents a parabola.

- Watch Video Solution

594. Find the range of values of λ for which the point $(\lambda,-1)$ is exterior to both the parabolas $y^{2}=|x|$

- Watch Video Solution

595. Prove that the locus of a point, which moves so that its distance from a fixed line is equal to the length of the tangent drawn from it to a given circle, is a parabola.

- Watch Video Solution

596. LOL' and MOM' are two chords of parabola $y^{2}=4 a x$ with vertex A passing through a point O on its axis. Prove that the radical axis of the circles described on $L L^{\prime}$ and $M M^{\prime}$ as diameters passes though the vertex of the parabola.

- Watch Video Solution

597. If (a, b) is the midpoint of a chord passing through the vertex of the parabola $y^{2}=4(x+1)$, then prove that $2(a+1)=b^{2}$

- Watch Video Solution

598. If two of the three feet of normals drawn from a point to the parabola $y^{2}=4 x$ are $(1,2)$ and $(1,-2)$, then find the third foot.

- Watch Video Solution

599. If three distinct normals can be drawn to the parabola $y^{2}-2 y=4 x-9$
from the point $(2 a, b)$, then find the range of the value of a

- Watch Video Solution

600. Find the locus of thepoint of intersection of two normals to a parabolas which are at right angles to one another.

- Watch Video Solution

601. $P\left(t_{1}\right)$ and $Q\left(t_{2}\right)$ are the point $t_{1} a n d t_{2}$ on the parabola $y^{2}=4 a x$. The normals at PandQ meet on the parabola. Show that the middle point $P Q$ lies on the parabola $y^{2}=2 a(x+2 a)$

- Watch Video Solution

602. Prove that the locus of the point of intersection of the normals at the ends of a system of parallel cords of a parabola is a straight line which is a normal to the curve.

- Watch Video Solution

603. Find the number of distinct normals that can be drawn from $(-2,1)$ to the parabola $y^{2}-4 x-2 y-3=0$

- Watch Video Solution

604. If the line passing through the focus S of the parabola $y=a x^{2}+b x+c$ meets the parabola at PandQ and if $S P=4$ and $S Q=6$, then find the value of a
605. If a focal chord of $y^{2}=4 a x$ makes an angle $\alpha \in\left[0, \frac{\pi}{4}\right]$ with the positive direction of the x-axis, then find the minimum length of this focal chord.

- Watch Video Solution

606. Find the length of the normal chord which subtends an angle of 90° at the vertex of the parabola $y^{2}=4 x$.

- Watch Video Solution

607. Find the locus of the point of intersection of the normals at the end of the focal chord of the parabola $y^{2}=4 a x$

- Watch Video Solution

608. The abscissa and ordinates of the endpoints AandB of a focal chord of the parabola $y^{2}=4 x$ are, respectively, the roots of equations $x^{2}-3 x+a=0$ and $y^{2}+6 y+b=0$. Then find the equation of the circle with $A B$ as diameter.

- Watch Video Solution

609. If $A B$ is a focal chord of $x^{2}-2 x+y-2=0$ whose focus is S and $A S=l_{1}$, then find $B S$

- Watch Video Solution

610. A circle is drawn to pass through the extremities of the latus rectum of the parabola $y^{2}=8 x$ It is given that this circle also touches the directrix of the parabola. Find the radius of this circle.
611. Cicles drawn on the diameter as focal distance of any point lying on the parabola $x^{2}-4 x+6 y+10=0$ will touch a fixed line whoose equation is -

- Watch Video Solution

612. If the length of a focal chord of the parabola $y^{2}=4 a x$ at a distance b from the vertex is c, then prove that $b^{2} c=4 a^{3}$

- Watch Video Solution

613. Find the equation of the parabola whose focus is $S(-1,1)$ and directrix is $4 x+3 y-24=0$. Also find its axis, the vertex, the length, and the equation of the latus rectum.

- Watch Video Solution

614. Circles are drawn with diameter being any focal chord of the parabola $y^{2}-4 x-y-4=0$ with always touch a fixed line. Find its equation.

- Watch Video Solution

615. If $(2,-8)$ is at an end of a focal chord of the parabola $y^{2}=32 x$, then find the other end of the chord.

- Watch Video Solution

616. Prove that the length of the intercept on the normal at the point $P\left(a t^{2}, 2 a t\right)$ of the parabola $y^{2}=4 a x$ made by the circle described on the line joining the focus and P as diameter is $a \sqrt{1+t^{2}}$.

- Watch Video Solution

617. Find the minimum distance between the curves
$y^{2}=4 x a n d x^{2}+y^{2}-12 x+31=0$

Watch Video Solution

618. If $y=2 x+3$ is a tangent to the parabola $y^{2}=24 x$, then find its distance from the parallel normal.

- Watch Video Solution

619. Three normals to $y^{2}=4 x$ pass through the point $(15,12)$. Show that one of the normals is given by $y=x-3$ and find the equation of the other.

- Watch Video Solution

620. Find the locus of the point from which the two tangents drawn to the parabola $y^{2}=4 a x$ are such that the slope of one is thrice that of the other.

- Watch Video Solution

621. Find the angle between the tangents drawn from the origin to the parabolas $y^{2}=4 a(x-a)$ (a) 90° (b) 30° (c) $\tan ^{-1}\left(\frac{1}{2}\right)$ (d) 45°

- Watch Video Solution

622. Find the locus of the point of intersection of the perpendicular tangents of the curve $y^{2}+4 y-6 x-2=0$.

- Watch Video Solution

623. Three normals are drawn from the point $(7,14)$ to the parabola $x^{2}-8 x-16 y=0$. Find the coordinates of the feet of the normals.

- Watch Video Solution

624. Find the equation of normal to the parabola $y=x^{2}-x-1$ which has equal intercept on the axes. Also find the point where this normal meets the curve again.

D Watch Video Solution

625. If $y=x+2$ is normal to the parabola $y^{2}=4 a x$, then find the value of
626. Find the equations of normal to the parabola $y^{2}=4 a x$ at the ends of the latus rectum.

- Watch Video Solution

627. The coordinates of the ends of a focal chord of the parabola $y^{2}=4 a x$ are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Then find the value of $x_{1} x_{2}+y_{1} y_{2}$.

- Watch Video Solution

628. If $t_{1} a n d t_{2}$ are the ends of a focal chord of the parabola $y^{2}=4 a x$, then prove that the roots of the equation $t_{1} x^{2}+a x+t_{2}=0$ are real.

- Watch Video Solution

629. If the length of focal chord of $y^{2}=4 a x$ is l, then find the angle between the axis of the parabola and the focal chord.
630. If length of focal chord $P Q$ is l, and p is the perpendicular distance of $P Q$ from the vertex of the parabola, then prove that $l \propto \frac{1}{p^{2}}$.

- Watch Video Solution

631. Find the equation of the tangent to the parabola $y^{2}=8 x$ having slope 2 and also find the point of contact.

- Watch Video Solution

632. Find the equation of tangents of the parabola $y^{2}=12 x$, which passes through the point $(2,5)$.

- Watch Video Solution

633. If the line $y=3 x+c$ touches the parabola $y^{2}=12 x$ at point P, then find the equation of the tangent at point Q where $P Q$ is a focal chord.

- Watch Video Solution

634. Find the equation of the tangent to the parabola $y=x^{2}-2 x+3$ at point (2, 3).

- Watch Video Solution

635. Find the equation of the tangent to the parabola $x=y^{2}+3 y+2$ having slope 1.

- Watch Video Solution

636. Find the equation of tangents drawn to the parabola $y=x^{2}-3 x+2$
from the point (1, - 1)
637. If a tangent to the parabola $y^{2}=4 a x$ meets the x-axis at T and intersects the tangents at vertex A at P, and rectangle TAPQ is completed, then find the locus of point Q

- Watch Video Solution

638. The parabola $y^{2}=4 x$ and the circle having its center at $(6,5)$ intersect at right angle. Then find the possible points of intersection of these curves.

- Watch Video Solution

639. The tangents to the parabola $y^{2}=4 a x$ at the vertex V and any point P meet at Q. If S is the focus, then prove that $S P S Q$, and $S V$ are in GP.
640. Show that $x \cos \alpha+y \sin \alpha=p$ touches the parabola $y^{2}=4 a x$ if $p \cos \alpha+a \sin ^{2} \alpha=0$ and that the point of contact is $\left(a \tan ^{2} \alpha,-2 a \tan \alpha\right)$

- Watch Video Solution

641. A tangent to the parabola $y^{2}=8 x$ makes an angle of 45^{0} with the straight line $y=3 x+5$. Then find one of the points of contact.

- Watch Video Solution

642. Find the equation of the common tangent of $y^{2}=4 a x$ and $x^{2}=4 a y$

- Watch Video Solution

643. If the lines L_{1} and L_{2} are tangents to $4 x^{2}-4 x-24 y+49=0$ and are normals for $x^{2}+y^{2}=72$, then find the slopes of L_{1} and L_{2}
644. Find the shortest distance between the line $y=x-2$ and the parabola $y=x^{2}+3 x+2$.

- Watch Video Solution

645. If two tangents drawn from the point (α, β) to the parabola $y^{2}=4 x$ are such that the slope of one tangent is double of the other, then prove that $\alpha=\frac{2}{9} \beta^{2}$.

- Watch Video Solution

646. Two tangent are drawn from the point $(-2,-1)$ to parabola $y^{2}=4 x$ if α is the angle between these tangents, then find the value of $\tan \alpha$

- Watch Video Solution

647. Find the angle at which normal at point $P\left(a t^{2}, 2 a t\right)$ to the parabola meets the parabola again at point Q

- Watch Video Solution

648. If tangents are drawn to $y^{2}=4 a x$ from any point P on the parabola $y^{2}=a(x+b)$, then show that the normals drawn at their point for contact meet on a fixed line.

- Watch Video Solution

649. Find the equation of a parabola having its focus at $S(2,0)$ and one extremity of its latus rectum at $(2,2)$

- Watch Video Solution

650. Find the equation of a parabola having focus at $(0,-3)$ and directix $y=3$

- Watch Video Solution

651. Find the equation of a parabola having its vertex at $A(1,0)$ and focus at $S(3,0)$

- Watch Video Solution

652. A beam is supported at its ends by supports which are 12 metres apart. Since the load is concentrated at its centre, there is a deflection of 3 cm at the centre and the deflected beam is in the shape of a parabola. How far from the centre is the deflection 1 cm ?

- Watch Video Solution

653. Find the coordinates of points on the parabola $y^{2}=8 x$ whose focal distance is 4 .

- Watch Video Solution

654. If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.

- Watch Video Solution

655. An arch is in the form of a parabola with its axis vertical. The arc is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?

- Watch Video Solution

656. If the vertex of a parabola is the point $(-3,0)$ and the directrix is the line $x+5=0$, then find its equation.

Watch Video Solution

657. The chord $A B$ of the parabola $y^{2}=4 a x$ cuts the axis of the parabola at C If $A \equiv\left(a t 12,2 a t_{1}\right), B \equiv\left(a t 22,2 a t_{2}\right)$, and $A C: A B 1: 3$, then prove that $t_{2}+2 t_{1}=0$.

- Watch Video Solution

658. Prove that the chord $y-x \sqrt{2}+4 a \sqrt{2}=0$ is a normal chord of the parabola $y^{2}=4 a x$. Also find the point on the parabola when the given chord is normal to the parabola.

- Watch Video Solution

659. Find the point on the curve $y^{2}=a x$ the tangent at which makes an angle of 45° with the x-axis.

- Watch Video Solution

660. Find the equation of the straight lines touching both $x^{2}+y^{2}=2 a^{2}$ and $y^{2}=8 a x$

- Watch Video Solution

661. Find the points of contact Q and R of a tangent from the point $P(2,3)$ on the parabola $y^{2}=4 x$

- Watch Video Solution

662. Two straight lines $(y-b)=m_{1}(x+a)$ and $(y-b)=m_{2}(x+a)$ are the
tangents of $y^{2}=4 a x$ Prove $m_{1} m_{2}=-1$.

(D) Watch Video Solution

663. A pair of tangents are drawn to the parabola $y^{2}=4 a x$ which are equally inclined to a straight line $y=m x+c$, whose inclination to the axis is α. Prove that the locus of their point of intersection is the straight line $y=(x-a) \tan 2 \alpha$

- Watch Video Solution

664. Tangent are drawn from the point $(-1,2)$ on the parabola $y^{2}=4 x$.

Find the length that these tangents will intercept on the line $x=2$.

- Watch Video Solution

665. Tangents are drawn to the parabola $(x-3)^{2}+(y-4)^{2}=\frac{(3 x-4 y-6)^{2}}{25}$ at the extremities of the chord $2 x-3 y-18=0$. Find the angle between the tangents.
666. Find the locus of the point of intersection of tangents in the parabola $y^{2}=4 a x$ (a)which are inclined at an angle θ to each other. (b) Which intercept constant length c on the tangent at the vertex. (c) such that the area of $A B R$ is constant c, where AandB are the points of intersection of tangents with the y-axis and R is a point of intersection of tangents.

- Watch Video Solution

667. Mutually perpendicular tangents TAandTB are drawn to $y^{2}=4 a x$.

Then find the minimum length of $A B$

- Watch Video Solution

668. Tangent $P A a n d P B$ are drawn from the point P on the directrix of the parabola $(x-2)^{2}+(y-3)^{2}=\frac{(5 x-12 y+3)^{2}}{160}$. Find the least radius of the circumcircle of triangle $P A B$

- Watch Video Solution

669. A square has one vertex at the vertex of the parabola $y^{2}=4 a x$ and the diagonal through the vertex lies along the axis of the parabola. If the ends of the other diagonal lie on the parabola, the coordinates of the vertices of the square are $(\mathrm{a})(4 a, 4 a)(\mathrm{b})(4 a,-4 a)(\mathrm{c})(0,0)(\mathrm{d})(8 a, 0)$

- Watch Video Solution

670. P, Q, and R are the feet of the normals drawn to a parabola ($y-3)^{2}=8(x-2)$. A circle cuts the above parabola at points P, Q, R, and S . Then this circle always passes through the point. (a) (2,3)
(b) 1
3,2)
(c) $($
0,3)
(d) $(2,0)$
671. The equation of the line that passes through $(10,-1)$ and is perpendicular to $y=\frac{x^{2}}{4}-2$ is (a) $4 x+y=39$ (b) $2 x+y=19$ (c) $x+y=9$ (d) $x+2 y=8$

- Watch Video Solution

672. The axis of a parabola is along the line $y=x$ and the distance of its vertex and focus from the origin are $\sqrt{2}$ and $2 \sqrt{2}$, respectively. If vertex and focus both lie in the first quadrant, then the equation of the parabola is $(x+y)^{2}=(x-y-2)(x-y)^{2}=(x+y-2)(x-y)^{2}=4(x+y-2)$ $(x-y)^{2}=8(x+y-2)$

- Watch Video Solution

673. If the normal chhord of the parabola $y^{2}=4 x$ makes an angle 45° with the axis of the parabola, then its length, is

- Watch Video Solution

674. If the normals at points $t_{1} a n d t_{2}$ meet on the parabola, then $t_{1} t_{2}=1$
(b) $t_{2}=-t_{1}-\frac{2}{t_{1}} t_{1} t_{2}=2(\mathrm{~d})$ none of these

- Watch Video Solution

675. From a point $(\sin \theta, \cos \theta)$, if three normals can be drawn to the parabola $y^{2}=4 a x$ then the value of a is

- Watch Video Solution

676. If the normals to the parabola $y^{2}=4 a x$ at the ends of the latus rectum meet the parabola at Q and Q^{\prime}, then $Q Q^{\prime}$ is (a)10a (b) $4 a$ (c) $20 a$ (d) $12 a$
677. Tongent and normal drawn to a parabola at $A\left(a t^{2}, 2 a t\right), t \neq 0$ meet the x-axis at point BandD, respectively. If the rectangle $A B C D$ is completed, then the locus of C is $(a) y=2 a$ (b) $y+2 a=c(c) x=2 a$ (d) none of these

- Watch Video Solution

678. PQ is a normal chord of the parabola $\mathrm{y} 2=4 \mathrm{ax}$ at P, A being the vertex of the parabola. Through P, a line is down parallel to $A Q$ meeting the x axis at R. Then the line length of AR is (A) equal to the length of the latus rectum (B)equal to the focal distance of the point $P \quad(C)$ equal to twice the focal distance of the point P (D) equal to the distance of the point P from the directrix.

- Watch Video Solution

679. If two normals to a parabola $y^{2}=4 a x$ intersect at right angles then the chord joining their feet pass through a fixed point whose co-
ordinates are:

- Watch Video Solution

680. If the normals to the parabola $y^{2}=4 a x$ at P meets the curve again at Q and if $P Q$ and the normal at Q make angle α and β, respectively, with the x-axis, then $\tan \alpha(\tan \alpha+\tan \beta)$ has the value equal to 0 (b) -2 (c) $-\frac{1}{2}$ (d) -1

- Watch Video Solution

681. If a leaf of a book is folded so that one corner moves along an opposite side, then prove that the line of crease will always touch parabola.

- Watch Video Solution

682. A parabola of latus rectum $/$ touches a fixed equal parabola. The axes of two parabolas are parallel. Then find the locus of the vertex of the moving parabola.

- Watch Video Solution

683. A movable parabola touches x-axis and y-axis at (0,1) and $(1,0)$. Then the locus of the focus of the parabola is :

- Watch Video Solution

684. Let N be the foot of perpendicular to the x -axis from point P on the parabola $y^{2}=4 a x$ A straight line is drawn parallel to the axis which bisects $P N$ and cuts the curve at Q; if $N O$ meets the tangent at the vertex at a point then prove that $A T=\frac{2}{3} P N$.
685. Two lines are drawn at right angles, one being a tangent to $y^{2}=4 a x$ and the other $x^{2}=4 b y$ Then find the locus of their point of intersection.

- Watch Video Solution

686. The area of the trapezium whose vertices lie on the parabola $y^{2}=4 x$ and its diagonals pass through $(1,0)$ and having length $\frac{25}{4}$ units each is

- Watch Video Solution

687. Find the range of parameter a for which a unique circle will pass through the points of intersection of the hyperbola $x^{2}-y^{2}=a^{2}$ and the parabola $y=x^{2}$ Also, find the equation of the circle.

- Watch Video Solution

688. Find the radius of the largest circle, which passes through the focus of the parabola $y^{2}=4(x+y)$ and is also contained in it.

Watch Video Solution

689. A tangent is drawn to the parabola $y^{2}=4 a x$ at P such that it cuts the y-axis at Q A line perpendicular to this tangents is drawn through Q which cuts the axis of the parabola at R. If the rectangle $P Q R S$ is completed, then find the locus of S

- Watch Video Solution

690. Tangents are drawn to the parabola at three distinct points. Prove that these tangent lines always make a triangle and that the locus of the orthocentre of the triangle is the directrix of the parabola.
691. Statement 1: The circumcircle of a triangle formed by the lines $x=0, x+y+1=0$ and $x-y+1=0$ also passes through the point $(1,0)$. Statement 2: The circumcircle of a triangle formed by three tangents of a parabola passes through its focus.

- Watch Video Solution

692. Statement 1: The point of intersection of the tangents at three distinct points A, B, and C on the parabola $y^{2}=4 x$ can be collinear. Statement 2: If a line L does not intersect the parabola $y^{2}=4 x$, then from every point of the line, two tangents can be drawn to the parabola.

- Watch Video Solution

693. Statement 1: If the straight line $x=8$ meets the parabola $y^{2}=8 x$ at PandQ, then $P Q$ substends a right angle at the origin. Statement 2 : Double ordinate equal to twice of latus rectum of a parabola subtends a right angle at the vertex.
694. Statement 1: Normal chord drawn at the point $(8,8)$ of the parabola $y^{2}=8 x$ subtends a right angle at the vertex of the parabola. Statement 2 :

Every chord of the parabola $y^{2}=4 a x$ passing through the point $(4 a, 0)$ subtends a right angle at the vertex of the parabola.

- Watch Video Solution

695. Statement 1: The value of α for which the point $\left(\alpha, \alpha^{2}\right)$ lies inside the triangle formed by the lines $x=0, x+y=2$ and $3 y=x$ is $(0,1)$ Statement

2: The parabola $y=x^{2}$ meets the line $x+y=2$ at $(0,1)$

- Watch Video Solution

696. Let L be a normal to the parabola $y^{2}=4 x$ If L passes through the point (9, 6), then L is given by $y-x+3=0$ (b) $y+3 x-33=0 y+x-15=0$
(d) $y-2 x+12=0$

- Watch Video Solution

697. Let P and Q be distinct points on the parabola $y^{2}=2 x$ such that a circle with PQ as diameter passes through the vertex O of the parabola. If P lies in the first quadrant and the area of the triangle $\triangle O P Q$ is 32 , then which of the following is (are) the coordinates of P ?

- Watch Video Solution

698. The tangent at any point P onthe parabola $y^{2}=4 a x$ intersects the $y-$ axis at Q Then tangent to the circumcircle of triangle $P Q S(S$ is the focus) at Q is a line parallel to x-axis y-axis a line parallel to y-axis (d) none of these
699. If $y=m_{1} x+c$ and $y=m_{2} x+c$ are two tangents to the parabola
$y^{2}+4 a(x+a)=0$, then
(a) $m_{1}+m_{2}=0$
(b) $1+m_{1}+m_{2}=0$
$m_{1} m_{2}-1=0(\mathrm{~d}) 1+m_{1} m_{2}=0$

- Watch Video Solution

700. $A B$ is a double ordinate of the parabola $y^{2}=4 a x$ Tangents drawn to the parabola at AandB meet the y-axis at $A_{1} a n d B_{1}$, respectively. If the area of trapezium $\forall_{1} B_{1} B$ is equal to $12 a^{2}$, then the angle subtended by $A_{1} B_{1}$ at the focus of the parabola is equal to $2 \tan ^{-1}(3)$ (b) $\tan ^{-1}(3)$ $2 \tan ^{-1}(2)(d) \tan ^{-1}(2)$

- Watch Video Solution

701. If $y+3=m_{1}(x+2)$ and $y+3=m_{2}(x+2)$ are two tangents to the parabola $y_{2}=8 x$, then (a) $m_{1}+m_{2}=0$ (b) $m_{1}+m_{2}=-1$ (c) $m_{1}+m_{2}=1$
(d) none of these
702. A line of slope $\lambda(0<\lambda<1)$ touches the parabola $y+3 x^{2}=0$ at P. If S is the focus and M is the foot of the perpendicular of directrix from P, then $\tan \angle M P S$ equals (A) 2λ (B) $\frac{2 \lambda}{-1+\lambda^{2}}$ (C) $\frac{1-\lambda^{2}}{1+\lambda^{2}}$ (D) none of these

- Watch Video Solution

703. If $y=2 x-3$ is tangent to the parabola $y^{2}=4 a\left(x-\frac{1}{3}\right)$, then a is equal to $\frac{22}{3}$ (b) -1 (c) $\frac{14}{3}$ (d) $\frac{-14}{3}$

- Watch Video Solution

704. The straight lines joining any point P on the parabola $y^{2}=4 a x$ to the vertex and perpendicular from the focus to the tangent at P intersect at R Then the equation of the locus of R is $x^{2}+2 y^{2}-a x=0$ $2 x^{2}+y^{2}-2 a x=02 x^{2}+2 y^{2}-a y=0$ (d) $2 x^{2}+y^{2}-2 a y=0$
705. Through the vertex O of the parabola $y^{2}=4 a x$, two chords $O P a n d O Q$ are drawn and the circles on OP and OQ as diameters intersect at R If θ_{1}, θ_{2}, and φ are the angles made with the axis by the tangents at P and Q on the parabola and by $O R$, then value of $\cot \theta_{1}+\cot \theta_{2}$ is $-2 \tan \varphi$ (b) $-2 \tan (\pi-\varphi) 0$ (d) $2 \cot \varphi$

- Watch Video Solution

706. A tangent is drawn to the parabola $y^{2}=4 x$ at the point P whose abscissa lies in the interval (1,4). The maximum possible area of the triangle formed by the tangent at P, the ordinates of the point P, and the x-axis is equal to (a) 8 (b) 16 (c) 24 (d) 32

- Watch Video Solution

707. A parabola $y=a x^{2}+b x+c$ crosses the x-axis at $(\alpha, 0)$ and $(\beta, 0)$ both to the right of the origin. A circle also pass through these two points. The length of a tangent from the origin to the circle is $\sqrt{\frac{b c}{a}}$ (b) $a c^{2}$ (c) $\frac{b}{a}$ (d) $\sqrt{\frac{c}{a}}$

- Watch Video Solution

708. From a point on the circle $x^{2}+y^{2}=a^{2}$, two tangents are drawn to the circle $x^{2}+y^{2}=b^{2}(a>b)$. If the chord of contact touches a variable circle passing through origin, show that the locus of the center of the variable circle is always a parabola.

- Watch Video Solution

709. A line $A B$ makes intercepts of lengths aandb on the coordinate axes.

Find the equation of the parabola passing through A, B, and the origin, if
$A B$ is the shortest focal chord of the parabola.

- Watch Video Solution

710. Prove that the line joining the orthocentre to the centroid of a triangle formed by the focal chord of a parabola and tangents drawn at its extremities is parallel to the axis of the parabola.

- Watch Video Solution

711. A is a point on the parabola $y^{2}=4 a x$. The normal at A cuts the parabola again at point B If $A B$ subtends a right angle at the vertex of the parabola, find the slope of $A B$

- Watch Video Solution

712. The equation of the line that touches the curves $y=x|x|$ and $x^{2}+(y-2)^{2}=4$, where $x \neq 0$, is (a) $y=4 \sqrt{5} x+20$ (b) $y=4 \sqrt{3}-12$ (c) $y=0$
(d) $y=-4 \sqrt{5} x-20$
713. Let PQ be a chord of the parabola $y^{2}=4 x$. A circle drawn with PQ as a diameter passes through the vertex V of theparabola. If $\operatorname{ar}(\Delta P V Q)=20 \mathrm{sq}$ unit then the coordinates of P are

- Watch Video Solution

714. Each question has four choices a, b, c and d, out of which only one is correct. Each question contains Statement 1 and Statement 2. Find the correct answer. Statement 1 : Slopes of tangents drawn from $(4,10)$ to theparabola $y^{2}=9 x$ are and $1 / 4$ and $9 / 4$. Statement 2 : Two tangents can be drawn to a parabola from any point lying outside the parabola.

- Watch Video Solution

715. Statement 1: The line joining the points ($8,-8$)and $\left(\frac{1}{2}, 2\right)$, which are on the parabola $y^{2}=8 x$, press through the focus of the parabola.

Statement 2: Tangents drawn at $(8,-8)$ and $\left(\frac{1}{2}, 2\right)$, on the parabola $y^{2}=4 a x$ are perpendicular.

- Watch Video Solution

716. The vertices A, Band C of a variable right triangle lie on a parabola $y^{2}=4 x$ If the vertex B containing the right angle always remains at the point (1, 2), then find the locus of the centroid of triangle $A B C$

- Watch Video Solution

717. Show that the common tangents to the parabola $y^{2}=4 x$ and the circle $x^{2}+y^{2}+2 x=0$ form an equilateral triangle.
718. Consider a curve $C: y^{2}-8 x-2 y-15=0$ in which two tangents T_{1} and T_{2} are drawn from $P(-4,1)$. Statement 1: $T_{1} a n d T_{2}$ are mutually perpendicular tangents. Statement 2: Point P lies on the axis of curve C

Watch Video Solution

719. Statement 1: The line $a x+b y+c=0$ is a normal to the parabola
$y^{2}=4 a x$ Then the equation of the tangent at the foot of this normal is
$y=\left(\frac{b}{a}\right) x+\left(\frac{a^{2}}{b}\right)$ Statement 2: The equation of normal at any point
$P\left(a t^{2}, 2 a t\right)$ to the parabola $y^{2}=4 a \xi s y=-t x+2 a t+a t^{3}$

- Watch Video Solution

720. Statement 1: The length of focal chord of a parabola $y^{2}=8 x$ making on an angle of 60^{0} with the x-axis is 32 . Statement 2 : The length of focal chord of a parabola $y^{2}=4 a x$ making an angle with the x-axis is $4 a \operatorname{cosec}^{2} \alpha$
721. Statement 1: $(5 x-5)^{2}+(5 y+10)^{2}=(3 x+4 y+5)^{2}$ is a parabola.

Statement 2: If the distance of the point from a given line and from a given point (not lying on the given line) is equal, then the locus of the variable point is a parabola.

- Watch Video Solution

722. If the bisector of angle $A P B$, where $P A a n d P B$ are the tangents to the parabola $y^{2}=4 a x$, is equally, inclined to the coordinate axes, then the point P lies on the tangent at vertex of the parabola directrix of the parabola circle with center at the origin and radius a the line of the latus rectum.
723. If d is the distance between the parallel tangents with positive slope to $y^{2}=4 x$ and $x^{2}+y^{2}-2 x+4 y-11=0$, then (a) $10<d<2$ (b) $4<d<6$ (c) $d<4$ (d) none of these

- Watch Video Solution

724. If $P\left(t^{2}, 2 t\right), t \in[0,2]$, is an arbitrary point on the parabola $y^{2}=4 x, Q$ is the foot of perpendicular from focus S on the tangent at P, then the maximum area of $P Q S$ is 1 (b) 2 (c) $\frac{5}{16}$ (d) 5

- Watch Video Solution

725. If the parabola $y=a x^{2}-6 x+b$ passes through $(0,2)$ and has its tangent at $x=\frac{3}{2}$ parallel to the x -axis, then $a=2, b=-2$ (b) $a=2, b=2$ $a=-2, b=2$ (d) $a=-2, b=-2$

- Watch Video Solution

726. If the locus of the middle of point of contact of tangent drawn to the parabola $y^{2}=8 x$ and the foot of perpendicular drawn from its focus to the tangents is a conic, then the length of latus rectum of this conic is $\frac{9}{4}$ (b) 9 (c) 18 (d) $\frac{9}{2}$

- Watch Video Solution

727. The minimum area of circle which touches the parabolas $y=x^{2}+1$ and $y^{2}=x-1$ is $\frac{9 \pi}{16}$ squnit (b) $\frac{9 \pi}{32}$ squnit $\frac{9 \pi}{8}$ squnit (d) $\frac{9 \pi}{4}$ squnit

- Watch Video Solution

728. At any point P on the parabola $y^{2}-2 y-4 x+5=0$ a tangent is drawn which meets the directrix at Q . Find the locus of point R which divides QP externally in the ratio $\frac{1}{2}: 1$
729. The point of intersection of the tangents at the ends of the latus rectum of the parabola $y^{2}=4 x$ is \qquad

- Watch Video Solution

730. Â.lf the normals of the parabola $y^{2}=4 x$ drawn at the end points of its latus rectum are tangents to the circle $(x-3)^{2}(y+2)^{2}=r^{2}$, then the value of r^{2} is

- Watch Video Solution

731. From a pt A common tangents are drawn to a circle $x^{2}+y^{2}=\frac{a^{2}}{2}$ and $y^{2}=4 a x$. Find the area of the quadrilateral formed by common tangents, chord of contact of circle and chord of contact of parabola.

- Watch Video Solution

732. The angle between a pair of tangents drawn from a point P to the hyperbola $y^{2}=4 a x$ is 45°. Show that the locus of the point P is hyperbola.

- Watch Video Solution

733. Let C_{1} and C_{2} be parabolas $x^{2}=y-1$ and $y^{2}=x-1$ respectively. Let P be any point on C_{1} and Q be any point C_{2}. Let P_{1} and Q_{1} be the reflection of P and Q , respectively w.r.t the line $\mathrm{y}=\mathrm{x}$ then prove that P_{1} lies on C_{2} and Q_{1} lies on C_{1} and $P Q \geq\left[P P_{1}, Q Q_{1}\right]$. Hence or otherwise, determine points P_{0} and Q_{0} on the parabolas C_{1} and C_{2} respectively such that $P_{0} Q_{0} \leq P Q$ for all pairs of points (P, Q) with P on C_{1} and Q on C_{2}

(D) Watch Video Solution

734. Three normals with slopes m_{1}, m_{2} and m_{3} are down from a point P not on the axis of the axis of the parabola $y^{2}=4 x$. If $m_{1} m_{2}=\alpha$, results in the locus of P being a part of parabola, Find the value of α
735. Three normals are drawn from the point (c, 0) to the curve $y^{2}=x$. Show that c must be greater than $1 / 2$. One normal is always the axis. Find c for which the other two normals are perpendicular to each other.

- Watch Video Solution

736. Find the equation of the normal to curve $x^{2}=4 y$ which passes through the point $(1,2)$.

- Watch Video Solution

737. Show that the locus of a point that divides a chord of slope 2 of the parabola $y^{2}=4 x$ internally in the ratio 1:2 is parabola. Find the vertex of this parabola.
738. Points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ lie on the parabola $y^{2}=4 a x$ The tangents to the parabola at A, B and C, taken in pair, intersect at points P, Q and R. Determine the ratio of the areas of the $\triangle A B C$ and $\triangle P Q R$

- Watch Video Solution

739. If the focus of the parabola $x^{2}-k y+3=0$ is $(0,2)$, then a values of k is (are) 4 (b) 6 (c) 3 (d) 2

- Watch Video Solution

740. Let P be a point whose coordinates differ by unity and the point does not lie on any of the axes of reference. If the parabola $y^{2}=4 x+1$ passes through P, then the ordinate of P may be (a) 3 (b) -1 (c) 5 (d) 1

- Watch Video Solution

741. Statement 1: The line $x-y-5=0$ cannot be normal to the parabola $(5 x-15)^{2}+(5 y+10)^{2}=(3 x-4 y+2)^{2}$ Statement 2: Normal to parabola never passes through its focus.

- Watch Video Solution

742. If (h, k) is a point on the axis of the parabola $2(x-1)^{2}+2(y-1)^{2}=(x+y+2)^{2}$ from where three distinct normals can be drawn, then prove that $h>2$.

- Watch Video Solution

743. Column I, Column II Points from which perpendicular tangents can be drawn to the parabola $y^{2}=4 x$, p. $(-1,2)$ Points from which only one normal can be drawn to the parabola $y^{2}=4 x$, q. $(3,2)$ Point at which chord $x-y-1=0$ of the parabola $y^{2}=4 x$ is bisected., r. $(-1,-5)$ Points from which tangents cannot be drawn to the parabola $y^{2}=4 x$, s. (5, -2)
744. Consider the parabola $y^{2}=12 x$ Column I, Column II Equation of tangent can be, p. $2 x+y-6=0$ Equation of normal can be, q. $3 x-y+1=0$ Equation of chord of contact w.r.t. any point on the directrix can be, r. $x-2 y-12=0$ Equation of chord which subtends right angle at the vertex can be, s. $2 x-y-36=0$

- Watch Video Solution

745. If the tangent at the point $P(2,4)$ to the parabola $y^{2}=8 x$ meets the parabola $y^{2}=8 x+5$ at $Q a n d R$, then find the midpoint of chord $Q R$

- Watch Video Solution

746. Let P be the family of parabolas $y=x^{2}+p x+q,(q \neq 0)$, whose graphs cut the axes at three points. The family of circles through these
three points have a common point $(1,0)(b)(0,1)(c)(1,1)$ (d) none of these

- Watch Video Solution

747. If normal at point P on the parabola $y^{2}=4 a x,(a>0)$, meets it again at Q in such a way that $O Q$ is of minimum length, where O is the vertex of parabola, then $O P Q$ is (a)a right angled triangle (b)an obtuse angled triangle (c)an acute angle triangle (d)none of these

- Watch Video Solution

748. If line $P Q$, where equation is $y=2 x+k$, is a normal to the parabola whose vertex is $(-2,3)$ and the axis parallel to the x-axis with latus rectum equal to 2 , then the value of k is $\frac{58}{8}$ (b) $\frac{50}{8}$ (c) 1 (d) -1

- Watch Video Solution

749. Tangent is drawn at any point (p, q) on the parabola $y^{2}=4 a x$.Tangents are drawn from any point on this tangant to the circle $x^{2}+y^{2}=a^{2}$, such that the chords of contact pass through a fixed point (r, s). Then p, q, r ands can hold the relation (A) $r^{2} q=4 p^{2} s$ (B) $r q^{2}=4 p s^{2}$ (C) $r q^{2}=-4 p s^{2}$ (D) $r^{2} q=-4 p^{2} s$

- Watch Video Solution

750. The equation of the directrix of the parabola with vertex at the origin and having the axis along the x-axis and a common tangent of slope 2 with the circle $x^{2}+y^{2}=5$ is (are) (a) $x=10$ (b) $x=20$ (c) $x=-10$ (d) $x=-20$

- Watch Video Solution

751. Tangent is drawn at any point $\left(x_{1}, y_{1}\right)$ other than the vertex on the parabola $y^{2}=4 a x$. If tangents are drawn from any point on this tangent to the circle $x^{2}+y^{2}=a^{2}$ such that all the chords of contact pass through
a fixed point $\left(x_{2}, y_{2}\right)$, then (a) x_{1}, a, x_{2} in GP (b) $\frac{y_{1}}{2}, a, y_{2}$ are in GP (c) $-4, \frac{y_{1}}{y_{2}},\left(x_{-} 1 / / x_{-} 2\right)$ are $\in G P(d) x_{-} 1 x_{-} 2+y_{-} 1 y_{-} 2=a^{\wedge} 2^{\prime}$

- Watch Video Solution

752. The angle between the tangents to the curve $y=x^{2}-5 x+6$ at the point $(2,0)$ and $(3,0)$ is $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) π (d) $\frac{\pi}{4}$

- Watch Video Solution

753. If a line $y=3 x+1$ cuts the parabola $x^{2}-4 x-4 y+20=0$ at AandB, then the tangent of the angle subtended by line segment $A B$ at the origin is $\frac{8 \sqrt{3}}{205}$ (b) $\frac{8 \sqrt{3}}{209} \frac{8 \sqrt{3}}{215}$ (d) none of these

- Watch Video Solution

754. $P(x, y)$ is a variable point on the parabola $y^{2}=4 a x$ and $Q(x+c, y+c)$ is another variable point, where c is a constant. The locus of the midpoint of $P Q$ is a/n parabola (b) hyperbola hyperbola (d) circle

- Watch Video Solution

755. If aandc are the lengths of segments of any focal chord of the parabola $y^{2}=b x,(b>0)$, then the roots of the equation $a x^{2}+b x+c=0$ are real and distinct (b) real and equal imaginary (d) none of these

- Watch Video Solution

756. $A B$ is a chord of the parabola $y^{2}=4 a x$ with its vertex at $A . B C$ is drawn perpendicular to $A B$ meeting the axis at C.The projecton of $B C$ on the axis of the parabola is

- Watch Video Solution

757. The set of values of α for which the point $(\alpha, 1)$ lies inside the curves $c_{1}: x^{2}+y^{2}-4=0$ and $c_{2}: y^{2}=4 x$ is '|alpha|

- Watch Video Solution

758. If P be a point on the parabola $y^{2}=3(2 x-3)$ and M is the foot of perpendicular drawn from the point P on the directrix of the parabola, then length of each sides of an equilateral triangle SMP(where S is the focus of the parabola), is

- Watch Video Solution

759. If $x=m x+c$ touches the parabola $y^{2}=4 a(x+a)$, then (a) $c=\frac{a}{m}$
$c=a m+\frac{a}{m}(\mathrm{c}) c=a+\frac{a}{m}(\mathrm{~d})$ none of these

- Watch Video Solution

760. The angle between the tangents to the parabola $y^{2}=4 a x$ at the points where it intersects with the line $x-y-a=0$ is $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ (c) π (d) $\frac{\pi}{2}$

- Watch Video Solution

761. The area of the triangle formed by the tangent and the normal to the parabola $y^{2}=4 a x$, both drawn at the same end of the latus rectum, and the axis of the parabola is $2 \sqrt{2} a^{2}$ (b) $2 a^{2} 4 a^{2}$ (d) none of these

- Watch Video Solution

762. Double ordinate $A B$ of the parabola $y^{2}=4 a x$ subtends an angle $\frac{\pi}{2}$ at the focus of the parabola. Then the tangents drawn to the parabola at AandB will intersect at $(-4 a, 0)(b)(-2 a, 0)(-3 a, 0)$ (d) none of these

- Watch Video Solution

763. The tangent PT and the normal PN to the parabola $y^{2}=4 a x$ at a point P on it meet its axis at points T and N, respectively. The locus of the centroid of the triangle PTN is a parabola whose:

- Watch Video Solution

764. Let A and B be two distinct points on the parabola $y^{2}=4 x$. If the axis of the parabola touches a circle of radius r having $A B$ as its diameter, then the slope of the line joining A and B can be

- Watch Video Solution

765. The equations of the common tangents to the parabola $y=x^{2}$ and $y=-(x-2)^{2}$ is/are :

- Watch Video Solution

766. Let $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right), y_{1}<0, y_{2}<0$, be the end points of the latus rectum of the ellipse $x^{2}+4 y^{2}=4$. The equations of parabolas with latus rectum PQ are

- Watch Video Solution

767. Let (x, y) be any point on the parabola $y^{2}=4 x$. Let P be the point that divides the line segment from $(0,0)$ and $(x, y) n$ the ratio $1: 3$. Then the locus of P is :

- Watch Video Solution

768. The common tangents to the circle $x^{2}+y^{2}=2$ and the parabola $y^{2}=8 x$ touch the circle at P, Q andthe parabola at R, S. Then area of quadrilateral $P Q R S$ is

- Watch Video Solution

769. If two distinct chords of a parabola $y^{2}=4 a x$, passing through (a,2a) are bisected by the line $x+y=1$, then length of latus rectum can be

(Watch Video Solution

770. The point of intersection of the tangents of the parabola $y^{2}=4 x$ drawn at the endpoints of the chord $x+y=2$ lies on (a) $x-2 y=0$ (b) $x+2 y=0(\mathrm{c}) y-x=0(\mathrm{~d}) x+y=0$

(Watch Video Solution

771. Which of the following line can be normal to parabola $y^{2}=12 x$? (a)
$x+y-9=0(\mathrm{~b}) 2 x-y-32=0(\mathrm{c}) 2 x+y-36=0(\mathrm{~d}) 3 x-y-72=0$

- Watch Video Solution

772. Which of the following line can be tangent to the parabola $y^{2}=8 x$?
(a) $x-y+2=0$
(b) $9 x-3 y+2=0(\mathrm{c}) x+2 y+8=0$
(d) $x+3 y+12=0$

(D) Watch Video Solution

773. The locus of the midpoint of the focal distance of a variable point moving on theparabola $y^{2}=4 a x$ is a parabola whose (d)focus has coordinates $(a, 0)(a)$ latus rectum is half the latus rectum of the original parabola (b)vertex is $\left(\frac{a}{2}, 0\right)$ (c)directrix is y-axis.

- Watch Video Solution

774. A quadrilateral is inscribed in a parabola. Then (a)the quadrilateral may be cyclic (b)diagonals of the quadrilateral may be equal (c)allpossible pairs of the adjacent side may be perpendicular (d)none of these

Watch Video Solution

775. A normal drawn to the parabola $y^{2}=4 a x$ meets the curve again at Q such that the angle subtended by $P Q$ at the vertex is 90° Then the
coordinates of P can be (a) $(8 a, 4 \sqrt{2} a)$
(b) $(8 a, 4 a)($ c) $(2 a,-2 \sqrt{2} a)$ $(2 a, 2 \sqrt{2} a)$

- Watch Video Solution

776. The parabola $y^{2}=4 x$ and the circle having its center at $(6,5)$ intersect at right angle. Then find the possible points of intersection of these curves.

- Watch Video Solution

777. The extremities of latus rectum of a parabola are $(1,1)$ and $(1,-1)$. Then the equation of the parabola can be (a) $y^{2}=2 x-1$ (b) $y^{2}=1-2 x$ (c) $y^{2}=2 x-3(\mathrm{~d}) y^{2}=2 x-4$

- Watch Video Solution

778. If $y=2$ is the directrix and $(0,1)$ is the vertex of the parabola $x^{2}+\lambda y+\mu=0$, then (a) $\lambda=4$ (b) $\mu=8$ (c) $\lambda=-8$ (d) $\mu=4$

Watch Video Solution

779. Through the vertex ' O ' of parabola $y^{2}=4 x$, chords $O P$ and $O Q$ are drawn at right angles to one another. Show that for all positions of P, PQ cuts the axis of the parabola at a fixed point. Also find the locus of the middle point of PQ .

- Watch Video Solution

780. If two chords drawn from the point $A(4,4)$ to the parabola $x^{2}=4 y$ are bisected by the line $y=m x$, the interval in which m lies is (a)
$(-2 \sqrt{2}, 2 \sqrt{2})$
(b)
$(-\infty,-\sqrt{2}) \cup(\sqrt{2}, \infty)$
$(-\infty,-2 \sqrt{2}-2) \cup(2 \sqrt{2}-2, \infty)$ (d) none of these
781. Statement 1: If the endpoints of two normal chords ABandCD (normal at $A a n d C$) of a parabola $y^{2}=4 a x$ are concyclic, then the tangents at AandC will intersect on the axis of the parabola. Statement 2: If four points on the parabola $y^{2}=4 a x$ are concyclic, then the sum of their ordinates is zero.

- Watch Video Solution

782. Consider the parabola $y^{2}=4 x$ Let $A \equiv(4,-4)$ and $B \equiv(9,6)$ be two fixed points on the parabola. Let C be a moving point on the parabola between $A a n d B$ such that the area of the triangle $A B C$ is maximum. Then
the coordinates of C are $\left(\frac{1}{4}, 1\right)$ (b) $(4,4)\left(3, \frac{2}{\sqrt{3}}\right)$ (d) $(3,-2 \sqrt{3})$

- Watch Video Solution

783. The mirror image of the parabola $y^{2}=4 x$ in the tangent to the parabola at the point $(1,2)$ is $(a)(x-1)^{2}=4(y+1)(b)(x+1)^{2}=4(y+1)(c)$
$(x+1)^{2}=4(y-1)(d)(x-1)^{2}=4(y-1)$

- Watch Video Solution

784. Two straight lines are perpendicular to each other. One of them touches the parabola $y^{2}=4 a(x+a)$ and the other touches $y^{2}=4 b(x+b)$. Their point of intersection lies on the line. $x-a+b=0$ (b) $x+a-b=0$ $x+a+b=0$ (d) $x-a-b=0$

Watch Video Solution

785. If the tangents and normals at the extremities of a focal chord of a parabola intersect at $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, respectively, then $x_{1}=y^{2}$ (b) $x_{1}=y_{1} y_{1}=y_{2}($ d $) x_{2}=y_{1}$

- Watch Video Solution

786. Radius of the circle that passes through the origin and touches the parabola $y^{2}=4 a x$ at the point $(a, 2 a)$ is (a) $\frac{5}{\sqrt{2}} a$ (b) $2 \sqrt{2} a$ (c) $\sqrt{\frac{5}{2}} a$ (d) $\frac{3}{\sqrt{2}} a$

- Watch Video Solution

787. If $A_{1} B_{1}$ and $A_{2} B_{2}$ are two focal chords of the parabola $y^{2}=4 a x$, then the chords $A_{1} A_{2}$ and $B_{1} B_{2}$ intersect on (a)directrix (b) axis (c)tangent at vertex (d) none of these

- Watch Video Solution

788. The tangent and normal at $P(t)$, for all real positive t, to the parabola $y^{2}=4 a x$ meet the axis of the parabola in T and G respectively, then the angle at which the tangent at P to the parabola is inclined to the tangent at P to the circle passing through the points P, Tand G is
789. $y=x+2$ is any tangent to the parabola $y^{2}=8 x$ The point P on this tangent is such that the other tangent from it which is perpendicular to it is $(2,4)(b)(-2,0)(-1,1)(d)(2,0)$

- Watch Video Solution

790. Two parabola have the same focus. If their directrices are the x-axis and the y-axis respectively, then the slope of their common chord is :

- Watch Video Solution

791. The triangle PQR of area 'A' is inscribed in the parabola $y^{2}=4 a x$ such that the vertex P lies at the vertex pf the parabola and base QR is a focal chord.The modulus of the difference of the ordinates of the points Q and R is :

- Watch Video Solution

792. The length of the chord of the parabola $y^{2}=x$ which is bisected at the point (2, 1) is (a) $2 \sqrt{3}$ (b) $4 \sqrt{3}$ (c) $3 \sqrt{2}$ (d) $2 \sqrt{5}$

- Watch Video Solution

793. The circle $x^{2}+y^{2}=5$ meets the parabola $y^{2}=4 x$ at P and Q. Then the length $P Q$ is equal to (A) 2 (B) $2 \sqrt{2}$ (C) 4 (D) none of these

- Watch Video Solution

794. A line is drawn form $A(-2,0)$ to intersect the curve $y^{2}=4 x$ at P and Q in the first quadrant such that $\frac{1}{A P}+\frac{1}{A Q}<\frac{1}{4}$ Then the slope of the line is always. (A) $>\sqrt{3}$ (B) $<\frac{1}{\sqrt{3}}$ (C) $>\sqrt{2}$ (D) $>\frac{1}{\sqrt{3}}$

(D) Watch Video Solution

795. Let $y=f(x)$ be a parabola, having its axis parallel to the y-axis, which is touched by the line $y=x$ at $x=1$. Then, (a) $2 f(0)=1-f^{\prime}(0)$
$f(0)+f^{\prime}(0)+f^{0}=1(\mathrm{c}) f^{\prime}(1)=1$ (d) $f^{\prime}(0)=f^{\prime}(1)$

- Watch Video Solution

796. Two mutually perpendicular tangents of the parabola $y^{2}=4 a x$ meet the axis at $P_{1} a n d P_{2}$. If S is the focus of the parabola, then $\frac{1}{S P_{1}}$ is equal to $\frac{4}{a}$ (b) $\frac{2}{1}$ (c) $\frac{1}{a}$ (d) $\frac{1}{4 a}$

- Watch Video Solution

797. Let S be the focus of $y^{2}=4 x$ and a point P be moving on the curve such that its abscissa is increasing at the rate of 4 units $/ \mathrm{s}$. Then the rate of increase of the projection of $S P$ on $x+y=1$ when P is at $(4,4)$ is $(\mathrm{a}) \sqrt{2}$
(b) -1 (c) $-\sqrt{2}$ (d) $-\frac{3}{\sqrt{2}}$

- Watch Video Solution

798. If $a \neq 0$ and the line $2 b x+3 c y+4 d=0$ passes through the points of intersection of the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$, then (a) $d^{2}+(2 b+3 c)^{2}=0(\mathrm{~b}) d^{2}+(3 b+2 c)^{2}=0(\mathrm{c}) d^{2}+(2 b-3 c)^{2}=0(\mathrm{~d})$ none of these

- Watch Video Solution

799. If y_{1}, y_{2}, y_{3} be the ordinates of a vertices of the triangle inscribed in a parabola $y^{2}=4 a x$, then show that the area of the triangle is $\frac{1}{8 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|$.

- Watch Video Solution

800. The circle $x^{2}+y^{2}+2 \lambda x=0, \lambda \in R$, touches the parabola $y^{2}=4 x$ externally. Then, $\lambda>0$ (b) $\lambda<0 \lambda>1$ (d) none of these

- Watch Video Solution

801. If $P S Q$ is a focal chord of the parabola $y^{2}=8 x$ such that $S P=6$, then the length of $S Q$ is 6 (b) 4 (c) 3 (d) none of these

- Watch Video Solution

802. Parabola $y^{2}=4 a\left(x-c_{1}\right)$ and $x^{2}=4 a\left(y-c_{2}\right)$, where $c_{1} a n d c_{2}$ are variable, are such that they touch each other. The locus of their point of contact is $x y=2 a^{2}(\mathrm{~b}) x y=4 a^{2} x y=a^{2}(\mathrm{~d})$ none of these

- Watch Video Solution

803. A circle touches the x-axis and also thouches the circle with center (0 ,
3) and radius 2. The locus of the center of the circle is a circle
(b) an ellipse a parabola
(d) a hyperbola

- Watch Video Solution

804. The locus of the vertex of the family of parabolas $y=\frac{a^{3} x^{2}}{3}+\frac{a^{2 x}}{2}-2 a$ is $x y=\frac{105}{64}$ (b) $x y=\frac{3}{4} x y=\frac{35}{16}$ (d) $x y=\frac{64}{105}$

- Watch Video Solution

805. Let P be the point $(1,0)$ and Q be a point on the locus $y^{2}=8 x$. The locus of the midpoint of $P Q$ is $y^{2}+4 x+2=0 \quad y^{2}-4 x+2=0$ $x^{2}-4 y+2=0 x^{2}+4 y+2=0$

- Watch Video Solution

806. If the liney $-\sqrt{3} x+3=0$ cuts the parabola $y^{2}=x+2$ at A and B , then find the value of PA.PB (where $P=(\sqrt{3}, 0)$

- Watch Video Solution

807. The locus of a point on the variable parabola $y^{2}=4 a x$, whose distance from the focus is always equal to k, is equal to (a is parameter)
(a) $4 x^{2}+y^{2}-4 k x=0$
(b) $x^{2}+y^{2}-4 k x=0$
(c) $2 x^{2}+4 y^{2}-9 k x=0$ $4 x^{2}-y^{2}+4 k x=0$

- Watch Video Solution

808. Tangent to the curve $y=x^{2}+6$ at a point $(1,7)$ touches the circle $x^{2}+y^{2}+16 x+12 y+c=0$ at a point Q, then the coordinates of Q are (A)
$(-6,-11)$
(B) $(-9,-13)$
(C) $(-10,-15)$
(D) $(-6,-7)$

- Watch Video Solution

809. The angle between the tangents drawn from the point $(1,4)$ to the parabola $y^{2}=4 x$ is (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$
810. Statement 1: There are no common tangents between the circle $x^{2}+y^{2}-4 x+3=0$ and the parabola $y^{2}=2 x$ Statement 2:Given circle and parabola do not intersect.

- Watch Video Solution

811. If the line $x-1=0$ is the directrix of the parabola $y^{2}-k x+8=0$, then one of the values of k is $\frac{1}{8}$ (b) 8 (c) 4 (d) $\frac{1}{4}$

- Watch Video Solution

812. C is the centre of the circle with centre $(0,1)$ and radius unity. $y=a x^{2}$ is a parabola. The set of the values of ' a ' for which they meet at a point other than the origin, is

- Watch Video Solution

813. The shortest distance between the parabolas $2 y^{2}=2 x-1$ and $2 x^{2}=2 y-1$ is: (a) $2 \sqrt{2}$ (b) $\frac{1}{2 \sqrt{2}}$ (c) 4 (d) $\sqrt{\frac{36}{5}}$

- Watch Video Solution

814. Normals at two points $\left(x_{1} y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ of the parabola $y^{2}=4 x$ meet again on the parabola, where $x_{1}+x_{2}=4$. Then $\left|y_{1}+y_{2}\right|$ is equal to $\sqrt{2}$ (b) $2 \sqrt{2}$ (c) $4 \sqrt{2}$ (d) none of these

- Watch Video Solution

815. The endpoints of two normal chords of a parabola are concyclic. Then the tangents at the feet of the normals will intersect (a) at tangent at vertex of the parabola (b) axis of the parabola (c) directrix of the parabola (d) none of these
816. From the point $(15,12)$, three normals are drawn to the parabola $y^{2}=4 x$. Then centroid and triangle formed by three co-normals points is
(A) $\left(\frac{16}{3}, 0\right)$
(B) $(4,0)(C)\left(\frac{26}{3}, 0\right)$
(D) $(6,0)$

- Watch Video Solution

817. t 1 and t 2 are two points on the parabola $y^{2}=4 a x$. If the focal chord joining them coincides with the normal chord, then (a) $t 1(t 1+t 2)+2=0(b) t 1+t 2=0(c) t 1 \cdot t 2=-1(d)$ none of these

- Watch Video Solution

818. Tangent and normal are drawn at the point $P \equiv(16,16)$ of the parabola $y^{2}=16 x$ which cut the axis of the parabola at the points AandB, rerspectively. If the center of the circle through P, A, and B is C, then the angle between $P C$ and the axis of x is $(a) \tan ^{-1}\left(\frac{1}{2}\right)$ (b) $\tan ^{-1} 2(c) \tan ^{-1}\left(\frac{3}{4}\right)$ (d) $\tan ^{-1}\left(\frac{4}{3}\right)$

- Watch Video Solution

819. Length of the shortest normal chord of the parabola $y^{2}=4 a x$ is

- Watch Video Solution

820. The line $x-y-1=0$ meets the parabola $y^{2}=4 x$ at A and B. Normals at A and B meet at C. If $D C D$ is normal at D, then the co-ordinates of D are

- Watch Video Solution

821. If normal are drawn from a point $P(h, k)$ to the parabola $y^{2}=4 a x$, then the sum of the intercepts which the normals cut-off from the axis of the parabola is $(h+c)(b) 3(h+a) 2(h+a)$ (d) none of these

- Watch Video Solution

822. If $x+y=k$ is normal to $y^{2}=12 x$, then k is 3 (b) 9 (c) -9 (d) -3

D Watch Video Solution

823. An equilateral triangle $S A B$ is inscribed in the parabola $y^{2}=4 a x$ having its focus at S If chord $A B$ lies towards the left of S, then the side length of this triangle is $2 a(2-\sqrt{3})$ (b) $4 a(2-\sqrt{3}) a(2-\sqrt{3})$ $8 a(2-\sqrt{3})$

- Watch Video Solution

824. $\quad \min \left[\left(x_{1}-x_{2}\right)^{2}+\left(3+\sqrt{1-x_{1}^{2}}-\sqrt{4 x_{2}}\right)^{2}\right], \forall x_{1}, x_{2} \in R$, is
$4 \sqrt{5}+1$ (b) $3-2 \sqrt{2}$ (c) $\sqrt{5}+1$ (d) $\sqrt{5}-1$

- Watch Video Solution

825. The equation of the directrix of the parabola $y^{2}+4 y+4 x+2=0$ is $x=-1$ (b) $x=1 x=-\frac{3}{2}$ (d) $x=\frac{3}{2}$

- Watch Video Solution

826. The equation of the common tangent touching the circle $(x-3)^{2}+y^{2}=9$ and the parabola $y^{2}=4 x$ above the x-axis is $\sqrt{3} y=3 x+1$
(b) $\sqrt{3} y=-(x+3)(C) \sqrt{3} y=x+3$ (d) $\sqrt{3} y=-(3 x-1)$

- Watch Video Solution

827. At what point on the parabola $y^{2}=4 x$ the normal makes equal angle with the axes? (A) $(4,4)(B)(9,6)(C)(4,-4)(D)(1, \pm 2)$

- Watch Video Solution

828. The focal chord to $y^{2}=16 x$ is tangent to $(x-6)^{2}+y^{2}=2$. Then the possible value of the slope of this chord is $\{-1,1\}(b)\{-2,2\}\left\{-2, \frac{1}{2}\right\}$
(d) $\left\{2,-\frac{1}{2}\right\}$

D Watch Video Solution

829. The locus of the midpoint of the segment joining the focus to a moving point on the parabola $y^{2}=4 a x$ is another parabola with directrix $y=0(\mathrm{~b}) x=-a x=0(\mathrm{~d})$ none of these

- Watch Video Solution

830. The curve described parametrically by $x=t^{2}+t+1$, and $y=t^{2}-t+1$ represents. a pair of straight lines
(b) an ellipse a parabola (d) a hyperbola
831. Statement 1: The line $y=x+2 a$ touches the parabola $y^{2}=4 a(x+a)$ Statement 2: The line $y=m x+a m+\frac{a}{m}$ touches $y^{2}=4 a(x+a)$ for all real values of m

D Watch Video Solution

832. Consider a circle with its centre lying on the focus of the parabola, $y^{2}=2 p x$ such that it touches the directrix of the parabola. Then a point of intersection of the circle \& the parabola is:

- Watch Video Solution

833. Normal drawn to $y^{2}=4 a x$ at the points where it is intersected by the line $y=m x+c$ intersect at P. The foot of the another normal drawn to
the parabola from the point P is (a) $\left(\frac{a}{m^{2}},-\frac{2 a}{m}\right)$ (b) $\left(\frac{9 a}{m},-\frac{6 a}{m}\right)$
$\left(a m^{2},-2 a m\right)$ (d) $\left(\frac{4 a}{m^{2}},-\frac{4 a}{m}\right)$

- Watch Video Solution

834. The radius of the circle touching the parabola $y^{2}=x$ at $(1,1)$ and having the directrix of $y^{2}=x$ as its normal is $(a) \frac{5 \sqrt{5}}{8}$ (b) $\frac{10 \sqrt{5}}{3}$ (c) $\frac{5 \sqrt{5}}{4}$ (d) none of these

- Watch Video Solution

835. Maximum number of common normals of $y^{2}=4 a x$ and $x^{2}=4 b y$ is

- Watch Video Solution

836. If two different tangents of $y^{2}=4 x$ are the normals to $x^{2}=4 b y$, then
(a) $|b|>\frac{1}{2 \sqrt{2}}$ (b) $|b|<\frac{1}{2 \sqrt{2}}$ (c) $|b|>\frac{1}{\sqrt{2}}$ (d) $|b|<\frac{1}{\sqrt{2}}$

- Watch Video Solution

837. The largest value of a for which the circle $x^{2}+y^{2}=a^{2}$ falls totally in the interior of the parabola $y^{2}=4(x+4)$ is $4 \sqrt{3}$ (b) 4 (c) $4 \frac{\sqrt{6}}{7}$ (d) $2 \sqrt{3}$

- Watch Video Solution

838. A ray of light travels along a line $y=4$ and strikes the surface of curves $y^{2}=4(x+y)$ Then the equations of the line along which of reflected ray travels is $x=0$ (b) $x=2$ (c) $x+y$ (d) $2 x+y=4$

- Watch Video Solution

839. A set of parallel chords of the parabola $y^{2}=4 a x$ have their midpoint on any straight line through the vertex any straight line through the focus a straight line parallel to the axis another parabola

- Watch Video Solution

840. A line L passing through the focus of the parabola $y^{2}=4(x-1)$ intersects the parabola at two distinct points. If m is the slope of the line L, then ${ }^{-111 m}$ in $\mathrm{R}^{\prime}(\mathrm{d})$ none of these

- Watch Video Solution

841. The ration in which the line segement joining the points (4, -6) and $(3,1)$ is divided by the parabola $y^{2}=4 x$ is $\frac{-20 \pm \sqrt{155}}{11}: 1$ $-20 \pm \sqrt{155}$
$\frac{20}{11}: 2-20 \pm 2 \sqrt{155}: 11$ (d) $-20 \pm \sqrt{155}: 11$

- Watch Video Solution

842. If (a, b) is the midpoint of a chord passing through the vertex of the parabola $y^{2}=4 x$, then $a=2 b$ (b) $a^{2}=2 b a^{2}=2 b$ (d) $2 a=b^{2}$

- Watch Video Solution

843. A water jet from a function reaches it maximum height of 4 m at a distance 0.5 m from the vertical passing through the point O of water outlet. The height of the jet above the horizontal $O X$ at a distance of 0.75 m from the point O is 5 m (b) 6 m (c) 3 m (d) 7 m

- Watch Video Solution

844. The vertex of the parabola whose parametric equation is
$x=t^{2}-t+1, y=t^{2}+t+1 ; t \in R$, is $(1,1)(b)(2,2)\left(\frac{1}{2}, \frac{1}{2}\right)(\mathrm{d})(3,3)$

- Watch Video Solution

845. A point $P(x, y)$ moves in the $x y$-plane such that $x=a \cos ^{2} \theta$ and $y=2 a \sin \theta$, where θ is a parameter. The locus of the point P is a/an (A) circle (B) ellipse (C) unbounded parabola (D) part of the parabola

- Watch Video Solution

846. The locus of the point $(\sqrt{3 h}, \sqrt{\sqrt{3} k+2})$ if it lies on the line $x-y-1=0$ is straight line (b) a circle a parabola (d) none of these

- Watch Video Solution

847. If the segment intercepted by the parabola $y^{2}=4 a x$ with the line $l x+m y+n=0$ subtends a right angle at the vertex, then $4 a l+n=0$
$4 a l+4 a m+n=04 a m+n=0$ (d) $a l+n=0$

- Watch Video Solution

848. The graph of the curve $x^{2}+y^{2}-2 x y-8 x-8 y+32=0$ falls wholly in the first quadrant (b) second quadrant third quadrant (d) none of these

- Watch Video Solution

849. Consider two curves $C 1: y^{2}=4 x ; C 2=x^{2}+y^{2}-6 x+1=0$. Then, a. $C 1$ and C2 touch each other at one point b. C1 and C2 touch each other exactly at two point c. C1 and C2 intersect(but do not touch) at exactly two point d. C1 and C2 neither intersect nor touch each other

- Watch Video Solution

850. Let the curve C be the mirror image of the parabola $y^{2}=4 x$ with respect to the line $x+y+4=0$. If A and B are the points of intersection of C with the line $y=-5$, then the distance between A and B is

- Watch Video Solution

851. Let S be the focus of the parabola $y^{2}=8 x$ and let PQ be the common chord of the circle $x^{2}+y^{2}-2 x-4 y=0$ and the given parabola. The area of the triangle PQS is -
852. Consider the parabola $y^{2}=8 x$. Let Δ_{1} be the area of the triangle formed by the end points of its latus rectum and the point $P\left(\frac{1}{2}, 2\right)$ on the parabola and Δ_{2} be the area of the triangle formed by drawing tangents at P and at the end points of latus rectum. $\frac{\Delta_{1}}{\Delta_{2}}$ is :

- Watch Video Solution

853. A line L: $y=m x+3$ meets y-axis at $E(0,3)$ and the arc of the parabola $y^{2}=16 x 0 \leq y \leq 6$ at the point art $F\left(x_{0}, y_{0}\right)$. The tangent to the parabola at $F\left(X_{0}, Y_{0}\right)$ intersects the y-axis at $G(0, y)$. The slope m of the line L is chosen such that the area of the triangle EFG has a local maximum P) $\mathrm{m}=$ Q) = Maximum area of $\triangle E F G$ is (R) $y_{0}=(\mathrm{S}) y_{1}=$

- Watch Video Solution

854. Match the following. Normals are drawn at points $P Q$ and R lying on the parabola $y^{2}=4 x$ which intersect at $(3,0)$
855. Tangents and normal drawn to the parabola $y^{2}=4 a x$ at point $P\left(a t^{2}, 2 a t\right), t \neq 0$, meet the x-axis at point TandN, respectively. If S is the focus of theparabola, then $S P=S T \neq S N$ (b) $S P \neq S T=S N S P=S T=S N$ (d) $S P \neq S T \neq S N$

- Watch Video Solution

856. If the normals to the parabola $y^{2}=4 a x$ at three points $\left(a p^{2}, 2 a p\right)$, and $\left(a q^{2}, 2 a q\right)$ are concurrent, then the common root of equations $P x^{2}+q x+r=0$ and $a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ is $p(b) q(c) r(d) 1$

- Watch Video Solution

857. Normals $A O, \forall_{1}$ and \forall_{2} are drawn to the parabola $y^{2}=8 x$ from the point $A(h, 0)$. If triangle $O A_{1} A_{2}$ is equilateral then the possible value of h is 26 (b) 24 (c) 28 (d) none of these

(D) Watch Video Solution

858. If $2 x+y+\lambda=0$ is a normal to the parabola $y^{2}=-8 x$, then λ is 12 (b)
-12 (c) 24 (d) -24

- Watch Video Solution

859. The length of the latus rectum of the parabola whose focus is
$\left(\frac{u^{2}}{2 g} \sin 2 \alpha,-\frac{u^{2}}{2 g} \cos 2 \alpha\right)$ and directrix is $y=\frac{u^{2}}{2 g}$ is $\frac{u^{2}}{g} \cos ^{2} \alpha$ (b) $\frac{u^{2}}{g} \cos ^{2} 2 \alpha$ $\frac{2 u^{2}}{g} \cos ^{2} 2 \alpha(\mathrm{~d}) \frac{2 u^{2}}{g} \cos ^{2} \alpha$

- Watch Video Solution

860. If parabolas $y^{2}=\lambda x$ and $25\left[(x-3)^{2}+(y+2)^{2}\right]=(3 x-4 y-2)^{2}$ are equal, then the value of λ is 9 (b) 3 (c) 7 (d) 6
861. The normal at the point $P\left(a p^{2}, 2 a p\right)$ meets the parabola $y^{2}=4 a x$ again at $Q\left(a q^{2}, 2 a q\right)$ such that the lines joining the origin to P and Q are at right angle. Then (A) $p^{2}=2$ (B) $q^{2}=2$ (C) $p=2 q$ (D) $q=2 p$

- Watch Video Solution

862. The set of points on the axis of the parabola $y^{2}=4 x+8$ from which the three normals to the parabola are all real and different is (a) $\{(k, 0) \mid k \leq-2\}$ (b) $\{(k, 0) \mid k \geq-2\}$ (c) $\{(0, k) \mid k \geq-2\}$ (d) none of these

- Watch Video Solution

863. Which one of the following equation represent parametric equation
to a parabolic curve? $x=3 \operatorname{cost} ; y=4 \sin t \quad x^{2}-2=2 \cos t ; y=4 \frac{\cos ^{2} t}{2}$
$\sqrt{x}=\tan t ; \sqrt{y}=\operatorname{sect} x=\sqrt{1-\sin t ;} y=\frac{\sin t}{2}+\frac{\cos t}{2}$
864. The vertex of a parabola is the point (a, b) and the latus rectum is of length l If the axis of the parabola is parallel to the y-axis and the parabola is concave upward, then its equation is $(x+a)^{2}=\frac{1}{2}(2 y-2 b)$ $(x-a)^{2}=\frac{1}{2}(2 y-2 b)(x+a)^{2}=\frac{1}{4}(2 y-2 b)(x-a)^{2}=\frac{1}{8}(2 y-2 b)$

- Watch Video Solution

865. The curve represented by the equation $\sqrt{p x}+\sqrt{q y}=1$ where $p, q \in R, p, q>0$, is a circle (b) a parabola an ellipse (d) a hyperbola

- Watch Video Solution

866. Prove that the equation of the parabola whose focus is $(0,0)$ and tangent at the vertex is $x-y+1=0$ is $x^{2}+y^{2}+2 x y-4 x+4 y-4=0$.

- Watch Video Solution

867. A parabola is drawn touching the axis of x at the origin and having its vertex at a given distance k form this axis Prove that the axis of the parabola is a tangent to the parabola $x^{2}=-8 k(y-2 k)$.

- Watch Video Solution

868. A series of chords are drawn so that their projections on the straight line, which is inclined at an angle a to the axis, are of constant length • Prove that the locus of their middle point is the curve. $\left(y^{2}-4 a x\right)(y \cos \alpha+2 a \sin \alpha)^{2}+a^{2} c^{2}=0$.

- Watch Video Solution

869. The equation of the parabola whose vertex and focus lie on the axis of x at distances a and a_{1} from the origin, respectively, is $y^{2}-4\left(a_{1}-a\right) x$ $\left.y^{2}-4\left(a_{1}-a\right)(x-a) y^{2}-4\left(a_{1}-a\right)(x-a) 1\right)$ noneofthese
870. prove that for a suitable point P on the axis of the parabola, chord
$A B$ through the point P can be drawn such that $\left[\left(\frac{1}{A P^{2}}\right)+\left(\frac{1}{B P^{2}}\right)\right]$ is same for all positions of the chord.

(Watch Video Solution

871. Two parabola have the same focus. If their directrices are the x-axis and the y-axis respectively, then the slope of their common chord is:

- Watch Video Solution

872. The number of common chords of the parabolas $x=y^{2}-6 y+11$ and
$y=x^{2}-6 x+11$ is 1 (b) 2 (c) 4 (d) 6

- Watch Video Solution

873. Find the equation of the curve whose parametric equation are $x=1+4 \cos \theta, y=2+3 \sin \theta, \theta \in R$

- Watch Video Solution

874. Prove that any point on the ellipse whose foci are ($-1,0$) and (7,0) and eccentricity is $\frac{1}{2}$ is $(3+8 \cos \theta, 4 \sqrt{3} \sin \theta), \theta \in R$.

- Watch Video Solution

875. Find the eccentric angle of a point on the ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{2}=1$ whose distance from the center of the ellipse is $\sqrt{5}$

- Watch Video Solution

876. Find the area of the greatest rectangle that can be inscribed in an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

(D) Watch Video Solution

877. The auxiliary circle of a family of ellipses passes through the origin and makes intercepts of 8 units and 6 units on the x and y-axis, respectively. If the eccentricity of all such ellipses is $\frac{1}{2}$, then find the locus of the focus.

- Watch Video Solution

878. Find the number of rational points on the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$.

- Watch Video Solution

879. A line passing through the origin $O(0,0)$ intersects two concentric circles of radii $a a n d b$ at PandQ, If the lines parallel to the X-and Y-axes through QandP, respectively, meet at point R, then find the locus of R
880. If the line $l x+m y+n=0$ cuts the ellipse $\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)=1$ at points whose eccentric angles differ by $\frac{\pi}{2}$, then find the value of $\frac{a^{2} l^{2}+b^{2} m^{2}}{n^{2}}$.

(Watch Video Solution

881. Find the area of the greatest isosceles triangle that can be inscribed
in the ellipse $\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)=1$ having its vertex coincident with one extremity of the major axis.

D Watch Video Solution

882. Find the eccentric angles of the extremities of the latus recta of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
883. Find the equation of the ellipse whose axes are of length 6 and $2 \sqrt{6}$ and their equations are $x-3 y+3=0$ and $3 x+y-1=0$, respectively.

- Watch Video Solution

884. If the equation $(5 x-1)^{2}+(5 y-2)^{2}=\left(\lambda^{2}-2 \lambda+1\right)(3 x+4 y-1)^{2}$ represents an ellipse, then find values of λ

- Watch Video Solution

885. Find the equation to the ellipse, whose focus is the point ($-1,1$), whose directrix is the straight line $x-y+3=0$, and whose eccentricity is 1 $\overline{2}$.
886. The moon travels an elliptical path with Earth as one focus. The maximum distance from the moon to the earth is $405,500 \mathrm{~km}$ and the minimum distance is $363,300 \mathrm{~km}$. What is the eccentricity of the orbit?

- Watch Video Solution

887. If the foci of an ellipse are $(0, \pm 1)$ and the minor axis is of unit length, then find the equation of the ellipse. The axes of ellipse are the coordinate axes.

- Watch Video Solution

888. Let P be a point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ of eccentricity e if A, A^{\prime} are the vertices and S, S are the foci of the ellipse, then find the ratio area $P S S^{\prime \prime}$: area APA
889. If C is the center of the ellipse $9 x^{2}+16 y^{2}=144$ and S is a focus, then find the ratio of $C S$ to the semi-major axis.

(Watch Video Solution

890. Find the sum of the focal distances of any point on the ellipse $9 x^{2}+16 y^{2}=144$.

- Watch Video Solution

891. Find the lengths of the major and minor axes and the eccentricity of the ellipse $\frac{(3 x-4 y+2)^{2}}{16}+\frac{(4 x+3 y-5)^{2}}{9}=1$

- Watch Video Solution

892. Find the eccentricity, one of the foci, the directrix, and the length of the latus rectum for the conic $(3 x-12)^{2}+(3 y+15)^{2}=\frac{(3 x-4 y+5)^{2}}{25}$.
893. An ellipse passes through the point (4, -1) and touches the line $x+4 y-10=0$. Find its equation if its axes coincide with the coordinate axes.

- Watch Video Solution

894. Find the point on the ellipse $16 x^{2}+11 y^{2}=256$ where the common tangent to it and the circle $x^{2}+y^{2}-2 x=15$ touch.

- Watch Video Solution

895. If $\frac{x}{a}+\frac{y}{b}=\sqrt{2}$ touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then find the eccentric angle θ of point of contact.

- Watch Video Solution

896. Find the points on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ such that the tangent at each point makes equal angles with the axes.

- Watch Video Solution

897. An ellipse slides between two perpendicular straight lines. Then identify the locus of its center.

(Watch Video Solution

898. Find the locus of the foot of the perpendicular drawn from the center upon any tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

- Watch Video Solution

899. Find the maximum area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ which touches the line $y=3 x+2$.
900. A tangent is drawn to the ellipse $\frac{x^{2}}{27}+y^{2}=1$ at $(3 \sqrt{3} \cos \theta, \sin \theta)$ where $\theta \varepsilon\left(0, \frac{\pi}{2}\right)$ Then find the value of θ such that the sum of intercepts on the axes made by this tangent is minimum.

- Watch Video Solution

901. Consider an ellipse $\frac{x^{2}}{4}+y^{2}=\alpha(\alpha$ is parameter $>0)$ and a parabola $y^{2}=8 x$. If a common tangent to the ellipse and the parabola meets the coordinate axes at AandB, respectively, then find the locus of the midpoint of $A B$

- Watch Video Solution

902. Find the angle between the pair of tangents from the point $(1,2)$ to the ellipse $3 x^{2}+2 y^{2}=5$.

- Watch Video Solution

903. If the chord joining points $P(\alpha) a n d Q(\beta)$ on the ellipse $\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)=1$ subtends a right angle at the vertex $A(a, 0)$, then prove that $\tan \left(\frac{a}{2}\right) \tan \left(\frac{\beta}{2}\right)=-\frac{b^{2}}{a^{2}}$.

- Watch Video Solution

904. If $\alpha a n d \beta$ are the eccentric angles of the extremities of a focal chord of an ellipse, then prove that the eccentricity of the ellipse is $\frac{\sin \alpha+\sin \beta}{\sin (\alpha+\beta)}$

(Watch Video Solution

905. If the area of the ellipse $\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)=1$ is 4π, then find the maximum area of rectangle inscribed in the ellipse.
906. The center of an ellipse is C and $P N$ is any ordinate. Point A, A^{\prime} are the endpoints of the major axis. Then find the value of $\frac{P N^{2}}{A N} \dot{A}^{\prime} N^{\prime}$

- Watch Video Solution

907. The ratio of the area of triangle inscribed in ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ to that of triangle formed by the corresponding points on the auxiliary
circle is 0.5 . Then, find the eccentricity of the ellipse. (A) $\frac{1}{2}$ (B) $\frac{\sqrt{3}}{2}$ (C) $\frac{1}{\sqrt{2}}$ (D) $\frac{1}{\sqrt{3}}$

- Watch Video Solution

908. If $P S Q$ is a focal chord of the ellipse $16 x^{2}+25 y^{2}=400$ such that
$S P=8$, then find the length of $S Q$. is (a) $\frac{1}{2}$ (b) $\frac{4}{9}$ (c) $\frac{8}{9}$ (d) $\frac{16}{9}$
909. $A O B$ is the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in which $O A=a, O B=b$. Then find the area between the arc $A B$ and the chord $A B$ of the ellipse.

- Watch Video Solution

910. If SandS' are two foci of ellipse $16 x^{2}+25 y^{2}=400$ andPSQ is a focal chord such that $S P=16$, then find $S^{\prime} Q$

- Watch Video Solution

911. Find the equations of the tangents drawn from the point $(2,3)$ to the ellipse $9 x^{2}+16 y^{2}=144$.

- Watch Video Solution

912. Prove that the area bounded by the circle $x^{2}+y^{2}=a^{2}$ and the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is equal to the area of another ellipse having semi-axis $a-b$ and $b, a>b$.

- Watch Video Solution

913. If the normal at $P\left(2, \frac{3 \sqrt{3}}{2}\right)$ meets the major axis of ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ at Q, and S and S^{\prime} are the foci of the given ellipse, then find the ratio $S Q: S^{\prime} Q$

- Watch Video Solution

914. Normal to the ellipse $\frac{x^{2}}{64}+\frac{y^{2}}{49}=1$ intersects the major and minor axes at PandQ , respectively. Find the locus of the point dividing segment $P Q$ in the ratio 2:1.
915. The line $l x+m y+n=0$ is a normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. then prove that $\frac{a^{2}}{l^{2}}+\frac{b^{2}}{m^{2}}=\frac{\left(a^{2}-b^{2}\right)^{2}}{n^{2}}$

D Watch Video Solution

916. Find the equation of the normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the positive end of the latus rectum.

- Watch Video Solution

917. Find the points on the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ on which the normals are parallel to the line $2 x-y=1$.

- Watch Video Solution

918. If ω is one of the angles between the normals to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point whose eccentric angles are θ and $\frac{\pi}{2}+\theta$, then prove that $\frac{2 \cot \omega}{\sin 2 \theta}=\frac{e^{2}}{\sqrt{1-e^{2}}}$

Watch Video Solution

919. If the normal at any point P on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meets the axes at G and g respectively, then find the raio $P G: P g=$ (a) $a: b$ (b) $a^{2}: b^{2}$ (c) $b: a$ (d) $b^{2}: a^{2}$

- Watch Video Solution

920. P is the point on the ellipse is $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and Q is the corresponding point on the auxiliary circle of the ellipse. If the line joining the center C to Q meets the normal at P with respect to the given ellipse at K, then find the value of $C K$.
921. If the normal at one end of the latus rectum of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through one end of the minor axis, then prove that eccentricity is constant.

- Watch Video Solution

922. If the normals to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ are concurrent, prove that $\left|\begin{array}{lll}x_{1} & y_{1} & x_{1} y_{1} \\ x_{2} & y_{2} & x_{2} y_{2} \\ x_{3} & y_{3} & x_{3} y_{3}\end{array}\right|=0$.

- Watch Video Solution

923. Find the normal to the ellipse $\frac{x^{2}}{18}+\frac{y^{2}}{8}=1$ at point $(3,2)$.
924. If two points are taken on the minor axis of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the same distance from the center as the foci, then prove that the sum of the squares of the perpendicular distances from these points on any tangent to the ellipse is $2 a^{2}$

Watch Video Solution

925. If any tangent to the ellipse $\frac{x^{2}}{a^{\circ}}+\frac{y^{2}}{b^{2}}=1$ intercepts equal lengths l on the axes, then find l

- Watch Video Solution

926. Find the slope of a common tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and a concentric circle of radius r
927. If the straight line $x \cos \alpha+y \sin \alpha=p$ touches the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then prove that $a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha=p^{2}$

(Watch Video Solution

928. If F_{1} and F_{2} are the feet of the perpendiculars from the foci $S_{1} a n d S_{2}$ of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ on the tangent at any point P on the ellipse, then prove that $S_{1} F_{1}+S_{2} F_{2} \geq 8$.

(Watch Video Solution

929. If the tangent at any point of the ellipse $\frac{x^{2}}{a^{3}}+\frac{y^{2}}{b^{2}}=1$ makes an angle α with the major axis and an angle β with the focal radius of the point of contact, then show that the eccentricity of the ellipse is given by $e=\frac{\cos \beta}{\cos \alpha}$
930. Two perpendicular tangents drawn to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ intersect on the curve.

- Watch Video Solution

931. A tangent having slope of $-\frac{4}{3}$ to the ellipse $\frac{x^{2}}{18}+\frac{y^{2}}{32}=1$ intersects the major and minor axes at points $A a n d B$, respectively. If C is the center of the ellipse, then find area of triangle $A B C$

- Watch Video Solution

932. If the tangent to the ellipse $x^{2}+2 y^{2}=1$ at point $P\left(\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$ meets the auxiliary circle at point RandQ, then find the points of intersection of tangents to the circle at QandR

- Watch Video Solution

933. Chords of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are drawn through the positive end of the minor axis. Then prove that their midpoints lie on the ellipse.

- Watch Video Solution

934. Find the locus of the middle points of all chords of $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ which are at a distance of 2 units from the vertex of parabola $y^{2}=-8 a x$

- Watch Video Solution

935. Tangents PQandPR are drawn at the extremities of the chord of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, which get bisected at point $P(1,1)$ Then find the point of intersection of the tangents.

- Watch Video Solution

936. If the chords of contact of tangents from two poinst $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are at right angles, then find the value of $\frac{x_{1} x_{2}}{y_{1} y_{2}}$.

- Watch Video Solution

937. From the point $A(4,3)$, tangent are drawn to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ to touch the ellipse at B and CEF is a tangent to the ellipse parallel to line $B C$ and towards point A Then find the distance of A from $E F$

- Watch Video Solution

938. An ellipse is drawn with major and minor axis of length 10 and 8 respectively. Using one focus a centre, a circle is drawn that is tangent to ellipse, with no part of the circle being outside the ellipse. The radius of the circle is (A) $\sqrt{3}$ (B) 2 (C) $2 \sqrt{2}$ (D) $\sqrt{5}$
939. Find the foci of the ellipse $25(x+1)^{2}+9(y+2)^{2}=225$.

- Watch Video Solution

940. Find the equation of an ellipse whose axes are the x-and y-axis and whose one focus is at $(4,0)$ and eccentricity is $4 / 5$.

- Watch Video Solution

941. If $P(\alpha, \beta)$ is a point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with foci SandS' and eccentricity e, then prove that the area of $S P S^{\prime}$ is $b a \sqrt{a^{2}-\alpha^{2}}$

- Watch Video Solution

942. An arc of a bridge is semi-elliptical with the major axis horizontal. If the length of the base is 9 m and the highest part of the bridge is 3 m
from the horizontal, then prove that the best approximation of the height of the acr 2 m from the center of the base is $\frac{8}{3} m$.

- Watch Video Solution

943. An ellipse has $O B$ as the semi-minor axis, FandF' as its foci, and $\angle F B F^{\prime}$ a right angle. Then, find the eccentricity of the ellipse.

- Watch Video Solution

944. P is a variable on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with \forall^{\prime} as the major axis. Find the maximum area of triangle $A P A^{\prime}$

- Watch Video Solution

945. Prove that the curve represented by
$x=3(\cos t+\sin t), y=4(\cos t-\sin t), t \in R$, is an ellipse
946. Find the center, foci, the length of the axes, and the eccentricity of the ellipse $2 x^{2}+3 y^{2}-4 x-12 y+13=0$

- Watch Video Solution

947. If C is the center and A, B are two points on the conic $4 x^{2}+9 y^{2}-8 x-36 y+4=0$ such that $\angle A C B=\frac{\pi}{2}$, then prove that $\frac{1}{C A^{2}}+\frac{1}{C B^{2}}=\frac{13}{36}$.

- Watch Video Solution

948. Find the equation of a chord of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ joining two points $P\left(\frac{\pi}{4}\right)$ and $Q\left(\frac{5 \pi}{4}\right)$

- Watch Video Solution

949. Prove that the chords of contact of pairs of perpendicular tangents to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ touch another fixed ellipse.

- Watch Video Solution

950. Tangent are drawn from the point $(3,2)$ to the ellipse $x^{2}+4 y^{2}=9$.

Find the equation to their chord of contact and the middle point of this chord of contact.

- Watch Video Solution

951. Find the locus of the point of intersection of tangents to the ellipse if the difference of the eccentric angle of the points is $\frac{2 \pi}{3}$.

- Watch Video Solution

952. Tangents are drawn from the points on the line $x-y-5=0$ to $x^{2}+4 y^{2}=4$. Then all the chords of contact pass through a fixed point. Find the coordinates.

- Watch Video Solution

953. If from a point P, tangents $P Q a n d P R$ are drawn to the ellipse $\frac{x^{2}}{2}+y^{2}=1$ so that the equation of $Q R$ is $x+3 y=1$, then find the coordinates of P

- Watch Video Solution

954. Prove that the chord of contact of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with respect to any point on the directrix is a focal chord.

- Watch Video Solution

955. The locus a point $P(\alpha, \beta)$ moving under the condition that the line $y=\alpha x+\beta$ is a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is (A) a parabola an ellipse (C) a hyperbola (D) a circle

- Watch Video Solution

956. Find the locus of the point which is such that the chord of contact of tangents drawn from it to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ form a triangle of constant area with the coordinate axes.

- Watch Video Solution

957. A point P moves such that the chord of contact of the pair of tangents from P on the parabola $y^{2}=4 a x$ touches the rectangular hyperbola $x^{2}-y^{2}=c^{2}$ Show that the locus of P is the ellipse $\frac{x^{2}}{c^{2}}+\frac{y^{2}}{(2 a)^{2}}=1$.
958. Find the length of the chord of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$, whose middle point is $\left(\frac{1}{2}, \frac{2}{5}\right)$.

- Watch Video Solution

959. Find the equation of the chord of the hyperbola $25 x^{2}-16 y^{2}=400$ which is bisected at the point $(5,3)$.

- Watch Video Solution

960. The locus of the point which divides the double ordinates of the
ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in the ratio $1: 2$ internally is $\frac{x^{2}}{a^{2}}+\frac{9 y^{2}}{b^{2}}=1$
$\frac{x^{2}}{a^{2}}+\frac{9 y^{2}}{b^{2}}=\frac{1}{9} \frac{9 x^{2}}{a^{2}}+\frac{9 y^{2}}{b^{2}}=1$ (d) none of these

- Watch Video Solution

961. Find the locus of the middle points of chord of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ which are drawn through the positive end of the minor axis.

- Watch Video Solution

962. Find the point on the hyperbola $x^{2}-9 y^{2}=9$ where the line $5 x+12 y=9$ touches it.

- Watch Video Solution

963. If $(5,12)$ and $(24,7)$ are the foci of an ellipse passing through the origin, then find the eccentricity of the ellipse.

- Watch Video Solution

964. From any point P lying in the first quadrant on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1, P N$ is drawn perpendicular to the major axis and produced
at Q so that $N Q$ equals to $P S$, where S is a focus. Then the locus of Q is $5 y-3 x-25=03 x+5 y+25=03 x-5 y-25=0$ (d) none of these

- Watch Video Solution

965. If any line perpendicular to the transverse axis cuts the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and the conjugate hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ at points PandQ, respectively, then prove that normal at Pand Q meet on the x-axis.

- Watch Video Solution

966. If the focal distance of an end of the minor axis of an ellipse (referred to its axes as the axes of xandy, respectively) is k and the distance between its foci is $2 h$, them find its equation.

- Watch Video Solution

967. Tangents are drawn to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,(a>b)$, and the circle $x^{2}+y^{2}=a^{2}$ at the points where a common ordinate cuts them (on the same side of the x-axis). Then the greatest acute angle between these tangents is given by (A) $\tan ^{-1}\left(\frac{a-b}{2 \sqrt{a b}}\right)$ (B) $\tan ^{-1}\left(\frac{a+b}{2 \sqrt{a b}}\right)$ (C) $\tan ^{-1}\left(\frac{2 a b}{\sqrt{a-b}}\right)$
(D) $\tan ^{-1}\left(\frac{2 a b}{\sqrt{a+b}}\right)$

- Watch Video Solution

968. A normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ meets the axes in M and N and lines MP and NP are drawn perpendicular to the axes meeting at P. Prove that the locus of P is the hyperbola $a^{2} x^{2}-b^{2} y^{2}=\left(a^{2}+b^{2}\right)^{2}$

- Watch Video Solution

969. Find the eccentricity of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ whose latus rectum is half of its major axis. $(a>b)$
970. The slopes of the common tanents of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$ and the circle $x^{2}+y^{2}=3$ are ± 1 (b) $\pm \sqrt{2}$ (c) $\pm \sqrt{3}$ (d) none of these

- Watch Video Solution

971. The locus of the midde points ofchords of hyperbola $3 x^{2}-2 y^{2}+4 x-6 y=0$ parallel to $y=2 x$ is

Watch Video Solution

972. The coordinates of the vertices BandC of a triangle $A B C$ are $(2,0)$ and $(8,0)$, respectively. Vertex A is moving in such a way that $4 \frac{\tan B}{2} \frac{\tan C}{2}=1$. Then find the locus of A
973. If the tangents to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ make angles $\alpha a n d \beta$ with the major axis such that $\tan \alpha+\tan \beta=\gamma$, then the locus of their point of intersection is $x^{2}+y^{2}=a^{2}$
(b) $x^{2}+y^{2}=b^{2} \quad x^{2}-a^{2}=2 \lambda x y$
$\lambda\left(x^{2}-a^{2}\right)=2 x y$

(D) Watch Video Solution

974. If $P(x, y)$ is any point on the ellipse $16 x^{2}+25 y^{2}=400$ and
$f_{1}=(3,0) F_{2}=(-3,0)$, then find the value of $P F_{1}+P F_{2}$

- Watch Video Solution

975. Find the condition on aandb for which two distinct chords of the hyperbola $\frac{x^{2}}{2 a^{2}}-\frac{y^{2}}{2 b^{2}}=1$ passing through (a, b) are bisected by the line $x+y=b$.

- Watch Video Solution

976. The point of intersection of the tangents at the point P on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and its corresponding point Q on the auxiliary circle meet on the line (a) $x=\frac{a}{e}$ (b) $x=0$ (c) $y=0$ (d) none of these

Watch Video Solution

977. Find the equation of the ellipse (referred to its axes as the axes of xandy, respectively) whose foci are ($\pm 2,0$) and eccentricity is $\frac{1}{2}$

- Watch Video Solution

978. Tangents are drawn to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at two points whose eccentric angles are $\alpha-\beta$ and $\alpha+\beta$ The coordinates of their point of intersection are

- Watch Video Solution

979. The sum of the squares of the perpendiculars on any tangents to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ from two points on the minor axis each at a distance ae from the center is $2 a^{2}$ (b) $2 b^{2}$ (c) $a^{2}+b^{2} a^{2}-b^{2}$

- Watch Video Solution

980. A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the x -axis.

- Watch Video Solution

981. Tangents are drawn from the points on a tangent of the hyperbola
$x^{2}-y^{2}=a^{2}$ to the parabola $y^{2}=4 a x$ If all the chords of contact pass through a fixed point Q, prove that the locus of the point Q for different tangents on the hyperbola is an ellipse.
982. If $\alpha-\beta=$ constant, then the locus of the point of intersection of tangents at $P(a \cos \alpha, b \sin \alpha)$ and $Q(a \cos \beta, b \sin \beta)$ to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is: (a) a circle (b) a straight line (c) an ellipse (d) a parabola

- Watch Video Solution

983. Two circles are given such that one is completely lying inside the other without touching. Prove that the locus of the center of variable circle which touches the smaller circle from outside and the bigger circle from inside is an ellipse.

- Watch Video Solution

984. How many real tangents can be drawn from the point $(4,3)$ to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$? Find the equation of these tangents and the angle between them.
985. For an ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ with vertices A and A^{\prime}, drawn at the point P in the first quadrant meets the y axis in Q and the chord $A^{\prime} P$ meets the y axis in M. If ' O ' is the origin then $O Q^{2}-M Q^{2}$

- Watch Video Solution

986. The first artificial satellite to orbit the earth was Sputnik I. Its highest point above earth's surface was 947 km , and its lowest point was 228 km .

The center of the earth was at one focus of the elliptical orbit. The radius of the earth is 6378 km . Find the eccentricity of the orbit.

- Watch Video Solution

987. Which of the following can be slope of tangent to the hyperbola

$$
4 x^{2}-y^{2}=4 \text { ? } 1 \text { (b) }-3 \text { (c) } 2 \text { (d) }-\frac{3}{2}
$$

988. A tangent to the ellipes $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ at any points meet the line $x=0$ at a point Q Let R be the image of Q in the line $y=x$, then circle whose extremities of a dameter are Q and R passes through a fixed point, the fixed point is

- Watch Video Solution

989. Tangents are drawn to the hyperbola $3 x^{2}-2 y^{2}=25$ from the point $\left(0, \frac{5}{2}\right)$ Find their equations.

(Watch Video Solution

990. Suppose that the foci of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ are $\left(f_{1}, 0\right)$ and $\left(f_{2}, 0\right)$ where $f_{1}>0$ and $f_{2}<0$. Let $P_{1} a n d P_{2}$ be two parabolas with a common vertex at $(0,0)$ and with foci at $\left(f_{1} .0\right)$ and ($2 f_{-} 2,0$), respectively. Let T_{1} be a tangent to P_{1} which passes through $\left(2 f_{2}, 0\right)$ and T_{2} be a tangents to P_{2}
which passes through $\left(f_{1}, 0\right)$. If m_{1} is the slope of T_{1} and m_{2} is the slope of T_{2}, then the value of $\left(\frac{1}{m 12}+m 22\right)$ is

- Watch Video Solution

991. From the center C of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, perpendicular $C N$ is drawn on any tangent to it at the point $P(a \sec \theta, b \tan \theta)$ in the first quadrant. Find the value of θ so that the area of $C P N$ is maximum.

- Watch Video Solution

992. A vertical line passing through the point $(h, 0)$ intersects the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$ at the points P and Q.Let the tangents to the ellipse at P and Q meet at R. If $\delta(h)$ Area of triangle $\delta P Q R$, and $\delta_{1} \max \frac{1}{2} \leq h \leq 1 \delta(h)$ A further
$\delta_{2} \min \frac{1}{2} \leq h \leq 1 \delta(h)$ Then $\frac{8}{\sqrt{5}} \delta_{1}-8 \delta_{2}$

- Watch Video Solution

993. A common tangent to $9 x^{2}-16 y^{2}=144$ and $x^{2}+y^{2}=9$, is

- Watch Video Solution

994. Find the equation of tangents to the curve $4 x^{2}-9 y^{2}=1$ which are parallel to $4 y=5 x+7$.

- Watch Video Solution

995. Find the equation of the locus of the middle points of the chords of the hyperbola $2 x^{2}-3 y^{2}=1$, each of which makes an angle of 45° with the x-axis.

- Watch Video Solution

996. Find the angle between the asymptotes of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
997. If a hyperbola passing through the origin has $3 x-4 y-1=0$ and $4 x-3 y-6=0$ as its asymptotes, then find the equation of its transvers and conjugate axes.

- Watch Video Solution

998. Let E1 and E2, be two ellipses whose centers are at the origin.The major axes of E 1 and E 2 , lie along the x -axis and the y -axis, respectively. Let S be the circle $x^{2}+(y-1)^{2}=2$. The straight line $x+y=3$ touches the curves S, E1 and E2 at P,Q and R, respectively. Suppose that $P Q=P R=\frac{2 \sqrt{2}}{3}$.If e1 and e2 are the eccentricities of E 1 and E 2 , respectively, then the correct expression(s) is(are):

- Watch Video Solution

999. A triangle has its vertices on a rectangular hyperbola. Prove that the orthocentre of the triangle also lies on the same hyperbola.

- Watch Video Solution

1000. From any point on any directrix of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$, a pari of tangents is drawn to the auxiliary circle. Show that the chord of contact will pass through the correspoinding focus of the ellipse.

- Watch Video Solution

1001. Find the equation of the asymptotes of the hyperbola $3 x^{2}+10 x y+9 y^{2}+14 x+22 y+7=0$

- Watch Video Solution

1002. A tangent is drawn to the ellipse to cut the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and to cut the ellipse $\frac{x^{2}}{c^{2}}+\frac{y^{2}}{d^{2}}=1$ at the points P and Q. If the tangents are at right angles, then the value of $\left(\frac{a^{2}}{c^{2}}\right)+\left(\frac{b^{2}}{d^{2}}\right)$ is

- Watch Video Solution

1003. $P Q$ and $R S$ are two perpendicular chords of the rectangular hyperbola $x y=c^{2}$ If C is the center of the rectangular hyperbola, then find the value of product of the slopes of $C P, C Q, C R$, and $C S$

- Watch Video Solution

1004. Ois the origin \& also the centre of two concentric circles having radii of the inner \& the outer circle as $a \& b$ respectively. A line $O P Q$ is drawn to cut the inner circle in P \& the outer circle in $Q . P R$ is drawn parallel to the y-axis \& $Q R$ is drawn parallel to the x-axis. Prove that the
locus of R is an ellipse touching the two circles. If the focii of this ellipse lie on the inner circle, find the ratio of inner: outer radii \& find also the eccentricity of the ellipse.

- Watch Video Solution

1005. If the tangents to the parabola $y^{2}=4 a x$ intersect the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at AandB, then find the locus of the point of intersection of the tangents at AandB

- Watch Video Solution

1006. The tangent at a point P on an ellipse intersects the major axis at T, andN is the foot of the perpendicular from P to the same axis. Show that the circle drawn on $N T$ as diameter intersects the auxiliary circle orthogonally.
1007. If $(a \sec \theta, b \tan \theta)$ and $(a \sec \phi, b \tan \phi)$ be two coordinate of the ends of a focal chord passing through $(a e, 0)$ of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ then $\tan \left(\frac{\theta}{2}\right) \tan \left(\frac{\phi}{2}\right)$ equals to

- Watch Video Solution

1008. From any point on the line $y=x+4$, tangents are drawn to the auxiliary circle of the ellipse $x^{2}+4 y^{2}=4$. If P and Q are the points of contact and AandB are the corresponding points of PandQ on he ellipse, respectively, then find the locus of the midpoint of $A B$

- Watch Video Solution

1009. Find the area of the triangle formed by any tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ with its asymptotes.

- Watch Video Solution

1010. If a triangle is inscribed in a n ellipse and two of its sides are parallel to the given straight lines, then prove that the third side touches the fixed ellipse.

- Watch Video Solution

1011. Normal are drawn to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at point θ_{1} andth η_{2} meeting the conjugate axis at $G_{1} a n d G_{2}$, respectively. If $\theta_{1}+\theta_{2}=\frac{\pi}{2}$, prove that $C G_{1} \dot{C} G_{2}=\frac{a^{2} e^{4}}{e^{2}-1}$, where C is the center of the hyperbola and e is the eccentricity.

- Watch Video Solution

1012. The tangent at a point $P(a \cos \varphi, b \sin \varphi)$ of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meets its auxiliary circle at two points, the chord joining which subtends a right angle at the center. Find the eccentricity of the ellipse.
1013. Find the product of the length of perpendiculars drawn from any point on the hyperbola $x^{2}-2 y^{2}-2=0$ to its asymptotes.

- Watch Video Solution

1014. Tangents are drawn to the ellipse from the point $\left.\left(\frac{a^{2}}{\sqrt{a^{2}-b^{2}}}, \sqrt{a^{2}+b^{2}}\right)\right)$. Prove that the tangents intercept on the ordinate through the nearer focus a distance equal to the major axis.

- Watch Video Solution

1015. Find the locus of point P such that the tangents drawn from it to the given ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meet the coordinate axes at concyclic points.
1016. Find the point (α, β) on the ellipse $4 x^{2}+3 y^{2}=12$, in the first quadrant, so that the area enclosed by the lines $y=x, y=\beta, x=\alpha$, and the x-axis is maximum.

- Watch Video Solution

1017. The ellipse $E_{1}: \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse E_{2} passing through the point (0,4) circumscribes the rectangle R The eccentricity of the ellipse E_{2} is $\frac{\sqrt{2}}{2}$ (b) $\frac{\sqrt{3}}{2}$ (c) $\frac{1}{2}$ (d) $\frac{3}{4}$

- Watch Video Solution

1018. On the ellipse $4 x^{2}+9 y^{2}=1$, the points at which the tangents are parallel to the line $8 x=9 y$ are $\left(\frac{2}{5}, \frac{1}{5}\right)$ (b) $\left(-\frac{2}{5}, \frac{1}{5}\right)\left(-\frac{2}{5},-\frac{1}{5}\right)$

- Watch Video Solution

1019. Find the eccentricity of the conic $4(2 y-x-3)^{2}-9(2 x+y-1)^{2}=80$

- Watch Video Solution

1020. The normal at a point P on the ellipse $x^{2}+4 y^{2}=16$ meets the x-axis at Q If M is the midpoint of the line segment $P Q$, then tocus of M intersects the latus rectums of the given ellipse at points. (a)
$\left(\pm \frac{(3 \sqrt{5})}{2} \pm \frac{2}{7}\right)$
(b) $\left(\pm \frac{(3 \sqrt{5})}{2} \pm \frac{\sqrt{19}}{7}\right)$
(c) $\left(\pm 2 \sqrt{3}, \pm \frac{1}{7}\right)$
$\left(\pm 2 \sqrt{3} \pm \frac{4 \sqrt{3}}{7}\right)$
(d)

- Watch Video Solution

1021. For all real values of m, the straight line $y=m x+\sqrt{9 m^{2}-4}$ is a tangent to which of the following certain hyperbolas? (a) $9 x^{2}+4 y^{2}=36$
(b) $4 x^{2}+9 y^{2}=36$ (c) $9 x^{2}-4 y^{2}=36$ (d) $4 x^{2}-9 y^{2}=36$

- Watch Video Solution

1022. Let E be the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and C be the circle $x^{2}+y^{2}=9$. Let Pand Q be the points $(1,2)$ and $(2,1)$, respectively. Then Q lies inside C but outside $E Q$ lies outside both CandE P lies inside both C and $E P$ lies inside C but outside E

- Watch Video Solution

1023. Two rods are rotating about two fixed points in opposite directions.

If they start from their position of coincidence and one rotates at the rate double that of the other, then find the locus of point of the intersection of the two rods.

- Watch Video Solution

1024. Statement 1 : There can be maximum two points on the line $p x+q y+r=0$, from which perpendicular tangents can be drawn to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ Statement 2: Circle $x^{2}+y^{2}=a^{2}+b^{2}$ and the given line can intersect at maximum two distinct points.

- Watch Video Solution

1025. Find the vertices of the hyperbola $9 x^{2}-16 y^{2}-36 x+96 y-252=0$

- Watch Video Solution

1026. Statement 1 : Circles $x^{2}+y^{2}=9 \quad$ and $(x-\sqrt{5})(\sqrt{2} x-3)+y(\sqrt{2} y-2)=0$ touch each other internally.

Statement 2: The circle described on the focal distance as diameter of the ellipse $4 x^{2}+9 y^{2}=36$ touches the auxiliary circle $x^{2}+y^{2}=9$ internally.
1027. If $A O B a n d C O D$ are two straight lines which bisect one another at right angles, show that the locus of a points P which moves so that $P A x P B=P C x P D$ is a hyperbola. Find its eccentricity.

- Watch Video Solution

1028. The area of the quadrilateral formed by the tangents at the endpoint of the latus rectum to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ is (A) $\frac{27}{4}$ sq. unit
(B) 9 sq. units (C) $\frac{27}{2}$ sq. unit (D) 27 sq. unit

- Watch Video Solution

1029. Find the equation of hyperbola : Whose foci are $(4,2)$ and $(8,2)$ and accentricity is 2 .

- Watch Video Solution

1030. If tangents are drawn to the ellipse $x^{2}+2 y^{2}=2$, then the locus of the midpoint of the intercept made by the tangents between the
coordinate axes is $\frac{1}{2 x^{2}}+\frac{1}{4 y^{2}}=1$ (b) $\frac{1}{4 x^{2}}+\frac{1}{2 y^{2}}=1 \frac{x^{2}}{2}+y^{2}=1$ $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$

- Watch Video Solution

1031. Two straight lines pass through the fixed points $(\pm a, 0)$ and have slopes whose products is $p>0$ Show that the locus of the points of intersection of the lines is a hyperbola.

- Watch Video Solution

1032. Each question has four choices: a, b, c and d, out of which only one is correct. Each question contains Statement 1 and Statement 2. Find the correct answer. Statement 1 : The locus of a moving point (x, y) satisfying $\sqrt{(x-2)^{2}+y^{2}}+\sqrt{(x-2)^{2}+y^{2}}=4$ is an ellipse. Statement 2 : The distance between $(-2,0)$ and $(2,0)$ is 4 .
1033. Find the lengths of the transvers and the conjugate axis, eccentricity, the coordinates of foci, vertices, the lengths of latus racta, and the equations of the directrices of the following hyperbola: $16 x^{2}-9 y^{2}=-144$.

- Watch Video Solution

1034. $O A$ and $O B$ are fixed straight lines, P is any point and $P M$ and $P N$ are the perpendiculars from P on $O A a n d O B$, respectively. Find the locus of P if the quadrilateral $O M P N$ is of constant area.

- Watch Video Solution

1035. Find the equation of hyperbola : whose axes are coordinate axes and the distances of one of its vertices from the foci are 3 and 1
1036. Statement 1 : The equations of the tangents drawn at the ends of the major axis of the ellipse $9 x^{2}+5 y^{2}-30 y=0$ is $y=0, y=6$. Statement 2: The tangents drawn at the ends of the major axis of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are always parallel to the y-axis.

- Watch Video Solution

1037. Find the equation of hyperbola : Whose center is (1,0), focus is (6,0) and the transverse axis is 6

- Watch Video Solution

1038. Let E_{1} andE E_{2}, respectively, be two ellipses $\frac{x^{2}}{a^{2}}+y^{2}=1$, andx $x^{2}+\frac{y^{2}}{a^{2}}=1$ (where a is a parameter). Then the locus of the points of intersection of the ellipses $E_{1} a n d E_{2}$ is a set of curves
comprising two straight lines (b) one straight line one circle (d) one parabola

- Watch Video Solution

1039. Find the equation of hyperbola : Whose center is $(3,2)$, one focus is $(5,2)$ and one vertex is $(4,2)$

- Watch Video Solution

1040. Consider the ellipse $\frac{x^{2}}{f\left(k^{2}+2 k+5\right)}+\frac{y^{2}}{f(k+11)}=1$. If $f(x)$ is a positive decr4easing function, then the set of values of k for which the major axis is the x-axis is $(-3,2)$ the set of values of k for which the major axis is the y-axis is $(-\infty, 2)$ the set of values of k for which the major axis is the y-axis is $(-\infty,-3) \cup(2, \infty)$ the set of values of k for which the major axis is the y-axis is $(-3,-\infty$,)
1041. An ellipse and a hyperbola have their principal axes along the coordinate axes and have a common foci separated by distance $2 \sqrt{3}$ The difference of their focal semi-axes is equal to 4 . If the ratio of their eccentricities is $3 / 7$, find the equation of these curves.

- Watch Video Solution

1042. Two concentric ellipses are such that the foci of one are on the other and their major axes are equal. Let eande' be their eccentricities. Then. the quadrilateral formed by joining the foci of the two ellipses is a parallelogram the angle θ between their axes is given by $\theta=\cos ^{-1} \sqrt{\frac{1}{e^{2}}+\frac{1}{e^{\prime 2}}=\frac{1}{e^{2} e^{\prime 2}}}$ If $e^{2}+e^{\prime 2}=1$, then the angle between the axes of the two ellipses is 90^{0} none of these

- Watch Video Solution

1043. If hyperbola $\frac{x^{2}}{b^{2}}-\frac{y^{2}}{a^{2}}=1$ passes through the focus of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then find the eccentricity of hyperbola.

(Watch Video Solution

1044. If the tangent drawn at point $\left(t^{2}, 2 t\right)$ on the parabola $y^{2}=4 x$ is the same as the normal drawn at point $(\sqrt{5} \cos \theta, 2 \sin \theta)$ on the ellipse
$4 x^{2}+5 y^{2}=20$, then $\theta=\cos ^{-1}\left(-\frac{1}{\sqrt{5}}\right)$ (b) $\theta=\cos ^{-1}\left(\frac{1}{\sqrt{5}}\right) t=-\frac{2}{\sqrt{5}}$
$t=-\frac{1}{\sqrt{5}}$

- Watch Video Solution

1045. If the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide, then find the value of b^{2}
1046. Statement 1 : Any chord of the conic $x^{2}+y^{2}+x y=1$ through $(0,0)$ is bisected at $(0,0)$. Statement 2 : The center of a conic is a point through which every chord is bisected.

- Watch Video Solution

1047. Find the coordinates of the foci, the eocentricity, the latus rectum, and the equations of directrices for the hyperbola $9 x^{2}-16 y^{2}-72 x+96 y-144=0$

- Watch Video Solution

1048. Statement 1 : If there is exactly one point on the line $3 x+4 y+5 \sqrt{5}=0$ from which perpendicular tangents can be drawn to the ellipse $\frac{x^{2}}{a^{2}}+y^{2}=1,(a>1)$, then the eccentricity of the ellipse is $\frac{1}{3}$. Statement 2 : For the condition given in statement 1, the given line must touch the circle $x^{2}+y^{2}=a^{2}+1$.
1049. If the latus rectum of a hyperbola forms an equilateral triangle with the vertex at the center of the hyperbola ,then find the eccentricity of the hyperbola.

- Watch Video Solution

1050. Statement 1 : For the ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{3}=1$, the product of the perpendiculars drawn from the foci on any tangent is 3 . Statement 2 : For the ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{3}=1$, the foot of the perpendiculars drawn from the foci on any tangent lies on the circle $x^{2}+y^{2}=5$ which is an auxiliary circle of the ellipse.

- Watch Video Solution

1051. If the latus rectum subtends a right angle at the center of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then find its eccentricity.

- Watch Video Solution

1052. Statement 1 : The locus of the center of a variable circle touching two circle $(x-1)^{2}+(y-2)^{2}=25$ and $(x-2)^{2}+(y-1)^{2}=16$ is an ellipse. Statement 2: If a circle $S_{2}=0$ lies completely inside the circle $S_{1}=0$, then the locus of the center of a variable circle $S=0$ that touches both the circles is an ellipse.

(Watch Video Solution

1053. If $P Q$ is a double ordinate of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that $O P Q$ is an equilateral triangle, O being the center of the hyperbola, then find the range of the eccentricity e of the hyperbola.

D Watch Video Solution

1054. Find the eccentricity of the hyperbola given by equations $x=\frac{e^{t}+e^{-1}}{2}$ and $y=\frac{e^{t}-e^{-1}}{3}, t \in R$

- Watch Video Solution

1055. A ray emanating from the point $(5,0)$ is INCIDENT on the hyperbola $9 x^{2}-16 y^{2}=144$ at the point P with abscissa 8 . Find the equation of the reflected ray after the first reflection if point P lies in the first quadrant.

- Watch Video Solution

1056. Statement 1 : If the line $x+y=3$ is a tangent to an ellipse with focie $(4,3)$ and $(6, y)$ at the point $(1,2)$ then $y=17$. Statement 2 : Tangent and normal to the ellipse at any point bisect the angle subtended by the foci at that point.

- Watch Video Solution

1057. Normal is drawn at one of the extremities of the latus rectum of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ which meets the axes at points AandB. Then find the area of triangle $O A B(O$ being the origin $)$.

- Watch Video Solution

1058. Statement 1 : The area of the ellipse $2 x^{2}+3 y^{2}=6$ is more than the area of the circle $x^{2}+y^{2}-2 x+4 y+4=0$. Statement 2 : The length f the semi-major axis of an ellipse is more that the radius of the circle.

- Watch Video Solution

1059. An ellipse and a hyperbola are confocal (have the same focus) and the conjugate axis of the hyperbola is equal to the minor axis of the ellipse. If $e_{1} a n d e_{2}$ are the eccentricities of the ellipse and the hyperbola, respectively, then prove that $\frac{1}{e 12}+\frac{1}{e 22}=2$.
1060. The distance between two directrices of a rectangular hyperbola is 10 units. Find the distance between its foci.

Watch Video Solution

1061. Statement 1 : Tangents are drawn to the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ at the points where it is intersected by the line $2 x+3 y=1$. The point of intersection of these tangents is $(8,6)$. Statement 2 : The equation of the chord of contact to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ from an external point is given by $\frac{x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}-1=0$

- Watch Video Solution

1062. Find the equation of normal to the hyperbola $3 x^{2}-y^{2}=1$ having slope $\frac{1}{3}$.
1063. a triangle $A B C$ with fixed base $B C$, the vertex A moves such that $\cos B+\cos C=4 \frac{\sin ^{2} A}{2}$ If a, bandc, denote the length of the sides of the triangle opposite to the angles $A, B, a n d C$, respectively, then $b+c=4 a$ (b) $b+c=2 a$ the locus of point A is an ellipse the locus of point A is a pair of straight lines

- Watch Video Solution

1064. Find the equation of normal to the hyperbola $x^{2}-9 y^{2}=7$ at point $(4,1)$.

- Watch Video Solution

1065. A circle has the same center as an ellipse and passes through the foci $F_{1} a n d F_{2}$ of the ellipse, such that the two cuves intersect at four points. Let P be any one of their point of intersection. If the major axis of
the ellipse is 17 and the area of triangle $P F_{1} F_{2}$ is 30 , then the distance between the foci is (a)13 (b)10 (c)11 (d) none of these

- Watch Video Solution

1066. C is the center of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ The tangent at any point P on this hyperbola meet the straight lines $b x-a y=0$ and $b x+a y=0$ at points $Q a n d R$, respectively. Then prove that $C \dot{C Q R}=a^{2}+b^{2}$

- Watch Video Solution

1067. The eccentricity of the conjugate hyperbola of the hyperbola $x^{2}-3 y^{2}=1$ is 2 (b) $2 \sqrt{3}$ (c) 4 (d) $\frac{4}{5}$

- Watch Video Solution

1068. The angle subtended by common tangents of two ellipses $4(x-4)^{2}+25 y^{2}=100 \operatorname{and} 4(x+1)^{2}+y^{2}$ at the origin is $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{6}$ (d) $\frac{\pi}{2}$

- Watch Video Solution

1069. $P N$ is the ordinate of any point P on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and \forall^{\prime} is its transvers axis. If Q divides $A P$ in the ratio $a^{2}: b^{2}$, then prove that $N Q$ is perpendicular to $A^{\prime} P$

- Watch Video Solution

1070. If $P Q R$ is an equilateral triangle inscribed in the auxiliary circle of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,(a>b)$, and $P^{\prime} Q^{\prime} R^{\prime}$ is the correspoinding triangle inscribed within the ellipse, then the centroid of triangle $P^{\prime} Q^{\prime} R^{\prime}$ lies at center of ellipse focus of ellipse between focus and center on major axis none of these
1071. Show that the equation $9 x^{2}-16 y^{2}-18 x+32 y-151=0$ represents a hyperbola. Find the coordinates of the centre, lengths of the axes, eccentricity, latus-rectum, coordinates of foci and vertices, equations of the directrices of the hyperbola.

- Watch Video Solution

1072. Find the equation of hyperbola : Whose center is ($-3,2$), one vertex is $(-3,4)$, and eccentricity is $\frac{5}{2}$.

- Watch Video Solution

1073. The locus of the point of intersection of the lines $\sqrt{3} x-y-4 \sqrt{3} t=0 \& \sqrt{3} t x+t y-4 \sqrt{3}=0$ (where t is a parameter) is a hyperbola whose eccentricity is:
1074. Find the eccentricity of the hyperbola with asymptotes $3 x+4 y=2$ and $4 x-3 y=2$.

Watch Video Solution

1075. An ellipse having foci at $(3,3)$ and $(-4,4)$ and passing through the origin has eccentricity equal to $\frac{3}{7}$ (b) $\frac{2}{7}$ (c) $\frac{5}{7}$ (d) $\frac{3}{5}$

- Watch Video Solution

1076. If SandS' are the foci, C is the center, and P is a point on a rectangular hyperbola, show that $S P \times S^{\prime} P=(C P)^{2}$

- Watch Video Solution

1077. PandQ are the foci of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and B is an end of the minor axis. If $P B Q$ is an equilateral triangle, then the eccentricity of the
ellipse is $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{3}$ (d) $\frac{1}{2}$ (d) $\frac{\sqrt{3}}{2}$

- Watch Video Solution

1078. If $P N$ is the perpendicular from a point on a rectangular hyperbola $x y=c^{2}$ to its asymptotes, then find the locus of the midpoint of $P N$

- Watch Video Solution

1079. A line of fixed length $a+b$ moves so that its ends are always on two fixed perpendicular straight lines. Then the locus of the point which divides this line into portions of length aandb is a/an ellipse (b) parabola straight line (d) none of these
1080. The equation of the transvers and conjugate axes of a hyperbola are, respectively, $x+2 y-3=0$ and $2 x-y+4=0$, and their respective lengths are $\sqrt{2}$ and $\frac{2}{\sqrt{3}}$ The equation of the hyperbola is
a) $\frac{2}{5}(x+2 y-3)^{2}-\frac{3}{5}(2 x-y+4)^{2}=1$
b) $\frac{2}{5}(x-y-4)^{2}-\frac{3}{5}(x+2 y-3)^{2}=1$
c) $2(2 x-y+4)^{2}-3(x+2 y-3)^{2}=1$
d) $2(x+2 y-3)^{2}-3(2 x-y+4)^{2}=1$

- Watch Video Solution

1081. Show that the acute angle between the asymptotes of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1,\left(a^{2}>b^{2}\right), \quad$ is $2 \cos ^{-1}\left(\frac{1}{e}\right)$, where e is the eccentricity of the hyperbola.

(Watch Video Solution

1082. With a given point and line as focus and directrix, a series of ellipses are described. The locus of the extremities of their minor axis is an (a)ellipse (b)a parabola (c)a hyperbola (d)none of these

- Watch Video Solution

1083. If the vertex of a hyperbola bisects the distance between its center and the correspoinding focus, then the ratio of the square of its conjugate axis to the square of its transverse axis is 2
(b) 4

6 (d) 3

- Watch Video Solution

1084. Find the equation of the hyperbola which has $3 x-4 y+7=0$ and $4 x+3 y+1=0$ as its asymptotes and which passes through the origin.

- Watch Video Solution

1085. If the ellipse $\frac{x^{2}}{4}+y^{2}=1$ meets the ellipse $x^{2}+\frac{y^{2}}{a^{2}}=1$ at four distinct points and $a=b^{2}-5 b+7$, then b does not lie in $[4,5]$ (b) $(-\infty, 2) \cup(3, \infty)(-\infty, 0)(d)[2,3]$

- Watch Video Solution

1086. The equation $16 x^{2}-3 y^{2}-3 y^{2}-32 x+12 y-44=0$ represents a hyperbola. the length of whose transvers axis is $4 \sqrt{3}$ the length of whose transvers axis is 4 whose center is $(-1,2)$ whose eccentricity is $\sqrt{\frac{19}{3}}$

(Watch Video Solution

1087. If the base of a triangle and the ratio of tangent of half of base angles are given, then identify the locus of the opposite vertex.

- Watch Video Solution

1088. S_{1}, S_{2}, are foci of an ellipse of major axis of length 10 units and P is any point on the ellipse such that perimeter of triangle $P S_{1} S_{2}$, is 15 . Then eccentricity of the ellipse is:

- Watch Video Solution

1089. Let $L L^{\prime}$ be the latus rectum through the focus of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and A^{\prime} be the farther vertex. If $A^{\prime} L L^{\prime}$ is equilateral, then the eccentricity of the hyperbola is (axes are coordinate axes). $\sqrt{3}$ (b) $\sqrt{3}+1$ $\left(\frac{\sqrt{3}+1}{\sqrt{2}}\right)$ (d) $\frac{(\sqrt{3}+1)}{\sqrt{3}}$

- Watch Video Solution

1090. Find the equation of the common tangent in the first quadrant of the circle $x^{2}+y^{2}=16$ and the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$.Also find the length of the intercept of the tangent between the coordinates axes.
1091. If the normal at $P(\theta)$ on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{2 a^{2}}=1$ meets the transvers axis at G, then prove that $A G \dot{A} G=a^{2}\left(e^{4} \sec ^{2} \theta-1\right)$, where AandA' are the vertices of the hyperbola.

- Watch Video Solution

1092. The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is : (A) $\frac{4}{3}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{\sqrt{3}}$ (D) $\sqrt{3}$

- Watch Video Solution

1093. Prove that in an ellipse, the perpendicular from a focus upon any tangent and the line joining the centre of the ellipse to the point of contact meet on the corresponding directrix.
1094. Find the asymptotes of the curve $x y-3 y-2 x=0$.

- Watch Video Solution

1095. With one focus of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ as the centre, a circle is drawn which is tangent to the hyperbola with no part of the circle being outside the hyperbola. The radius of the circle is

- Watch Video Solution

1096. The radius of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}$ and having its center $(0,3)$ is 4 (b) 3 (c) $\sqrt{12}$ (d) $\frac{7}{2}$

- Watch Video Solution

1097. Two circles are given such that they neither intersect nor touch. Then identify the locus of the center of variable circle which touches both the circles externally.

- Watch Video Solution

1098. If the eccentricity of the hyperbola $x^{2}-y^{2}(\sec) \alpha=5$ is $\sqrt{3}$ times the eccentricity of the ellipse $x^{2}(\sec)^{2} \alpha+y^{2}=25$, then a value of α is : (a) $\frac{\pi}{6}$
(b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$

- Watch Video Solution

1099. An ellipse has $O B$ as the semi-minor axis, FandF' as its foci, and $\angle F B F^{\prime}$ a right angle. Then, find the eccentricity of the ellipse.

- Watch Video Solution

1100. If A, B, and C are three points on the hyperbola $x y=c^{2}$ such that $A B$ subtends a right angle at C, then prove that $A B$ is parallel to the normal to the hyperbola at point C

- Watch Video Solution

1101. Statement 1 : If $(3,4)$ is a point on a hyperbola having foci $(3,0)$ and $(\lambda, 0)$, the length of the transverse axis being 1 unit, then λ can take the value 0 or 3 . Statement 2 : $\left|S^{\prime} P-S P\right|=2 a$, where SandS' are the two foci, $2 a$ is the length of the transverse axis, and P is any point on the hyperbola.

- Watch Video Solution

1102. Find the co-ordinates of all the points P on the ellipse, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$,for which the area of the triangle PON is maximum, where O denotes the origin and N , the foot of the perpendicular from O to tangent at P .
1103. If $\alpha+\beta=3 \pi$, then the chord joining the points α and β for the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ passes through which of the following points? Focus (b) Center One of the endpoints of the transverse exis. One of the endpoints of the conjugate exis.

- Watch Video Solution

1104. Statement 1 : If from any point $P\left(x_{1}, y_{1}\right)$ on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$, tangents are drawn to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then the corresponding chord of contact lies on an other branch of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ Statement 2 : From any point outside the hyperbola, two tangents can be drawn to the hyperbola.

- Watch Video Solution

1105. Consider the family ol circles $x^{2}+y^{2}=r^{2}, 2<r<5$. If in the first quadrant, the common tangnet to a circle of this family and the ellipse $4 x^{2}+25 y^{2}=100$ meets the co-ordinate axes at A and B , then find the equation of the locus of the mid-point of $A B$.

- Watch Video Solution

1106. Prove that the locus of the point of intersection of the tangents at the ends of the normal chords of the hyperbola $x^{2}-y^{2}=a^{2}$ is $a^{2}\left(y^{2}-x^{2}\right)=4 x^{2} y^{2}$

- Watch Video Solution

1107. If a point $\left(x_{1}, y_{1}\right)$ lies in the shaded region $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, shown in the figure, then $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}<0$ Statement 2: If $P\left(x_{1}, y_{1}\right)$ lies outside the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then $\frac{x 12}{a^{2}}-\frac{y 12}{b^{2}}<1$
1108. Let P be a point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,0<b<a$ and let the line parallel to y-axis passing through P meet the circle $x^{2}+y^{2}=a^{2}$ at the point Q such that P and Q are on the same side of x-axis. For two positive real numbers r and s, find the locus of the point R on $P Q$ such that $P R: R Q=r: s$ and P varies over the ellipse.

- Watch Video Solution

1109. Find the coordinates of the foci and the centre of the hyperbola

$$
\left(\frac{(3 x-4 y-12)^{2}}{100}\right)-\left(\frac{(4 x+3 y-12)^{2}}{225}\right)=1
$$

(Watch Video Solution

1110. Let $A B C$ be an equilateral triangle inscribed in the circle $x^{2}+y^{2}=a^{2}$.

Suppose pendiculars from A, B, C to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,(a>b)$
meets the ellipse respectivelily at $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ so that $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ lies on same side of major axis as A, B, C respectively. Prove that the normals to the ellipse drawn at the points $P Q$ nad R are concurrent.

- Watch Video Solution

1111. Number of points from where perpendicular tangents can be drawn to the curve $\frac{x^{2}}{16}-\frac{y^{2}}{25}=1$ is

- Watch Video Solution

1112. On which curve does the perpendicular tangents drawn to the hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$ intersect?

- Watch Video Solution

1113. The minimum area of the triangle formed by the tangent to $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the coordinate axes is (a) ab sq. units (b) $\frac{a^{2}+b^{2}}{2} s q$ units
(c) $\frac{(a+b)^{2}}{2}$ sq units (d) $\frac{a^{2}+a b+b^{2}}{3}$ sq. units

- Watch Video Solution

1114. Statement 1 : The equations of tangents to the hyperbola $2 x^{2}-3 y^{2}=6$ which is parallel to the line $y=3 x+4$ are $y=3 x-5$ and $y=3 x+5$. Statement 2 : For a given slope, two parallel tangents can be drawn to the hyperbola.

- Watch Video Solution

1115. P is a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, N$ is the foot of the perpendicular from P on the transverse axis. The tangent to the hyperbola at P meets the transvers axis at T If O is the center of the hyperbola, then find the value of $O T x O N$

- Watch Video Solution

1116. If $P=(x, y), F_{1}=(3,0), F_{2}=(-3,0)$, and $16 x^{2}+25 y^{2}=400$, then $P F_{1}+P F_{2}$ equal 8 (b) 6 (c) 10 (d) 12

- Watch Video Solution

1117. Statement 1 : Every line which cuts the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{16}=1$ at two distinct points has slope lying in $(-2,2)$ Statement 2 : The slope of the tangents of a hyperbola lies in $(-\infty,-2) \cup(2, \infty)$

- Watch Video Solution

1118. Find the equation of the hyperbola whose foci are $(8,3)$ and $(0,3)$ and eccentricity is $\frac{4}{3}$.

- Watch Video Solution

1119. The number of values of c such that the straight line $y=4 x+c$ touches the curve $\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$ is 0 (b) 1 (c) 2 (d) infinite

- Watch Video Solution

1120. Find the equation of tangents to the curve $4 x^{2}-9 y^{2}=1$ which are parallel to $4 y=5 x+7$.

- Watch Video Solution

1121. Statement 1 : The asymptotes of hyperbolas $3 x+4 y=2$ and $4 x-3 y=5$ are the bisectors of the transvers and conjugate axes of the hyperbolas. Statement 2 : The transverse and conjugate axes of the hyperbolas are the bisectors of the asymptotes.

- Watch Video Solution

1122. The line passing through the extremity A of the major exis and extremity B of the minor axis of the ellipse $x^{2}+9 y^{2}=9$ meets is auxiliary circle at the point M Then the area of the triangle with vertices at A, M, and O (the origin) is $31 / 10$ (b) 29/10 (c) 21/10 (d) 27/10

- Watch Video Solution

1123. Find the value of m for which $y=m x+6$ is tangent to the hyperbola $\frac{x^{2}}{100}-\frac{y^{2}}{49}=1$

- Watch Video Solution

1124. If a hyperbola passes through the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$. Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse and if the product of eccentricities of hyperbola and ellipse is 1 then the equation of a. hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1 \mathrm{~b}$. the
equation of hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1 \mathrm{c}$. focus of hyperbola is $(5,0) \mathrm{d}$. focus of hyperbola is $(5 \sqrt{3}, 0)$

- Watch Video Solution

1125. One the $x-y$ plane, the eccentricity of an ellipse is fixed (in size and position) by 1) both foci 2) both directrices 3)one focus and the corresponding directrix 4)the length of major axis.

- Watch Video Solution

1126. Find the equation of tangent to the conic $x^{2}-y^{2}-8 x+2 y+11=0$ at $(2,1)$

- Watch Video Solution

1127. Statement 1: A bullet is fired and it hits a target. An observer in the same plane heard two sounds: the crack of the rifle and the thud of the
bullet striking the target at the same instant. Then the locus of the observer is a hyperbola where the velocity of sound is smaller than the velocity of the bullet. Statement 2 : If the difference of distances of a point P from two fixed points is constant and less than the distance between the fixed points, then the locus of P is a hyperbola.

- Watch Video Solution

1128. The equation of one of the directrices of a hyperboda is $2 x+y=1$, the corresponding focus is $(1,2)$ and $e=\sqrt{3}$. Find the equation of the hyperbola and the coordinates of the center and the second focus.

- Watch Video Solution

1129. The distance of a point on the ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{2}=1$ from the center is
1130. Then the eccentric angle of the point is $\frac{\pi}{4}$ (b) $\frac{3 \pi}{4}$ (c) $\frac{5 \pi}{6}$ (d) $\frac{\pi}{6}$

- Watch Video Solution

1130. A hyperbola having the transverse axis of length $2 \sin \theta$ is confocal with the ellipse $3 x^{2}+4 y^{2}=12$. Then its equation is $x^{2} \operatorname{cosec}^{2} \theta-y^{2} \sec ^{2} \theta=1 \quad x^{2} \sec ^{2} \theta-y^{2} \operatorname{cosec}^{2} \theta=1 \quad x^{2} \sin ^{2} \theta-y^{2} \cos ^{2} \theta=1$ $x^{2} \cos ^{2} \theta-y^{2} \sin ^{2} \theta=1$

- Watch Video Solution

1131. If it is possible to draw the tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ having slope 2 , then find its range of eccentricity.

- Watch Video Solution

1132. The set of values of m for which it is possible to draw the chord $y=\sqrt{m} x+1$ to the curve $x^{2}+2 x y+\left(2+\sin ^{2} \alpha\right)^{y} \wedge 2=1$, which subtends a right angle at the origin for some value of α, is $[2,3]$ (b) $[0,1][1,3]$ (d) none of these
1133. Consider a branch of the hypebola $x^{2}-2 y^{2}-2 \sqrt{2} x-4 \sqrt{2} y-6=0$ with vertex at the point A. Let B be one of the end points of its latus rectum. If C is the focus of the hyperbola nearest to the point A, then the area of the triangle $A B C$ is (A) $1-\sqrt{\frac{2}{3}}$ (B) $\sqrt{\frac{3}{2}}-1$ (C) $1+\sqrt{\frac{2}{3}}$ (D) $\sqrt{\frac{3}{2}}+1$

- Watch Video Solution

1134. Find the equations of the tangents to the hyperbola $x^{2}-9 y^{2}=9$ that are drawn from $(3,2)$.

- Watch Video Solution

1135. Let $a a n d b$ be nonzero real numbers. Then the equation $\left(a x^{2}+b y^{2}+c\right)\left(x^{2}-5 x y+6 y^{2}\right)=0$ represents. four straight lines, when $c=0$ and a, b are of the same sign. two straight lines and a circle, when $a=b$ and c is of sign opposite to that a two straight lines and a hyperbola, when aandb are of the same sign and c is of sign opposite to
that of a a circle and an ellipse, when aandb are of the same sign and c is of sign opposite to that of a

- Watch Video Solution

1136. $\frac{x^{2}}{r^{2}-r-6}+\frac{y^{2}}{r^{2}-6 r+5}=1$ will represent ellipse if r lies in the interval

- Watch Video Solution

1137. Find the equations to the common tangents to the two hyperbolas $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$

- Watch Video Solution

1138. A parabola is drawn with focus at one of the foci of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. If the latus rectum of the ellipse and that of the parabola
are same, then the eccentricity of the ellipse is $1-\frac{1}{\sqrt{2}}$ (b) $2 \sqrt{2}-2 \sqrt{2}-1$ (d) none of these

- Watch Video Solution

1139. Let $\mathrm{P}(6,3)$ be a point on the hyperbola parabola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ If the normal at the point intersects the x-axis at (9,0), then the eccentricity of the hyperbola is

- Watch Video Solution

1140. Find the equation of the common tangent to the curves $y^{2}=8 x$ and $x y=-1$.

- Watch Video Solution

1141. If the maximum distance of any point on the ellipse $x^{2}+2 y^{2}+2 x y=1$ from its center is r, then r is equal to

(D) Watch Video Solution

1142. If a hyperbola passes through the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$. Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse and if the product of eccentricities of hyperbola and ellipse is 1 then the equation of a. hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1 \mathrm{~b}$. the equation of hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1 \mathrm{c}$. focus of hyperbola is $(5,0) \mathrm{d}$. focus of hyperbola is $(5 \sqrt{3}, 0)$

- Watch Video Solution

1143. Let P_{i} and Π^{\prime} be the feet of the perpendiculars drawn from the foci SandS ${ }^{\prime}$ on a tangent T_{i} to an ellipse whose length of semi-major axis is
1144. If $\sum_{i=0}^{10}\left(S P_{i}\right)\left(S^{\prime} \Pi^{\prime}\right)=2560$, then the value of eccentricity is $\frac{1}{5}$ (b) $\frac{2}{5}$ (c) $\frac{3}{5}$ (d) $\frac{4}{5}$
1145. An ellipse intersects the hyperbola $2 x^{2}-2 y=1$ orthogonally. The eccentricity of the ellipse is reciprocal to that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then (b) the foci of ellipse are $(\pm 1,0)$ (a) equation of ellipse is $x^{2}+2 y^{2}=2$ (d) the foci of ellipse are $(t 2,0)$ (c) equation of ellipse is $\left(x^{2} 2 y\right)$

- Watch Video Solution

1145. The number of points on the ellipse $\frac{x^{2}}{50}+\frac{y^{2}}{20}=1$ from which a pair of perpendicular tangents is drawn to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ is 0 (b) 2 (c) 1 (d) 4

- Watch Video Solution

1146. let the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be reciprocal to that of the ellipse $x^{2}+4 y^{2}=4$. if the hyperbola passes through a focus of the ellipse then: (a) the equation of the hyperbola is $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$ (b) a
focus of the hyperbola is $(2,0)$ (c) the eccentricity of the hyperbola is $\sqrt{\frac{5}{3}}$
(d) the equation of the hyperbola is $x^{2}-3 y^{2}=3$

- Watch Video Solution

1147. The equation of the ellipse whose axes are coincident with the coordinates axes and which touches the straight lines $3 x-2 y-20=0$ and
$x+6 y-20=0 \quad$ is $\quad \frac{x^{2}}{40}+\frac{y^{2}}{10}=1 \quad$ (b) $\quad \frac{x^{2}}{5}+\frac{y^{2}}{8}=1 \quad \frac{x^{2}}{10}+\frac{y^{2}}{40}=1$
$\frac{x^{2}}{40}+\frac{y^{2}}{30}=1$

- Watch Video Solution

1148. Tangents are drawn to the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ parallet to the sraight line $2 x-y=1$. The points of contact of the tangents on the hyperbola are (A) $\left(\frac{2}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ (B) $\left(-\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ (C) $(3 \sqrt{3},-2 \sqrt{2})$ (D) $(-3 \sqrt{3}, 2 \sqrt{2})$

- Watch Video Solution

1149. An ellipse with major and minor axes lengths $2 a$ and $2 b$, respectively, touches the coordinate axes in the first quadrant. If the foci are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, then the value of $x_{1} x_{2}$ and $y_{1} y_{2}$ is 9 a) a^{2} (b) b^{2} (c) $a^{2} b^{2}$ (d) $a^{2}+b^{2}$

- Watch Video Solution

1150. Let d be the perpendicular distance from the centre of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ to the tangent drawn at a point P on the ellipse. If $F_{1} \& F_{2}$ are the two foci of the ellipse, then show the $\left(P F_{1}-P F_{2}\right)^{2}=4 a^{2}\left[1-\frac{b^{2}}{d^{2}}\right]$

- Watch Video Solution

1151. From a point $P(1,2)$, two tangents are drawn to a hyperbola H in which one tangent is drawn to each arm of the hyperbola. If the
equations of the asymptotes of hyperbola H are $\sqrt{3} x-y+5=0$ and $\sqrt{3} x+y-1=0$, then the eccentricity of H is (a)2(b) $\frac{2}{\sqrt{3}}$ (c) $\sqrt{2}$ (d) $\sqrt{3}$

- Watch Video Solution

1152. A tangent to the ellipse $x^{2}+4 y^{2}=4$ meets the ellipse $x^{2}+2 y^{2}=6$ at P\&Q.

- Watch Video Solution

1153. The combined equation of the asymptotes of the hyperbola $2 x^{2}+5 x y+2 y^{2}+4 x+5 y=0 \quad$ is $\quad 2 x^{2}+5 x y+2 y^{2}+4 x+5 y+2=0$ $2 x^{2}+5 x y+2 y^{2}+4 x+5 y-2=02 x^{2}+5 x y+2 y^{2}=0$ none of these

- Watch Video Solution

1154. Let $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right), y_{1}<0, y_{2}<0$, be the end points of the latus rectum of the ellipse $x^{2}+4 y^{2}=4$. The equations of parabolas with
latus rectum PQ are

- Watch Video Solution

1155. Let any double ordinate $P N P^{\prime}$ of the hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$ be produced on both sides to meet the asymptotes in QandQ' . Then $P Q P Q$ is equal to 25 (b) 16 (c) 41 (d) none of these

- Watch Video Solution

1156. Tangents drawn from the point $P(2,3)$ to the circle $x^{2}+y^{2}-8 x+6 y+1=0$ points A and B. The circumcircle of the $\triangle P A B$ cuts the director circle of ellipse $\frac{(x-5)^{2}}{9}+\frac{(y-3)^{2}}{b^{2}}=1$ orthogonally. Find the value of b^{2}.
1157. For hyperbola whose center is at $(1,2)$ and the asymptotes are parallel to lines $2 x+3 y=0$ and $x+2 y=1$, the equation of the hyperbola passing through $(2,4)$ is $(2 x+3 y-5)(x+2 y-8)=40$ $(2 x+3 y-8)(x+2 y-8)=40(2 x+3 y-8)(x+2 y-5)=30$ none of these

- Watch Video Solution

1158. If from a point $P(0, \alpha)$, two normals other than the axes are drawn to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$, such that |alpha|

- Watch Video Solution

1159. The chord of contact of a point P w.r.t a hyperbola and its auxiliary circle are at right angle. Then the point P lies on conjugate hyperbola one of the directrix one of the asymptotes (d) none of these

- Watch Video Solution

1160. If the mid-point of a chord of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1(0,3)$, then length of the chord is $\frac{32}{5}$ (2) 16 (3) $\frac{4}{5} 12$ (5) 32

- Watch Video Solution

1161. If the intercepts made by tangent, normal to a rectangular $x^{2}-y^{2}=a^{2}$ with x -axis are a_{1}, a_{2} and with y -axis are b_{1}, b_{2} then $a_{1}, a_{2}+b_{1} b_{2}=$

- Watch Video Solution

1162. Let the distance between a focus and the corresponding directrix of an ellipse be 8 and the eccentricity be $\frac{1}{2}$. If the length of the minor axis is k, then $\frac{\sqrt{3} k}{2}$ is
1163. If $S=0$ is the equation of the hyperbola $x^{2}+4 x y+3 y^{2}-4 x+2 y+1=0$, then the value of k for which $S+K=0$ represents its asymptotes is 20 (b) -16 (c) -22 (d) 18

- Watch Video Solution

1164. Consider an ellipse $E, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, centered at point O andhaving $A B a n d C D$ as its major and minor axes, respectively. If S_{1} is one of the focus of the ellipse, the radius of the incircle of triangle $O C S_{1}$ is unit, and $O S_{1}=6$ units, then the value of $\frac{a-b}{2}$ is \qquad

- Watch Video Solution

1165. If two distinct tangents can be drawn from the Point $(\alpha, 2)$ on different branches of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ then (1) $|\alpha|<\frac{3}{2}$ (2) $|\alpha|>\frac{2}{3}$
(3) $|\alpha|>3$ (4) $\alpha=1$
1166. Suppose xandy are real numbers and that $x^{2}+9 y^{2}-4 x+6 y+4=0$.

Then the maximum value of $\frac{(4 x-9 y)}{2}$ is \qquad

- Watch Video Solution

1167. A hyperbola passes through $(2,3)$ and has asymptotes $3 x-4 y+5=0$ and $12 x+5 y-40=0$. Then, the equation of its transverse axis is $77 x-21 y-265=0$ $21 x-77 y+265=0$ $21 x-77 y-265=0$
$21 x+77 y-265=0$

(Watch Video Solution

1168. Rectangle ABCD has area 200.An ellipse with area 200π passes through A and C and has foci at B and D.Find the perimeter of the rectangle.
1169. The locus of the image of the focus of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1,(a>b)$, with respect to any of the tangents to the ellipse is:
(a) $(x+4)^{2}+y^{2}=100$
(b) $(x+2)^{2}+y^{2}=50$
(c) $(x-4)^{2}+y^{2}=100$
$(x+2)^{2}+y^{2}=50$

- Watch Video Solution

1170. If $x=9$ is the chord of contact of the hyperbola $x^{2}-y^{2}=9$ then the equation of the corresponding pair of tangents is (A) $9 x^{2}-8 y^{2}+18 x-9=0$
(B) $9 x^{2}-8 y^{2}-18 x+9=0$
(C) $9 x^{2}-8 y^{2}-18 x-9=0$
(D) $9 x^{\wedge} 2-8 y^{\wedge} 2+18 x+9=0^{\wedge}$

- Watch Video Solution

1171. A point on the ellipse $x^{2}+3 y^{2}=37$ where the normal is parallel to the line $6 x-5 y=2$ is $(5,-2)(b)(5,2)(c)(-5,2)(d)(-5,-2)$
1172. Let $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec c \phi, b \tan \phi)$ (where $\theta+\phi=\frac{\pi}{2}$ be two points on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ If (h, k) is the point of intersection of the normals at P and Q then k is equal to (A) $\frac{a^{2}+b^{2}}{a}$ (B) $-\left(\frac{a^{2}+b^{2}}{a}\right)$
$\frac{a^{2}+b^{2}}{b}$ (D) $-\left(\frac{a^{2}+b^{2}}{b}\right)$

- Watch Video Solution

1173. If a pair of variable straight lines $x^{2}+4 y^{2}+\alpha x y=0$ (where α is a real parameter) cut the ellipse $x^{2}+4 y^{2}=4$ at two points A and B , then the locus of the point of intersection of tangents at A and B is

- Watch Video Solution

1174. The line $2 x+y=1$ is tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If this line passes through the point of intersection of the nearest directrix and
the x-axis, then the eccentricity of the hyperbola is

- Watch Video Solution

1175. The equation $3 x^{2}+4 y^{2}-18+16 y+43=k$ represents an empty set, if $k<0$ represents an ellipse, if $k>0$ represents a point, if $k=0$ cannot represent a real pair of straight lines for any value of k

- Watch Video Solution

1176. Which of the following is/are true about the ellipse $x^{2}+4 y^{2}-2 x-16 y+13=0$? the latus rectum of the ellipse is 1 . The distance between the foci of the ellipse is $4 \sqrt{3}$ The sum of the focal distances of a point $P(x, y)$ on the ellipse is 4 . Line $y=3$ meets the tangents drawn at the vertices of the ellipse at points P and Q. Then $P Q$ subtends a right angle at any of its foci.

- Watch Video Solution

1177. If a ray of light incident along the line $3 x+(5-4 \sqrt{2}) y=15$ gets reflected from the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$, then its reflected ray goes along the line. $x \sqrt{2}-y+5=0$ (b) $\sqrt{2} y-x+5=0 \sqrt{2} y-x-5=0$ (d) none of these

- Watch Video Solution

1178. Which of the following is/are true? There are infinite positive integral values of a for which $(13 x-1)^{2}+(13 y-2)^{2}=\frac{(5 x+12 y-1)^{2}}{a}$ represents an ellipse. The minimum distance of a point $(1,2)$ from the ellipse $4 x^{2}+9 y^{2}+8 x-36 y+4=0$ is 1 If from a point $P(0, \alpha)$ two normals other than the axes are drawn to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ then $|\alpha|<\frac{9}{4}$. If the length of the latus rectum of an ellipse is one-third of its major axis, then its eccentricity is equal to $1 \sqrt{3}$

- Watch Video Solution

1179. If the sum of the slopes of the normal from a point P to the hyperbola $x y=c^{2}$ is equal to $\lambda\left(\lambda \in R^{+}\right)$, then the locus of point P is (a) $x^{2}=\lambda c^{2}(\mathrm{~b}) y^{2}=\lambda c^{2}(\mathrm{c}) x y=\lambda c^{2}(\mathrm{~d})$ none of these

- Watch Video Solution

1180. If the tangent at the point $P(\theta)$ to the ellipse $16 x^{2}+11 y^{2}=256$ is also a tangent to the circle $x^{2}+y^{2}-2 x=15$, then $\theta=\frac{2 \pi}{3}$ (b) $\frac{4 \pi}{3}$ (c) $\frac{5 \pi}{3}$ (d) $\frac{\pi}{3}$

- Watch Video Solution

1181. If the normal to the given hyperbola at the point $\left(c t, \frac{c}{t}\right)$ meets the curve again at $\left(c t^{\prime}, \frac{c}{t^{\prime}}\right)$, then (A) $t^{3} t^{\prime}=1$ (B) $t^{3} t^{\prime}=-1$ (C) $t t^{\prime}=1$ $t t^{\prime}=-1$
1182. If the equation of the ellipse is $3 x^{2}+2 y^{2}+6 x-8 y+5=0$, then which of the following is/are true? $e=\frac{1}{\sqrt{3}}$ Center is $(-1,2)$. Foci are $(-1,1) \operatorname{and}(-1,3)$ Directrices are $y=2 \pm \sqrt{3}$

- Watch Video Solution

1183. A normal to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$ has equal intercepts on the positive x - and y-axis. If this normal touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then $a^{2}+b^{2}$ is equal to 5 (b) 25 (c) 16 (d) none of these

- Watch Video Solution

1184. If the chord through the points whose eccentric angles are θ and φ on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ passes through a focus, then the value of $\tan \left(\frac{\theta}{2}\right) \tan \left(\frac{\varphi}{2}\right)$ is $\frac{1}{9}$ (b) -9 (c) $-\frac{1}{9}$ (d) 9
1185. The number of points on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=3$ from which mutually perpendicular tangents can be drawn to the circle $x^{2}+y^{2}=a^{2}$ is/are 0 (b) 2 (c) 3 (d) 4

- Watch Video Solution

1186. The coordinates $(2,3)$ and $(1,5)$ are the foci of an ellipse which passes through the origin. Then the equation of the (a)tangent at the origin is $(3 \sqrt{2}-5) x+(1-2 \sqrt{2}) y=0 \quad$ (b)tangent at the origin is $(3 \sqrt{2}+5) x+(1+2 \sqrt{2} y)=0 \quad$ (c)tangent at the origin is $(3 \sqrt{2}+5) x-(2 \sqrt{2+1}) y=0 \quad$ (d)tangent at the origin is $(3 \sqrt{2}-5)-y(1-2 \sqrt{2})=0$

- Watch Video Solution

1187. If tangents $P Q a n d P R$ are drawn from a variable point P to thehyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1,(a>b)$, so that the fourth vertex S of parallelogram $P Q S R$ lies on the circumcircle of triangle $P Q R$, then the locus of P is $x^{2}+y^{2}=b^{2}$ (b) $x^{2}+y^{2}=a^{2} x^{2}+y^{2}=a^{2}-b^{2}$ (d) none of these

- Watch Video Solution

1188. If the variable line $y=k x+2 h$ is tangent to an ellipse $2 x^{2}+3 y^{2}=6$, then the locus of $P(h, k)$ is a conic C whose eccentricity is 3 . Then the value of $3 e^{2}$ is \qquad

- Watch Video Solution

1189. The locus of a point, from where the tangents to the rectangular hyperbola $x^{2}-y^{2}=a^{2}$ contain an angle of 45^{0}, is

$$
\begin{aligned}
& \left(x^{2}+y^{2}\right)^{2}+a^{2}\left(x^{2}-y^{2}\right)=4 a^{2} \quad 2\left(x^{2}+y^{2}\right)^{2}+4 a^{2}\left(x^{2}-y^{2}\right)=4 a^{2} \\
& \left(x^{2}+y^{2}\right)^{2}+4 a^{2}\left(x^{2}-y^{2}\right)=4 a^{2}\left(x^{2}+y^{2}\right)+a^{2}\left(x^{2}-y^{2}\right)=a^{4}
\end{aligned}
$$

- Watch Video Solution

1190. The value of a for the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,(a>b)$, if the extremities of the latus rectum of the ellipse having positive ordinates lie on the parabola $x^{2}=2(y-2)$ is \qquad

- Watch Video Solution

1191. The tangent at a point P on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ meets one of the directrix at F If $P F$ subtends an angle θ at the corresponding focus, then $\theta=\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) $\frac{3 \pi}{4}$ (d) π

- Watch Video Solution

1192. If $x, y \in R$, satisfies the equation $\frac{(x-4)^{2}}{4}+\frac{y^{2}}{9}=1$, then the difference between the largest and the smallest valus of the expression $\frac{x^{2}}{4}+\frac{y^{2}}{9}$ is

- Watch Video Solution

1193. Nis the foot of the perpendicular from P on the transverse os Pisapoint on the hyperbola ais The tangent tothe laat P meets the transverse axis at T.Ifois the centre of the hy the OLON is equal to: (D)bela LA)

- Watch Video Solution

1194. The locus of the foot of the perpendicular from the center of the hyperbola $x y=1$ on a variable tangent is $\left(x^{2}-y^{2}\right)=4 x y$ (b) $\left(x^{2}-y^{2}\right)=\frac{1}{9}$ $\left(x^{2}-y^{2}\right)=\frac{7}{144}$ (d) $\left(x^{2}-y^{2}\right)=\frac{1}{16}$
1195. Find the range of parameter a for which a unique circle will pass through the points of intersection of the hyperbola $x^{2}-y^{2}=a^{2}$ and the parabola $y=x^{2}$ Also, find the equation of the circle.

- Watch Video Solution

1196. Show that the midpoints of focal chords of a hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ lie on another similar hyperbola.

- Watch Video Solution

1197. If the normal at the point $P(\theta)$ to the ellipse $\frac{x^{2}}{14}+\frac{y^{2}}{5}=1$ intersects it again at the point $Q(2 \theta)$, then $\cos \theta$ is equal to (A) $\frac{2}{3}$ (B) $\frac{-2}{3}$ (C) $\frac{3}{4}$ (D) non of these

- Watch Video Solution

1198. A tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ cuts the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at PandQ . Show that the locus of the midpoint of $P Q$ is $\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)^{2}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$

- Watch Video Solution

1199. Prove that the part of the tangent at any point of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ intercepted between the point of contact and the transvers axis is a harmonic mean between the lengths of the perpendiculars drawn from the foci on the normal at the same point.

(Watch Video Solution

1200. A variable line $y=m x-1$ cuts the lines $x=2 y$ and $y=-2 x$ at points $A a n d B$. Prove that the locus of the centroid of triangle $O A B$ (O being the origin) is a hyperbola passing through the origin.
1201. Statement 1 : If aandb are real numbers and $c>0$, then the locus represented by the equation $|a y-b x|=c \sqrt{(x-a)^{2}+(y-b)^{2}}$ is an ellipse. Statement 2:An ellipse is the locus of a point which moves in a plane such that the ratio of its distances from a fixed point (i.e., focus) to that from the fixed line (i.e., directrix) is constant and less than 1.

- Watch Video Solution

1202. Two tangents to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ having m_{1} andm m_{2} cut the axes at four concyclic points. Fid the value of $m_{1} m_{2}$

- Watch Video Solution

1203. A tangent having slope of $-\frac{4}{3}$ to the ellipse $\frac{x^{2}}{18}+\frac{y^{2}}{32}=1$ intersects the major and minor axes at point $A a n d B$, respectively. If C is the center
of the ellipse, then the area of triangle $A B C$ is 12 squnits (b) 24 squnits 36squnits (d) 48squnits

- Watch Video Solution

1204. Let P be a point on the hyperbola $x^{2}-y^{2}=a^{2}$, where a is a parameter, such that P is nearest to the line $y=2 x$ Find the locus of P

D Watch Video Solution

1205. Let P be any point on a directrix of an ellipse of eccentricity e, S be the corresponding focus, and C the center of the ellipse. The line $P C$ meets the ellipse at A The angle between $P S$ and tangent a A is α. Then α is equal to $\tan ^{-1} e(b) \frac{\pi}{2} \tan ^{-1}\left(1-e^{2}\right)$ (d) none of these

- Watch Video Solution

1206. If one of varying central conic (hyperbola) is fixed in magnitude and position, prove that the locus of the point of contact of a tangent drawn to it from a fixed point on the other axis is a parabole.

- Watch Video Solution

1207. If a tangent of slope 2 of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is normal to the circle $x^{2}+y^{2}+4 x+1=0$, then the maximum value of $a b$ is 4 (b) 2 (c) 1
(d) none of these

- Watch Video Solution

1208. A transvers axis cuts the same branch of a hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at Pand P^{\prime} and the asymptotes at Q and Q^{\prime}. Prove that $P Q=P^{\prime} Q^{\prime}$ and

$$
P Q^{\prime}=P^{\prime} Q
$$

1209. If $(\sqrt{3}) b x+a y=2 a b$ touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then the eccentric angle of the point of contact is $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$

- Watch Video Solution

1210. The eccentricity of the conic represented by $x^{2}-y^{2}-4 x+4 y+16=0$ is 1 (b) $\sqrt{2}$ (c) 2 (d) $\frac{1}{2}$

- Watch Video Solution

1211. If the ellipse $\frac{x^{2}}{a^{2}-7}+\frac{y^{2}}{13=5 a}=1$ is inscribed in a square of side length $\sqrt{2} a$, then a is equal to $\frac{6}{5}(-\infty,-\sqrt{7}) \cup\left(\sqrt{7}, \frac{13}{5}\right)$ $(-\infty,-\sqrt{7}) \cup\left(\frac{13}{5}, \sqrt{7},\right)$ no such a exists

- Watch Video Solution

1212. The curve for which the length of the normal is equal to the length of the radius vector is/are (a) circles
(b) rectangular
hyperbola (c) ellipses
(d) straight lines

- Watch Video Solution

1213. The locus of the point of intersection of the tangent at the endpoints of the focal chord of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(b<a)(a)$ is a an circle (b) ellipse (c) hyperbola (d) pair of straight lines

- Watch Video Solution

1214. A tangent drawn to hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $P\left(\frac{\pi}{6}\right)$ froms a triangle of area $3 a^{2}$ square units, with the coordinate axes, then the square of its eccentricity is (A) 15 (B) 24 (C) 17 (D) 14

- Watch Video Solution

1215. The normal at a variable point P on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ of eccentricity e meets the axes of the ellipse at $Q a n d R$ Then the locus of the midpoint of $Q R$ is a conic with eccentricity e^{\prime} such that e^{\prime} is independent of e (b) $e^{\prime}=1 e^{\prime}=e$ (d) $e^{\prime}=\frac{1}{e}$

- Watch Video Solution

1216. If the distance between the foci and the distance between the two directricies of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ are in the ratio $3: 2$, then $b: a$ is (a) $1: \sqrt{2}$ (b) $\sqrt{3}: \sqrt{2}$ (c) $1: 2$ (d) $2: 1$

- Watch Video Solution

1217. Any ordinate $M P$ of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ meets the auxiliary circle at Q Then locus of the point of intersection of normals at PandQ to the respective curves is $x^{2}+y^{2}=8$ (b) $x^{2}+y^{2}=34 \quad x^{2}+y^{2}=64$
$x^{2}+y^{2}=15$

(D) Watch Video Solution

1218. 1219. If the distance between two parallel tangents drawn to the hyperbola 1 is 2 , then their slope is equal 49 b . t d. none of these

- Watch Video Solution

1219. The number of distinct normal lines that can be drawn to the ellipse $\frac{x^{2}}{169}+\frac{y^{2}}{25}=1$ from the point $P(0,6)$ is (A) one (B) two (C) three (D) four

- Watch Video Solution

1220. An ellipse has point (1, -1$)$ and $(2,-1)$ as its foci and $x+y-5=0$ as one of its tangents. Then the point where this line touches the ellipse is
(a) $\left(\frac{32}{9}, \frac{22}{9}\right)$ (b) $\left(\frac{23}{9}, \frac{2}{9}\right)$ (c) $\left(\frac{34}{9}, \frac{11}{9}\right)$ (d) none of these

- Watch Video Solution

1221. The equation of the transvers axis of the hyperbola $(x-3)^{2}+(y+1)^{2}=(4 x+3 y)^{2}$ is $x+3 y=0$ (b) $4 x+3 y=93 x-4 y=13$ (d) $4 x+3 y=0$

- Watch Video Solution

1222. Find the values of a for which three distinct chords drawn from
$(a, 0)$ to the ellipse $x^{2}+2 y^{2}=1$ are bisected by the parabola $y^{2}=4 x$

- Watch Video Solution

1223. If a variable line has its intercepts on the coordinate axes eande, where $\frac{e}{2}$ ande $\bar{\square} 2$ are the eccentricities of a hyperbola and its conjugate hyperbola, then the line always touches the circle $x^{2}+y^{2}=r^{2}$, where $r=$ 1 (b) 2 (c) 3 (d) cannot be decided
1224. Prove that if any tangent to the ellipse is cut by the tangents at the endpoints of the major axis at TandT , then the circle whose diameter is \top ' will pass through the foci of the ellipse.

- Watch Video Solution

1225. A straight line has its extremities on two fixed straight lines and cuts off from them a triangle of constant area c^{2} Then the locus of the middle point of the line is $2 x y=c^{2}(\mathrm{~b}) x y+c^{2}=04 x^{2} y^{2}=c$ (d) none of these

- Watch Video Solution

1226. A circle concentric with the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and passes through the foci $F_{1} a n d F_{2}$ of the ellipse. Two curves intersect at fur points. Let P be any point of intersection. If the major axis of the ellipse is 15 and the area of triangle $P F_{1} F_{2}$ is 26 , then find the valueof $4 a^{2}-4 b^{2}$
1227. The length of the transverse axis of the rectangular hyperbola $x y=18$ is 6 (b) 12 (c) 18 (d) 9

- Watch Video Solution

1228. If P is any point on ellipse with foci $S_{1} \& S_{2}$ and eccentricity is $\frac{1}{2}$ such that

$$
\angle P S_{1} S_{2}=\alpha, \angle P S_{2} S_{1}=\beta, \angle S_{1} P S_{2}=\gamma
$$ then

$\cot \left(\frac{\alpha}{2}\right), \cot \left(\frac{\gamma}{2}\right), \cot \left(\frac{\beta}{2}\right)$ are in

- Watch Video Solution

1229. The locus of the point which is such that the chord of contact of tangents drawn from it to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ forms a triangle of constant area with the coordinate axes is a straight line (b) a hyperbola an ellipse (d) a circle
1230. Find the range of eccentricity of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, (where a > b) such that the line segment joining the foci does not subtend a right angle at any point on the ellipse.

- Watch Video Solution

1231. The angle between the lines joining origin to the points of intersection of the line $\sqrt{3} x+y=2$ and the curve $y^{2}-x^{2}=4$ is (A) $\tan ^{-1}\left(\frac{2}{\sqrt{3}}\right)$ (B) $\frac{\pi}{6}$ (C) $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (D) $\frac{\pi}{2}$

- Watch Video Solution

1232. the equation of the chord of contact of the pair of tangents drawn to the ellipse $4 x^{2}+9 y^{2}=36$ from the point (m, n) where $m n=m+n, m, n$
being nonzero positive integers, is $2 x+9 y=18$ (b) $2 x+2 y=1$ $4 x+9 y=18$ (d) none of these

- Watch Video Solution

1233. The equation to the chord joining two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the rectangular hyperbola $x y=c^{2}$ is: (A) $\frac{x}{x_{1}+x_{2}}+\frac{y}{y_{1}+y_{2}}=1$
$\frac{x}{x_{1}-x_{2}}+\frac{y}{y_{1}-y_{2}}=1$ (C) $\frac{x}{y_{1}+y_{2}}+\frac{y}{x_{1}+x_{2}}=1$ (D) $\frac{x}{y_{1}-y_{2}}+\frac{y}{x_{1}-x_{2}}=1$

- Watch Video Solution

1234. The equation of the line passing through the center and bisecting the chord $7 x+y-1=0$ of the ellipse $\frac{x^{2}}{1}+\frac{y^{2}}{7}=1$ is (a) $x=y$ (b) $2 x=y$ (c) $x=2 y(\mathrm{~d}) x+y=0$

- Watch Video Solution

1235. If $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right), R\left(x_{3}, y_{3}\right)$ and $S\left(x_{4}, y_{4}\right)$ are four concyclic points on the rectangular hyperbola) and $x y=c^{2}$, then coordinates of the orthocentre ofthe triangle $P Q R$ is

- Watch Video Solution

1236. Let P be any point on any directrix of an ellipse. Then the chords of contact of point P with respect to the ellipse and its auxiliary circle intersect at (a)some point on the major axis depending upon the position of point P (b)the midpoint of the line segment joining the center to the corresponding focus (c)the corresponding focus (d)none of these

- Watch Video Solution

1237. Suppose the circle having equation $x^{2}+y^{2}=3$ intersects the rectangular hyperbola $x y=1$ at points $A, B, C, a n d D$ The equation $x^{2}+y^{2}-3+\lambda(x y-1)=0, \lambda \in R$, represents. a pair of lines through the
origin for $\lambda=-3$ an ellipse through A, B, C, andD for $\lambda=-3$ a parabola through A, B, C, andD for $\lambda=-3$ a circle for any $\lambda \in R$

- Watch Video Solution

1238. If two points $P \& Q$ on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ whose centre is C be such that $C P$ is perpendicularal to $C Q$ and $a<b 1$, then prove that
$\frac{1}{C P^{2}}+\frac{1}{C Q^{2}}=\frac{1}{a^{2}}-\frac{1}{b^{2}}$.

- Watch Video Solution

1239. The line $y=m x-\frac{\left(a^{2}-b^{2}\right) m}{\sqrt{a^{2}+b^{2} m^{2}}}$ is normal to the ellise $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ for all values of m belonging to $(0,1)(\mathrm{b})(0, \infty)$ (c) $R(\mathrm{~d})$ none of these

- Watch Video Solution

1240. Let C be a curve which is the locus of the point of intersection of lines $x=2+m$ and $m y=4-m$ A circle $s \equiv(x-2)^{2}+(y+1)^{2}=25$ intersects the curve C at four points: P, Q, R, andS. If O is center of the curve C, then $O P^{2}+O P^{2}+O R^{2}+O S^{2}$ is

- Watch Video Solution

1241. If the normals at $P(\theta)$ and $Q\left(\frac{\pi}{2}+\theta\right)$ to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meet the major axis at Gandg, respectively, then $P G^{2}+Q g^{2}=$ $b^{2}\left(1-e^{2}\right)(2-e)^{2} a^{2}\left(e^{4}-e^{2}+2\right) a^{2}\left(1+e^{2}\right)\left(2+e^{2}\right) b^{2}\left(1+e^{2}\right)\left(2+e^{2}\right)$

- Watch Video Solution

1242. The ellipse $4 x^{2}+9 y^{2}=36$ and the hyperbola $a^{2} x^{2}-y^{2}=4$ intersect at right angles. Then the equation of the circle through the points of intersection of two conics is
1243. If the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is inscribed in a rectangle whose length to breadth ratio is $2: 1$, then the area of the rectangle is $4 . \frac{a^{2}+b^{2}}{7}$ (b) 4. $\frac{a^{2}+b^{2}}{3}$ 12. $\frac{a^{2}+b^{2}}{5}$ (d) 8. $\frac{a^{2}+b^{2}}{5}$

(Watch Video Solution

1244. The chord $P Q$ of the rectangular hyperbola $x y=a^{2}$ meets the axis of x at $A ; C$ is the midpoint of $P Q$; and O is the origin. Then $\triangle A C O$ is equilateral (b) isosceles right-angled (d) right isosceles

- Watch Video Solution

1245. If tangents $P Q$ and $P R$ are drawn from a point on the circle $x^{2}+y^{2}=25$ to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1,(b<4)$, so that the fourth vertex S of parallelogram $P Q S R$ lies on the circumcircle of triangle $P Q R$, then the eccentricity of the ellipse is
(a) $\frac{\sqrt{5}}{4}$
(b) $\frac{\sqrt{7}}{4}$
(c) $\frac{\sqrt{7}}{2}$
(d) $\frac{\sqrt{5}}{3}$

- Watch Video Solution

1246. The curve $x y=c,(c>0)$, and the circle $x^{2}+y^{2}=1$ touch at two points. Then the distance between the point of contacts is 1 (b) 2 (c) $2 \sqrt{2}$
(d) none of these

- Watch Video Solution

1247. An ellipse is sliding along the coordinate axes. If the foci of the ellipse are $(1,1)$ and $(3,3)$, then the area of the director circle of the ellipse (in square units) is 2π (b) 4π (c) 6π (d) 8π
1248. If S_{1} and S_{2} are the foci of the hyperbola whose length of the transverse axis is 4 and that of the conjugate axis is 6 , and S_{3} andS ${ }_{4}$ are the foci of the conjugate hyperbola, then the area of quadrilateral $S_{1} S_{3} S_{2} S_{4}$ is 24 (b) 26 (c) 22 (d) none of these

- Watch Video Solution

1249. The locus of the point which is such that the chord of contact of tangents drawn from it to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ forms a triangle of constant area with the coordinate axes is a straight line (b) a hyperbola an ellipse (d) a circle

- Watch Video Solution

1250. The equation of conjugate axis of the hyperbola $x y-3 y-4 x+7=0$ is $y+x=3$ (b) $y+x=7 y-x=3$ (d) none of these
1251. If SandS' S^{\prime} are the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$, and P is any point on it, then the range of values of $S P S^{\prime} P$ is (a) $9 \leq f(\theta) \leq 16$ (b) $9 \leq f(\theta) \leq 25$ (c) $16 \leq f(\theta) \leq 25$ (d) $1 \leq f(\theta) \leq 16$

Watch Video Solution

1252. The asymptote of the hyperbola $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ form with ans tangen to the hyperbola triangle whose area is $a^{2} \tan \lambda$ in magnitude then its eccentricity is: (a) $\sec \lambda$ (b) $\operatorname{cosec} \lambda$ (c) $\sec ^{2} \lambda$ (d) $\operatorname{cosec}^{2} \lambda$

- Watch Video Solution

1253. Let d_{1} andd $_{2}$ be the length of the perpendiculars drawn from the foci SandS' of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ to the tangent at any point P on the ellipse. Then, $S P: S^{\prime} P=d_{1}: d_{2}$ (b) $d_{2}: d_{1} d 12: d 22$ (d) $\sqrt{d_{1}}: \sqrt{d_{2}}$
1254. The asymptotes of the hyperbola $x y=h x+k y$ are $x-k=0$ and $y-h=0 x+h=0$ and $y+k=0 x-k=0$ and $y+h=0 x+k=0$ and $y-h=0$

- Watch Video Solution

1255. The line $x=t^{2}$ meets the ellipse $x^{2}+\frac{y^{2}}{9}=1$ at real and distinct points if and only if. $|t|<2$ (b) $|t|<1|t|>1$ (d) none of these

- Watch Video Solution

1256. The equation of a rectangular hyperbola whose asymptotes are $x=3$ and $y=5$ and passing through $(7,8)$ is $x y-3 y+5 x+3=0$ $x y+3 y+4 x+3=0 x y-3 y+5 x-3=0 x y-3 y+5 x+3=0$
1257. The eccentric angle of a point on the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$ at a distance of $5 / 4$ units from the focus on the positive x-axis is $\cos ^{-1}\left(\frac{3}{4}\right)$
$\pi-\cos ^{-1}\left(\frac{3}{4}\right) \pi+\cos ^{-1}\left(\frac{3}{4}\right)$ (d) none of these

- Watch Video Solution

1258. The center of a rectangular hyperbola lies on the line $y=2 x$ If one of the asymptotes is $x+y+c=0$, then the other asymptote is $6 x+3 y-4 c=0$ (b) $3 x+6 y-5 c=03 x-6 y-c=0$ (d) none of these

- Watch Video Solution

1259. $(x-1)(y-2)=5$ and $(x-1)^{2}+(y+2)^{2}=r^{2}$ intersect at four points A, B, C, D and if centroid of $\triangle A B C$ lies on line $y=3 x-4$, then locus of D is

- Watch Video Solution

1260. The eccentricity of the locus of point $(2 h+2, k)$, where (h, k) lies on the circle $x^{2}+y^{2}=1$, is $\frac{1}{3}$ (b) $\frac{\sqrt{2}}{3}$ (c) $\frac{2 \sqrt{2}}{3}$ (d) $\frac{1}{\sqrt{3}}$

- Watch Video Solution

1261. If the foci of a hyperbola lie on $y=x$ and one of the asymptotes is $y=2 x$, then the equation of the hyperbola, given that it passes through
$(3,4)$, is
(a) $x^{2}-y^{2}-\frac{5}{2} x y+5=0$
(b) $2 x^{2}-2 y^{2}+5 x y+5=0$
$2 x^{2}+2 y^{2}+5 x y+10=0(\mathrm{~d})$ none of these

- Watch Video Solution

1262. The auxiliary circle of a family of ellipse passes through the origin and makes intercepts of 8 and 6 units on the x - and y-axis, respectively. If the eccentricity of all such ellipses is $1 / 2$, then the locus of the focus will
be $\frac{x^{2}}{16}+\frac{y^{2}}{9}=254 x^{2}+4 y^{2}-32 y+75=0 \frac{x^{2}}{16}+\frac{y^{2}}{9}=25$ (d) None of these
1263. A man running around a race course notes that the sum of the distances of two flagposts from him a always 10 m and the distance between the flag posts is 8 m . Then the area of the path he encloses in square meters is 15π (b) 20π (c) 27π (d) 30π

- Watch Video Solution

1264. If tangents $O Q$ and $O R$ are dawn to variable circles having radius r and the center lying on the rectangular hyperbola $x y=1$, then the locus of the circumcenter of triangle $O Q R$ is (O being the origin). $x y=4$ (b) $x y=\frac{1}{4} x y=1$ (d) none of these

- Watch Video Solution

1265. Let SandS' be two foci of the ellipse $\frac{x^{2}}{a^{3}}+\frac{y^{2}}{b^{2}}=1$. If a circle described on SS as diameter intersects the ellipse at real and distinct
points, then the eccentricitye of the ellipse satisfies $c=\frac{1}{\sqrt{2}}$ (b)
$e \in\left(\frac{1}{\sqrt{2}}, 1\right) e \in\left(0, \frac{1}{\sqrt{2}}\right)$ (d) none of these

- Watch Video Solution

1266. The equation, $2 x^{2}+3 y^{2}-8 x-18 y+35=K$ represents

- Watch Video Solution

1267. If the curves $\frac{x^{2}}{4}+y^{2}=1$ and $\frac{x^{2}}{a^{2}}+y^{2}=1$ for a suitable value of a cut on four concyclic points, the equation of the circle passing through these four points is $x^{2}+y^{2}=2(b) x^{2}+y^{2}=1 x^{2}+y^{2}=4$ (d) none of these

- Watch Video Solution

1268. If the normal at P to the rectangular hyperbola $x^{2}-y^{2}=4$ meets the axes at G and gand C is the center of the hyperbola, then $P G=P C$ (b)
$P g=P C P G-P g(\mathrm{~d}) G g=2 P C$

- Watch Video Solution

1269. Each of the four inequalities given below defines a region in the $x y$ plane. One of these four regions does nothave the following property. For any two points $\left(x_{1}, y_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ in the region the piont $\left(\frac{x_{1}+x_{2}}{2} \cdot \frac{y_{1}+y_{2}}{2}\right)$ is also in the region. The inequality defining this region is

- Watch Video Solution

1270. The lines parallel to the normal to the curve $x y=1$ is/are $3 x+4 y+5=0$ (b) $3 x-4 y+5=04 x+3 y+5=0$ (d) $3 y-4 x+5=0$

- Watch Video Solution

1271. From the point $(2,2)$ tangent are drawn to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$. Then the point of contact lies in the first quadrant second quadrant third quadrant (d) fourth quadrant

- Watch Video Solution

1272. If the two intersecting lines intersect the hyperbola and neither of them is a tangent to it, then the number of intersecting points are
1
(b) 2
(c) 3
(d) 4

(Watch Video Solution

1273. For the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, let n be the number of points on the plane through which perpendicular tangents are drawn. If $n=1$, the $\neq=\sqrt{2}$ If ' $n>1$, the n0sqrt(2)' None of these
1274. The differential equation $\frac{d x}{d y}=\frac{3 y}{2 x}$ represents a family of hyperbolas (except when it represents a pair of lines) with eccentricity. $\sqrt{\frac{3}{5}}$ (b) $\sqrt{\frac{5}{3}}$ $\sqrt{\frac{2}{5}}$ (d) $\sqrt{\frac{5}{2}}$

- Watch Video Solution

1275. Circle are drawn on the chords of the rectangular hyperbola $x y=4$ parallel to the line $y=x$ as diameters. All such circles pass through two fixed points whose coordinates are $(2,2)$ (b) $(2,-2)$ (c) $(-2,2)$ (d) (-2,-2)

- Watch Video Solution

1276. The equation $(x-\alpha)^{2}+(y-\beta)^{2}=k(l x+m y+n)^{2}$ represents a parabola for $k<\left(l^{2}+m^{2}\right)^{-1}$ an ellipse for ${ }^{`}\left(1^{\wedge} 2+m^{\wedge} 2\right)^{\wedge}(-1) a p \oint \circ \leq f$ or k=0
1277. If $x, y \in R$, then the equation
$3 x^{4}-2(19 y+8) x^{2}+\left(361 y^{2}+2\left(100+y^{4}\right)+64,=2\left(190 y+2 y^{2}\right)\right.$
represents in rectangular Cartesian system a/an (a)parabola (b) hyperbola (c)circle (d) ellipse

(Watch Video Solution

1278. The equation $\left|\sqrt{x^{2}+(y-1)^{2}}-\sqrt{x^{2}+(y+1)^{2}}\right|=K$ will represent a hyperbola for $K \in(0,2)$ (b) $K \in(-2,1) K \in(1, \infty)$ (d) $K \in(0, \infty)$

(Watch Video Solution

1279. A variable chord of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1,(b>a)$, subtends a right angle at the center of the hyperbola if this chord touches. a fixed circle concentric with the hyperbola a fixed ellipse concentric with the
hyperbola a fixed hyperbola concentric with the hyperbola a fixed parabola having vertex at (0,0).

- Watch Video Solution

1280. Show that the equation $9 x^{2}-16 y^{2}-18 x+32 y-151=0$ represents a hyperbola. Find the coordinates of the centre, lengths of the axes, eccentricity, latus-rectum, coordinates of foci and vertices, equations of the directrices of the hyperbola.

- Watch Video Solution

1281. For which of the hyperbolas, can we have more than one pair of perpendicular tangents? $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$ (b) $\frac{x^{2}}{4}-\frac{y^{2}}{9}=-1 x^{2}-y^{2}=4$ $x y=44$

- Watch Video Solution

1282. If $(5,12)$ and $(24,7)$ are the foci of an ellipse passing through the origin, then find the eccentricity of the ellipse.

- Watch Video Solution

1283. If $(5,12)$ and $(24,7)$ are the foci of a hyperbola passing through the
origin, then $e=\frac{\sqrt{386}}{12}$ (b) $e=\frac{\sqrt{386}}{13} L R=\frac{121}{6}$ (d) $L R=\frac{121}{3}$

- Watch Video Solution

1284. Tangents are drawn from any point on the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ to the circle $x^{2}+y^{2}=9$. Find the locus of the midpoint of the chord of contact.

- Watch Video Solution

1285. If the circle $x^{2}+y^{2}=a^{2}$ intersects the hyperbola $x y=c^{2}$ at four points $\quad P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right), R\left(x_{3}, y_{3}\right), \quad$ and $\quad S\left(x_{4}, y_{4}\right)$, then $x_{1}+x_{2}+x_{3}+x_{4}=0 y_{1}+y_{2}+y_{3}+y_{4}=0 x_{1} x_{2} x_{3} x_{4}=C^{4} y_{1} y_{2} y_{3} y_{4}=C^{4}$

- Watch Video Solution

1286. If the foci of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ coincide with the foci of $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ and the eccentricity of the hyperbola is 2 , then $a^{2}+b^{2}=16$ there is no director circle to the hyperbola the center of the director circle is $(0,0)$. the length of latus rectum of the hyperbola is 12

- Watch Video Solution

1287. The locus of a point whose chord of contact with respect to the circle $x^{2}+y^{2}=4$ is a tangent to the hyperbola $x y=1$ is a/an (a)ellipse (b) circle (c)hyperbola (d) parabola
1288. The equation $\frac{x^{2}}{1-r}-\frac{y^{2}}{1+r}=1, r>1$, represents (a)an ellipse (b) a hyperbola (c)a circle (d) none of these

- Watch Video Solution

1289. An ellipse has eccentricity $\frac{1}{2}$ and one focus at the point $P\left(\frac{1}{2}, 1\right)$. Its one directrix is the comionand tangent nearer to the point the P to the hyperbolaof $x^{2}-y^{2}=1$ and the circle $x^{2}+y^{2}=1$.Find the equation of the ellipse.

- Watch Video Solution

1290. A tangent drawn to hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $P\left(\frac{\pi}{6}\right)$ froms a triangle of area $3 a^{2}$ square units, with the coordinate axes, then the square of its eccentricity is (A) 15 (B) 24 (C) 17 (D) 14
1291. If the eccentricity of the hyperbola $x^{2}-y^{2}(\sec) \alpha=5$ is $\sqrt{3}$ times the eccentricity of the ellipse $x^{2}(\sec)^{2} \alpha+y^{2}=25$, then a value of α is: (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$

- Watch Video Solution

1292. If L is the length of the latus rectum of the hyperbola for which $x=3 a n d y=2$ are the equations of asymptotes and which passes through the point $(4,6)$, then the value of $\frac{L}{\sqrt{2}}$ is \qquad

- Watch Video Solution

1293. If the chord $x \cos \alpha+y \sin \alpha=p$ of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{18}=1$ subtends a right angle at the center, and the diameter of the circle, concentric with the hyperbola, to which the given chord is a tangent is d, then the value of $\frac{d}{4}$ is

(D) Watch Video Solution

1294. If the vertex of a hyperbola bisects the distance between its center and the correspoinding focus, then the ratio of the square of its conjugate axis to the square of its transverse axis is 2 (b) 4

6 (d) 3

- Watch Video Solution

1295. If the distance between two parallel tangents having slope m drawn to the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{49}=1$ is 2 , then the value of $2|m|$ is

- Watch Video Solution

1296. The area of triangle formed by the tangents from the point $(3,2)$ to the hyperbola $x^{2}-9 y^{2}=9$ and the chord of contact w.r.t. the point $(3,2)$ is \qquad
1297. If a variable line has its intercepts on the coordinate axes eande', where $\frac{e}{2}$ ande $\bar{\square} 2$ are the eccentricities of a hyperbola and its conjugate hyperbola, then the line always touches the circle $x^{2}+y^{2}=r^{2}$, where $r=$ 1 (b) 2 (c) 3 (d) cannot be decided

Watch Video Solution

1298. If tangents drawn from the point $(a, 2)$ to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ are perpendicular, then the value of a^{2} is \qquad

- Watch Video Solution

1299. If the hyperbola $x^{2}-y^{2}=4$ is rotated by 45^{0} in the anticlockwise direction about its center keeping the axis intact, then the equation of the hyperbola is $x y=a^{2}$, where a^{2} is equal to \qquad
1300. Find the point on the hyperbola $\frac{x^{2}}{24}-\frac{y^{2}}{18}=1$ which is nearest to the line $3 x+2 y+1=0$ and compute the distance between the point and the line.

- Watch Video Solution

1301. The number of possible tangents which can be drawn to the curve $4 x^{2}-9 y^{2}=36$, which are perpendicular to the straight line $5 x+2 y-10=0$, is (A) 0 (B) 1 (C) 2 (D) 4

- Watch Video Solution

1302. If values of a , for which the line $y=a x+2 \sqrt{5}$ touches the hyperbola $16 x^{2}-9 y^{2}=144$ are the roots of the equation $x^{2}-\left(a_{1}+b_{1}\right) x-4=0$, then the values of $a_{1}+b_{1}$ is
1303. If the angle between the asymptotes of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is 120^{0} and the product of perpendiculars drawn from the foci upon its any tangent is 9 , then the locus of the point of intersection of perpendicular tangents of the hyperbola can be (a) $x^{2}+y^{2}=6$ (b) $x^{2}+y^{2}=9$
$x^{2}+y^{2}=3$ (d) $x^{2}+y^{2}=18$

- Watch Video Solution

1304. The sides $A C a n d A B$ of a $A B C$ touch the conjugate hyperbola of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If the vertex A lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then the side $B C$ must touch parabola (b) circle hyperbola (d) ellipse

D Watch Video Solution

1305. The tangent at a point P on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ passes through the point $(0,-b)$ and the normal at P passes through the point
$(2 a \sqrt{2}, 0)$. Then the eccentricity of the hyperbola is 2 (b) $\sqrt{2}$ (c) 3 (d) $\sqrt{3}$

- Watch Video Solution

1306. If $a x+b y=1$ is tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then $a^{2}-b^{2}$ is equal to (A) $\frac{1}{a^{2} e^{2}}$ (B) $a^{2} e^{2}$ (C) $b^{2} e^{2}$ (D) none of these

- Watch Video Solution

1307. The locus of a point whose chord of contact with respect to the circle $x^{2}+y^{2}=4$ is a tangent to the hyperbola $x y=1$ is a/an (a)ellipse (b) circle (c)hyperbola (d) parabola

- Watch Video Solution

1308. Locus of the feet of the perpendiculars drawn from either foci on a variable tangent to the hyperbola $16 y^{2}-9 x^{2}=1$ is
1309. The locus of the foot of the perpendicular from the center of the hyperbola $x y=1$ on a variable tangent is $\left(x^{2}-y^{2}\right)=4 x y$ (b) $\left(x^{2}-y^{2}\right)=\frac{1}{9}$ $\left(x^{2}-y^{2}\right)=\frac{7}{144}$ (d) $\left(x^{2}-y^{2}\right)=\frac{1}{16}$

- Watch Video Solution

1310. If the line $2 x+\sqrt{6} y=2$ touches the hyperbola $x^{2}-2 y^{2}=4$, then the point of contact is

- Watch Video Solution

1311. Which of the following is independent of α in the hyperbola ` $(0<$ alpha

- Watch Video Solution

1312. Consider the graphs ofy $=A x^{2}$ and $y^{2}+3=x^{2}+4 y$, where A is a positive constant and $x, y \in R$.Number of points in which the two graphs intersect, is

- Watch Video Solution

1313. nd are inclined at avgicsTangents are drawn from the point (α, β) to the hyperbola $3 x^{2}-2 y^{2}=6$ and are inclined atv angle θ and ϕ to the $x-$ axis.If $\tan \theta \cdot \tan \phi=2$, prove that $\beta^{2}=2 \alpha^{2}-7$.

- Watch Video Solution

1314. The eccentricity of the hyperbola
$\left|\sqrt{(x-3)^{2}+(y-2)^{2}}-\sqrt{(x+1)^{2}+(y+1)^{2}}\right|=1$ is

- Watch Video Solution

1315. If $y=m x+c$ is tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, having eccentricity 5 , then the least positive integral value of m is \qquad

D Watch Video Solution

1316. $A(-2,0)$ and $B(2,0)$ are two fixed points and P 1s a point such that $P A-P B=2$ Let S be the circle $x^{2}+y^{2}=r^{2}$, then match the following. If $r=2$, then the number of points P satisfying $P A-P B=2$ and lying on $x^{2}+y^{2}=r^{2}$ is

- Watch Video Solution

