©゙doubtnut

 India's Number 1 Education App
MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

SEQUENCES AND SERIES

Solved Examples And Exercises

1. Find the sum of the following series to n terms
$5+7+13+31+85+\ldots$

- Watch Video Solution

2. Find the sum to n terms of the series
$1 /(1 \times 2)+1 /(2 \times 3)+1 /(3 \times 4)++1 / n(n+1)$.

- Watch Video Solution

3. If $\sum_{r=1}^{n} T_{r}=\left(3^{n}-1\right)$, then find the sum of $\sum_{r=1}^{n} \frac{1}{T_{r}}$.

- Watch Video Solution

4. Find the sum to n terms of the series $3+15+35+63+$

- Watch Video Solution

5. Sum of n terms the series : $1^{2}-2^{2}+3^{2}-4^{2}+5^{2}-6^{2}+$

- Watch Video Solution

6. If $\sum_{r=1}^{n} T_{r}=n\left(2 n^{2}+9 n+13\right)$, then find the sum $\sum_{r=1}^{n} \sqrt{T_{r}}$.

- Watch Video Solution

7. Find the sum of the series $31^{3}+32^{3}+\ldots+50^{3}$.

- Watch Video Solution

8. Find the sum of n terms of the series $1^{3}+3.2^{2}+3^{3}+3.4^{2}+5^{3}+3.6^{2}+\ldots \ldots .$. when (i)n is odd (ii)n is even

- Watch Video Solution

9. Find the sum of the series $1 \times n+2(n-1)+3 \times(n-2)+\ldots+(n-1) \times 2+n \times 1$.

- Watch Video Solution

10. Find the sum of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+$ up to n terms.
11. If a, b, c are in A.P., then prove that the following are also in A.P. $a^{2}(b+c), b^{2}(c+a), c^{2}(a+b)$

- Watch Video Solution

12. If a, b, c are in A.P., then prove that the following are also in A.P.
$\frac{1}{\sqrt{b}+\sqrt{c}}, \frac{1}{\sqrt{c}+\sqrt{a}}, \frac{1}{\sqrt{a}+\sqrt{b}}$

- Watch Video Solution

13. If a, b, c are in A.P., then prove that the following are also in A.P.
$a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$

- Watch Video Solution

14. The Fibonacci sequence is defined by $1=a_{1}=a_{2}$ and $a_{n}=a_{n-1}+a_{n-2}, n>2$. Find $\frac{a_{n+1}}{a_{n}}, f$ or $n=5$.

- Watch Video Solution

15. Consider the sequence defined by $a_{n}=a n^{2}+b n+$. If $a_{1}=1, a_{2}=5, a n d a_{3}=11$, then find the value of a_{10}.

- Watch Video Solution

16. Show that the sequence $9,12,15,18, \ldots$ is an A.P. Find its 16 th term and the general term.

- Watch Video Solution

17. A sequence of integers $a_{1}, a_{2}, \ldots \ldots, a_{n}$ satisfies $a_{n+2}=a_{n+1}-a_{n}$ for $n \geq 1$. Suppose the sum of first 999 terms is 1003 and the sum of the
first 1003 terms is -99 . Find the sum of the first 2002 terms.

- Watch Video Solution

18. Write down the sequence whose nth term is
(i) $\frac{2^{n}}{n}$ (ii) $\frac{3+(-1)^{n}}{3^{n}}$

- Watch Video Solution

19. Write the first three terms of the sequence defined by $a_{1}=2, a_{n+1}=\frac{2 a_{n}+3}{a_{n}+2}$.

- Watch Video Solution

20. Find the sequence of he numbers defined by
$a_{n}=\left\{\frac{1}{n}\right.$, whe \cap isodd $\frac{1}{n}$, whe \cap iseven

- Watch Video Solution

21. Find the sum of n terms of the sequence $\left(a_{n}\right)$, where $a_{n}=5-6 n, n \in N$.

Watch Video Solution

22. Show that the sequence $\log a, \log (a b), \log \left(a b^{2}\right), \log \left(a b^{3}\right)$, is an A.P.

Find the nth term.

- Watch Video Solution

23. Find the sum of the following series:
$\frac{1}{2}+\frac{1}{3^{2}}+\frac{1}{2^{3}}+\frac{1}{3^{4}}+\frac{1}{2^{5}}+\frac{1}{3^{6}}+\infty$

(Watch Video Solution

24. Consider two A.P.
$S_{1}: 2,7,12,17, \ldots 500$ terms
and $S_{2}: 1,8,15,22, \ldots 300$ terms
Find the number of common term. Also find the last common term.

- Watch Video Solution

25. If pth, qth, and rth terms of an A.P. are a, b, c, respectively, then show that $(a-b) r+(b-c) p+(c-a) q=0$

- Watch Video Solution

26. The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112 . If its first term is 11 , then find the number of terms.

- Watch Video Solution

27. Given two A.P. $2,5,8,11 \ldots \ldots T_{60}$ and $3,5,79, \ldots \ldots \ldots T_{50}$. Then find the number of terms which are identical.
28. In a certain A.P., 5 times the 5 th term is equal to 8 times the 8 th terms then find its 13th term.

- Watch Video Solution

29. Find the term of the series $25,22 \frac{3}{4}, 20 \frac{1}{2}, 18 \frac{1}{4}$ which is numerically the smallest.

- Watch Video Solution

30. How many terms are there in the A.P. 3, 7, 11, ... 407?

- Watch Video Solution

31. If a, b, c, d, e are in A.P., the find the value of $a-4 b+6 c-4 d+e$.
32. If $\frac{b+c-a}{a}, \frac{b+c-a}{b}, \frac{a+b-c}{c}$, are in A.P., prove that $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are also in A.P.

D Watch Video Solution

33. If $a, b, c \in R+$ form an A.P., then prove that $a+\frac{1}{b c}, b+\frac{1}{a c}, c+\frac{1}{a b}$ are also in A.P.
(a) A.P.
(b) G.P.
(c) H.P.
(d) none of these

- Watch Video Solution

34. Find the degree of the expression
$(1+x)\left(1+x^{6}\right)\left(1+x^{11}\right) \ldots \ldots \cdot\left(1+x^{101}\right)$.
35. In an A.P. of 99 terms, the sum of all the odd-numbered terms is 2550.

Then find the sum of all the 99 terms of the A.P.

- Watch Video Solution

36. Divide 32 into four parts which are in A.P. such that the ratio of the product of extremes to the product of means is 7:15.

- Watch Video Solution

37. Show $(m+n)$ thand $(m-n)$ th terms of an A.P. is equal to twice the mth terms.

- Watch Video Solution

38. If the sum of three numbers in A.P., is 24 and their product is 440 , find the numbers.

- Watch Video Solution

39. Prove that the sum of n number of terms of two different A.P. s can be same for only one value of n.

- Watch Video Solution

$$
\begin{array}{lccc}
\text { 40. } & \text { In } & \text { an } & \text { A.P. } \\
S_{1}=T_{1}+T_{2}+T_{3}+\ldots .+T_{n}(\operatorname{nod} d) \dot{S}_{2}=T_{2}+T_{4}+T_{6}+\ldots \ldots \ldots+T_{n-}
\end{array}
$$

, then find the value of S_{1} / S_{2} in terms of n.

- Watch Video Solution

41. If the sum of the series $2,5,8,11, \ldots$ is 60100 , then find the value of n.
42. The digits of a positive integer, having three digits, are in A.P. and their sum is 15 . The number obtained by reversing the digits is 594 less than the original number. Find the number.

- Watch Video Solution

43. If eleven A.M. 's are inserted between 28 and 10 , then find the number of integral A.M. 's.

- Watch Video Solution

44. Between 1 and 31 , m numbers have been inserted in such a way that the resulting sequence is an A. P. and the ratio of $7^{\text {th }}$ and $(m-1)^{t h}$ numbers is $5: 9$. Find the value of m.
45. Find the sum of first 24 terms of the A.P. $a-1, a_{2}, a_{3}$, if it is inown that $a_{1}+a_{5}+a_{10}+a_{15}+a_{20}+a_{24}=225$.

- Watch Video Solution

46. If the arithmetic progression whose common difference is nonzero the sum of first $3 n$ terms is equal to the sum of next n terms. Then, find the ratio of the sum of the $2 n$ terms to the sum of next $2 n$ terms.

- Watch Video Solution

47. The sum of n terms of two arithmetic progressions are in the ratio $5 n+4: 9 n+6$. Find the ratio of their 18 th terms.

- Watch Video Solution

48. If the first two terms of as H.P. are $2 / 5$ and $12 / 13$, respectively. Then find the largest term.

Watch Video Solution

49. Insert five arithmetic means between 8 and 26 . or Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.

- Watch Video Solution

50. If a, b, c are in G.P. and $a-b, c-a, a n d b-c$ are in H.P., then prove that $a+4 b+c$ is equal to 0 .

- Watch Video Solution

51. Find the number of terms in the series $20,19 \frac{1}{3}, 18 \frac{2}{3} \ldots$ the sum of which is 300 . Explain the answer.
52. If $x, y a n d z$ are in A.P., $a x, b y, a n d c z$ in G.P. and a, b, c in H.P. then prove that $\frac{x}{z}+\frac{z}{x}=\frac{a}{c}+\frac{c}{a}$.

- Watch Video Solution

53. Find the sum of all three-digit natural numbers, which are divisible by
54.
55. If $a, b, c, a n d d$ are in H.P., then find the value of $\frac{a^{-2}-d^{2}}{b^{-2}-c^{2}}$.

- Watch Video Solution

55. Prove that a sequence in an A.P., if the sum of its n terms is of the form $A n^{2}+B n$, where A, B are constants.

- Watch Video Solution

56. The product of the three numbers in G.P. is 125 and sum of their product taken in pairs is $\frac{175}{2}$. Find them.

(Watch Video Solution

57. If the sequence $a_{1}, a_{2}, a_{3}, a_{n}$. forms an A.P., then prove that $a 12-a 22+a 32++a 42=\frac{n}{2 n-1}(a 12-a 2 n 2)$

- Watch Video Solution

58. Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ may be the geometric mean between a and b .
59. Three non-zero numbers $a, b, a n d c$ are in A.P. Increasing a by 1 or increasing c by 2 , the numbers are in G.P. Then find b.

- Watch Video Solution

60. A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.

- Watch Video Solution

61. If a, b, c and d are in G.P. show that $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$.

- Watch Video Solution

62. If the sum of n terms of a G.P. is $3-\frac{3^{n+1}}{4^{2 n}}$, then find the common ratio.

- Watch Video Solution

63. Which term of the G.P. $2, \frac{1}{2}, \frac{1}{4}$,is $\frac{1}{128}$?

- Watch Video Solution

64. ' n ' $A . M^{\prime} s$ are inserted between a and 2 b , and then between 2 a and
b. If $p^{t} h$ mean in each case is a equal, $\frac{a}{b}$ is equal to

- Watch Video Solution

65. If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the A.M. between a and b , then find the value of n .
66. The first and second terms of a G.P. are $x^{4} a n d x^{n}$, respectively. If x^{52} is the 8 th term, then find the value of n.

- Watch Video Solution

67. If $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0)$, then show that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are in G.P.

- Watch Video Solution

68. If n arithmetic means are inserted between 2 and 38 , then the sum of the resulting series is obtained as 200 . Then find the value of n.

- Watch Video Solution

69. The first terms of a G.P. is 1 . The sum of the third and fifth terms is 90 .

Find the common ratio of the G.P.
70. If a, b, c, d, e, f are A.M.s between 2 and 12 , then find the sum $a+b+c+d+e+f$.

- Watch Video Solution

71. Three numbers are in G.P. If we double the middle term, we get an A.P. Then find the common ratio of the G.P.

(Watch Video Solution

72. Divide 28 into four parts in an A.P. so that the ratio of the product of first and third with the product of second and fourth is 8:15.

- Watch Video Solution

73. The fourth, seventh, and the last term of a G.P. are 10,80 , and 2560 , respectively. Find the first term and the number of terms in G.P.

- Watch Video Solution

74. If $(b-c)^{2},(c-a)^{2},(a-b)^{2}$ are in A.P., then prove that $\frac{1}{b-c}, \frac{1}{c-a}, \frac{1}{a-b}$ are also in A.P.

- Watch Video Solution

75. If a, b, c, d are in G.P. prove that $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in G.P.

- Watch Video Solution

76. Let S_{n} denote the sum of first n terms of an A.P. If $S_{2 n}=3 S_{n}$, then find the ratio $S_{3 n} / S_{n}$.
77. If p, q, andr are inA.P., show that the pth, qth, and r th terms of any G.P. are in G.P.

- Watch Video Solution

78. Find four number in an A.P. whose sum is 20 and sum of their squares is 120 .

- Watch Video Solution

79. Find the sum of the following series : $0.7+0.77+0.777+\rightarrow n$ terms

- Watch Video Solution

80. Find the sum of the series
$\frac{1}{3^{2}+1}+\frac{1}{4^{2}+2}+\frac{1}{5^{2}+3}+\frac{1}{6^{2}+4}+\infty$

- Watch Video Solution

81. Prove that in a sequence of numbers $49,4489,444889,44448889$ in which every number is made by inserting 48-48 in the middle of previous as indicated, each number is the square of an integer.

- Watch Video Solution

82. Find the sum of first 100 terms of the series whose general term is given by $a_{k}=\left(k^{2}+1\right) k!$

- Watch Video Solution

83. If the continued product o three numbers in a G.P. is 216 and the sum of their products in pairs is 156 , find the numbers.

- Watch Video Solution

84. Find the sum of the series
$\frac{2}{1 \times 2}+\frac{5}{2 \times 3} \times 2+\frac{10}{3 \times 4} \times 2^{2}+\frac{17}{4 \times 5} \times 2^{3}+\rightarrow n$ terms.

- Watch Video Solution

85. The sum of some terms of G. P. is 315 whose first term and the common ratio are 5 and 2 , respectively. Find the last term and the number of terms.

- Watch Video Solution

86. A sequence of numbers $A_{n}, n=1,2,3, \ldots$ is defined as follows :
$A_{1}=\frac{1}{2}$ and for each $n \geq 2, A_{n}=\left(\frac{2 n-3}{2 n}\right) A_{n-1}$, then prove that $\sum_{k=1}^{n} A_{k}<1, n \geq 1$

- Watch Video Solution

87. The sum of three numbers in GP. Is 56 . If we subtract $1,7,21$ from these numbers in that order, we obtain an arithmetic progression. Find the numbers.

- Watch Video Solution

88. Find the sum of the products of the ten numbers $\pm 1, \pm 2, \pm 3, \pm 4$, and ± 5 taking two at a time.

- Watch Video Solution

89. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P., $\mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P. and $\frac{1}{c}, \frac{1}{d}, \frac{1}{e}$ are in A.P. prove that a, c, e are in G.P.

- Watch Video Solution

90. Find the sum $\sum_{r=0}^{n} \wedge(n+r) C_{r}$.

- Watch Video Solution

91. Find the sum to n terms of the sequence $(x+1 / x)^{2},\left(x^{2}+1 / x\right)^{2},\left(x^{3}+1 / x\right)^{2},$,

- Watch Video Solution

92. Write the first five terms of the following sequence and obtain the corresponding series. $a_{1}=a_{2}=2, a_{n}=a_{n-1}-1, n>2$
93. Prove that the sum to n terms of the series $11+103+1005+i s(10 / 9)\left(10^{n}-1\right)+n^{2}$.

- Watch Video Solution

94. If $a_{n+1}=\frac{1}{1-a_{n}}$ for $n \geq 1$ and $a_{3}=a_{1}$. then find the value of $\left(a_{2001}\right)^{2001}$.

- Watch Video Solution

95. Determine the number of terms in a G.P., if $a_{1}=3, a_{n}=96, a n d S_{n}=189$.

- Watch Video Solution

96. Let $\left\{a_{n}\right\}(n \geq 1)$ be a sequence such that $a_{1}=1$, and $3 a_{n+1}-3 a_{n}=1$ for all $n \geq 1$. Then find the value of a_{2002}.

- Watch Video Solution

97. Let S e the sum, P the product, adn R the sum of reciprocals of n terms in a G.P. Prove that $P^{2} R^{n}=S^{n}$.

- Watch Video Solution

98. If the pth term of an A.P. is q and the qth term is p, then find its r th term.

- Watch Video Solution

99. Find the product o three geometric means between 4 and $1 / 4$.
100. if $(m+1) t h,(n+1)$ th and $(r+1)$ th term of an AP are in GP.and m, n and r in HP. . find the ratio of first term of A.P to its common difference

- Watch Video Solution

101. Insert four G.M.'s between 2 and 486 .

- Watch Video Solution

102. Find the sum $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+$ up to 22 nd term.

- Watch Video Solution

103. If G is the geometric mean of xandy then prove that $\frac{1}{G^{2}-x^{2}}+\frac{1}{G^{2}-y^{2}}=\frac{1}{G^{2}}$
104. If the A.M. of two positive numbers $\operatorname{aandb}(a>b)$ is twice their geometric mean. Prove that : $a: b=(2+\sqrt{3}):(2-\sqrt{3})$.

- Watch Video Solution

105. The sum of infinite number of terms in G.P. is 20 and the sum of their squares is 100 . Then find the common ratio of G.P.

- Watch Video Solution

106. Find the sum of the series $1+2(1-x)+3(1-x)(1-2 x)++n(1-x)(1-2 x)(1-3 x)[1-(n-$
107. Prove that $6^{1 / 2} \times 6^{1 / 4} \times 6^{1 / 8} \infty=6$.

- Watch Video Solution

108. Three numbers are in G.P. whose sum is 70 . If the extremes be each multiplied by 4 and the means by 5 , they will be in A.P. Find the numbers.

- Watch Video Solution

109.

$x=a+\frac{a}{r}+\frac{a}{r^{2}}+\infty, y=b-\frac{b}{r}+\frac{b}{r^{2}}+\infty, a n d z=c+\frac{c}{r^{2}}+\frac{c}{r^{4}}+\infty$
prove that $\frac{x y}{z}=\frac{a b}{.}$

- Watch Video Solution

110. Find the sum of n terms in the given sequence
$1+4+13+40+121+\ldots$
111. If each term of an infinite G.P. is twice the sum of the terms following it, then find the common ratio of the G.P.

- Watch Video Solution

112. The sum to n terms
of series
$1+\left(1+\frac{1}{2}+\frac{1}{2^{2}}\right)+\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}\right)+$ is

- Watch Video Solution

113. Find the sum of the following series: $(\sqrt{2}+1)+1+(\sqrt{2}-1)+\ldots \ldots .+\infty$

- Watch Video Solution

114. If the set of natural numbers is partitioned into subsets $S_{1}=\{1\}, S_{2}=\{2,3\}, S_{3}=\{4,5,6\}$ and so on then find the sum of the terms in S_{50}.

- Watch Video Solution

115. If $p(x)=\left(1+x^{2}+x^{4}++x^{2 n-2}\right) /\left(1+x+x^{2}++x^{n-1}\right)$ is a polomial in x, then find possible value of n.

- Watch Video Solution

116. If the sum of the squares of the first n natural numbers exceeds theri sum by 330 , then find n.

- Watch Video Solution

117. If f is a function satisfying $f(x+y)=f(x) \times f(y)$ for all $x, y \in N$ such that $f(1)=3$ and $\sum_{x=1}^{n} f(x)=120$, find the value of n.

- Watch Video Solution

118. If $\sum_{r=1}^{n} t_{r}=\frac{n}{8}(n+1)(n+2)(n+3)$, then find $\sum_{r=1}^{n} \frac{1}{t_{r}}$.

- Watch Video Solution

119. Find the sum to n terms of the series : $1 \times 2 \times 3+2 \times 3 \times 4+3 \times 4 \times 5+:$

- Watch Video Solution

120. If the sum to infinity of the series $3+(3+d) \frac{1}{4}+(3+2 d) \frac{1}{4^{2}}+\infty$ is $\frac{44}{9}$, then find .
121. Find the sum to infinity of the series $1^{2}+2^{2} x+3^{2} x^{2}+\infty$.

- Watch Video Solution

122. If a, b, c, d are in G.P., then prove that $\left(a^{3}+b^{3}\right)^{-1},\left(b^{3}+c^{3}\right)^{-1},\left(c^{3}+d^{3}\right)^{-1}$ are also in G.P.

- Watch Video Solution

123. Find the sum of the series $1+3 x+5 x^{2}+7 x^{2}+\rightarrow n$ terms.

- Watch Video Solution

124. In a geometric progression consisting of positive terms, each term equals the sum of the next terms. Then find the common ratio.
125. If the A.M. between two numbers exceeds their G.M. by 2 and the GM. Exceeds their H.M. by 8/5, find the numbers.

- Watch Video Solution

126. The $A M$ of teo given positive numbers is 2 . If the larger number is increased by 1 , the $G M$ of the numbers becomes equal to the $A M$ to the given numbers. Then, the HM of the given numbers is

- Watch Video Solution

127. Find the sum of the series $1+3 x+5 x^{2}+7 x^{3}+\ldots \ldots \ldots$ upto n terms.

- Watch Video Solution

128. If $\frac{a-x}{p x}=\frac{a-y}{q y}=\frac{a-z}{r} a n d p, q, a n d r$ are in A.P., then prove that x, y, z are in H.P.

D Watch Video Solution

129. Find the sum of n terms of the series $1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\ldots .$.

- Watch Video Solution

130. Find the sum $\frac{1^{2}}{2}-\frac{3^{2}}{2^{2}}+\frac{5^{2}}{2^{3}}-\frac{7^{2}}{2^{4}}+\infty$.

D Watch Video Solution

131. If H is the harmonic mean between $\operatorname{Pand} Q$ then find the value of $H / P+H / Q$.

D Watch Video Solution

132. If $T_{r}=r\left(r^{2}-1\right)$, then find $\sum_{r=2}^{\infty} \frac{1}{T}$.

- Watch Video Solution

133. Insert four H.M.'s between $2 / 3$ and $2 / 13$.

- Watch Video Solution

134. If a, b, andc are respectively, the pth, qth, and rth terms of a G.P., show that $(q-r) \log a+(r-p) \log b+(p-q) \log c=0$.

- Watch Video Solution

135. The A.M. and H.M. between two numbers are 27 and 122, respectively, then find their G.M.
136. If $a, a_{1}, a_{2}, a_{3}, a_{2 n}, b$ are in A.P. and $a, g_{1}, g_{2}, g_{3},, g_{2 n}, b$. are in G.P. and $h \quad s$ the H.M. of $a a n d b$, then prove that $\frac{a_{1}+a_{2 n}}{g_{1} g_{2 n}}+\frac{a_{2}+a_{2 n-1}}{g_{1} g_{2 n-1}}++\frac{a_{n}+a_{n+1}}{g_{n} g_{n+1}}=\frac{2 n}{h}$

- Watch Video Solution

137. If nine arithmetic means and nine harmonic means are inserted between 2 and 3 alternatively, then prove that $A+6 / H=5$ (where A is any of the A.M.'s and H the corresponding H.M.).

- Watch Video Solution

138. If $x, 1, a n d z$ are in A.P. and $x, 2, a n d z$ are in G.P., then prove that $x, a n d 4, z$ are in H.P.

D Watch Video Solution

139. Find two numbers whose arithmetic mean is 34 and the geometric mean is 16 .

D Watch Video Solution

140. If a, b, c, d and p are distinct real numbers such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0$, then prove that a, b, c, d are in G.P.
(a) AP
(b) GP
(c) HP
(d) $a b=c d$

- Watch Video Solution

141. If A.M. and G.M. between two numbers is in the ratio $m: n$ then prove that the numbers are in the ratio
$\left(m+\sqrt{m^{2}-n^{2}}\right):\left(m-\sqrt{m^{2}-n^{2}}\right)$.

- Watch Video Solution

142. Prove that $(6666)^{2}+(8888)=44444$.

- Watch Video Solution

143. If a is the A.M. of b and c and the two geometric mean are G_{1} and G_{2}, then prove that $G_{1}^{3}+G_{2}^{3}=2 a b$.

- Watch Video Solution

144. If a, b, c, d are distinct integers in an A.P. such that $d=a^{2}+b^{2}+c^{2}$, then find the value of $a+b+c+d$

- Watch Video Solution

145. The 8th and 14th term of a H.P. are $1 / 2$ and $1 / 3$, respectively. Find its 20th term. Also, find its general term.

- Watch Video Solution

146. Find the number of common terms to the two sequences $17,21,25, \ldots, 417$ and $16,21,26, \ldots, 466$.

- Watch Video Solution

147. If the 20th term of a H.P. is 1 and the 30th term is $-1 / 17$, then find its largest term.

- Watch Video Solution

148. Find the sum $\frac{3}{2}-\frac{5}{6}+\frac{7}{18}-\frac{9}{54}+\infty$.
149. If a, b, candd are in H.P., then prove that $(b+c+d) / a,(c+d+a) / b,(d+a+b) / c$ and $(a+b+c) / d$, are in A.P.

- Watch Video Solution

150. The harmonic mean between two numbers is $21 / 5$, their A.M. ' A ' and G.M. ' G ' satisfy the relation $3 A+G^{2}=36$. Then find the sum of square of numbers.

- Watch Video Solution

151. The mth term of a H.P is n and the nth term is m. Proves that its rth term is $m n / r$.

- Watch Video Solution

152. The pth term of an A.P. is a and qth term is b. Then find the sum of its $(p+q)$ terms.

- Watch Video Solution

153. If $a>1, b>1$ and $c>1$ are in G.P. then show that $\frac{1}{1+(\log)_{e} a}, \frac{1}{1+(\log)_{e} b}$, and $\frac{1}{1+(\log)_{e} c}$ are in H.P.

- Watch Video Solution

154.

Solve
the
equation
$(x+1)+(x+4)+(x+7)++(x+28)=155$.

- Watch Video Solution

155. If $a, b, a n d c$ be in G.P. and $a+x, b+x, a n d c+x$ in H.P. then find the value of $x(a, b a n d c a r e d i s t \in c t \nu m b e r s)$.
156. The ratio of the sum of m and n terms of an A.P. is $m^{2}: n^{2}$. Show that the ratio m th and nth term is $(2 m-1):(2 n-1)$.

- Watch Video Solution

157. If first three terms of the sequence $1 / 16, a, b, \frac{1}{6}$ are in geometric series and last three terms are in harmonic series, then find the values of $a a n d b$.

(Watch Video Solution

158. The sum of $n, 2 n, 3 n$ terms of an A.P. are $S_{1} S_{2}, S_{3}$, respectively. Prove that $S_{3}=3\left(S_{2}-S_{1}\right)$.

- Watch Video Solution

159. In a certain A.P., 5 times the 5th term is equal to 8 times the 8 th terms then find its 13th term.

D Watch Video Solution

160. If x is a positive real number different from 1 , then prove that the numbers $\frac{1}{1+\sqrt{x}}, \frac{1}{1-x}, \frac{1}{1-\sqrt{x}}$, , are in A.P. Also find their common difference.

- Watch Video Solution

161. Which term of the sequence $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}$,. is the first negative term?

- Watch Video Solution

162. If $S_{n}=n P+\frac{n(n-1)}{2} Q$, where S_{n} denotes the sum of the first n terms of an A.P., then find the common difference.

- Watch Video Solution

163. Find the sum $\sum_{r=1}^{n} r(r+1)(r+2)(r+3)$.

- Watch Video Solution

164. Find the sum $\sum_{r=1}^{n} \frac{r}{(r+1)!}$ where $\mathrm{n}!=1 \times 2 \times 3 \ldots n$.

- Watch Video Solution

165. Find the sum $\sum_{r=1}^{n} \frac{1}{r(r+a)(r+2)(r+3)}$

- Watch Video Solution

$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots \ldots \ldots .+\frac{1}{1+2+3+\ldots \ldots \ldots+n}$.

- Watch Video Solution

167. Find the sum to n terms of the series
$\frac{1}{1+1^{2}+1^{4}}+\frac{2}{1+2^{2}+2^{4}}+\frac{3}{1+3^{2}+3^{4}}+\ldots \ldots \ldots .$. that means
$t_{r}=\frac{r}{r^{4}+r^{2}+1}$ find \sum_{1}^{n}

- Watch Video Solution

168. Find the sum to n terms of the series $3 /\left(1^{2} \times 2^{2}\right)+5 /\left(2^{2} \times 3^{2}\right)+7 /\left(3^{2} \times 4^{2}\right)+$.

- Watch Video Solution

169. Find the sum $\sum_{r=1}^{n} \frac{1}{(a r+b)(a r+a+b)}$.
170. If $x=\sum_{n=0}^{\infty} a^{n}, y=\sum_{n=0}^{\infty} b^{n}, z=\sum_{n=0}^{\infty} c^{n}$, wherera, b, andc are in A.P. and $|a|<,|b|<1, a n d|c|<1$, then prove that $x, y a n d z$ are in H.P.

- Watch Video Solution

171. If the sum of the series $\sum_{n=0}^{\infty} r^{n},|r|<1 i s s$, then find the sum of the series $\sum_{n=0}^{\infty} r^{2 n}$.

- Watch Video Solution

172. Find the sum of the series $\sum_{k=1}^{360}\left(\frac{1}{k \sqrt{k+1}+(k+1) \sqrt{k}}\right)$

- Watch Video Solution

$\frac{1^{4}}{1 \times 3}+\frac{2^{4}}{3 \times 5}+\frac{3^{4}}{5 \times 7}+\ldots \ldots+\frac{n^{4}}{(2 n-1)(2 n+1)}$

- Watch Video Solution

174. Find the value of $11^{2}+12^{2}+13^{2}++20^{2}$.

- Watch Video Solution

175. Find the sum $2+5+10+17+26+\ldots$.

- Watch Video Solution

176. Find the sum up to 20 terms.
$1+\frac{1}{2}(1+2)+\frac{1}{3}(1+2+3)+\frac{1}{4}(1+2+3+4)+$

- Watch Video Solution

177. If $a, b, a n d c$ are in G.P. then prove that $\frac{1}{a^{2}-b^{2}}+\frac{1}{b^{2}}=\frac{1}{b^{2}-c^{2}}$.

- Watch Video Solution

178. Find the value of $(32)(32)^{1 / 6}(32)^{1 / 36} \infty$.

- Watch Video Solution

179. Find the sum of the series $1^{2}+3^{2}+5^{2}+\rightarrow n$ terms.

(Watch Video Solution

180. If $S=\frac{1}{1 \times 3 \times 5}+\frac{1}{3 \times 5 \times 7}+\frac{1}{5 \times 7 \times 9}+.$. to infinity, then find the value of $[36 S]$, where [.] represents the greatest integer function.

- Watch Video Solution

181. If the sum of the roots of the quadratic equation $a x^{2}+b x+c=0$ is equl to the sum of the squares of their reciprocals, then prove that $\frac{a}{c}, \frac{b}{a}$ and $\frac{c}{b}$ are in H.P.

- Watch Video Solution

182. Let T_{r} denote the rth term of a G.P. for $r=1,2,3$, If for some positive integers mandn, we have $T_{m}=1 / n^{2}$ and $T_{n}=1 / m^{2}$, then find the value of $T_{m+n / 2}$.

- Watch Video Solution

183. The first term of an arithmetic progression is 1 and the sum of the first nine terms equal to 369 . The first and the ninth term of a geometric progression coincide with the first and the ninth term of the arithmetic progression. Find the seventh term of the geometric progression.
184. Let a, b, c be positive integers such that $\frac{b}{a}$ is an integer. If a, b, c are in GP and the arithmetic mean of a, b, c, is $b+2$ then the value of $\frac{a^{2}+a-14}{a+1}$ is

- Watch Video Solution

185. Suppose that all the terms of an arithmetic progression (A.P.) are natural numbers. If the ratio of the sum of the first seven terms to the sum of the first eleven terms is 6: 11 and the seventh term lies in between 130 and 140 , then the common difference of this A.P. is

- Watch Video Solution

186. If the sides of a right-angled triangle are in A.P., then the sines of the acute angles are $\frac{3}{5}, \frac{4}{5}$ b. $\frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}$ c. $\frac{1}{2}, \frac{\sqrt{3}}{2}$ d. none of these
187. The sum of an infinite geometric series is 162 and the sum of its first n terms is 160 . If the inverse of its common ratio is an integer, then which of the following is not a possible first term? 108 b .144 c .160 d . none of these

- Watch Video Solution

188. If a, b, c are digits, then the rational number represented by
$\odot c a b a b a b$...is cab/990
b. $(99 c+b a) / 990$
c. $(99 c+10 a+b) / 99 \mathrm{~d}$.
$(99 c+10 a+b) / 990$

- Watch Video Solution

189.

$a=\underbrace{111 \ldots \ldots .1}_{55 \text { times }}, b=1+10+10^{2}+10^{3}+10^{4}$ and $c=1+10^{5}+10^{10}+\ldots$ then
190. Consider the ten numbers $a r, a r^{2}, a r^{3}, \ldots ., a r^{10}$. If their sum is 18 and the sum of their reciprocals is 6 , then the product of these ten numbers is a. 81 b. 243 c. 343 d. 324

- Watch Video Solution

191. The sum of 20 terms of a series of which every even term is 2 times the term before it, every odd term is 3 times the term before it, the first tem being unity is $\left(\frac{2}{7}\right)\left(6^{10}-1\right)$ b. $\left(\frac{3}{7}\right)\left(6^{10}-1\right)$ c. $\left(\frac{3}{5}\right)\left(6^{10}-1\right)$ d. none of these

- Watch Video Solution

192. Let a_{n} be the nth term of a G.P. of positive numbers. Let $\sum_{n=1}^{100} a_{2 n}=\alpha a n d \sum_{n=1}^{100} a_{2 n-1}=\beta$, such that $\alpha \neq \beta$, then the common ratio is α / β b. β / α c. $\sqrt{\alpha / \beta}$ d. $\sqrt{\beta / \alpha}$
193. If the pth, qth, and rth terms of an A.P. are in G.P., then the common ratio of the G.P. is a. $\frac{p r}{q^{2}}$ b. $\frac{r}{p}$ c. $\frac{q+r}{p+q}$ d. $\frac{q-r}{p-q}$

- Watch Video Solution

194. In a G.P. the first, third, and fifth terms may be considered as the first, fourth, and sixteenth terms of an A.P. Then the fourth term of the A.P., knowing that its first term is 5 , is 10 b .12 c .16 d .20

- Watch Video Solution

195. If a, b, c, d be in $G . P$. show that ${ }^{`}(b-c)^{\wedge} 2+(c-a)^{\wedge} 2+(d-b)^{\wedge} 2=(a-d)^{\wedge} 2$.

- Watch Video Solution

196. If the pth, qth, rth, and sth terms of an A.P. are in G.P., t hen $p-q, q-r, r-s$ are in a. A.P. b. G.P. c. H.P. d. none of these

Watch Video Solution

197. $A B C$ is a right-angled triangle in which $\angle B=90^{\circ}$ and $B C=a$. If n points $L_{1}, L_{2}, L_{n} o n A B$ is divided in $n+1$ equal parts and $L_{1} M_{1}, L_{2} M_{2},, L_{n} M_{n}$ are line segments parallel to $\operatorname{BCand} M_{1}, M_{2}, M_{n}$ are on $A C$, then the sum of the lengths of $L_{1} M_{1}, L_{2} M_{2},, L_{n} M_{n}$ is $\frac{a(n+1)}{2}$ b. $\frac{a(n-1)}{2}$ c. $\frac{a n}{2}$ d. none of these

- Watch Video Solution

198. If $(1-p)\left(1+3 x+9 x^{2}+27 x^{3}+81 x^{4}+243 x^{5}\right)=1-p^{6}, p \neq 1$, then the value of $\frac{p}{x}$ is a $\frac{1}{3}$ b. 3 c. $\frac{1}{2}$ d. 2

- Watch Video Solution

199. ABCD is a square of length a, $a \in N$, a > 1. Let $L_{1}, L_{2}, L_{3} \ldots$ be points on BC such that $B L_{1}=L_{1} L_{2}=L_{2} L_{3}=\ldots .1$ and $M_{1}, M_{2}, M_{3}, \ldots$ be points on CD such that $C M_{1}=M_{1} M_{2}=M_{2} M_{3}=\ldots=1$. Then $\sum_{n=1}^{a-1}\left(\left(A L_{n}\right)^{2}+\left(L_{n} M_{n}\right)^{2}\right)$ is equal to :

- Watch Video Solution

200. Let T_{r} and S_{r} be the r th term and sum up to rth term of a series, respectively. If for an odd number $n, S_{n}=n$ and $T_{n}=\frac{T_{n}-1}{n^{2}}$,then T_{m} (m being even) is $\frac{2}{1+m^{2}}$ b. $\frac{2 m^{2}}{1+m^{2}}$ c. $\frac{(m+1)^{2}}{2+(m+1)^{2}}$ d. $\frac{2(m+1)^{2}}{1+(m+1)^{2}}$

- Watch Video Solution

201. If $(1+3+5++p)+(1+3+5++q)=(1+3+5++r)$ where each set of parentheses contains the sum of consecutive odd integers as shown, the smallest possible value of $p+q+r(w h e r e p>6)$ is $12 \mathrm{~b} .21 \mathrm{c}$.
202. If $a x^{3}+b x^{2}+c x+d$ is divisible by $a x^{2}+c$, thena, b, c, d are in a.
A.P. b. G.P. c. H.P. d. none of these

- Watch Video Solution

203. The line $x+y=1$ meets X -axis at A and Y -axis at B, P is the midpoint of $A B, P_{1}$ is the foot ofperpendicular from P to $O A, M_{1}$, is that of P_{1}, from $O P ; P_{2}$, is that of M_{1} from $O A, M_{2}$, is that of P_{2}, from $O P ; P_{3}$ is that of M_{2}, from OA and so on. If P_{n} denotes the nth foot of the perpendicular on OA, then find $O P_{n}$.

- Watch Video Solution

204. In a geometric series, the first term is a and common ratio is r. If S_{n} denotes the sum of the terms and $U_{n}=\sum_{n=1}^{n} S_{n}$, thenr $S_{n}+(1+=-r) U_{n}$ equals 0 b. n c. $n a$ d. $n a r$
205. If $x, y, a n d z$ are distinct prime numbers, then x, y, and z may be in A.P. but not in G.P. $x, y, a n d z$ may be in G.P. but not in A.P. $x, y, a n d z$ can neither be in A.P. nor in G.P. none of these

- Watch Video Solution

206. If $x, y, a n d z$ are in G.P. and $x+3+, y+3, a n d z+3$ are in H.P., then $y=2$ b. $y=3$ c. $y=1$ d. $y=0$

- Watch Video Solution

207. If A.M., G.M., and H.M. of the first and last terms of the series of $100,101,102, \ldots n-1, n$ are the terms of the series itself, then the value of 'ni s(100
208. The sum $1+3+7+15+31+\ldots \rightarrow 100$ terms is $2^{100}-102 b \mathrm{~b}$. $2^{99}-101$ c. $2^{101}-102 \mathrm{~d}$. none of these

- Watch Video Solution

209. In a sequence of $(4 n+1)$ terms the first $(2 n+1)$ terms are in AP whose common difference is 2 , and the last $(2 n+1)$ terms are in GP whose common ratio is 0.5 . If the middle terms of the AP and GP are equal, then the middle term of the sequence is

- Watch Video Solution

210. The coefficient of x^{49} in the product $(x-1)(x-3)(x+99) i s-99^{2}$
b. 1 c. -2500 d . none of these

- Watch Video Solution

211. Let $S=\frac{4}{19}+\frac{44}{19^{2}}+\frac{444}{19^{3}}+u p \rightarrow \infty$. Then s is equal to $40 / 9 \mathrm{~b}$. $38 / 81 \mathrm{c} .36 / 171 \mathrm{~d}$. none of these

- Watch Video Solution

212. If $H_{n}=1+\frac{1}{2}++\frac{1}{n}$, then the value of $S_{n}=1+\frac{3}{2}+\frac{5}{3}++\frac{99}{50}$ is $H_{50}+50$ b. $100-H_{50}$ c. $49+H_{50}$ d. $H_{50}+100$

- Watch Video Solution

213. If the sum to infinity of the series $1+2 r+3 r^{2}+4 r^{3}+$ is $9 / 4$, then value of r is (a) $1 / 2 \mathrm{~b} .1 / 3 \mathrm{c} .1 / 4 \mathrm{~d}$. none of these

- Watch Video Solution

214. The sum of series $1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\infty$ is $7 / 16$ b. $5 / 16$ c. 104/64 d. $35 / 16$

- Watch Video Solution

215. The sum 20 terms of a series whose r th term is given by $T_{r}=(-1)^{r}\left(\frac{r^{2}+r+1}{r!}\right)$ is

- Watch Video Solution

216. Consider the sequence $1,2,2,4,4,4,8,8,8,8,8,8,8,8, .$. . Then 1025 th terms will be 2^{9} b. 2^{11} c. 2^{10} d. 2^{12}

- Watch Video Solution

217. If $a, \frac{1}{b}, c$ and $\frac{1}{p}, q, \frac{1}{r}$ form two arithmetic progressions of the common difference, then a, q, c are in A.P. if p, b, r are in A.P. b. $\frac{1}{p}, \frac{1}{b}, \frac{1}{r}$
are in A.P. c. p, b, r are in G.P. d. none of these

- Watch Video Solution

218.

Suppose
that
$F(n+1)=\left(2 \frac{F(n+1)}{2} f\right.$ or $n=1,2,3 \operatorname{andF}(1)=2 . \operatorname{Then} \dot{F}(101)$
equals 50 b .52 c .54 d . none of these

- Watch Video Solution

219. In an A.P. of which a is the first term if the sum of the first p terms is zero, then the sum of the next q terms is a. $\frac{a(p+q) p}{q+1}$ b. $\frac{a(p+q) p}{p+1}$ c. $-\frac{a(p+q) q}{p-1} d$. none of these

(Watch Video Solution

220. If S_{n} denotes the sum of first n terms of an A.P. and $\frac{S_{3 n}-S_{n-1}}{S_{2 n}-S_{2 n-1}}=31$, then the value of n is 21 b. 15 c. 16 d. 19

(Watch Video Solution

221. If $a, b, a n d c$ are in A.P., then $a^{3}+c^{3}-8 b^{3}$ is equal to $2 a b c b .6 a b c \mathrm{c}$. $4 a b c \mathrm{~d}$. none of these

- Watch Video Solution

222. The number of terms of an A.P. is even; the sum of the odd terms is 24 , and of the even terms is 30 , and the last term exceeds the first by $10 / 2$ then the number of terms in the series is 8 b .4 c .6 d .10

- Watch Video Solution

223. The largest term common to the sequences $1,11,21,31, \ldots \ldots$ to 100 terms and $31,36,41,46, \ldots$. to 100 terms is 381 b .471 c .281 d . none of these
224. If the sum of m terms of an A.P. is the same as teh sum of its n terms, then the sum of its $(m+n)$ terms is $m n$ b. $-m n$ c. $1 / m n$ d. 0

- Watch Video Solution

225. If S_{n} denotes the sum of n terms of A.P., then $S_{n+1}-3 S_{n+2}+3 S_{n+1}-S_{n}=2^{S}{ }_{-} n$ b. s_{n+1} c. $3 S_{n}$ d. 0

- Watch Video Solution

226. About 150 workers were engaged to finish a piece of work in a certain number of days. Four workers stopped working on the second day, four more workers stopped their work on the third day and so on. It took 8 more days to finish the work. Then the number of days in which the work was completed is 29 days b. 24 days c. 25 days d. none of these
227. if a G.P $(p+q)$ th term $=m$ and $(p-q)$ th term $=n$, then find its p th term

- Watch Video Solution

228. There are infinite geometric progressions of for which 27,8 and 12 are three of its terms (not necessarily consecutive). Statement 2: Given terms are integers.

- Watch Video Solution

229. If $A_{1}, A_{2}, G_{1}, G_{2}, ;$ and H_{1}, H_{2} are two arithmetic, geometric and harmonic means respectively, between two quantities aandb, thenab is equal to $A_{1} H_{2}$ b. $A_{2} H_{1}$ c. $G_{1} G_{2}$ d. none of these

- Watch Video Solution

230. Let S_{1}, S_{2}, be squares such that for each $n \geq 1$, the length of a side of S_{n} equals the length of a diagonal of S_{n+1}. If the length of a side of $S_{1} i s 10 \mathrm{~cm}$, then for which of the following value of n is the area of S_{n} less than 1 sq.cm? a. 5 b. 7 c. 9 d. 10

- Watch Video Solution

231. If $\frac{1}{b-a}+\frac{1}{b-c}=\frac{1}{a}+\frac{1}{c}$, then A. $a, b, a n d c$ are in H.P. B. $a, b, a n d c$ are in A.P. C. $b=a+c$ D. $3 a=b+c$

- Watch Video Solution

232. If $a, b, a n d c$ are in G.P. and $x a n d y$, respectively, be arithmetic means between $\quad a, b, a n d b, c$, then $\quad \frac{a}{x}+\frac{c}{y}=2 \quad$ b. $\quad \frac{a}{x}+\frac{c}{y}=\frac{c}{a}$ c. $\frac{1}{x}+\frac{1}{y}=\frac{2}{b}$ d. $\frac{1}{x}+\frac{1}{y}=\frac{2}{a c}$

- Watch Video Solution

233. Consider a sequence $\left\{a_{n}\right\}$ with $a_{1}=2 a n d a_{n}=\frac{a n-12}{a_{n-2}}$ for all $n \geq 3$, terms of the sequence being distinct. Given that $a_{1} a n d a_{5}$ are positive integers and $a_{5} \leq 162$ then the possible value $(s) o f a_{5}$ can be a.

162 b. 64 c. 32 d. 2

- Watch Video Solution

234. Which of the following can be terms (not necessarily consecutive) of any A.P.? a. 1,6,19 b. $\sqrt{2}, \sqrt{50}, \sqrt{98}$ c. $\log 2, \log 16, \log 128$ d. $\sqrt{2}, \sqrt{3}, \sqrt{7}$

- Watch Video Solution

235. The numbers 1, 4, 16 can be three terms (not necessarily consecutive) of ?
A. No AP
B. only one G.P
C. infinite number o A.P's
D. infinite number of G.P's

Answer: null

- Watch Video Solution

236. Each question has four choices a, b, c and d out of which only one is correct. Each question contains Statement 1 and Statement 2. Make your answer as: If both the statements are true and Statement 2 is the correct explanation of statement 1 . If both the statements are True but Statement 2 is not the correct explanation of Statement 1. If Statement 1 is True and Statement 2 is False. If Statement 1 is False and Statement 2 is True. Statement 1: $\frac{\sin \pi}{18}$ is a root of $8 x^{3}-6 x+1=0$ Statement 2: For any $\theta \in R, \sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$

- Watch Video Solution

237. If $\left(1^{2}-t_{1}\right)+\left(2^{2}-t_{2}\right)++\left(n^{2}-t_{n}\right)+=\frac{n\left(n^{2}-1\right)}{3}$, then t_{n} is equal to n^{2} b. $2 n$ c. $n^{2}-2 n$ d. none of these

Watch Video Solution

238. If $b_{n+1}=\frac{1}{1-b_{n}} f$ or $n \geq 1 a n d b_{1}=b_{3}$, then $\sum_{r=1}^{2001} b r^{2001}$ is equal to 2001 b. - 2001 c. 0 d. none of these

- Watch Video Solution

239. Let $a_{1}, a_{2}, a_{3}, a_{100}$ be an arithmetic progression with $a_{1}=3$ and $_{p}=\sum_{i=1}^{p} a_{i}, 1 \leq p \leq 100$. For any integer n with $1 \leq n \leq 20$, let $m=5 n$. If $\frac{S_{m}}{S_{n}}$ does not depend on n, then a_{2} is \qquad .

- Watch Video Solution

 equals 2005 b. 2004 c. 2003 d. 2001
- Watch Video Solution

241. The value of $\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1=220$, then the value of n equals a. 11 b . 12 c .10 d .9

- Watch Video Solution

242. The sum of $0.2+0004+0.00006+0.0000008+\ldots$ to ∞ is $\frac{200}{891} \mathrm{~b}$. $\frac{2000}{9801}$ c. $\frac{1000}{9801}$ d. none of these
243. If $\quad t_{n}=\frac{1}{4}(n+2)(n+3) \quad$ for $\quad n=1,2,3, \ldots . \quad$ then $\frac{1}{t_{1}}+\frac{1}{t_{2}}+\frac{1}{t_{3}}+\ldots+\frac{1}{t_{2003}}=$

- Watch Video Solution

244. The coefficient of x^{19} in the polynomial $(x-1)(x-2)\left(x-2^{2}\right)\left(x-2^{19}\right)$ is $2^{20}-2^{19}$ b. $1-2^{20}$ c. 2^{20} d. none of these

- Watch Video Solution

245. If $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+=\frac{\pi}{4} \quad$, then value of $\frac{1}{1 \times 3}+\frac{1}{5 \times 7}+\frac{1}{9 \times 11}+$ is $\pi / 8$ b. $\pi / 6$ c. $\pi / 4$ d. $\pi / 36$

- Watch Video Solution

246. The positive integer n for which
$2 \times 2^{2}+3 \times 2^{3}+4 \times 2^{4}+\ldots \ldots+n \times 2^{n}=2^{n+10}$ is a. 510 b. 511 c. 512
d. 513

- Watch Video Solution

247. If t_{n} denotes the nth term of the series $2+3+6+11+18+\ldots$ thent $_{50} 49^{2}-1$ b. 49^{2} c. $50^{2}+1$ d. $49^{2}+2$

- Watch Video Solution

248. The number of positive integral ordered pairs of (a, b) such that $6, a, b$ are in harmonic progression is \qquad .

- Watch Video Solution

249. Let $a, b>0$, let $5 a-b, 2 a+b, a+2 b$ be in A.P. and $(b+1)^{2}, a b+1,(a-1)^{2}$ are in G.P., then the value of $\left(a^{-1}+b^{-1}\right)$ is
\qquad .

- Watch Video Solution

250. The difference between the sum of the first k terms of the series $1^{3}+2^{3}+3^{3}++n^{3}$ and the sum of the first k terms of $1+2+3++n i s 1980$. The value of k is \qquad .

- Watch Video Solution

251. The value of the $\sum_{n=0}^{\infty} \frac{2 n+3}{3^{n}}$ is equal to \qquad .

- Watch Video Solution

252. If the roots of $10 x^{3}-n x^{2}-54 x-27=0$ are in harmonic oprogresion, then n eqauls \qquad .

Watch Video Solution

253. The 5th and 8th terms of a geometric sequence of real numbers are $7!$ And 8 ! Respectively. If the sum to first n tems of the G.P. is 2205 , then n equals \qquad .

- Watch Video Solution

254. Let a, b, c, d be four distinct real numbers in A.P. Then half of the smallest positive valueof $k \quad k \quad$ satisfying $2(a-b)+k(b-c)^{2}+(c-a)^{3}=2(a-d)+(b-d)^{2}+(c-d)^{3} \quad$ is
\qquad
255. Let $a_{1}, a_{2}, a_{3},, a_{101}$ are in G.P. with $a_{101}=25 a n d \sum_{i=1}^{201} a_{1}=625$. Then the value of $\sum_{i=1}^{201} \frac{1}{a_{1}}$ equals \qquad .

- Watch Video Solution

256. Let $S=\sum_{n=1}^{9999} \frac{1}{(\sqrt{n}+\sqrt{n+1})(n 4+n+14)}$, then S equals
\qquad .

- Watch Video Solution

257. The next term of the G.P. $x, x^{2}+2, a n d x^{3}+10$ is $\frac{729}{16}$ b. 6 c. 0 d. 54

- Watch Video Solution

258. If $x^{2}+9 y^{2}+25 z^{2}=x y z\left(\frac{15}{x}+\frac{5}{y}+\frac{3}{z}\right)$, then x, y, and z are in
H.P. b. $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P. c. x, y, z are in G.P. d. $\frac{1}{a}+\frac{1}{d}=\frac{1}{b}=\frac{1}{c}$
259. If the sum of n terms of an A.P. is given by $S_{n}=a+b n+c n^{2}$, wherea, b, c are independent of n, then (a) $a=0$
(b) common difference of A.P. must be $2 b$ (c) common difference of A.P. must be $2 c$ (d) first term of A.P. is $b+c$

- Watch Video Solution

260. Let $E=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+$ Then, a. $E<3$ b. $E>3 / 2$ c. $E>2$ d. $E<2$

- Watch Video Solution

261. If $1+2 x+3 x^{2}+4 x^{3}+\infty \geq 4$, then least value of $\xi s 1 / 2$ greatest value of $\xi s \frac{4}{3}$ least value of $\xi s 2 / 3$ greatest value of x does not exists

- Watch Video Solution

262. If p, q, andr are in A.P., then which of the following is/are true? p th, qth, and rth terms of A.P. are in A.P. pth, qth, rth terms of G.P. are in G.P. pth, qth, rth terms of H.P., are in H.P. none of these

- Watch Video Solution

263. If $n>1$, the value of the positive integer m for which $n^{m}+1$ divides $a=1+n+n^{2}+\ddot{+} n^{63}$ is/are 8 b. 16 c. 32 d. 64

- Watch Video Solution

264. For an increasing A.P. a_{1}, a_{2}, a_{n} if $a_{1}=a_{2}+a_{3}+a_{5}=-12$ and $a_{1} a_{3} a_{5}=80$, then which of the following is/are true? a. $a_{1}=-10 \mathrm{~b}$. $a_{2}=-1$ c. $a_{3}=-4$ d. $a_{5}=+2$

- Watch Video Solution

265. If $p(x)=\frac{1+x^{2}+x^{4}++x}{1+x+x^{2}++x^{n-1}{ }^{\wedge}(2 n-2)}$ is a polynomial in x, the \cap can be 5 b. 10 c. 20 d. 17

- Watch Video Solution

266. Q. Let n be an add integer if $\sin n$ theta-sum_ $(r=0)^{\wedge} n\left(b_{_} r\right) \sin ^{\wedge} r$ theta, for every value of theta then --

- Watch Video Solution

267. Let $S_{n}=\sum_{k=1}^{4 n}(-1) \frac{k(k+1)}{2} k^{2}$. Then S_{n} can take value (s) 1056 b . 1088 c. 1120 d. 1332

- Watch Video Solution

268. The 15 th term of the series $2 \frac{1}{2}+1 \frac{7}{13}+1 \frac{1}{9}+\frac{20}{23}+i s \frac{10}{39}$ b. $\frac{10}{21}$
c. $\frac{10}{23}$ d. none of these

(D) Watch Video Solution

269. Le $a_{1}, a_{2}, a_{3},, a_{11}$ be real numbers satisfying
$a_{1}=15,27-2 a_{2}>0$ anda $a_{k}=2 a_{k-1}-a_{k-2} \quad$ for $\quad k=3,4,, 11$. If $\frac{a 12+a 22+\ldots+a 112}{11}=90$, then the value of $\frac{a 1+a 2++a 11}{11}$ is equals to \qquad .

Watch Video Solution

270. If $x^{2}+9 y^{2}+25 z^{2}=x y z\left(\frac{15}{x}+\frac{5}{y}+\frac{3}{z}\right)$, then x, y, and z are in H.P. b. $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P. c. x, y, z are in G.P. d. $\frac{1}{a}+\frac{1}{d}=\frac{1}{b}=\frac{1}{c}$

- Watch Video Solution

271. Statement 1: If an infinite G.P. has 2 nd term x and its sum is 4 , then x belongs to $(-8,1)$. Statement 2 : Sum of an infinite G.P. is finite if for its common ratio $r, 0<|r|<1$.
272. Statement 1: $1^{99}+2^{99}++100^{99}$ is divisible by 10100 . Statement 2 : $a^{n}+b^{n}$ is divisible by $a+b$ if n is odd.

- Watch Video Solution

273. Let $p_{1}, p_{2}, \ldots, p_{n}$ and x be distinct real number such that $\left(\sum_{r=1}^{n-1} p_{r}^{2}\right) x^{2}+2\left(\sum_{r=1}^{n-1} p_{r} p_{r+1}\right) x+\sum_{r=2}^{n} p_{r}^{2} \leq 0$ then $p_{1}, p_{2}, \ldots, p_{n}$ are in G.P. and when
$a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+\ldots+a_{n}^{2}=0, a_{1}=a_{2}=a_{3}=\ldots=a_{n}=0$ Statement 2
: If $\frac{p_{2}}{p_{1}}=\frac{p_{3}}{p_{2}}=\ldots=\frac{p_{n}}{p_{n-1}}$, then $p_{1}, p_{2}, \ldots, p_{n}$ are in G.P.

- Watch Video Solution

274. If S_{n} denote the sum of first n terms of an A.P. whose first term is $a a n d S_{n x} / S_{x}$ is independent of x, then $S_{p}=p^{3}$ b. $p^{2} a$ c. $p a^{2}$ d. a^{3}
275. If a_{1}, a_{2}, a_{3}, be terms of an A.P. if $\frac{a_{1}+a_{2}++a_{p}}{a_{1}+a_{2}++a_{q}}=\frac{p^{2}}{q^{2}}, p \neq q$, then $\frac{a_{6}}{a_{21}}$ equals $41 / 11$ b. $7 / 2$ c. $2 / 7$ d. 11/41

Watch Video Solution

276. Consider an A.P. a_{1}, a_{2}, a_{3}, such that
$a_{3}+a_{5}+a_{8}=11$ anda $_{4}+a_{2}+=-2$, then the value of $a_{1}+a+6+a+7$ is -8 b. 5 c. 7 d. 9

- Watch Video Solution

277. If the sum of n terms of an A.P is $\mathrm{cn}(\mathrm{n}-1)$ where $c \neq 0$ then the sum of the squares of these terms is

- Watch Video Solution

278. If $|a|<1$ and $|b|<1$, then the sum of the series

$$
\begin{equation*}
1+(1+a) b+\left(1+a+a^{2}\right) b^{2}+\left(1+a+a^{2}+a^{3}\right) b^{3}+\ldots \quad \text { is } \tag{a}
\end{equation*}
$$

$\frac{1}{(1-a)(1-b)}$
(b). $\frac{1}{(1-a)(1-a b)}$
(c.) $\frac{1}{(1-b)(1-a b)}$
$\overline{(1-a)(1-b)(1-a b)}$

- Watch Video Solution

279. Let $n \in N, n>25$. Let A, G, H deonote te arithmetic mean, geometric man, and harmonic mean of 25 and n. The least value of n for which $A, G, H \in\{25,26, n\}$ is a. 49 b. 81 c. 169 d. 225

- Watch Video Solution

280. If $a_{1}, a_{2}, a_{3}\left(a_{1}>0\right)$ are three successive terms of a G.P. with common ratio r, for which $a+3>4 a_{2}-3 a_{1}$ holds is given by a. $1<r<\rightarrow 3 \mathrm{~b} .-3<r<-1 \mathrm{c} . r>3$ or $r<1 \mathrm{~d}$. none of these
281. Three numbers form an increasing G.P. If the middle number is doubled, then the new numbers are in A.P. The common ratio of the G.P. is (A) $2-\sqrt{3}$ (B) $2+\sqrt{3}$ (C) $\sqrt{3}-2$ (D) $3+\sqrt{2}$

- Watch Video Solution

282. If $S_{1}, S_{2}, S_{3}, S_{m}$ are the sums of n terms of m A.P. ' s whose first terms are $1,2,3, m$ and common differences are $1,3,5,,(2 m-1)$ respectively. Show that $S_{1}+S_{2},+S_{m}=\frac{m n}{2}(m n+1)$

(Watch Video Solution

283. If S_{1}, S_{2} and S_{3} be respectively the sum of $\mathrm{n}, 2 \mathrm{n}$ and 3 n terms of a G.P., prove that $S_{1}\left(S_{3}-S_{2}\right)=\left(S_{2}-S_{1}\right)^{2}$

- Watch Video Solution

284. In a sequence of $(4 n+1)$ terms, the first $(2 n+1)$ terms are n A.P. whose common difference is 2 , and the last $(2 n+1)$ terms are in G.P. whose common ratio is 0.5 if the middle terms of the A.P. and LG.P. are equal ,then the middle terms of the sequence is a. $\frac{n .2 n+1}{2^{2 n}-1}$ b. $\frac{n .2 n+1}{2^{n}-1}$ c. $n .2^{n}$ d. none of these

- Watch Video Solution

285. If $(p+q)$ th term of a G.P. is aand its $(p-q)$ th term is bwherea, $b \in R^{+}$, then its pth term is $\sqrt{\frac{a^{3}}{b}}$ b. $\sqrt{\frac{b^{3}}{a}}$ c. $\sqrt{a b}$ d. none of these

- Watch Video Solution

286. Find the sum of n terms of the seriesf whose nth term is $T(n)=\frac{\tan x}{2^{n}} \times \frac{\sec x}{2^{n-1} .}$
287. $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{3^{i} 3^{i} 3^{k}}$

- Watch Video Solution

288. Let $a_{1}, a_{2}, \ldots \ldots \ldots a_{n}$ be real numbers such that $\sqrt{a_{1}}+\sqrt{a_{2}-1}+\sqrt{a_{3}-2}++\sqrt{a_{n}-(n-1)}=\frac{1}{2}\left(a_{1}+a_{2}+\ldots \ldots . .+\right.$ then find the value of $\sum_{i=1}^{100} a_{i}$

- Watch Video Solution

289. If $\log _{2}\left(5.2^{x}+1\right), \log _{4}\left(2^{1-x}+1\right)$ and 1 are in A.P.then x equals

- Watch Video Solution

290. Let S_{k}, where $k=1,2, \ldots, 100$, denotes the sum of the infinite geometric series whose first term is $\frac{k-1}{k!}$ and the common ratio is $\frac{1}{k}$.

Then, the value of $\frac{100^{2}}{100!}+\sum_{k=2}^{100}\left|\left(k^{2}-3 k+1\right) S_{k}\right|$ is....

- Watch Video Solution

291.

‘ $x=s u m_{-}(n=0)^{\wedge}$ oocos $^{\wedge}(2 n)$ theta, $y=s u m_{-}(n=0)^{\wedge}$ oosin ${ }^{\wedge}(2 n)$ varphi,z=sum_ $(n=0)^{\wedge} \circ o$ here0

- Watch Video Solution

292. The real numbers x_{1}, x_{2}, x_{3} satisfying the equation $x^{3}-x^{2}+b x+\gamma=0$ are in A.P. Find the intervals in which $\beta a n d \gamma$ lie.

- Watch Video Solution

293. Let a, b, c, d be real numbers in G. P. If u, v, w satisfy the system of equations $u+2 y+3 w=6,4 u+5 v+6 w=12$ and $6 u+9 v=4$ then show that the roots of the equation

$$
\left(\frac{1}{u}+\frac{1}{v} \frac{+}{w}\right) x^{2}+\left[(b-c)^{2}+(c-a)^{2}+(d-b)^{2}\right] x+u+v+w=0
$$ and $20 x^{\wedge} 2+10(a-d)^{\wedge} 2 x-9=0^{\wedge}$ are reciprocals of each other.

- Watch Video Solution

294. The sum of the first three terms of a strictly increasing G.P. is αs and sum of their squares is s^{2}

- Watch Video Solution

295. If $(\log)_{3} 2,(\log)_{3}\left(2^{x}-5\right) \operatorname{and}(\log)_{3}\left(2^{x}-\frac{7}{2}\right)$ are in arithmetic progression, determine the value of x.

- Watch Video Solution

296. If p is the first of the n arithmetic means between two numbers and q be the first on n harmonic means between the same numbers. Then, show that q does not lie between p and $\left(\frac{n+1}{n-1}\right)^{2} p$.

(Watch Video Solution

297. If $S_{1}, S_{2}, S_{3}, \ldots \ldots \ldots S_{n}, \ldots \ldots$. . are the sums of infinite geometric series whose first terms are $1,2,3 \ldots \ldots \ldots \ldots . n, \ldots \ldots \ldots \ldots$. and whose common ratio $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \ldots ., \frac{1}{n+1}, \ldots$ respectively, then find the value of $\sum_{r=1}^{2 n-1} S_{1}^{2}$.

- Watch Video Solution

298. The interior angles of a polygon are in arithmetic progression. The smallest angle is 120° and the common difference is 5° Find the number of sides of the polygon

- Watch Video Solution

299. If $a_{1}, a_{2}, a_{3}, a_{n}$ are in A.P., where $a_{i}>0$ for all i, show that $\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}++\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}=\frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n}}}$.
300. How many geometric progressions are possible containing 27,8 and 12 as three of its/their terms

- Watch Video Solution

301. 9. Find three numbers a, b, c between $2 \& 18$ such that; (G) their sum is 25 (ii) the numbers $2, \mathrm{a}, \mathrm{b}$ are consecutive terms of an AP \& (ii) the numbers $b, c, 18$ are consecutive terms of a G.P.

- Watch Video Solution

302. The sum of 50 terms of the series
$1+2\left(1+\frac{1}{50}\right)+3\left(1+\frac{1}{50}\right)^{2}+$ is given by (A) 2500 (B) 2550 (C) 2450
(D) none of these
303. The sum of 50 terms of the series $\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{2}}+$ is $\frac{100}{17}$ b. $\frac{150}{17}$ c. $\frac{200}{51}$ d. $\frac{50}{17}$

(Watch Video Solution

304. If a_{1}, a_{2}, a_{n} are in A.P. with common difference $d \neq 0$, then the sum of the series $\sin d\left[\sec a_{1} \sec a_{2}+(\sec)_{2} \sec a_{3}+\ldots .+\sec a_{n-1}(\sec)_{n}\right]$ is : a.cosecan $-\operatorname{cosecab.~} \cot a_{n}-\cot a$ c. seca $a_{n}-$ seca d. tana $a_{n}-\operatorname{tana}$

- Watch Video Solution

305. The sum of the series $a-(a+d)+(a+2 d)-(a+3 d)+$ up to $(2 n+1)$ terms is- a. $-n d$. b. $a+2 n d$. c. $a+n d$. d. $2 n d$

- Watch Video Solution

306. If $a, b, a n d c$ are in G.P. and x, y, respectively, are the arithmetic means between $a, b, a n d b, c$, then the value of $\frac{a}{x}+\frac{c}{y}$ is $1 \mathrm{~b} .2 \mathrm{c} .1 / 2 \mathrm{~d}$. none of these

- Watch Video Solution

307. If $a, b a n d c$ are in A.P., and pandp' are respectively, A.M. and G.M. between aandbwhileq, q^{\prime} are, respectively, the A.M. and G.M. between bandc, then $p^{2}+q^{2}=p^{\prime 2}+q^{\prime 2}$ b. $p q=p^{\prime} q^{\prime}$ c. $p^{2}-q^{2}=p^{\prime 2}-q^{\prime 2} \mathrm{~d}$. none of these

- Watch Video Solution

308.

Find
the
sum
$\frac{3}{1 \times 2} \times \frac{1}{2}+\frac{4}{2 \times 3} \times\left(\frac{1}{2}\right)^{2}+\frac{5}{3 \times 4} \times\left(\frac{1}{2}\right)^{2}+\rightarrow n$ terms.

- Watch Video Solution

309. Find the sum of series upto n terms $\left(\frac{2 n+1}{2 n-1}\right)+3\left(\frac{2 n+1}{2 n-1}\right)^{2}+5\left(\frac{2 n+1}{2 n-1}\right)^{3}+\ldots$

D Watch Video Solution

310. Let $x=1+3 a+6 a^{2}+10 a^{3}+,|a|<1$.
$y=1+4 b+10 b^{2}+20 b^{3}+,|b|<1$. Find $S+1+3(a b)+5(a b)^{2}+$ in terms of xandy.

- Watch Video Solution

311. If the first and the nth terms of a G.P., are $a a n d b$, respectively, and if P is hte product of the first n terms prove that $P^{2}=(a b)^{n}$.

- Watch Video Solution

312. Along a road lie an odd number of stones placed at intervals of 10 metres. These stones have to be assembled around the middle stone. A person can carry only one stone at a time. A man carried the job with one of the end stones by carrying them in succession. In carrying all the stones he covered a distance of 3 km . Find the number of stones.

- Watch Video Solution

313. Find a three - digit number such that its digits are in increasing G.P. (from left to right) and the digits of the number obtained from it by subtracting 100 form an A.P.

- Watch Video Solution

314. If the terms of the A.P. $\sqrt{a-x}, \sqrt{x}, \sqrt{a+x}$ are all in integers, wherea, $x>0$, then find the least composite value of a.
315. For $a, x,>0$ prove tht at most one term of the G.P. $\sqrt{a-x}, \sqrt{x}, \sqrt{a+x}$ can be rational.

- Watch Video Solution

316. If $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\rightarrow \infty=\frac{\pi^{2}}{6}$, then $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+$ equals $\pi^{2} / 8$ b. $\pi^{2} / 12$ c. $\pi^{2} / 3$ d. $\pi^{2} / 2$

- Watch Video Solution

317. Coefficient of $x^{18} \in\left(1+x+2 x^{2}+3 x^{3}++18 x^{18}\right)^{2}$ equal to 995
b. 1005 c. 1235 d . none of these

- Watch Video Solution

318. Let $\alpha a n d \beta$ be the roots of $x^{2}-x+p=0 a n d \gamma a n d \delta$ be the root of $x^{2}-4 x+q=0$. If $\alpha, \beta, a n d \gamma, \delta$ are in G.P., then the integral values of
pandq, respectively, are $-2,-32$ b. $-2,3$ c. $-6,3$ d. $-6,-32$

- Watch Video Solution

319. If the sum of the first $2 n$ terms of the A.P. 2, $5,8, \ldots$, is equal to the sum of the first n terms of A.P. $57,59,61, \ldots$, then n equals 10 b .12 c .11 d .13

- Watch Video Solution

320. Statement 1: If the arithmetic mean of two numbers is $5 / 2$ geometric mean of the numbers is 2 , then the harmonic mean will be $8 / 5$. Statement 2: For a group of positive numbers $(G \dot{M} .)^{2}=(A \dot{M}).(H \dot{M}$.$) .$

- Watch Video Solution

321. Let the positive numbers $a, b, c a d n d$ be in the A.P. Then $a b c, a b d, a c d, a n d b c d$ are a. not in A.P. /G.P./H.P. b. in A.P. c. in G.P. d. in H.P.
322. If three positive real numbers a, b, c are in A.P. sich that $a b c=4$, then the minimum value of b is $\mathrm{a} \cdot 2^{1 / 3}$ b. $2^{2 / 3}$ c. $2^{1 / 2}$ d. $2^{3 / 23}$

- Watch Video Solution

323. Consider an infinite geometric series with first term a and common ratio r. If its sum is 4 and the second term is $3 / 4$, then $a=\frac{4}{7}, r=\frac{3}{7} \mathrm{~b}$. $a=2, r=\frac{3}{8}$ c. $a=\frac{3}{2}, r=\frac{1}{2}$ d. $a=3, r=\frac{1}{4}$

- Watch Video Solution

324. The maximum sum of the series $20+19 \frac{1}{3}+18 \frac{2}{3}+\ldots \ldots$ is (A) 310 (B) 300 (C) 0320 (D) none of these

- Watch Video Solution

$a x^{2}+b x+c=0, D=b^{2}-4 a c$ and $\alpha+\beta, \alpha^{2}+\beta^{2}, \alpha^{3}+\beta^{3}$, are in G.P, where α, β are the roots of $a x^{2}+b x+c$, then (a) $\Delta \neq 0$
$b \Delta=0(c) c$ Delta $=0(d)$ Delta $=0 `$

- Watch Video Solution

326. Let $a_{1}, a_{2}, a_{3}, \ldots$ be in harmonic progression with $a_{1}=5$ and $a_{20}=25$. The least positive integer n for which $a_{n}<0 \mathrm{a} .22 \mathrm{~b}$.

23 c. 24 d. 25

- Watch Video Solution

327. An infinite G.P. has first term as a and sum 5 , then

- Watch Video Solution

328. Let $S \subset(0, \pi)$ denote the set of values of x satisfying the equation $8^{1}+|\cos x|+\cos ^{2} x+\mid \cos ^{3 x \mid \rightarrow \infty}=4^{3} . \quad$ Then, $S=\{\pi / 3\} \quad$ b. $\{\pi / 3,2 \pi / 3\}$ c. $\{-\pi / 3,2 \pi / 3\}$ d. $\{\pi / 3,2 \pi / 3\}$

- Watch Video Solution

329. The value of $\sum_{r=0}^{n}(a+r+a r)(-a)^{r}$ is equal to
$(-1)^{n}\left[(n+1) a^{n+1}-a\right]$
b.
$(-1)^{n}(n+1) a^{n+1}$
C.
$(-1)^{n} \frac{(n+2) a^{n+1}}{2}$ d. $(-1)^{n} \frac{n a^{n}}{2}$

- Watch Video Solution

330. If x_{1}, x_{2}, x_{20} are in H.P. and $x_{1}, 2, x_{20}$ are in G.P., then $\sum_{r=1}^{19} x_{r} x_{r+1}=$ 76 b. 80 c. 84 d . none of these

- Watch Video Solution

331. The sum of series $\frac{x}{1-x^{2}}+\frac{x^{2}}{1-x^{4}}+\frac{x^{4}}{1-x^{8}}+$ to infinite terms, if $|x|<1$, is $\frac{x}{1-x}$ b. $\frac{1}{1-x}$ c. $\frac{1+x}{1-x}$ d. 1

- Watch Video Solution

332.

If
$b_{i}=1-a_{i}, n a=\sum_{i=1}^{n} a_{i}, n b=\sum_{i=1}^{n} b_{i}$, then $\sum_{i=1}^{n} a_{i}, b_{i}+\sum_{i=1}^{n}\left(a_{i}-a\right)^{2}=$ $a b$ b. $n a b$ c. $(n+1) a b$ d. $n a b$

- Watch Video Solution

333. The greatest integer by which $1+\sum_{r=1}^{30} r \times r$! is divisible is a. composite number b. odd number c. divisible by 3 d . none of these

- Watch Video Solution

334. $(\lim)_{n} \vec{\infty} \sum_{r=1}^{n} \frac{r}{1 \times 3 \times 5 \times 7 \times 9 \times \times(2 r+1)}$ is equal to $\frac{1}{3} \mathrm{~b}$. $\frac{3}{2}$ c. $\frac{1}{2}$ d. none of these

- Watch Video Solution

335. Value of $\left(1+\frac{1}{3}\right)\left(1+\frac{1}{3^{2}}\right)\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right) \ldots \ldots . \infty$ is equal to a. 3 b. $\frac{6}{5}$ c. $\frac{3}{2}$ d. none of these

- Watch Video Solution

336. If $\sum_{r=1}^{n} r^{4}=I(n)$, then $\sum_{r=1}^{n}(2 r-1)^{4}$ is equal to $I(2 n)-I(n) \mathrm{b}$.
$I(2 n)-16 I(n)$ c. $I(2 n)-8 I(n)$ d. $I(2 n)-4 I(n)$

- Watch Video Solution

337. If sum of an infinite G.P. $p, 1,1 / p, 1 / p^{2}, i s 9 / 2$ then value of p is a. 3
b. $3 / 2$ c. 3 d. 9/2

(Watch Video Solution

338. The sum of $i-2-3 i+4$ up to 100 terms, where $i=\sqrt{-1}$ is $50(1-i)$ b. $25 i$ c. $25(1+i)$ d. $100(1-i)$

- Watch Video Solution

339. If $a_{1}, a_{2}, a_{3}, a_{2 n+1}$ are in A.P., then
$\frac{a_{2 n+1}-a_{1}}{a_{2 n+1}+a_{1}}+\frac{a_{2 n}-a_{2}}{a_{2 n}+a_{2}}++\frac{a_{n+2}-a_{n}}{a_{n+2}+a_{n}}$ is equal to
$\frac{n(n+1)}{2} \times \frac{a_{2}-a_{1}}{a_{n+1}}$ b. $\frac{n(n+1)}{2}$ c. $(n+1)\left(a_{2}-a_{1}\right)$ d. none of these

- Watch Video Solution

340. If the sides of a triangle are in G.P., and its largest angle is twice the smallest, then the common ratio r satisfies the inequality ${ }^{\circ} 0$

- Watch Video Solution

$S=1+\frac{1}{(1+3)}(1+2)^{2}+\frac{1}{(1+3+5)}(1+2+3)^{2}+\frac{1}{(1+3+5+7)}($
$+\ldots 7$ th term is 167 th term is 18 Sum of first 10 terms is $\frac{505}{4}$ Sum of first 10 terms is $\frac{45}{4}$

- Watch Video Solution

342. If first and $(2 n-1)^{t} h$ terms of an AP, GP. and HP. are equal and their nth terms are a, b, c respectively, then (a) $a=b=c(b) a+c=b$ (c) $a>b>c$ and $a c-b^{2}=0$ (d) none of these

- Watch Video Solution

343. Let $a_{1}, a_{2},, a_{10}$ be in A.P. and h_{1}, h_{2}, h_{10} be in H.P. If $a_{1}=h_{1}=2 a n d a_{10}=h_{10}=3$, thena $_{4} h_{7}$ is 2 b. 3 c. 5 d. 6

- Watch Video Solution

344. The harmonic mean of the roots of the equation $(5+\sqrt{2}) x^{2}-(4+\sqrt{5}) x+8+2 \sqrt{5}=0$ is 2 b. 4 c. 6 d. 8
A. 2
B. 4
C. 6
D. 8

Answer: B

- Watch Video Solution

345.

Find
the
sum
$(x+2)^{n-1}+(x+2)^{n-2}(x+1)^{+}(x+2)^{n-3}(x+1)^{2}++(x+1)^{n-1}$
$(x+2)^{n-2}-(x+1)^{n}$
b. $\quad(x+2)^{n-2}-(x+1)^{n-1}$
C.
$(x+2)^{n}-(x+1)^{n}$ d. none of these
346. If $\ln (a+c), \ln (a-c) \operatorname{andln}(a-2 b+c)$ are in A.P., then (a) a, b, c are in A.P. (b) a^{2}, b^{2}, c^{2}, are in A.P. (c) a, b, c are in G.P. d. (d) a, b, c are in H.P.

- Watch Video Solution

347. If $a, b, a n d c$ are in G.P., then the equations $a x^{2}+2 b x+c=0 a n d d x^{2}+2 e x+f=0$ have a common root if $\frac{d}{c}, \frac{e}{b}, \frac{f}{c}$ are in a. A.P. b. G.P. c. H.P. d. none of these

- Watch Video Solution

348. Sum of the first n terms of the series $\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+$ is equal to $2^{n}-n-1$ b. $1-2^{-n}$ c. $n+2^{-n}-1$ d. $2^{n}+1$

- Watch Video Solution

349. The third term of a geometric progression is 4 . The production of the first five terms is 4^{3} b. 4^{5} c. 4^{4} d. none of these

- Watch Video Solution

350. In triangle ABC medians AD and CE are drawn, if $\mathrm{AD}=5, \angle D A C=\frac{\pi}{8}$ and $\angle A C E=\frac{\pi}{4}$, then the area of triangle ABC is equal to a. $\frac{25}{8}$ b. $\frac{25}{3}$ c. $\frac{25}{18}$ d. $\frac{10}{3}$

- Watch Video Solution

351. Suppose a, b, and c are in A.P. and a^{2}, b^{2} and c^{2} are in G.P. If ${ }^{\text {a }}$

- Watch Video Solution

352. If $x, y, a n d z$ are pth, qth, and rth terms, respectively, of an A.P. nd also of a G.P., then $x^{y-z} y^{z-x} z^{x-y}$ is equal to a. $x y z$ b. 0 c .1 d . none of

- Watch Video Solution

353. Sum
$\frac{1}{\sqrt{2}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{11}}+\frac{1}{\sqrt{11}+\sqrt{14}}+\ldots \rightarrow n$
terms=
(A) $\frac{n}{\sqrt{3 n+2}-\sqrt{2}}$
(B) $\frac{1}{3}(\sqrt{2}-\sqrt{3 n+2}$
$\mathrm{n} /(\mathrm{sqrt}(3 \mathrm{n}+2)+\mathrm{sqrt}(2))^{\prime}(\mathrm{D})$ none of these

- Watch Video Solution

354. If a, b, andc are in H.P., then th value of $\frac{(a c+a b-b c)(a b+b c-a c)}{(a b c)^{2}}$ is $\frac{(a+c)(3 a-c)}{4 a^{2} c^{2}}$
b. $\frac{2}{b c}-\frac{1}{b^{2}}$
c.
$\frac{2}{b c}-\frac{1}{a^{2}}$ d. $\frac{(a-c)(3 a+c)}{4 a^{2} c^{2}}$

- Watch Video Solution

355. If $a_{1}, a_{2}, a_{3}, a_{n}$ are in H.P. and $f(k)=\left(\sum_{r=1}^{n} a_{r}\right)-a_{k}$, then $\frac{a_{1}}{f(1)}, \frac{a_{2}}{f(2)}, \frac{a_{3}}{f(3)},, \frac{a_{n}}{f(n)}$, are in a. A.P b. G.P. c. H.P. d. none of these

(Watch Video Solution

356. If a, b, c are in A.P., the $\frac{a}{b c}, \frac{1}{c}, \frac{1}{b}$ will be in a. A.P b. G.P. c. H.P. d. none of these

- Watch Video Solution

357. Let $a+a r_{1}+a r 12++\infty a n d a+a r_{2}+a r 22++\infty$ be two infinite series of positive numbers with the same first term. The sum of the first series is r_{1} and the sum of the second series r_{2}. Then the value of $\left(r_{1}+r_{2}\right)$ is \qquad .

- Watch Video Solution

358. The coefficient of the quadratic equation $a x^{2}+(a+d) x+(a+2 d)=0$ are consecutive terms of a positively valued, increasing arithmetic sequence. Then the least integral value of d / a such that the equation has real solutions is \qquad .

- Watch Video Solution

359. Let S denote sum of the series $\frac{3}{2^{3}}+\frac{4}{2^{4} .3}+\frac{5}{2^{6} .3}+\frac{6}{2^{7} .5}+\infty$ Then the value of S^{-1} is \qquad .

- Watch Video Solution

360. Let the sum of first three terms of G.P. with real terms be $13 / 12$ and their product is -1 . If the absolute value of the sum of their infinite terms is S, then the value of $7 S$ is \qquad .

- Watch Video Solution

361. Given a, b, c are in A.P. b, c, d are in G.P. and c, d, e are in H.P. If $a=2 a d \neq=18$, then the sum of all possible value of c is \qquad .

- Watch Video Solution

362. The terms a_{1}, a_{2}, a_{3} from an arithmetic sequence whose sum s 18. The terms $a_{1}+1, a_{2}, a_{3},+2$, in that order, form a geometric sequence. Then the absolute value of the sum of all possible common difference of the A.P. is \qquad .

- Watch Video Solution

363. Let $f(x)=2 x+1$. Then the number of real number of real values of x for which the three unequal numbers $f(x), f(2 x), f(4 x)$ are in G.P. is 1 b .2 c .0 d . none of these

- Watch Video Solution

364. Concentric circles of radii $1,2,3, \ldots, 100 \mathrm{~cm}$ are drawn. The interior of the smallest circle is colored red and the angular regions are colored alternately green and red, so that no two adjacent regions are of the same color. Then, the total area of the green regions in sq. cm is equal to 1000π b. 5050π c. 4950π d. 5151π

- Watch Video Solution

365. Let $\left\{t_{n}\right\}$ be a sequence of integers in G.P. in which $t_{4}: t_{6}=1: 4 a n d t_{2}+t_{5}=216$. .Then $t_{1} i s 12 \mathrm{~b} .14 \mathrm{c} .16 \mathrm{~d}$. none of these

- Watch Video Solution

366. If $x, 2 y, 3 z$ are in A.P., where the distinct numbers x, y, z are in G.P, then te common ratio of the G.P. is 3 b. $\frac{1}{3}$ c. 2 d. $\frac{1}{2}$

- Watch Video Solution

367. If S_{p} denotes the sum of the series $1+r^{p}+r^{2 p}+\rightarrow \infty$ ands s_{p} the sum of the series $1-r^{2 p} r^{3 p}+\rightarrow \infty,|r|<1$, then $S_{p}+s_{p}$ in term of $S_{2 p}$ is $2 S_{2 p}$ b. 0 c. $\frac{1}{2} S_{2 p}$ d. $-\frac{1}{2} S_{2 p}$

- Watch Video Solution

368. If x, y, z are real and $4 x^{2}+9 y^{2}+16 z^{2}-6 x y-12 y z-8 z x=0$, then x, y, z are in a. A.P. b. G.P. c. H.P. d. none of these

- Watch Video Solution

369.

If

$$
a_{1}, a_{2},, a_{n}
$$

are in
in H.P.,
then
$\frac{a_{1}}{a_{2}+a_{3}++a_{n}}, \frac{a_{2}}{a_{1}+a_{3}++a_{n}}, \frac{a_{n}}{a_{1}+a_{2}++a_{n-1}}$ are in a. A.P b.
G.P. c. H.P. d. none of these

- Watch Video Solution

370. If H_{1}, H_{2}, H_{20} are 20 harmonic means between 2 and 3 , then $\frac{H_{1}+2}{H_{1}-2}+\frac{H_{20}+3}{H_{20}-3}=$ a. 20 b. 21 c. 40 d. 38

Watch Video Solution

371. A pack contains n cards numbered from 1 to n . Two consecutive numbered cards are removed from the pack and the sum of the numbers on the remaining cards is 1224 . If the smaller of the numbers on the removed cards is k, then $k-20$ is equal to

- Watch Video Solution

372. Let $a_{n}=16,4,1$, be a geometric sequence. Define P_{n} as the product of the first n terms. Then the value of $\frac{1}{4} \sum_{n=1}^{\infty} P_{n}^{\frac{1}{n}}$ is \qquad .

- Watch Video Solution

373. If he equation $x^{3}+a x^{2}+b x+216=0$ has three real roots in G.P., then b / a has the value equal to \qquad .

Watch Video Solution

374. Let T_{r} be the rth term of an A.P., for $r=1,2,3, \ldots$. If for some positive integers m, n, we have $T_{m}=\frac{1}{n} a n d T_{n}=\frac{1}{m}$, then $T_{m n}$ equals a. $\frac{1}{m n}$ b. $\frac{1}{m}+\frac{1}{n}$ c. 1 d. 0

- Watch Video Solution

375. If $\quad a_{n}=\frac{3}{4}-\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3}+\ldots(-1)^{n-1}\left(\frac{3}{4}\right)^{n} \quad$ and
$b_{n}=1-a_{n}$, then find the minimum natural number n , such that $b_{n}>a_{n}$

- Watch Video Solution

376. For a positive integer n let $a(n)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{\left(2^{n}\right)-1}$ Then
a. $a(100) \leq 100$
b. $a(100)>100$
c. $a(200) \leq 100$
d. $a(200)>100$

D Watch Video Solution

377. If $x>1, y>1$, and $z>1$ are in G.P., then $\frac{1}{1+\ln x}, \frac{1}{1+\ln y}$ and $\frac{1}{1+\ln z}$ are in $A \dot{P}$. b. $H \dot{P}$. c. $G \dot{P}$. d. none of these

- Watch Video Solution

378. Let $a_{1}, a_{2}, \ldots \ldots \ldots .$. be positive real numbers in geometric progression. For each n , let $A_{n} G_{n}, H_{n}$, be respectively the arithmetic mean, geometric mean \& harmonic mean of $a_{1}, a_{2} \ldots \ldots \ldots . a_{n}$. Find an
expression for the geometric mean of $G_{1}, G_{2}, \ldots \ldots . G_{n}$ in terms of $A_{1}, A_{2}, \ldots \ldots ., A_{n}, H_{1}, H_{2}, \ldots \ldots ., H_{n}$.

- Watch Video Solution

379. The fourth power of common difference of an arithmetic progression with integer entries is added to the product of any four consecutive terms of it. Prove that the resulting sum is the square of an integer.

- Watch Video Solution

380. If a, b, c are in A.P. and a^{2}, b^{2}, c^{2} are in H.P., then prove that either $a=b=c$ or $a, b,-\frac{c}{2}$ form a G.P.

- Watch Video Solution

381. Let a, b be positive real numbers. If a, A_{1}, A_{2}, b be are in arithmetic progression a, G_{1}, G_{2}, b are in geometric progression, and a, H_{1}, H_{2}, b
are in harmonic progression, show that $\frac{G_{1} G_{2}}{H_{1} H_{2}}=\frac{A_{1}+A_{2}}{H_{1}+H_{2}}$

- Watch Video Solution

382. The sum of an infinite G.P. is 57 and the sum of their cubes is 9747 , then the common ratio of the G.P. is $1 / 2 \mathrm{~b} .2 / 3 \mathrm{c} .1 / 6 \mathrm{~d}$. none of these

- Watch Video Solution

383. If $a^{2}+b^{2}, a b+b c, a n d b^{2}+c^{2}$ are in G.P., then a, b, c are in a. A.P. b.
G.P. c. H.P. d. none of these

- Watch Video Solution

384. If x, y, z are in G.P. nad $a^{x}=b^{y}=c^{z}$, then $(\log)_{b} a=(\log)_{a} c$ b. $(\log)_{c} b=(\log)_{a} c \mathrm{c} \cdot(\log)_{b} a=(\log)_{c} b \mathrm{~d}$. none of these

- Watch Video Solution

385. The geometric mean between -9 and -16 is $12 \mathrm{~b} .-12 \mathrm{c} .-13 \mathrm{~d}$. none of these

- Watch Video Solution

386. The value of $0.2^{\log \sqrt{5} \frac{1}{4}+\frac{1}{8}+\frac{1}{16}+}$ is $4 \mathrm{~b} \cdot \log 4 \mathrm{c} . \log 2 \mathrm{~d}$. none of these

- Watch Video Solution

387. If $(1+a)\left(1+a^{2}\right)\left(1+a^{4}\right) \ldots\left(1+a^{128}\right)=\sum_{r=0}^{n} a^{r}$, then n is equal to

- Watch Video Solution

388. The number of terms common between the series $1+2+4+8+\ldots \ldots$ to 100 terms and $1+4+7+10+\ldots \ldots$ to 100 terms is
a. 6
b. 4
c. 5
d. none of these

- Watch Video Solution

389. After striking a floor a certain ball rebounds $\left(\frac{4}{5}\right)^{\text {th }}$ of the height from which it has fallen. Find the total distance that it travels before coming to rest, if it is gently dropped from a height of 120 metres.

- Watch Video Solution

390. If S denotes the sum to infinity and S_{n} the sum of n terms of the series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+$, such that $S-S_{n}<\frac{1}{1000}$, then the least value of n is 8 b .9 c .10 d .11
391. The first term of an infinite geometric series is 21 . The second term and the sum of the series are both positive integers. Then which of the following is not the possible value of the second term 12 b .14 c .18 d . none of these

- Watch Video Solution

392. Given that $x+y+z=15 w h e n a, x, y, z, b$ are in A.P. and $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+=\frac{5}{3}$ when a, x, y, z, b are in H.P. Then G.M. of $a a n d b$ is 3 One possible value of $a+2 b$ is 11 A.M. of $a a n d b$ is 6 Greatest value of $a-b$ is 8

- Watch Video Solution

393. Let $a_{1}, a_{2}, a_{3},, a_{n}$ be in G.P. such that $3 a_{1}+7 a_{2}+3 a_{3}-4 a_{5}=0$.

Then common ratio of G.P. can be 2 b. $\frac{3}{2}$ c. $\frac{5}{2}$ d. $-\frac{1}{2}$
394. The consecutive digits of a three digit number are in G.P. If middle digit is increased by 2 , then they form an A.P. If 792 is subtracted from this, then we get the number constituting of same three digits but in reverse order. Then number is divisible by a. 7 b.
49
c. 19
d. none of these

- Watch Video Solution

395. If $S_{n}=1^{2}-2^{2}+3^{2}-4^{2}+5^{2}-6^{2}+$, then $S_{40}=-820$ b.
$S_{2 n}>S_{2 n+2}$ c. $S_{51}=1326$ d. $S_{2 n+1}>S_{2 n-1}$

- Watch Video Solution

396. If $\sum_{r=1}^{n} r(r+1)(2 r+3)=a n^{4}+b n^{3}+c n^{2}+d n+e, \quad$ then $a-b=d-c e=0 a, b-2 / 3, c-1$ are in A.P. $(b+d) / a$ is an integer

- Watch Video Solution

397. The terms of an infinitely decreasing G.P. in which all the terms are positive, the first term is 4 , and the difference between the third and fifth terms is $32 / 81$, then $r=1 / 3 \mathrm{~b} . r=2 \sqrt{2} / 3 \mathrm{c} . S_{\infty}=6 \mathrm{~d}$. none of these

- Watch Video Solution

398. If a, x, b are in A.P.,a,y,b are in G.P. and a, z, b are in H.P. such that $x=9 z$ and $>0, b>0$, then

- Watch Video Solution

399. If $a, b, a n d c$ are in G.P., then $a+b, 2 b, a n d b+c$ are in a. A.P b. G.P. c. H.P. d. none of these

- Watch Video Solution

400. If in a progression $a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots .$. etc; $\left(a_{r}-a_{r+1}\right)$ bears a constant ratio with $a_{r} \times a_{r+1}$, then the terms of the progression are in

a. A.P b. G.P. c. H.P. d. none of these

(Watch Video Solution

401. $a, b, c x \in R^{+}$such that $a, b, a n d c$ are in A.P. and $b, c a n d d$ are in H.P., then $a b=c d$ b. $a c=b d \mathrm{c} . b c=a d \mathrm{~d}$. none of these

- Watch Video Solution

402. Let $\alpha, \beta \in R$. If α, β^{2} are the roots of quadratic equation $x^{2}-p x+1=0 a n d \alpha^{2}, \beta$ is the roots of quadratic equation $x^{2}-q x+8=0$, then the value of r if $\frac{r}{8}$ is the arithmetic mean of pandq, is $\frac{83}{2}$ b. 83 c. $\frac{83}{8}$ d. $\frac{83}{4}$

- Watch Video Solution

403. Let $a \in(0,1]$ satisfies the equation $a^{2008}-2 a+1=0$ and $S=1+a+a^{2}+\ldots .+a^{2007}$ Then sum of all possible values of S is a.

2010 b. 2009 c. 2008 d. 2

- Watch Video Solution

404. If $a, b, a n d c$ are in A.P. and $b-a, c-b a n d a$ are in G.P., then $a: b: c$ is $1: 2: 3 \mathrm{~b} .1: 3: 5 \mathrm{c} .2: 3: 4 \mathrm{~d} .1: 2: 4$

- Watch Video Solution

405. If $a, b, a n d c$ are in A.P. $p, q, a n d r$ are in H.P., and $a p, b q, a n d c r$ are in
G.P., then $\frac{p}{r}+\frac{r}{p}$ is equal to $\frac{a}{c}-\frac{c}{a}$ b. $\frac{a}{c}+\frac{c}{a}$ c. $\frac{b}{q}+\frac{q}{b}$ d. $\frac{b}{q}-\frac{q}{b}$

- Watch Video Solution

406. The sum of three numbers in G.P. is 14 . If one is added to the first and second numbers and 1 is subtracted from the third, the new numbers are in ;A.P. The smallest of them is a. 2
b. 4
c. 6
d. 10
407. If $x, 2 x+2, a n d 3 x+3$ are the first three terms of a G.P., then the fourth term is a. 27 b. -27 c. 13.5 d. -13.5

- Watch Video Solution

408. The harmonic mean of two numbers is 4 . Their arithmetic mean A and the geometric mean G satisfy the relation $2 A+G^{2}=27$. Find two numbers.
