

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

LOGARITHM

Solved Examples And Exercises

1. Solve:
$$(\log)_{\left(\log
ight)_{2}\left(rac{x}{x}
ight)}\left(x^{2}-10x+22
ight)>0$$

Watch Video Solution

2. Solve:
$$(\log)_{x+rac{1}{x}}\log_2\left(rac{x-1}{x+2}
ight)>0$$

3. Solve:
$$(\log)_{0.5} rac{3-x}{x+2} < 0$$

4. Solve :
$$(\log)_2rac{x-1}{x-2}>0$$

Watch Video Solution

5. Solve
$$(\log)_{0.2}|x-3|\geq 0.$$

Watch Video Solution

6. Solve
$$\log_2 |x-1| < 1$$

Watch Video Solution

7. Solve : $2(\log)_3 x - 4(\log)_x 27 \leq 5~(x>1)$

8. Solve :
$$\left(\log\right)_{\left(\,x\,+\,3\,
ight)}\left(x^2\,-\,x
ight)\,<\,1$$

9. Solve
$$(\log)_{0.04}(x-1) \geq (\log)_{0.2}(x-1)$$

10. Solve:
$$(\log)_3 (2x^2 + 6x - 5) > 1$$

Watch Video Solution

11. If the equation $2^x + 4^y = 2^y + 4^x$ is solved for y in terms of x where x < 0, then the sum of the solution is (a) $x(\log)_2(1-2^x)$ (b) $x + (\log)_2(1-2^x)$ (c) $(\log)_2(1-2^x)$ (d) $x(\log)_2(2^x+1)$

12. If $\frac{\log x}{b-c} = \frac{\log y}{c-a} = \frac{\log z}{a-b}$, then which of the following is/are true? zyz = 1 (b) $x^a y^b z^c = 1 x^{b+c} y^{c+b} = 1$ (d) $xyz = x^a y^b z^c$

Watch Video Solution

13. If $(\log)_2 x + (\log)_2 y \ge 6$, then the least value of x + y is 4 (b) 8 (d) 16

(d) 32

Watch Video Solution

14. Solve :
$$(\log)_{0.3} ig(x^2-x+1ig) > 0$$

15. Solve
$$1 < \left(\log\right)_2(x-2) \leq 2.$$

16. Solve :
$$6(\log_x 2 - (\log_4 x) + 7 = 0.$$

17. Solve:
$$4^{(\log_2\log x)} = \log x - (\log x)^2 + 1$$
 (base is e)

18. Solve:
$$4(\log)_{rac{x}{2}}ig(\sqrt{x}ig)+2(\log)_{4x}ig(x^2ig)=3(\log)_{2x}ig(x^3ig)$$
 .

Watch Video Solution

19. Solve
$$4^{(\log)_9 x} - 6x^{(\log)_9 2} + 2^{(\log)_3 27} = 0$$

20. Solve:
$$rac{1}{4}x^{los_2\sqrt{x}}=\left(2.~x^{\left(\log
ight)_2x}
ight)^{rac{1}{4}}$$

21. Solve:
$$|x-1|^{(\log)_{10}x}$$
 ^ $2-(\log)_{10}x^2=|x-1|^3$

Watch Video Solution

22. Solve
$$(\log)_2(x-1) > 4$$
.

Watch Video Solution

23. Solve
$$(\log)_3(x-2) \le 2$$
.

24. If x_1andx_2 are the roots of the equation $e^2 \cdot x^{\ln x} = x^3$ with $x_1 > x_2$, then $x_1 = 2x_2$ (b) $x_1 = x_2^2$ (c) $2x_1 = x_2^2$ (d) $x_1^2 = x_2^3$ Watch Video Solution

25. If
$$xy^2 = 4and(\log)_3((\log)_2 x) + (\log)_{\frac{1}{3}}((\log)_{\frac{1}{2}}y) = 1$$
,then x equals (a)4 (b)8 (c)16 (d)64

Watch Video Solution

26.
$$x^{\log_5 x} > 5$$
 implies $x \in$

Watch Video Solution

27. The number of real values of the parameter k for which $(\log_{16} x)^2 - (\log)_{16} x + (\log)_{16} k = 0$ with real coefficients will have exactly one solution is (1)2 (b) 1 (c) 4 (d) none of these

28. If $S = \left\{x \in R: \left((\log)_{0.6} 0.216\right) (\log)_5 (5-2x) \le 0\right\}$, then S is equal to $(2.5,\infty)$ (b) [2,2.5) (c) (2,2.5) (d) (0,2.5)

Watch Video Solution

29. If
$$S = \left\{x \in N \colon 2 + (\log)_2 \sqrt{x+1} > 1 - (\log)_{rac{1}{2}} \sqrt{4-x^2}
ight\}$$
 , then (a)

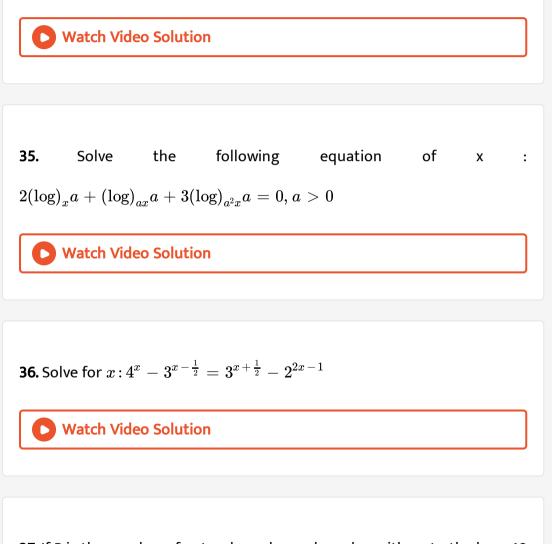
 $S=\{1\}$ (b) S=Z (d) S=N (d) none of these

Watch Video Solution

30. Equation

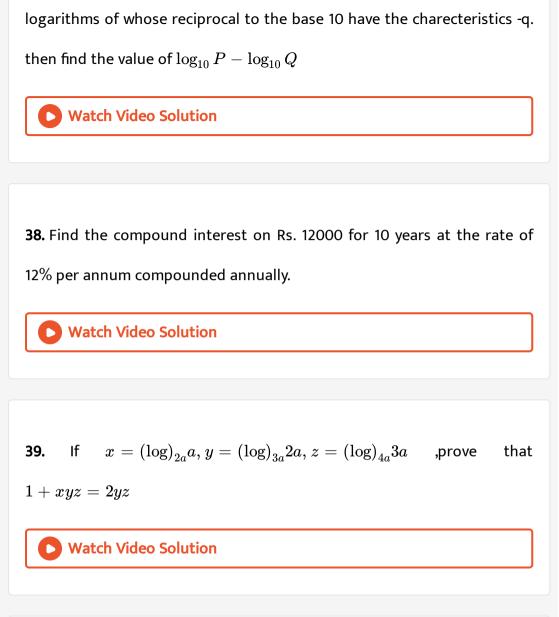
$$(\log)_4(3-x) + (\log)_{0.25}(3+x) = (\log)_4(1-x) + (\log)_{0.25}(2x+1)has$$

only one prime solution two real solutions no real solution (d) none of these


31. Solution set of the inequality
$$\frac{1}{2^x - 1} > \frac{1}{1 - 2^{x-1}}$$
 is $1, \infty$) (b) $0, (\log)_2\left(\frac{4}{3}\right)$ (c) $(-1, \infty) \left(0, (\log)_2\left(\frac{4}{3}\right) \cup (1, \infty)\right)$

32. The solution set of the inequality
$$(\log)_{10}(x^2 - 16) \le (\log)_{10}(4x - 11)$$
 is $4, \infty)$ (b) $(4, 5)$ (c) $\left(\frac{11}{4}, \infty\right)$ (d) $\left(\frac{11}{4}, 5\right)$

Watch Video Solution


33. Which of the following is not the solution of $(\log)_x \left(\frac{5}{2} - \frac{1}{x}\right) > 1$ $(a)\left(\frac{2}{5}, \frac{1}{2}\right)(b)(1, 2)(c)\left(\frac{2}{5}, 1\right)(d)$ Nonofthese

34. The equation $x^{\left(\frac{3}{4}\right)(\log_2 x)^2 + (\log_2 x) - \left(\frac{5}{4}\right)} = \sqrt{2}$ has (1)at least one real solution (2)exactly three solutions (3)exactly one irrational solution (4)complex roots

37. If P is the number of natural numbers whose logarithms to the base 10

have the the charecteristic \boldsymbol{p} and \boldsymbol{Q} is the numbers of natural numbers

40. Let L denote antilog_32 0.6 and M denote the number of positive integers which have the characteristic 4, when the base of log is 5, and N denote the value of $49^{(1-(\log)_7 2)} + 5^{-(\log)_5 4}$. Find the value of $\frac{LM}{N}$.

41. Let $x = (0.15)^{20}$. Find the characteristic and mantissa of the logarithm of x to the base 10. Assume $(\log)_{10}2 = 0.301 and (\log)_{10}3 = 0.477.$

Watch Video Solution

42. Using logarithms, find the value of 6.45 x 981.4

43. In the 2001 census, the population of India was found to be $8.7 \cdot 10^7$.

If the population increases at the rate of 2.5% every year, what would be

the population in 2011?

44. If $(\log)_{10}2 = 0.30103, (\log)_{10}3 = 0.47712$, then find the number of digits in $3^{12} \cdot 2^8$

45. If $a = (\log)_{12} 18, b = (\log)_{24} 54$, then find the value of ab + 5(a - b).

Watch Video Solution

46. Solve the equations for x and $y: (3x)^{\log 3} = (4y)^{\log 4}, 4^{\log x} = 3^{\log y}$.

Watch Video Solution

47. The real solutions of the equation 2^{x+2} . $5^{6-x} = 10^x$ ^ 2 is/are 1 (b) 2

(c)
$$-(\log)_{10}(250)$$
 (d) $(\log)_{10}4-3$

48. If $(\log)_k x \log_5 k = (\log)_x 5, k \neq 1, k > 0$, then x is equal to (a) k (b) $\frac{1}{5}$ (c) 5 (d) none of these

Watch Video Solution

49. If $p,q \in N$ satisfy the equation $x^{\sqrt{x}} = (\sqrt{x})^x$, then *pandq* are (a)relatively prime (b) twin prime (c) coprime (d)if $(\log)_q p$ is defined, then $(\log)_p q$ is not and vice versa

Watch Video Solution

50. Solution set of the inequality
$$(\log)_{0.8} \left((\log)_6 \frac{x^2 + x}{x + 4} \right) < 0$$
 is $(-4, -3)$ (b) $(-3, 4) \cup (8, \infty)$ $(-3, \infty)$ (d) $(-4, -3) \cup (8, \infty)$

Watch Video Solution

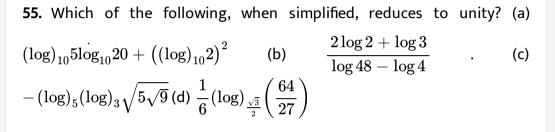
51. Which of the following is not the solution of $(\log)_3(x^2-2) < (\log)_3\left(rac{3}{2}|x|-1
ight)$ is $(\sqrt{2},2)$ (b) $(-2, -\sqrt{2})$

$$(\,-\sqrt{2},2$$
 (d) none of these

52. The true solution set of inequality $\left(\log
ight)_{(x+1)}\left(x^2-4
ight)>1$ is equal

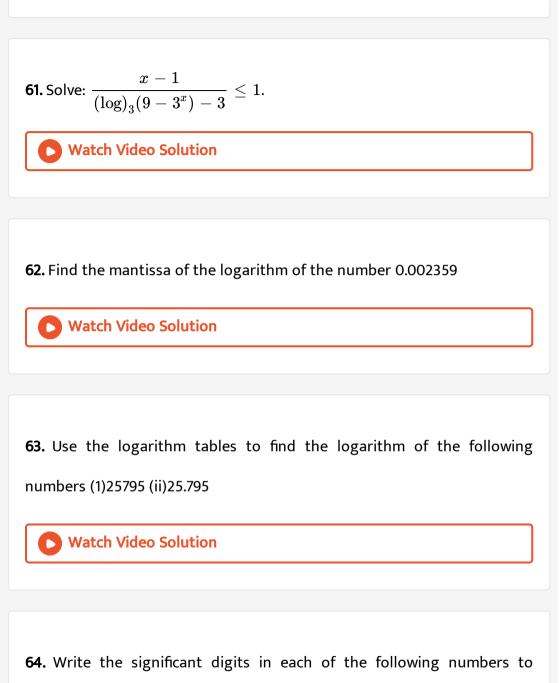
to
$$2, \infty$$
) (b) $\left(2, \frac{1+\sqrt{21}}{2}\right) \left(\frac{1-\sqrt{21}}{2}, \frac{1+\sqrt{21}}{2}\right)$ (d) $\left(\frac{1+\sqrt{21}}{2}, \infty\right)$

Watch Video Solution


53. Solve the following equation of $x: 2(\log)_x a + (\log)_{ax} a + 3(\log)_{a^2x} a = 0, a > 0$

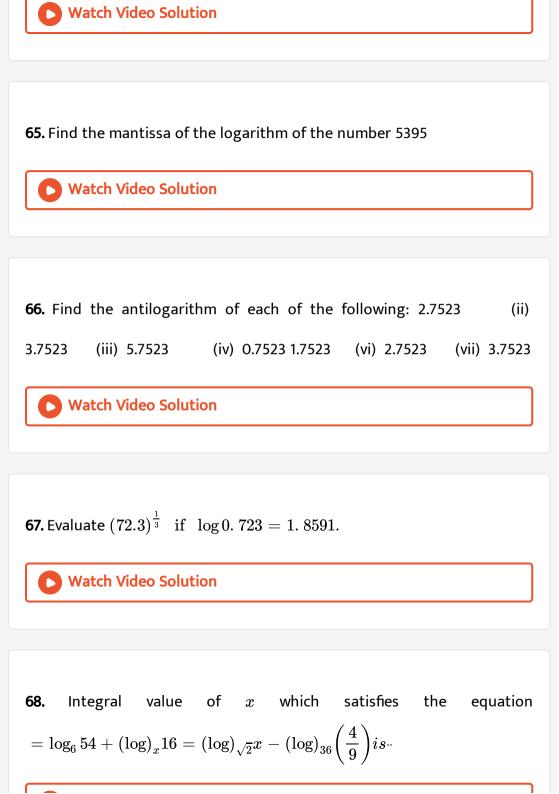
Watch Video Solution

54. The x, y, z are positive real numbers such that $(\log)_{2x}z = 3, (\log)_{5y}z = 6, and(\log)_{xy}z = \frac{2}{3}$, then the value of $\left(\frac{1}{2z}\right)$


56. If $(\log)_a x = b$ for permissible values of a and x, then identify the statement(s) which can be correct. (a)If a and b are two irrational numbers, then x can be rational. (b)If a is rational and b is irrational, then x can be rational. (c)If a is irrational and b is rational, then x can be rational. (d)if a and b are rational, then x can be rational.

57. The number of positive integers satisfying
$$x + (\log)_{10}(2^x + 1) = x(\log)_{10}5 + (\log)_{10}6$$
 is.....

58. Solve:
$$\left(rac{1}{2}
ight)^{\log}$$
 $_{-}$ $(10)a^2+2>rac{3}{2^{(\log)}{}_{10}(-a)}$


59. Write the characteristic of each of the following numbers by using their standard forms: 1235.5 (ii) 346.41 (iii) 62.723 (iv) 7.12345 0.35792 (vi) 0.034239 (vii) 0.002385 (viii) 0.0009468

60. Solve:
$$(\log)_{0.1} \left((\log)_2 \left(\frac{x^2 + 1}{x - 1} \right) < 0
ight)$$

compute the mantissa of their logarithms: 3.239 (ii) 8 (iii)

0.9 (iv) 0.02 0.0367 (vi) 89 (vii) 0.0003 (viii) 0.00075

69. If
$$(\log)_4 A = (\log)_6 B = (\log)_9 (A+B), then \left[4\left(\frac{B}{A}\right)\right]$$
 (where []

represents the greatest integer function) equals

Watch Video Solution

70. The value of $\left(\log_{10}2\right)^3 + \log_{10}8\log_{10}5 + \left(\log_{10}5\right)^3$ is

Watch Video Solution

71. If $(\log)_a b = 2$, $(\log)_b c = 2$, $and(\log)_3 c = 3 + (\log)_3 a$, then the value

of c/(ab) is.....

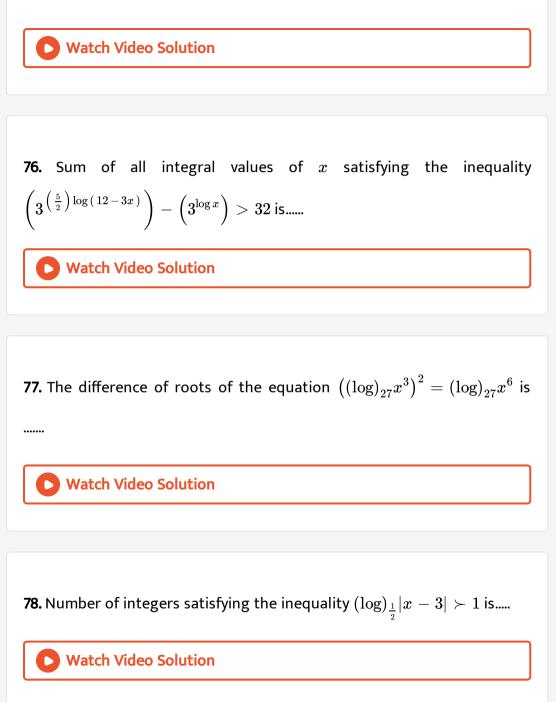
72. The inequality $\sqrt{x^{(\log)_2\sqrt{x}}} \ge 2$ is satisfied by (A) only one value of x(B) $x \in \left(0, \left(rac{1}{4}\right)
ight](C)x \in [4,\infty)$ (d) $x \in (1,2)$

Watch Video Solution

73. The value of
$$\left(6a^{(\log)_e b}((\log)_{a^2}b)\frac{(\log)_{b^2}a}{e^{(\log)_e a}(\log)_e b}is$$
 independent of a

(b) independent of b dependent on a (d) dependent on b

Watch Video Solution


74. If
$$(\log)_{10}5 = aand(\log)_{10}3 = b$$
, then $(A)(\log)_{30}8 = \frac{3(1-a)}{b+1}$
 $(B)(\log)_{40}15 = \frac{a+b}{3-2a} (C)(\log)_{243}32 = \frac{1-a}{b}$ (d) none of these

Watch Video Solution

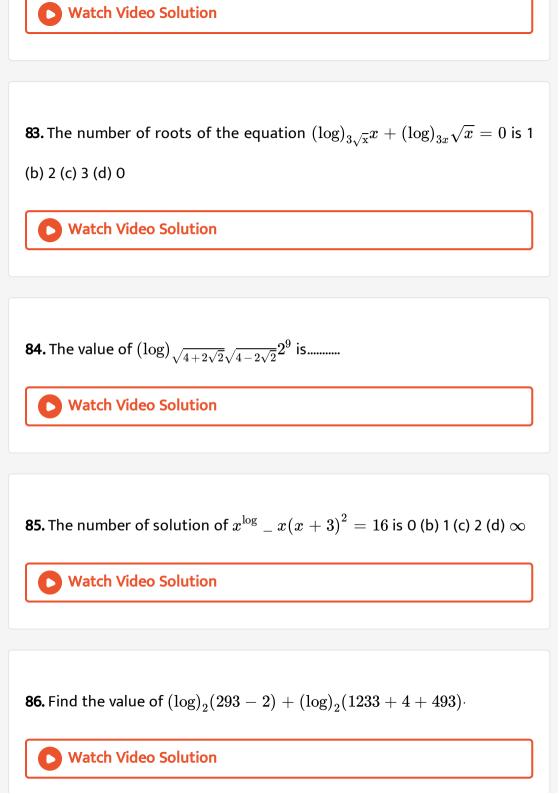
75. The equation $(\log)_{x+1}(x-.5) = (\log)_{x-0.5}(x+1)$ has (A) two real

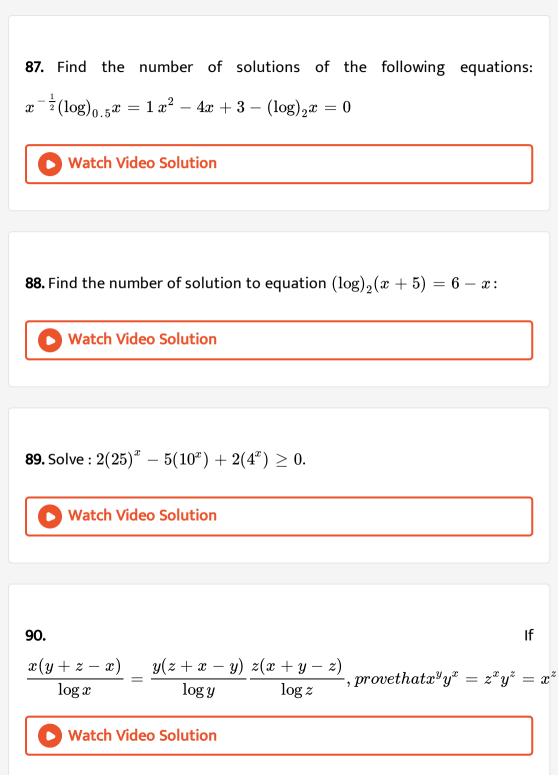
solutions (B) no prime solution (C) one integral solution (D) no irrational

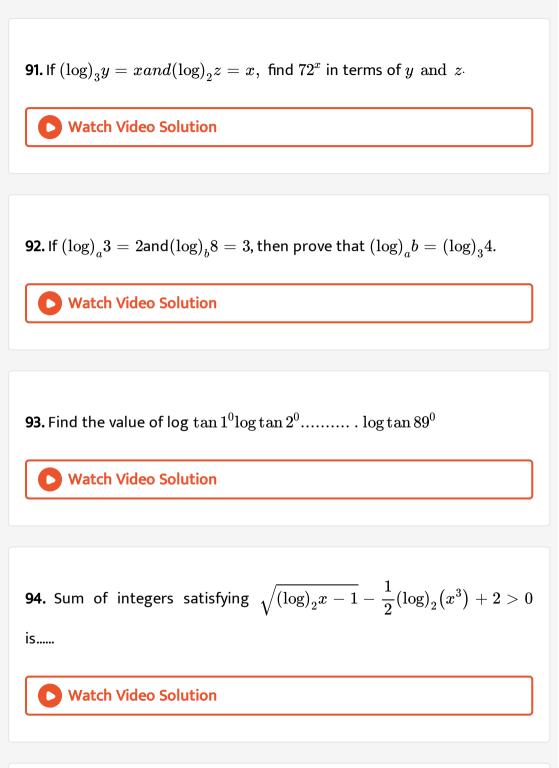
solution

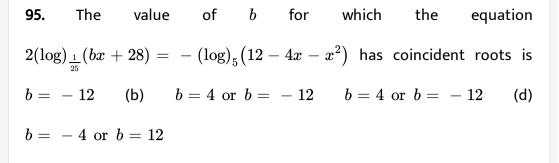
79. The number of elements in set of all x satisfying the equation $x^{\log_3 x^2 + (\log_3 x)^2 - 10} = rac{1}{x^2} is$ (a)1 (b) 2 (c) 3 (d) 0

Watch Video Solution


80. Number of real values of x satisfying the equation $\log_2(x^2-x)\cdot\log_2\left(rac{x-1}{x}
ight)+(\log_2 x)^2=4$,is (a)0(b)2 (c)3 (d)7


Watch Video Solution


81. Let a>1 be a real number. Then the number of roots equation $a^{2(\log)_2 x}=15+4x^{(\log)_2 a}$ is 2 (b) infinite (c) 0 (d) 1


Watch Video Solution

82. Number of integers ≤ 10 satisfying the inequality $2(\log)_{rac{1}{2}}(x-1) \leq rac{1}{3} - rac{1}{(\log)_{x^2-x}8}$ is.....

96. The least integer greater than $(\log)_2(15) \cdot (\log)_{\frac{1}{6}} 2 \cdot (\log)_3 \frac{1}{6}$ is Watch Video Solution 97. The reciprocal of $\frac{2}{(\log)_4(200)^6} + \frac{3}{(\log)_5(200)^6}$ is

98. The value of
$$5^{(\log)_{\frac{1}{5}}(\frac{1}{2})} + (\log)_{\sqrt{2}} \frac{4}{\sqrt{7} + \sqrt{3}} + (\log)_{\frac{1}{2}} \frac{1}{10 + 2\sqrt{21}}$$

is.....

99. The value of
$$N = \frac{(\log)_5 250}{(\log)_{50} 5} - \frac{(\log)_5 10}{(\log)_{1250} 5}$$
 is.....

100. If xandy are real numbers such that $2\log(2y-3x)=\log x+\log y$

,then find $\frac{x}{y}$.

Watch Video Solution

101. If
$$\log_e\left(rac{a+b}{2}
ight)=rac{1}{2}(\log_e a+\log_e b),$$
 then find the relation

between aandb-

102. If $2x^{\,(\log)_43}+3^{(\log)_4x}=27,\,$ then x is equal to

103. The value of $\log ab - \log |b| = |\log a|$ (b) $\log |a|$ (c) $-\log a|$ (d) none of

these

Watch Video Solution

104. If
$$(21.4)^a = (0.00214)^b = 100$$
 , then the value of $rac{1}{a} - rac{1}{b}$ is 0 (b) 1

(c) 2 (d) 4

Watch Video Solution

105. Given that $\log(2) = 0.3010$, the number of digits in the number 2000^{2000} is 6601 (b) 6602 (c) 6603 (d) 6604

106. The number of $N=6-\left(6(\log)_{10}2+(\log)_{10}31
ight)$ lies between two

successive integers whose sum is equal to (a)5 (b) 7 (c) 9 (c) 10

Watch Video Solution

107. $(\log)_4 18$ is a rational number (b) an irrational number a prime number (d) none of these

> Watch Video Solution

108.

Solve:

$$\left(\log\right)_{\left(2x+3
ight)}\left(6x^{2}+23x+21
ight)+\left(\log
ight)_{\left(3x+7
ight)}\left(4x^{2}+12x+9
ight)=4$$

109. Given *aandb* are positive numbers satisfying $4(\log_{10} a)^2 + ((\log)_2 b)^2 = 1$. Find the range of values of *aandb*.

110.

$$rac{(\log)_a N}{(\log)_c N} = rac{(\log)_a N - (\log)_b N}{(\log)_b N - (\log)_c N}, where N > 0 and N
eq 1, a, b, c > 0$$

and not equal to 1, then prove that $b^2=ac$

Watch Video Solution

111. If $(\log)_b a (\log)_c a + (\log)_a b (\log)_c b + (\log)_a c (\log)_b c = 3$ (where a, b, c

are different positive real numbers $\neq 1), ext{ then find the value of } abc\cdot$

Watch Video Solution

112. Solve for: $x : (2x)^{(\log)_b 2} = (3x)^{(\log)_b 3}$.

lf

113. Let $a=(\log)_3(\log)_32$. An integer k satisfying $1<2^{-k+3^{(-a)}}<2,$

must be less than

Watch Video Solution

114. The value of
$$6 + (\log)_{\frac{3}{2}} \left[\frac{1}{3\sqrt{2}} \cdot \sqrt{\left(4 - \frac{1}{3\sqrt{2}}\right)\sqrt{4 - \frac{1}{3\sqrt{2}}...}} \right]$$
 is

Watch Video Solution

.

115.
$$(\log)_{x-1} x (\log)_{x-2} (x-1) (\log)_{x-12} (x-11) = 2, x$$
 is equal to: 9

(b) 16 (c) 25 (d) none of these

$$\begin{array}{ll} \text{116.} \quad \text{If} \quad f(x) = \log \biggl(\frac{1+x}{1-x} \biggr), then \quad (\textbf{a}) f(x_1) f(x) = f(x_1+x_2) \quad (\textbf{b}) \\ f(x+2) - 2f(x+1) + f(x) = 0 \ (\textbf{c}) f(x) + f(x+1) = f \bigl(x^2+x \bigr) \ (\textbf{d}) \\ f(x_1) + f(x_2) = f \biggl(\frac{x_1+x_2}{1+x_1x_2} \biggr) \end{array}$$

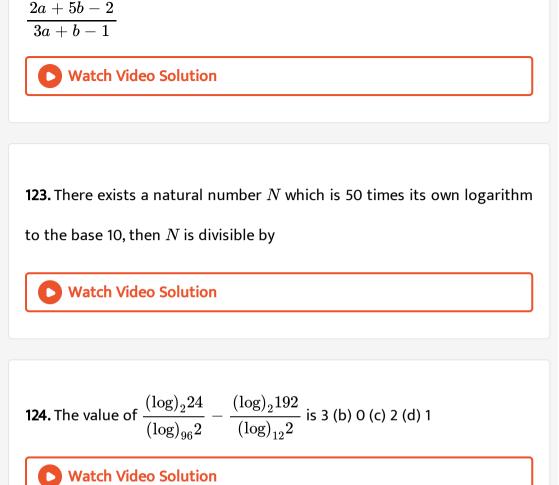
117. If a, b, c are consecutive positive integers and $(\log(1 + ac) = 2K)$, then the value of K is $\log b$ (b) $\log a$ (c) 2 (d) 1

Watch Video Solution

118. If
$$\frac{a + (\log)_4 3}{a + (\log)_2 3} = \frac{a + (\log)_8 3}{a + (\log)_4 3} = b$$
, then b is equal to $\frac{1}{2}$ (2) $\frac{2}{3}$ (c) $\frac{1}{3}$ (d) $\frac{3}{2}$

119. If p>1 and q>1 are such that $\log(p+q)=\log p+\log q$, then the value of $\log(p-1)+\log(q-1)$ is equal to (a) 0 (b) 1 (c) 2 (d) none of these

Watch Video Solution


120. The value of
$$rac{1+2(\log)_3 2}{ig(1+(\log)_3 2ig)^2}+ig((\log)_6 2ig)^2$$
 is 2 (b) 3 (c) 4 (d) 1

Watch Video Solution

121. If
$$(\log)_4 5 = aand (\log)_5 6 = b$$
, then $(\log)_3 2$ is equal to $\frac{1}{2a+1}$ (b)
 $\frac{1}{2b+1}$ (c) $2ab+1$ (d) $\frac{1}{2ab-1}$

Watch Video Solution

122. If $(\log)_{10}2 = a$, $(\log)_{10}3 = bthen(\log)_{0.72}(9.6)$ in terms of a and b is equal to (a) $\frac{2a+3b-1}{5a+b-2}$ (b) $\frac{5a+b-1}{3a+2b-2}$ (c) $\frac{3a+b-2}{2a+3b-1}$ (d)

125. Find the number of solutions of equation $(2x - 3)2^x = 1$

126. Find the value of $(\log)_{2\sqrt{3}}1728$.

127. Prove that
$$rac{1}{3} < \left(\log
ight)_{10} 3 < rac{1}{2}$$
 .

Watch Video Solution

128. Arrange $(\log)_2 5, (\log)_{0.5} 5, (\log)_7 5, (\log)_3 5$ in decreasing order.

129. If
$$3^x = 4^{x-1}$$
, then $x = \frac{2(\log)_3 2}{2(\log)_3 2 - 1}$ (b) $\frac{2}{2 - (\log)_2 3} \frac{1}{1 - (\log)_4 3}$ (d) $\frac{2(\log)_2 3}{2(\log)_2 3 - 1}$

130. Solve: $|x - 3|^{3x^2 - 10x + 3} = 1$

131. Solve:
$$\left(rac{1}{2}
ight)^x$$
 $\hat{}~(2-2x) < 1/4.$

Watch Video Solution

132. Find the smallest integral value of x satisfying $(x-2)^{x^2-6x+8} \Big) > 1$

133. The least value of the expression $2(\log)_{10}x - (\log)_x(0.01)$. for x>1

is (a)10 (b)2 (c) -0.01 (d)4

Watch Video Solution

134. The solution of the equation $(\log)_7 (\log)_5 ig(\sqrt{x+5}+\sqrt{x}=0$ is...

135. Let (x_0, y_0) be the solution of the following equations: $(2x)^{1n2} = (3y)^{1n3} 3^{1nx} = 2^{1ny}$ The x_0 is $\frac{1}{6}$ (b) $\frac{1}{3}$ (c) $\frac{1}{2}$ (d) 6

Watch Video Solution

136. If $\ln(a+c), \ln(a-c), \ln(a-2b+c)$ are in $A\dot{P}$; then $a, b, c, are \in A\dot{P}$ (b) $a^2, b^2, c^2are \in A\dot{P}$ a, b, c are in $G\dot{P}$ (d) a, b, c are in $H\dot{P}$.

Watch Video Solution

137. Prove that number $(\log)_2 7$ is an irrational number.

138. Which of the following numbers are positive/negative? $(\log)_2 7$ (ii)

$$(\log)_{0.2}3$$
 (iii) $(\log)_{1/3}\left(rac{1}{5}
ight)(\log)_43$ (v) $(\log)_2ig((\log)_29ig)$

Watch Video Solution

139. If
$$(\log)_3 2$$
, $(\log)_3 (2^x - 5) and (\log)_3 \left(2^x - \frac{7}{2}\right)$ are in arithmetic

progression, determine the value of x.

Watch Video Solution

140. Solve
$$x^{(\log)_y x} = 2andy^{(\log)_x y} = 16$$

Watch Video Solution

141. Solve
$$(\log)_{2x}2 + (\log)_4 2x = -3/2$$
.

142. If $a \ge b > 1$, then find the largest possible value of the expression

$$(\log)_a \left(\frac{a}{b}\right) + (\log)_b \left(\frac{b}{a}\right)$$

Watch Video Solution

143. Solve :
$$3^{(\log_9 x)} imes 2 = 3\sqrt{3}$$

Watch Video Solution

144. Solve the inequality
$$\sqrt{(\log)_2 igg(rac{2x-3}{x-1}igg)} < 1$$

Watch Video Solution

145. Find the number of solutions of equation $2^x + 3^x + 4^x - 5^x = 0$

146. If
$$y=a^{rac{1}{1-(\log)_{a^x}}}$$
 and $z=a^{rac{1}{1-(\log)_{a^y}}}$,then prove that $x=a^{rac{1}{1-(\log)_{a^z}}}$

147. Solve
$$(\log)_x 2(\log)_{2x} 2 = (\log)_{4x} 2$$
.

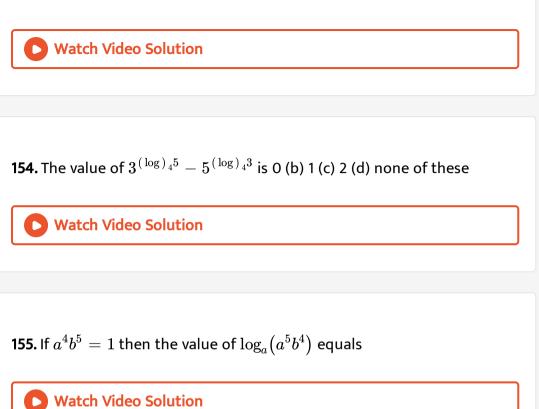
Watch Video Solution

148. Let
$$a, b, c, d$$
 be positive integers such that $(\log)_a b = \frac{3}{2} and (\log)_c d = \frac{5}{4}$. If $(a - c) = 9$, then find the value of $(b - d)$.

Natch Video Solution

149. Solve
$$\sqrt{\log(-x)} = \log \sqrt{\mathrm{x}^2}$$
 (base is 10).

150. If
$$(\log)_3 \{5 + 4(\log)_3 (x - 1)\} = 2$$
, then x is equal to 4 (b) 3 (c) 8 (d) $(\log)_2 16$


151. If
$$(\log)_{10}\left[rac{1}{2^x+x-1}
ight]=xig[(\log)_{10}5-1ig]$$
 , then $x=$ 4 (b) 3 (c) 2 (d) 1

Watch Video Solution

(b) 3 (c) 18 (d) 54

153. If
$$2^{x+y} = 6^y and 3^{x-1} = 2^{y+1}$$
, then the value of $(\log 3 - \log 2)(x-y)$ is 1 (b) $(\log)_2 3 - (\log)_3 2 \log\left(\frac{3}{2}\right)$ (d) none of

156.

If

$$(\log)_2 x + (\log)_x 2 = rac{10}{3} = (\log)_2 y + (\log)_y 2 and x
eq y, thex + y = -2$$

(b) 65/8 (c) 37/6 (d) none of these

157. If $(x + 1)^{(\log)_{10}(x+1)} = 100(x + 1)$, then all the roots are positive real numbers all the roots lie in the interval (0,100) all the roots lie in the interval [-1,99] none of these

158. if
$$(\log)_y x + (\log)_x y = 2, x^2 + y = 12$$
, the value of xy is 9 (b) 12 (c)
15 (d) 30

Watch Video Solution

159. If $\sqrt{(\log)_2 x} - 0.5 = (\log)_2 \sqrt{x}$, then x equals odd integer (b) prime

number composite number (d) irrational

160. Find the value of
$$81^{(1/\log_5 3)} + \left(27^{\log_9 36}\right) + 3^{\left(rac{4}{\log_7 9}
ight)}$$

161. Find the value of
$$\left(rac{1}{49}
ight)^{1+\,(\log)_{\,7}2}+5^{-1\,(\log)}\left(rac{1}{5}
ight)^{\,(\,7\,)}$$

162. Prove that:
$$2^{\sqrt{(\log)_a 4\sqrt{ab} + (\log)_b 4\sqrt{ab}} - (\log)_a 4\sqrt{\frac{b}{a}} + (\log)_b 4\sqrt{\frac{a}{b}}}\sqrt{(\log)_a b} = \begin{cases} 2 & \text{if } b \ge a > 1 \end{cases}$$

if
$$1$$

٥

163. Prove that
$$rac{2^{(\log)_2rac{1}{4}x}-3^{\log}-(27)ig(x^2+1ig)^3-2x>}{7^{4\,(\log)_{49}x}-x-1}0$$

Watch Video Solution

164. Solve $(\log)_4 8 + (\log)_4 (x+3) - (\log)_4 (x-1) = 2.$

165. Which of the following pairs of expression are defined for the same set of values of x? $f_1(x) = 2(\log)_2 x and f_2(x) = (\log)_{10} x^2$ $f_1(x) = (\log)_{\times}^2 and f_2(x) = 2$ $f_1(x) = (\log)_{10}(x-2) + (\log)_{10}(x-3)and f_{2(x)} = (\log)_{10}(x-2)(x-3)$

Watch Video Solution

166. Solve
$$(\log)_2(3x-2) = (\log)_{rac{1}{2}}x$$

Watch Video Solution

167. Solve $\log(-x) = 2\log(x+1)$.

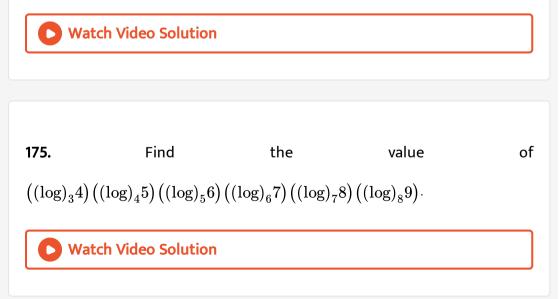
168. Solve: $(\log)_2(4.3^x - 6) - (\log)_2(9^x - 6) = 1.$

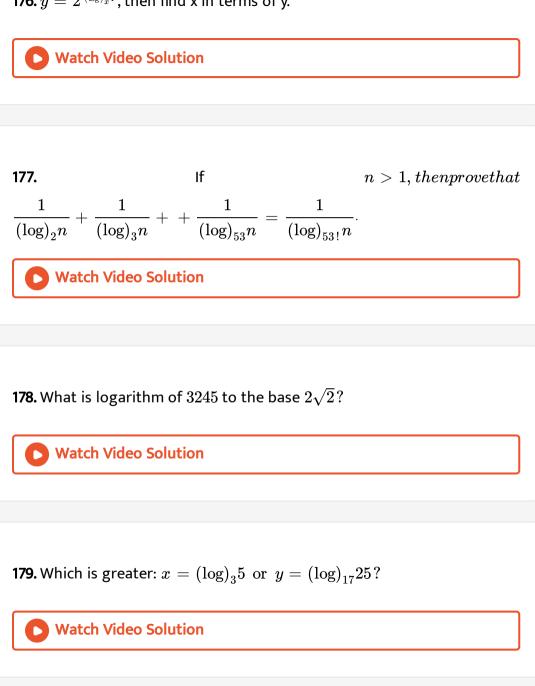
Watch Video Solution

169. Solve
$$2^{x+2}27^{x/(x-1)} = 9$$

Watch Video Solution

170. Suppose
$$x, y, z = 0$$
 and are not equal to 1 and
 $\log x + \log y + \log z = 0$. Find the value of
 $\frac{1}{x^{\log y}} + \frac{1}{(\log z)} \frac{1}{y^{\log z}} + \frac{1}{(\log x)} \frac{1}{z^{\log x}} + \frac{1}{(\log y)}$
Vatch Video Solution


172. If $y^2 = xz$ and $a^x = b^y = c^z$, then prove that $(\log)_a b = (\log)_b c$


173. Simplify:
$$rac{1}{1+(\log)_a bc} + rac{1}{1+(\log)_b ca} + rac{1}{1+(\log)_c ab}$$

Watch Video Solution

174. If $a^x = b, b^y = c, c^z = a, ext{ then find the value of } xyz$.

176. $y=2^{rac{1}{(\log)_x^4}}$, then find x in terms of y.

180. The product of roots of the equation $rac{3}{\left(\log_8 x
ight)^2}=3$ is 1 (b) (c) 1/3 (d)

1/4

