©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

APPLICATION OF DERIVATIVES

Examples

1. Find the total number of parallel tangents of $f_{1}(x)=x^{2}-x+1$ and $f_{2}(x)=x^{3}-x^{2}-2 x+1$.

- Watch Video Solution

2. Prove that the tangent drawn at any point to the curve $f(x)=x^{5}+3 x^{3}+4 x+8$ would make an acute angle with the x -axis.
3. Find the equation of tangent to the curve $y=\frac{\sin ^{-1}(2 x)}{1+x^{2}} a t x=\sqrt{3}$

- Watch Video Solution

4. The equation of the tangent tothe curve
$y=\left\{x^{2} \sin \left(\frac{1}{x}\right), x \neq 0\right.$ and $0, x=0$ at the origin is

- Watch Video Solution

5. Find the equation of normal line to the curve $y=x^{3}+2 x+6$ which is parallel to the line $x+14 y+4=0$.

- Watch Video Solution

6. If the equation of the tangent to the curve $y^{2}=a x^{3}+b$ at point
$(2,3) i s y=4 x-5$, then find the values of $a a n d b$.
7. For the curve $y=4 x^{3}-2 x^{5}$, find all the points at which the tangents pass through the origin.

- Watch Video Solution

8. For the curve $x y=c$, prove that the portion of the tangent intercepted between the coordinate axes is bisected at the point of contact.

- Watch Video Solution

9. If the tangent at any point $\left(4 m^{2}, 8 m^{2}\right)$ of $x^{3}-y^{2}=0$ is a normal to the curve $x^{3}-y^{2}=0$, then find the value of m.

- Watch Video Solution

10. Find all the tangents to the curve $y=\cos (x+y),-2 \pi \leq x \leq 2 \pi$ that are parallel to the line $x+2 y=0$.

- Watch Video Solution

11. Find the equation of all possible normals to the parabola $x^{2}=4 y$ drawn from the point $(1,2)$.

- Watch Video Solution

12. Find the equations of the tangents drawn to the curve $y^{2}-2 x^{3}-4 y+8=0$.

- Watch Video Solution

13. Show that the straight line $x \cos \alpha=p$ touches the curve $x y=a^{2}$, if $p^{2}=4 a^{2} \cos \alpha \sin \alpha$.
14. Find the condition that the line $A x+B y=1$ may be normal to the curve $a^{n-1} y=x^{n}$.

- Watch Video Solution

15. Find the acute angle between the curves $y=|x \hat{2}-1|$ and $y=\left|x^{2}-3\right|$ at their points of intersection.

- Watch Video Solution

16. Find the angle between the curves $2 y^{2}=x^{3} a n d y^{2}=32 x$.

- Watch Video Solution

17. Find the cosine of the angle of intersection of curves $f(x)=2^{x}(\log)_{e} \operatorname{xandg}(x)=x^{2 x}-1$.
18. Find the value of a if the curves $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1 a n d y^{3}=16 x$ cut orthogonally.

- Watch Video Solution

19. The length of subtangent to the curve, $y=e^{x / a}$ is

- Watch Video Solution

20. Determine p such that the length of the such-tangent and sub-normal is equal for the curve $y=e^{p x}+p x$ at the point $(0,1)$.

- Watch Video Solution

21. Find the length of normal to the curve $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ at $\theta=\frac{\pi}{2}$.

Watch Video Solution

22. In the curve $x^{m+n}=a^{m-n} y^{2 n}$, prove that the $m t h$ power of the subtangent varies as the $n t h$ power of the sub-normal.

- Watch Video Solution

23. Find the possible values of p such that the equation $p x^{2}=(\log)_{e} x$ has exactly one solution.

- Watch Video Solution

24. Find the shortest distance between the line $y=x-2$ and the parabola $y=x^{2}+3 x+2$
25. Find the minimum value of
$\left(x_{1}-x_{2}\right)^{2}+\left(\frac{x_{1}^{2}}{20}-\sqrt{\left(17-x_{2}\right)\left(x_{2}-13\right)}\right)^{2}$
$x_{1} \in R^{+}, x_{2} \in(13,17)$.

- Watch Video Solution

26. Prove that points of the curve $y^{2}=4 a\left\{x+a \sin \left(\frac{x}{a}\right)\right\}$ at which tangents are parallel to x-axis lie on the parabola.

- Watch Video Solution

27. The tangent at any point on the curve $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ meets the axes in PandQ. Prove that the locus of the midpoint of $P Q$ is a circle.
28. Displacement s of a particle at time t is expressed as $s=\frac{1}{2} t^{3}-6 t$. Find the acceleration at the time when the velocity vanishes (i.e., velocity tends to zero).

(Watch Video Solution

29. On the curve $x^{3}=12 y$, find the interval of values of x for which the abscissa changes at a faster rate than the ordinate?

- Watch Video Solution

30. एक आयत की लम्बाई $x, 5 \mathrm{~cm} / \mathrm{min}$ की दर से घट रही है और चौड़ाई $y, 4 \mathrm{~cm} / \mathrm{min}$ कि दर से बढ़ रही है जब $x=8 \mathrm{~cm}$ और $\mathrm{y}=6 \mathrm{~cm}$ है तब आयत के (a) परिमाप (b) क्षेत्रफल की परिवर्तन की दर ज्ञात कीजिए

(Watch Video Solution

31. किसी निश्चित आधार b के एक समदिबाहु त्रिभुज की सामान भुजाएं $3 \mathrm{~cm} / \mathrm{s}$ की दर से घट रही है उस समय जब त्रिभुज की समान भुजाएं आधार के बराबर है उसका क्षेत्रफल कितनी तेजी से घट रहा है

- Watch Video Solution

32. Let x be the length of one of the equal sides of an isosceles triangle, and let θ be the angle between them. If x is increasing at the rate ($1 / 12$) m / h, and θ is increasing at the rate of $\frac{\pi}{180}$ radius $/ \mathrm{h}$, then find the rate in m^{3} / h at which the area of the triangle is increasing when $x=12$ mandth $\eta=\pi / 4$.

- Watch Video Solution

33. A lamp is $50 f t$. above the ground. A ball is dropped from the same height from a point 30 ft . away from the light pole. If ball falls a distance $s=16 t^{2} f t$. in t second, then how fast is the shadow of the ball moving along the ground $\frac{1}{2} s$ later?

- Watch Video Solution

34. If water is poured into an inverted hollow cone whose semi-vertical angel is 30^{0}, show that its depth (measured along the axis) increases at the rate of $1 \mathrm{~cm} / \mathrm{s}$. Find the rate at which the volume of water increases when the depth is 24 cm .

- Watch Video Solution

35. A horse runs along a circle with a speed of $20 \mathrm{~km} / \mathrm{h}$. A lantern is at the centre of the circle. A fence is along the tangent to the circle at the point at which the horse starts. Find the speed with which the shadow of the horse moves along the fence at the moment when it covers $1 / 8$ of the circle in km / h.

- Watch Video Solution

36. A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground,away from the wall at the rate of $10 \mathrm{~cm} / \mathrm{s}$. How fast is the angle between the ladder and the ground decreasing when the foot of the ladder is 2 m away from the wall?

- Watch Video Solution

37. The radius of the base of a cone is increasing at the rate of $3 \mathrm{~cm} / \mathrm{min}$ and the altitude is decreasing at the rate of $4 \mathrm{~cm} / \mathrm{min}$. The rate of change of lateral surface when the radius is 7 cm and altitude is 24 cm is $108 \pi \mathrm{~cm}^{2} / \min$ (b) $7 \pi \mathrm{~cm}^{2} / \mathrm{min} 27 \pi \mathrm{~cm}^{2} / \mathrm{min}$ (d) none of these

- Watch Video Solution

38. Use differential to approximate $\sqrt{36.6}$

- Watch Video Solution

39. Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm , respectively.

- Watch Video Solution

40. Find the approximate value of $f(5.001)$, where $f(x)=x^{3}-7 x^{2}+15$.

- Watch Video Solution

41. Find the approximate change in the volume V of a cube of side x meters caused by increasing side by 1%.

- Watch Video Solution

42. Discuss the applicability of Rolles theorem for the following functions on the indicated intervals: $f(x)=|x| \in[-1,1] f(x)=3+(x-2)^{2 / 3}$ in $[1,3] f(x)=\tan \xi n[0, \pi] f(x)=\log \left\{\frac{x^{2}+a b}{x(a+b)}\right\}$ in ${ }^{\prime}[\mathrm{a}, \mathrm{b}]$, wh e e re-

- Watch Video Solution

43. If the function $f(x)=x^{3}-6 x^{2}+a x+b$ defined on $[1,3]$ satisfies Rolles theorem for $c=\frac{2 \sqrt{3}+1}{\sqrt{3}}$ then find the value of a and b

- Watch Video Solution

44. Show that between any two roots of $e^{-x}-\cos x=0$, there exists at least one root of $\sin x-e^{-x}=0$

- Watch Video Solution

> 45. How many roots of the equation
> $(x-1)(x-2)(x-3)+(x-1)(x-2)+(x-4)(x-2)(x-3)(x-4)$ are positive?

- Watch Video Solution

46. If $2 \mathrm{a}+3 \mathrm{~b}+6 \mathrm{c}=0$, then show that the equation $a x^{2}+b x+c=0$ has atleast one real root between 0 to 1 .

- Watch Video Solution

47. Let $f(x)$ be differentiable function and $g(x)$ be twice differentiable function. Zeros of $f(x), g^{\prime}(x)$ be a, b, respectively, (a

- Watch Video Solution

48. Let $f(x)$ be differentiable function and $g(x)$ be twice differentiable function. Zeros of $f(x), g^{\prime}(x)$ be a, b, respectively, (a

- Watch Video Solution

49. Let $P(x)$ be a polynomial with real coefficients, Let ${ }^{\mathrm{a}} \mathrm{a}, \mathrm{b}$ in R, a
50. If $f:[5,5] R$ is a differentiable function and if $f^{\prime}(x)$ does not vanish anywhere, then prove that $f(5) f(5)$.

- Watch Video Solution

51. Let f be differentiable for all x, If $f(1)=-2 a n d f^{\prime}(x) \geq 2$ for all $x \in[1,6]$, then find the range of values of $f(6)$.

- Watch Video Solution

52. Let $f:[2,7] \overrightarrow{0, \infty}$ be a continuous and differentiable function. Then show that $(f(7)-f(2)) \frac{(f(7))^{2}+(f(2))^{2}+f(2) f(7)}{3}=5 f^{2}(c) f^{\prime}(c)$, where $c \in[2,7]$.

- Watch Video Solution

53. Let $f(x) \operatorname{and} g(x)$ be differentiable function in (a, b), continuous at aandb, $\operatorname{and} g(x) \neq 0 \quad$ in $\quad[a, b]$. Then prove that $\frac{g(a) f(b)-f(a) g(b)}{g(c) f^{\prime}(c)-f(c) g^{\prime}(c)}=\frac{(b-a) g(a) g(b)}{(g(c))^{2}}$

- Watch Video Solution

54. Using Lagranges mean value theorem, prove that $|\cos a-\cos b|<|a-b|$.

- Watch Video Solution

55. Using mean value theorem, show that `(beta-alpha)/(1+beta^2) <>alpha> 0.'

- Watch Video Solution

56. Let $f(x) \operatorname{andg}(x)$ be two differentiable functions in $\operatorname{Randf}(2)=8, g(2)=0, f(4)=10, \operatorname{and} g(4)=8$. Then prove that $g^{\prime}(x)=4 f^{\prime}(x)$ for at least one $x \in(2,4)$.

- Watch Video Solution

57. Suppose $\alpha, \beta a n d t h \eta$ are angles satisfying ${ }^{\circ} 0$

- Watch Video Solution

58. Let f be continuous on $[a, b], a>0$, and differentiable on (a, b).

Prove that there exists $c \in(a, b)$ such that $\frac{b f(a)-a f(b)}{b-a}=f(c)-c f^{\prime}(c)$

- Watch Video Solution

59. Prove that the equation of the normal to $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ is $y \cos \theta-x \sin \theta=a \cos 2 \theta$, where θ is the angle which the normal makes with the axis of x.

- Watch Video Solution

60. If the area of the triangle included between the axes and any tangent to the curve $x^{n} y=a^{n}$ is constant, then find the value of n.

- Watch Video Solution

61. Show that the segment of the tangent to the curve $y=\frac{a}{2} \operatorname{In}\left(\frac{a+\sqrt{a^{2}-x^{2}}}{a-\sqrt{a^{2}-x^{2}}}\right)-\sqrt{a^{2}-x^{2}}$ contained between the $\mathrm{y}=\mathrm{axis}$ and the point of tangency has a constant length.

- Watch Video Solution

62. If the tangent at $\left(x_{1}, y_{1}\right)$ to the curve $x^{3}+y^{3}=a^{3}$ meets the curve again in $\left(x_{2}, y_{2}\right)$, then prove that $\frac{x_{2}}{x_{1}}+\frac{y_{2}}{y_{1}}=-1$

- Watch Video Solution

63. Find the condition for the line $y=m x$ to cut at right angles the conic $a x^{2}+2 h x y+b y^{2}=1$.

- Watch Video Solution

64. If two curves $a x^{2}+b y^{2}=1$ and $a^{\prime} x^{2}+b^{\prime} y^{2}=1$ intersect orthogonally,then show that $\frac{1}{a}-\frac{1}{b}=\frac{1}{a^{\prime}}-\frac{1}{b^{\prime}}$

- Watch Video Solution

65. A man is moving away from a tower 41.6 m high at the rate of $2 \mathrm{~m} / \mathrm{sec}$.

Find the rate at which the angle of elevation of the top of tower is
changing, when he is at a distance of 30 m from the foot of the tower.
Assume that the eye level of the man is 1.6 m from the ground.

- Watch Video Solution

66. If f is continuous and differentiable function and $f(0)=1, f(1)=2$, then prove that there exists at least one $c \in[0,1] f$ or which $f^{\prime}(c)(f(c))^{n-1}>\sqrt{2^{n-1}}$, where $n \in N$.

- Watch Video Solution

67. Let a, b, c be three real numbers such that 'a

- Watch Video Solution

68. Use the mean value theorem to prove $e^{x} \geq 1+x \forall x \in R$
69. Show that the square roots of two successive natural numbers greater than N^{2} differ by less than $\frac{1}{2 N}$.

- Watch Video Solution

70. Using Rolles theorem, prove that there is at least one root in $\left(45^{\frac{1}{100}}, 46\right)$ of the equation. $P(x)=51 x^{101}-2323(x)^{100}-45 x+1035=0$.

- Watch Video Solution

71. If $f(x)$ is a twice differentiable function such that $f(a)=0, f(b)=2$, $\mathrm{f}(\mathrm{c})=-1, \mathrm{f}(\mathrm{d})=2, \mathrm{f}(\mathrm{e})=0$ where $\mathrm{a}<\mathrm{b}<\mathrm{c}<\mathrm{de}$, then the minimum number of zeroes of $g(x)=f^{\prime}(x)^{2}+f^{\prime \prime}(x) f(x)$ in the interval $[\mathbf{a}, \mathrm{e}]$ is

- Watch Video Solution

72. Let f defined on $[0,1]$ be twice differentiable such that $|f(x)| \leq 1$ for $x \in[0,1]$. if $f(0)=f(1)$ then show that $\mid f^{\prime}(x)<1$ for all $x \in[0,1]$.

- Watch Video Solution

Exercise 5.1

1. Find the equation of the tangent to the curve $\left(1+x^{2}\right) y=2-x$, where it crosses the x -axis.

- Watch Video Solution

2. Show that the tangent to the curve $3 x y^{2}-2 x^{2} y=1 a t(1,1)$ meets the curve again at the point $\left(-\frac{16}{5},-\frac{1}{20}\right)$.

- Watch Video Solution

3. Find the equation of tangent and normal to the curve $x=\frac{2 a t^{2}}{\left(1+t^{2}\right)}, y=\frac{2 a t^{3}}{\left(1+t^{2}\right)}$ at the point for which $t=\frac{1}{2}$.

- Watch Video Solution

4. Find the normal to the curve $x=a(1+\cos \theta), y=a \sin \theta a h \eta$. Prove that it always passes through a fixed point and find that fixed point.

- Watch Video Solution

5. Find the equation of the normal to the curve $y=x^{3}+2 x+6$ which are parallel to the line $x+14 y+4=0 . x^{3}+y^{3}=8 x y$ at the point where it meets the curve $y^{2}=4 x$ other than the origin.

- View Text Solution

6. If the curve $y=a x^{2}-6 x+b$ pass through $(0,2)$ and has its tangent parallel to the x -axis at $x=\frac{3}{2}$, then find the values of $a a n d b$.

Watch Video Solution

7. Find the value of $n \in N$ such that the curve $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2$ touches the straight line $\frac{x}{a}+\frac{y}{b}=2$ at the point (a, b).

- Watch Video Solution

8. If the tangent to the curve $x y+a x+b y=0$ at $(1,1)$ is inclined at an angle $\tan ^{-1} 2$ with x -axis, then find $a a n d b$?

- Watch Video Solution

9. Does there exists line/lines which is/are tangent to the curve $y=\sin x a t\left(x_{1}, y_{1}\right)$ and normal to the curve at $\left(x_{2}, y_{2}\right)$?
10. Find the condition that the line $A x+B y=1$ may be normal to the curve $a^{n-1} y=x^{n}$.

- Watch Video Solution

11. In the curve $x^{a} y^{b}=K^{a+b}$, prove that the potion of the tangent intercepted between the coordinate axes is divided at its points of contact into segments which are in a constant ratio. (All the constants being positive).

- Watch Video Solution

Exercise 5.2

1. Find the angle of intersection of $y=a^{x} a n d y=b^{x}$
2. Find the angle of intersection of the curves $x y=a^{2} a n d x^{2}+y^{2}=2 a^{2}$

- Watch Video Solution

3. Find the angle at which the curve $y=K e^{K x}$ intersects the y-axis.

- Watch Video Solution

4. Find the angle between the curves $x^{2}-\frac{y^{2}}{3}=a^{2}$ and $a x^{3}=c$.

- View Text Solution

5. Find the angle at which the two curves $x^{3}-3 x y^{2}+2=0$ and $3 x^{2} y-y^{3}+3=0$ intersect each other.
6. If the curves $a y+x^{2}=7$ and $x^{3}=y$ cut orthogonally at $(1,1)$, then find the value a

- Watch Video Solution

Exercise 5.3

1. Find the length of the tangent for the curve $y=x^{3}+3 x^{2}+4 x-1$ at point $x=0$.

- Watch Video Solution

2. For the curve $y=a 1 n\left(x^{2}-a^{2}\right)$, show that the sum of length of tangent and sub-tangent at any point is proportional to product of coordinates of point of tangency.
3. For a curve (length of normal)^2/(length of tangent)^2 is equal to

- Watch Video Solution

4. If the sub-normal at any point on $y^{1-n} x^{n}$ is of constant length, then find the value of n.

- Watch Video Solution

Exercise 5.4

1. Minimum integral value of k for which the equation $e^{x}=k x^{2}$ has exactly three real distinct solution,

- Watch Video Solution

2. Find the point on the curve $3 x^{2}-4 y^{2}=72$ which is nearest to the line $3 x+2 y+1=0$.
3. Find the possible values of 'a' such that the inequality $3-x^{2}>|x-a|$ has atleast one negative solution

- Watch Video Solution

4. Tangents are drawn from the origin to curve $y=\sin x$. Prove that points of contact lie on $y^{2}=\frac{x^{2}}{1+x^{2}}$

- Watch Video Solution

5. Find the distance of the point on $y=x^{4}+3 x^{2}+2 x$ which is nearest to the line $y=2 x-1$

- Watch Video Solution

6. The graph $y=2 x^{3}-4 x+2 a n d y=x^{3}+2 x-1$ intersect in exactly 3 distinct points. Then find the slope of the line passing through two of these points.

- Watch Video Solution

Exercise 5.5

1. The distance covered by a particle moving in a straight line from a fixed point on the line is s, where $s^{2}=a t^{2}+2 b t+$. Then prove that acceleration is proportional to s^{-3}.

- Watch Video Solution

2. Two cyclists start from the junction of two perpendicular roads, there velocities being $3 u m / m \in$ and $4 u m / m \in$, respectively. Find the rate at which the two cyclists separate.
3. A sphere of 10 cm radius has a uniform thickness of ice around it. Ice is melting at rate $50 \mathrm{~cm}^{3} / \mathrm{min}$ when thickness is 5 cm then rate of change of thickness

- Watch Video Solution

4. $x a n d y$ are the sides of two squares such that $y=x-x^{2}$. Find the rate of the change of the area of the second square with respect to the first square.

- Watch Video Solution

5. Two men PandQ start with velocity u at the same time from the junction of two roads inclined at 45^{0} to each other. If they travel by different roads, find the rate at which they are being separated.
6. Sand is pouring from a pipe at the rate of $12 \mathrm{~cm}^{3} / \mathrm{s}$. The falling sand forms a cone on the ground in such a way that the height of the cone is always $1 / 6$ th of the radius of the base. How fast does the height of the sand cone increase when the height in 4 cm ?

- Watch Video Solution

7. A swimming pool is to be drained by cleaning. If L represents the number of litres of water in the pool t seconds after the pool has been plugged off to drain and $L=2000(10-t)^{2}$. How fast is the water ruining out at the end of 5 seconds? What is the average rate at which the water flows out during the first 5 seconds?

- Watch Video Solution

8. An aeroplane is flying horizontally at a height of $\frac{2}{3} \mathrm{~km}$ with a velocity of $15 \mathrm{~km} / \mathrm{h}$. Find the rate at which it is receding from a fixed point on the
ground which it passed over 2 min ago.

- Watch Video Solution

Exercise 5.6

1. Find the approximate value of $(26)^{\frac{1}{3}}$.

- Watch Video Solution

2. Find the approximate value of $(1.999)^{6}$.

- Watch Video Solution

3. If $1^{0}=\alpha$ radians, then find the approximate value of $\cos 60^{0} 1^{\prime}$.
4. Find the approximate value of $f(3.02)$, where $f(x)=3 x^{2}+5 x+3$.

- Watch Video Solution

5. If the radius of a sphere is measured as 9 cm with an error of 0.03 cm , then find the approximate error in calculating its volume.

- Watch Video Solution

Exercise 5.7

1. Let $0<a<b<\frac{\pi}{2}$. $\operatorname{Iff}(x)=\left|\begin{array}{lll}\tan x & \tan a & \tan b \\ \sin x & \sin a & \sin b \\ \cos x & \cos a & \cos b\end{array}\right|$, then find the minimum possible number of roots of $f^{\prime}(x)=0$ in (a,b).

- View Text Solution

2. Find the condition if the equation $3 x^{2}+4 a x+b=0$ has at least one root in $(0,1)$.

- Watch Video Solution

3. Let $f(x) \operatorname{andg}(x)$ be differentiable for $0 \leq x \leq 2$ such that $f(0)=2, g(0)=1, \operatorname{and} f(2)=8$. Let there exist a real number c in $[0,2]$ such that $f^{\prime}(c)=3 g^{\prime}(c)$. Then find the value of $g(2)$.

- Watch Video Solution

4. Prove that if $2 a 02<15 a$, all roots of $x^{5}-a_{0} x^{4}+3 a x^{3}+b x^{2}+c x+d=0$ cannot be real. It is given that $a_{0}, a, b, c, d \in R$.

- Watch Video Solution

5. Let $f(x)$ be continuous on [a,b], differentiable in (a, b) and $f(x) \neq 0$ for all $x \in[a, b]$. Then prove that there exists one $c \in(a, b)$ such that $\frac{f^{\prime}(c)}{f(c)}=\frac{1}{a-c}+\frac{1}{b-c}$.

- View Text Solution

6. Let f and g be function continuous in $[a, b]$ and differentiable on $[a, b]$.If $f(a)=f(b)=0$ then show that there is a point $c \in(a, b)$ such that $g^{\prime}(c) f(c)+f^{\prime}(c)=0$.

- Watch Video Solution

7. If $\phi(x)$ is a differentiable function $\forall x \in R$ and $a \in R^{+}$such that $\phi(0)=\phi(2 a), \phi(a)=\phi(3 a)$ and $\phi(0) \neq \phi(a)$, then show that there is at least one root of equation $\phi^{\prime}(x+a)=\phi^{\prime}(x) \operatorname{in}(0,2 a)$.

- View Text Solution

8. Let f is continuous on $[a, b]$ and differentiable on (a, b) s.t. $t^{2}(a)-t^{2}(b)=a^{2}-b^{2}$. Show that $\ldots f(x) f^{\prime}(x)=x$ has atleast one root in (a, b).

- Watch Video Solution

Exercise 5.8

1. Find c of Lagranges mean value theorem for the function $f(x)=3 x^{2}+5 x+7$ in the interval $[1,3]$.

- Watch Video Solution

2. If $f(x)$ is continuous in $[a, b]$ and differentiable in (a,b), then prove that there exists at least one $c \in(a, b)$ such that $\frac{f^{\prime}(c)}{3 c^{2}}=\frac{f(b)-f(a)}{b^{3}-a^{3}}$

- Watch Video Solution

3. If $a, b \in R$ and $a<b$, then prove that there exists at least one real number $c \in(a, b)$ such that $\frac{b^{2}+a^{2}}{4 c^{2}}=\frac{c}{a+b}$.

- View Text Solution

4. If $f(x) a n d g(x)$ are continuous functions in $[a, b]$ and are differentiable $\operatorname{in}(a, b)$ then prove that there exists at least one $c \in(a, b)$ for which. $|f(a) f(b) g(a) g(b)|=(b-a) \mid f(a) f^{\wedge}($ prime $)(c) g(a) g^{\wedge}($ prime $)(c) \mid$, w h e r ea

- Watch Video Solution

5. Prove that $\left|\tan ^{-1} x-\tan ^{-1} y\right| \leq|x-y| \forall x, y \in R$.

- Watch Video Solution

6. Using Lagranges mean value theorem, prove that ${ }^{`}(b-a) / b$

- Watch Video Solution

7. If $a>b>0$, with the aid of Lagranges mean value theorem, prove that $n b^{\wedge}(n-1)(a-b)>1 . n b^{\wedge}(n-1)(a-b)>a^{\wedge} n-b^{\wedge} n>n a^{\wedge}(n-1)(a-b)$,if0

- Watch Video Solution

8. Let $f(x) \operatorname{and} g(x)$ be two functions which are defined and differentiable for all $x \geq x_{0}$. If $f\left(x_{0}\right)=g\left(x_{0}\right)$ and $f^{\prime}(x)>g^{\prime}(x)$ for all $x>x_{0}$, then prove that $f(x)>g(x)$ for all $x>x_{0}$.

- Watch Video Solution

9. If $f(x)$ is differentiate in [a,b], then prove that there exists at least one $c \in(a, b)$ such that $\left(a^{2}-b^{2}\right) f^{\prime}(c)=2 c(f(a)-f(b))$.

- View Text Solution

1. The number of tangents to the curve $x^{\frac{3}{2}}+y^{\frac{3}{2}}=2 a^{\frac{3}{2}}, a>0$, which are equally inclined to the axes, is
A. 2
B. 1
C. 0
D. 4

Answer: B

- Watch Video Solution

2. The angle made by any tangent to the curve $x=a(t+\sin t \cos t), y=(1+\sin t)^{2}$ with x-axis is:
A. $\frac{1}{4}(\pi+2 t)$
B. $\frac{1-\sin t}{\cos t}$
C. $\frac{1}{4}(2 t-\pi)$
D. $\frac{1+\sin t}{\cos 2 t}$

Answer: A

- Watch Video Solution

3. If m is the slope of a tangent to the curve $e^{y}=1+x^{2}$, then $|m|>1$
(b) $m>1 m \succ 1$ (d) $|m| \leq 1$
A. $|m|>1$
B. $m>1$
C. $m>-1$
D. $|m| \leq 1$

Answer: D

Watch Video Solution
4. If at each point of the curve $y=x^{3}-a x^{2}+x+1$, the tangent is inclined at an acute angle with the positive direction of the x-axis, then
A. $a>0$
B. $a \leq \sqrt{3}$
C. $-\sqrt{3} \leq a \leq \sqrt{3}$
D. none of these

Answer: C

- Watch Video Solution

5. The slope of the tangent to the curve $y=\sqrt{4-x^{2}}$ at the point where the ordinate and the abscissa are equal is -1 (b) $\mathbf{1}$ (c) $\mathbf{0}$ (d) none of these
A. -1
B. 1
C. 0
D. none of these

Answer: A

- Watch Video Solution

6. The curve given by $x+y=e^{x y}$ has a tangent parallel to the $y-a \xi s$ at the point $(0,1)$ (b) $(1,0)(1,1)$ (d) none of these
A. $(0,1)$
B. $(1,0)$
C. $(1,1)$
D. none of these

Answer: B

7. Find value of c such that line joining the points $(0,3)$ and (5, -2) becomes tangent to curve $y=\frac{c}{x+1}$
A. 1
B. -2
C. 4
D. none of these

Answer: C

- Watch Video Solution

8. A differentiable function $y=f(x)$ satisfies $f^{\prime}(x)=(f(x))^{2}+5$ and $f(0)=1$. Then the equation of tangent at the point where the curve crosses y-axis, is
A. $x-y+1=0$
B. $x-2 y+1=0$
C. $6 x-y+1=0$
D. $x-2 y-1=0$

Answer: C

- Watch Video Solution

9. The distance between the origin and the tangent to the curve $y=e^{2 x}+x^{2}$ drawn at the point $x=0$ is $\left(1, \frac{1}{3}\right)$ (b) $\left(\frac{1}{3}, 1\right)$ $\left(2,-\frac{28}{3}\right)$ (d) none of these
A. $\frac{1}{\sqrt{5}}$
B. $\frac{2}{\sqrt{5}}$
C. $\frac{-1}{\sqrt{5}}$
D. $\frac{2}{\sqrt{3}}$

Answer: A
10. The point on the curve $3 y=6 x-5 x^{3}$ the normal at Which passes through the origin, is
A. $(1,1 / 3)$
B. $(-1,-1 / 3)$
C. $(2,-28 / 3)$
D. none of these

Answer: A

- Watch Video Solution

11. The normal to the curve $2 x^{2}+y^{2}=12$ at the point $(2,2)$ cuts the curve again at $\left(-\frac{22}{9},-\frac{2}{9}\right)$ (b) $\left(\frac{22}{9}, \frac{2}{9}\right)(-2,-2)$ (d) none of these
A. $\left(-\frac{22}{9},-\frac{2}{9}\right)$
B. $\left(\frac{22}{9}, \frac{2}{9}\right)$
C. $(-2,-2)$
D. none of these

Answer: A

D Watch Video Solution

12. At what point of curve $y=\frac{2}{3} x^{3}+\frac{1}{2} x^{2}$, the tangent makes equal angle with the axis? $\left(\frac{1}{5}, \frac{5}{24}\right) \operatorname{and}\left(-1,-\frac{1}{6}\right)\left(\frac{1}{2}, \frac{4}{9}\right) \operatorname{and}(-1,0)$ $\left(\frac{1}{3}, \frac{1}{7}\right)$ and $\left(-3, \frac{1}{2}\right)\left(\frac{1}{3}, \frac{4}{47}\right)$ and $\left(-1,-\frac{1}{3}\right)$
A. $\left(\frac{1}{2}, \frac{4}{24}\right)$ and $\left(-1,-\frac{1}{6}\right)$
B. $\left(\frac{1}{2}, \frac{4}{9}\right)$ and $(-1,0)$
C. $\left(\frac{1}{3}, \frac{1}{7}\right)$ and $\left(-3, \frac{1}{2}\right)$
D. $\left(\frac{1}{3}, \frac{4}{47}\right)$ and $\left(-1,-\frac{1}{3}\right)$
13. The equation of tangent to the curve $y=b^{-x / a}$ at the point where it crosses Y -axis is
A. $\frac{x}{a}-\frac{y}{b}=1$
B. $a x+b y+1$
C. $a x-b y=1$
D. $\frac{x}{a}+\frac{y}{b}=1$

Answer: D

- Watch Video Solution

14. Then angle of intersection of the normal at the point $\left(-\frac{5}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$
of the curves $x^{2}-y^{2}=8$ and $9 x^{2}+25 y^{2}=225$ is
A. 0
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: B

- Watch Video Solution

15. A function $\mathbf{y}=\mathbf{f}(\mathbf{x})$ has a second-order derivative $f^{\prime}(x)=6(x-1)$. If its graph passed through the point $(2,1)$ and at that point tangent to the graph is $y=3 x-5$, then the value of $f(0)$ is
A. 1
B. -1
C. 2
D. 0

Answer: B
16. $x+y-\ln (x+y)=2 x+5$ has a vertical tangent at the point (α, β) then $\alpha+\beta$ is equal to
A. -1
B. 1
C. 2
D. -2

Answer: B

Watch Video Solution
17. A curve is difined parametrically by $x=e^{\sqrt{t}}, y=3 t-\log _{e}\left(t^{2}\right)$, where t is a parameter. Then the equation of the tangent line drawn to the curve at $t=1$ is
A. $y=\frac{2}{e} x+1$
B. $y=\frac{2}{e} x-1$
C. $y=\frac{e}{2} x+1$
D. $y=\frac{e}{2} x-1$

Answer: A

- View Text Solution

18. If $x+4 y=14$ is a normal to the curve $y^{2}=\alpha x^{3}-\beta$ at $(2,3)$, then the value of $\alpha+\beta$ is $9(b)-5(c) 7(d)-7$
A. 9
B. -5
C. 7
D. -7
19. In the corve represented parametrically by the equations $x=2 \ln \cot t+1$ and $y=\tan t+\cot t$,
A. tangent and normal intersect at the point $(2,1)$
B. normal at $t=\pi / 4$ is parallel to the y-axis
C. tangent at $t=\pi / 4$ is parallel to the line $\mathbf{y}=\mathbf{x}$
D. tangent at $t=\pi / 4$ is parallel to the x -axis

Answer: D

- View Text Solution

20. The abscissas of point $\operatorname{Pand} Q$ on the curve $y=e^{x}+e^{-x}$ such that tangents at PandQ make 60^{0} with the x -axis are.
$1 n\left(\frac{\sqrt{3}+\sqrt{7}}{7}\right)$ and $1 n\left(\frac{\sqrt{3}+\sqrt{5}}{2}\right) \quad \ln \left(\frac{\sqrt{3}+\sqrt{7}}{2}\right)$
$1 n\left(\frac{\sqrt{7}-\sqrt{3}}{2}\right) \pm 1 n\left(\frac{\sqrt{3}+\sqrt{7}}{2}\right)$
A. $\ln \left(\frac{\sqrt{3}+\sqrt{7}}{7}\right)$ and $\ln \left(\frac{\sqrt{3}+\sqrt{5}}{2}\right)$
B. $\left(\frac{\sqrt{3}+\sqrt{7}}{2}\right)$
C. $\ln \left(\frac{\sqrt{7}-\sqrt{3}}{2}\right)$
D. $\pm \ln \left(\frac{\sqrt{3}+\sqrt{7}}{2}\right)$

Answer: B

- Watch Video Solution

21. If a variable tangent to the curve $x^{2} y=c^{3}$ makes intercepts $a, b o n x-a n d y-a x e s$, respectively, then the value of $a^{2} b$ is $27 c^{3}$
$\frac{4}{27} c^{3}$ (c) $\frac{27}{4} c^{3}$ (d) $\frac{4}{9} c^{3}$
A. $27 c^{3}$
B. $\frac{4}{27} c^{3}$
C. $\frac{27}{4} c^{3}$
D. $\frac{4}{9} c^{3}$

Answer: C

22. Let C be the curve $y=x^{3}$ (where x takes all real values). The tangent at A meets the curve again at B. If the gradient at B is K times the gradient at A, then K is equal to $\mathbf{4}$ (b) $\mathbf{2}$ (c) -2 (d) $\frac{1}{4}$
A. 4
B. 2
C. -2
D. $\frac{1}{4}$

Answer: A
23. The equation of the line tangent to the curve \mathbf{x} isn $\mathrm{y}+\mathrm{x}=\pi$ at the point $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ is
A. $3 x+y=2 \pi$
B. $x-y=0$
C. $2 x-y=\pi / 2$
D. $x+y=\pi$

Answer: D

- View Text Solution

24. The x -intercept of the tangent at any arbitrary point of the curve $\frac{a}{x^{2}}+\frac{b}{y^{2}}=1$ is proportional to square of the abscissa of the point of tangency square root of the abscissa of the point of tangency cube of the abscissa of the point of tangency cube root of the abscissa of the point of tangency
A. square of the abscissa of the point of tangency
B. square root of the absciss of the point of tangency
C. cube of the abscissa of the point of tangency
D. cube root of the abscissa of the point of tangency

Answer: C

- Watch Video Solution

25. At any point on the curve $2 x^{2} y^{2}-x^{4}=c$, the mean proportional between the abscissa and the difference between the abscissa and the sub-normal drawn to the curve at the same point is equal to or $d \in$ ate
(b) radius vector $x-\in$ tercep \rightarrow ftan $\geq n t$ (d) sub-tangent
A. ordinate
B. radius vector
C. x-intercect of tangent
D. sub-tangent

- Watch Video Solution

26. Given $\mathbf{g}(\mathbf{x}) \frac{x+2}{x-1}$ and the line $3 x+y-10=0$. Then the line is
A. tangent to $g(x)$
B. normal to $g(x)$
C. chord ofg(x)
D. none of these

Answer: A

- View Text Solution

27. If the length of sub-normal is equal to the length of sub-tangent at any point $(3,4)$ on the curve $y=f(x)$ and the tangent at $(3,4)$ to
$y=f(x)$ meets the coordinate axes at AandB, then the maximum area of the triangle $O A B$, where O is origin, is $45 / 2$ (b) $49 / 2$ (c) $25 / 2$ (d) $81 / 2$
A. 45/2
B. $49 / 2$
C. 25/2
D. 81/2

Answer: B

- Watch Video Solution

28. The number of point in the rectangle $\{(x, y)\}-12 \leq x \leq 12 a n d-3 \leq y \leq 3\}$ which lie on the curve $y=x+\sin x$ and at which in the tangent to the curve is parallel to the x-axis is $\mathbf{0}$ (b) $\mathbf{2}$ (c) $\mathbf{4}$ (d) 8
A. 0
B. 2
C. 4
D. 8

Answer: A

- Watch Video Solution

29. Tangent of acute angle between the curves $y=\left|x^{2}-1\right|$ and $y=\sqrt{7-x^{2}}$ at their points of intersection is $\frac{5 \sqrt{3}}{2}$ (b) $\frac{3 \sqrt{5}}{2} \frac{5 \sqrt{3}}{4}$ (d) $\frac{3 \sqrt{5}}{4}$
A. $\frac{5 \sqrt{3}}{2}$
B. $\frac{3 \sqrt{5}}{2}$
C. $\frac{5 \sqrt{3}}{4}$
D. $\frac{3 \sqrt{5}}{4}$

Answer: C

30. The line tangent to the curves $y^{3}-x^{2} y+5 y-2 x=0$ and $x^{2}-x^{3} y^{2}+5 x+2 y=0$ at the origin intersect at an angle θ equal to $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

31. The two curves $x=y^{2}, x y=a^{3}$ cut orthogonally at a point. Then a^{2} is equal to $\frac{1}{3}$ (b) 3 (c) 2 (d) $\frac{1}{2}$
A. $\frac{1}{3}$
B. 3
C. 2
D. $\frac{1}{2}$

Answer: D

- Watch Video Solution

32. The tangent to the curve $y=e^{k x}$ at a point $(0,1)$ meets the x -axis at ($\mathbf{a}, \mathbf{0}$), where $a \in[-2,-1]$. Then $k \in\left[-\frac{1}{2}, 0\right]$ (b) $\left[-1,-\frac{1}{2}\right]$ $[0,1]$ (d) $\left[\frac{1}{2}, 1\right]$
A. $[-1 / 2,0]$
B. $[-1,-1 / 2]$
C. $[0,1]$
D. $[1 / 2,1]$
33. The curves $4 x^{2}+9 y^{2}=72$ and $x^{2}-y^{2}=5 a t(3,2)$ touch each other
(b) cut orthogonally intersect at 45° (d) intersect at 60°
A. touch each other
B. cut orthogonally
C. intersect at 45°
D. intersect at 60°

Answer: B

- Watch Video Solution

34. The coordinates of a point on the parabola $y^{2}=8 x$ whose distance from the circle $x^{2}+(y+6)^{2}=1$ is minimum is $(2,4)$ (b) $(2,-4)$ $(18,-12)(d)(8,8)$
A. $(2,4)$
B. $(2,-4)$
C. $(18,-12)$
D. $(8,8)$

Answer: B

- Watch Video Solution

35. At the point $P\left(a, a^{n}\right)$ on the graph of $y=x^{n}(n \in N)$ in the first quadrant at normal is drawn. The normal intersects the Y -axis at the point ($\mathbf{0}, \mathrm{b}$). If $\lim _{a \rightarrow 0} b=\frac{1}{2}$, then n equals
A. 1
B. 3
C. 2
D. 4

- Watch Video Solution

36. Let f be a continuous, differentiable, and bijective function. If the tangent to $y=f(x) a t x=a$ is also the normal to $y=f(x) a t x=b$, then there exists at least one $c \in(a, b)$ such that $f^{\prime}(c)=0$
$f^{\prime}(c)>0 f^{\prime}(c)<0$ (d) none of these
A. $f^{\prime}(c)=0$
B. $f^{\prime}(c)>0$
C. $f^{\prime}(c)<0$
D. none of these

Answer: A

37. A point on the parabola $y^{2}=18 x$ at which the ordinate increases at twice the rate of the abscissa is $(2,6)(b)(2,-6)\left(\frac{9}{8},-\frac{9}{2}\right)$ $\left(\frac{9}{8}, \frac{9}{2}\right)$
A. $(2,6)$
B. $(2,-6)$
C. $\left(\frac{9}{8}, \frac{9}{2}\right)$
D. $\left(\frac{9}{8}, \frac{9}{2}\right)$

Answer: D

- Watch Video Solution

38. Find the rate of change of volume of a sphere with respect to its surface area when the radius is 2 cm .
A. 1
B. 2
C. 3
D. 4

Answer: A

39. If there is an error of $k \%$ in measuring the edge of a cube, then the percent error in estimating its volume is k (b) $3 k \frac{k}{3}$ (d) none of these
A. k
B. 3k
C. $\frac{k}{3}$
D. none of these

Answer: B

40. A lamp of negligible height is placed on the ground l_{1} away from a wall. A man $l_{2} m$ tall is walking at a speed of $\frac{l_{1}}{10} m / s$ from the lamp to the nearest point on the wall. When he is midway between the lamp and the wall, the rate of change in the length of this shadow on the wall is $-\frac{5 l_{2}}{2} m / s$ (b) $-\frac{2 l_{2}}{5} m / s-\frac{l_{2}}{2} m / s$ (d) $-\frac{l_{2}}{5} m / s$
A. $-\frac{5 l_{2}}{2} m / s$
B. $-\frac{2 l_{2}}{5} m / s$
C. $-\frac{l_{2}}{2} m / s$
D. $-\frac{l_{2}}{5} m / s$

Answer: B

Watch Video Solution

41. The function $f(x)=x(x+3) e^{-\left(\frac{1}{2}\right) x}$ satisfies the conditions of Rolle's theorem in $(-3,0)$. The value of c, is
B. -1
C. 0
D. 3

Answer: A

- Watch Video Solution

42. The radius of a right circular cylinder increases at the rate of 0.1 $\mathrm{cm} / \mathrm{min}$, and the height decreases at the rate of $0.2 \mathrm{~cm} / \mathrm{min}$. The rate of change of the volume of the cylinder, in $\mathrm{cm}^{2} / m \in$, when the radius is $2 c m$ and the height is 3 cm is $-2 p$ (b) $-\frac{8 \pi}{5}-\frac{3 \pi}{5}$ (d) $\frac{2 \pi}{5}$
A. -2π
B. $-\frac{8 \pi}{5}$
C. $16 / 6$
D. $-8 / 15$

D Watch Video Solution

43. A cube of ice melts without changing its shape at the uniform rate of $4 \frac{\mathrm{~cm}^{3}}{m \in}$. The rate of change of the surface area of the cube, in $\frac{\mathrm{cm}}{\mathrm{m} \in}$, when the volume of the cube is $125 \mathrm{~cm}^{3}$, is -4 (b) $-\frac{16}{5}$ (c) $-\frac{16}{6}$ (d) $-\frac{8}{15}$
A. -4
B. $-16 / 5$
C. $-16 / 6$
D. $-8 / 15$

Answer: B

44. The radius of the base of a cone is increasing at the rate of $3 \mathrm{~cm} / \mathrm{min}$ and the altitude is decreasing at the rate of $4 \mathrm{~cm} / \mathrm{min}$. The rate of change of lateral surface when the radius is 7 cm and altitude is 24 cm is $108 \pi \mathrm{~cm}^{2} / \min$ (b) $7 \pi \mathrm{~cm}^{2} / \min 27 \pi \mathrm{~cm}^{2} / \min$ (d) none of these
A. $108 \pi \mathrm{~cm}^{2} / \mathrm{min}$
B. $7 \pi \mathrm{~cm}^{2} / \mathrm{min}$
C. $27 \pi \mathrm{~cm}^{2} / \mathrm{min}$
D. none of these

Answer: A

- Watch Video Solution

45. If $f(x)=x^{3}+7 x-1$, then $f(x)$ has a zero between $x=0 a n d x=1$. The theorem that best describes this is mean value theorem maximum-minimum value theorem intermediate value theorem none of these
A. mena value theorem
B. maximum-minimum value theorem
C. intermediate value theorem
D. none of these

Answer: C

- Watch Video Solution

46. Consider the function $f(x)= \begin{cases}x \frac{\sin (\pi)}{x} & \text { for } x>0 \\ 0 & \text { for } x=0\end{cases}$

Then, the number of points in $(0,1)$ where the derivative $f^{\prime}(x)$ vanishes is
A. 0
B. 1
C. 2
D. infinite

View Text Solution

47. Let $f(x) \operatorname{andg}(x)$ be differentiable for $0 \leq x \leq 1$, such that $f(0), g(0), f(1)=6$. Let there exists real number c in (0,1) such taht $f^{\prime}(c)=2 g^{\prime}(c)$. Then the value of $g(1)$ must be 1 (b) $\mathbf{3}$ (c) -2 (d) -1
A. 1
B. 3
C. -2
D. 1 -

Answer: B

- Watch Video Solution

48. If $3(a+2 c)=4(b+3 d)$, then the equation $a x^{3}+b x^{2}+c x+d=0$ will have no real solution at least one real root in $(-1,0)$ at least one real root in $(0,1)$ none of these
A. no real solution
B. at least one real root in $(-1,0)$
C. at least one real root in $(0,1)$
D. none of these

Answer: B

- Watch Video Solution

49. A value of c for which the conclusion of Mean value theorem holds for the function $f(x)=\log _{e} x$ on the interval $[1,3]$ is
A. $\frac{1}{2} \log _{e} 3$
B. $\log _{3} e$
C. $\log _{e} 3$
D. $2 \log _{3} e$

Watch Video Solution

50. For $f(x)=4 x^{3}+3 x^{2}-x-1$, the range of vaues of $\frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}} i s$
A. $\left(-\infty,-\frac{5}{4}\right)$
B. $\left(-\infty,-\frac{7}{4}\right)$
C. $\left[-\frac{7}{4}, \infty\right)$
D. $\left[-\frac{5}{4}, \infty\right)$

Answer: C

- View Text Solution

51. Let $f(x)$ be a twice differentiable function for all real values of x and satisfies $f(1)=1, f(2)=4, f(3)=9$. Then which of the following is definitely true? $f^{x}=2 \forall x \in(1,3) f^{x}=f(x)=5 f$ or somex $\in(2,3)$
$f^{x}=3 \forall x \in(2,3) f^{x}=2 f$ or somex $\in(1,3)$
A. $f^{\prime \prime}(x)=2 \forall x \in(1,3)$
B. $f^{\prime \prime}(x)=f(x) 5$ for some $x \in(2,3)$
C. $f^{\prime \prime}(x)=3 \forall x \in(2,3)$
D. $f^{\prime \prime}(x)=2$ for some $x \in(1,3)$

Answer: D

- Watch Video Solution

52. The value of c in Largrange's theorem for the function $f(x)=\log _{e} \sin x$ in the interval $[\pi / 6,5 \pi / 6]$ is
A. $\pi / 4$
B. $\pi / 2$
C. $2 \pi / 3$
D. none of these
53. In which of the following function Rolle's theorem is applicable?
A. $f(x)=\left\{\begin{array}{ll}x & 0 \leq x<1 \\ 0 & x=1\end{array}\right.$ on $[0,1]$
B. $f(x)=\left\{\begin{array}{ll}\frac{\sin x}{x} & -\pi \leq x<0 \\ 0 & x=0\end{array}\right.$ on $[-\pi, 0]$
C. $f(x) \frac{x^{2}-x-6}{x-1}$ on $[-2,3]$
D. $f(x)=\left\{\begin{array}{ll}\frac{x^{3}-2 x^{3}-5 x+6}{x-1} & \text { if } x \neq 1 \\ -6 & \text { if } x=1\end{array}\right.$ on $[-2,3]$

Answer: D

- Watch Video Solution

54. Let $f^{\prime}(x)=e^{x 2}$ and $f(0)=10$. If $A<f(1)<B$ can be concluded from the mean value theorem, then the largest volume of $(A-B)$ equals
B. $1-e$
C. $e-1$
D. $1+e$

Answer: B

- View Text Solution

55. If $f(x)$ and $g(x)$ are differentiable functions for $0 \leq x \leq 1$ such that $f(0)=10, g(0)=2, f(1)=2, g(1)=4$, then in the interval $(0,1)$. $f^{\prime}(x)=0$ for all $x f^{\prime}(x)+4 g^{\prime}(x)=0$ for at least one x $f(x)=2 g^{\prime}(x)$ for at most one x none of these
A. $f(x)=0$ for all \mathbf{x}
B. $f(x)+4 g^{\prime}(x)=0$ for at least one \mathbf{x}
C. $f(x)=2 g^{\prime}(x)$ for at most one \mathbf{x}
D. none of these

D Watch Video Solution

56. A continuous and differentiable function $y=f(x)$ is such that its graph cuts line $y=m x+c$ at n distinct points. Then the minimum number of points at which $f^{x}=0$ is/are
A. $n-1$
B. $n-3$
C. $n-2$
D. cannot say

Answer: C

57. Given $f^{\prime}(1)=1$ and $\frac{d}{d x}(f(2 x))=f^{\prime}(x) \forall x>0$.lf $f^{\prime}(x)$ is differentiable then there exies a number $c \in(2,4)$ such that $f^{\prime \prime}(c)$ equals
A. $\frac{1}{4}$
B. $\frac{-1}{2}$
C. $-\frac{1}{4}$
D. $-\frac{1}{8}$

Answer: D

- Watch Video Solution

58. If (\mathbf{x}) is differentiable in $[a, b]$ such that $f(a)=2, f(b)=6$, then there exists at least one $c, a<c \leq b$, such that $\left(b^{3}-a^{3}\right) f^{\prime}(c)=$
A. c^{2}
B. $2 c^{2}$
C. $-3 c^{2}$
D. $12 c^{2}$

Answer: D

- View Text Solution

Exercise (Multiple)

1. Points on the curve $f(x)=\frac{x}{1-x^{2}}$ where the tangent is inclined at an angle of $\frac{\pi}{4}$ to the x -axis are (0,0) (b) $\left(\sqrt{3},-\frac{\sqrt{3}}{2}\right)\left(-2, \frac{2}{3}\right)$
$\left(-\sqrt{3}, \frac{\sqrt{3}}{2}\right)$
A. $(0,0)$
B. $\left(\sqrt{3},-\frac{\sqrt{3}}{2}\right)$
C. $\left(-2, \frac{2}{3}\right)$
D. $\left(\sqrt{3},-\frac{\sqrt{3}}{2}\right)$

- Watch Video Solution

2. For the curve $y=c e^{x / a}$, which one of the following is incorrect?
A. sub-tangent is constant
B. sub-normal varies as the square of the ordinate
C. tangent at $\left(x_{1}, y_{1}\right)$ on the curve intersects the \mathbf{x}-axis at a distance of $\left(x_{1}-a\right)$ from the origin
D. equaltion of the normal at the point where the curve cuts $y-$ axis is $c y+a x=c^{2}$

Answer: A::B::C::D

- Watch Video Solution

3. Let the parabolas $y=x(c-x)$ and $y=x^{2}+a x+b$ touch each other at the point $(1,0)$. Then
A. $a+b+c=0$
B. $a+b=2$
C. $b-c=1$
D. $a+c=-2$

Answer: A::C::D

- Watch Video Solution

4. The angle formed by the positive Y -axis and the tangent to $y=x^{2}+4 x-17$ at $\left(\frac{5}{2},-\frac{3}{4}\right)$
A. $\tan ^{-1}(9)$
B. $\frac{\pi}{2}-\tan ^{-1}(9)$
C. $\frac{\pi}{2}+\tan ^{-1}(9)$
D. none of these

Answer: B::C

- Watch Video Solution

5. Which of the following pair(s) of curves is/are ortogonal?
A. $y^{2}=4 a x, y=e^{-x / 2 a}$
B. $y^{2}=4 a x, x^{2}=4 \operatorname{ayat}(0,0)$
C. $x y=a^{2}, x^{2}-y^{2}=b^{2}$
D. $y=a x, x^{2}+y^{2}=c^{2}$

Answer: A::B::C::D

6. The coordinates of the point(s) on the graph of the function $f(x)=\frac{x^{3}}{x}-\frac{5 x^{2}}{2}+7 x-4$, where the tangent drawn cuts off intercepts from the coordinate axes which are equal in magnitude but opposite in sign, are $\left(2, \frac{8}{3}\right)$ (b) $\left(3, \frac{7}{2}\right)\left(1, \frac{5}{6}\right)$ (d) none of these
A. $(2,8 / 3)$
B. $(3,7 / 2)$
C. $(1,5 / 6)$
D. none of these

Answer: A: B

- Watch Video Solution

7. The abscissa of a point on the curve $x y=(a+x)^{2}$, the normal which cuts off numerically equal intercepts from the coordinate axes, is $-\frac{1}{\sqrt{2}}$ (b) $\sqrt{2} a$ (c) $\frac{a}{\sqrt{2}}$ (d) $-\sqrt{2} a$
A. $-\frac{a}{\sqrt{2}}$
B. $\sqrt{2} a$
C. $\frac{a}{\sqrt{2}}$
D. $-\sqrt{2} a$

Answer: A::C

- Watch Video Solution

8. The angle between the tangents at any point P and the line joining P to the orgin, where P is a point on the curve $\ln \left(x^{2}+y^{2}\right)=c \tan ^{1-} \frac{y}{x}, c$ is a constant, is
A. independent of x
B. independent of \mathbf{y}
C. independent of x but dependent on y
D. independent of y but dependent on x

D View Text Solution

9. If OT and ON are perpendiculars dropped from the origin to the tanget an \mathbf{d} norml to the curve $x=a \sin ^{3} t, y=a \cos ^{3} t$ at an arbitary point, then
A. $4 O T^{2}+O N^{2}=a^{2}$
B. $\left|\frac{y}{\cos t}\right|$
C. the length of the normal is $\left|\frac{y}{\sin t}\right|$
D. none of these

Answer: A::B::C

- View Text Solution

10. Let $C_{1}: y=x^{2} \sin 3 x, C_{2}: y=x^{2}$ and $C_{3}: y=-y^{2}$, then
A. C_{1} touches C_{2} at infinite points
B. C_{1} touches C_{3} at infinite points
C. C_{1} and C_{2} and C_{1} and C_{3} meet at alternate points
D. none of these

Answer: A::B

- View Text Solution

11. If the line $\mathrm{x} \cos \theta+y \sin \theta=P$ is the normal to the curve $(x+a) y=1$, then θ may lie in
A. I quadrant
B. II quadrant
C. III quadrant
D. IV quadrant
12. Common tagent (s) to $y=x^{3}$ and $x=y^{3}$ is/are
A. $x-y=\frac{1}{\sqrt{3}}$
B. $x-y=-\frac{1}{\sqrt{3}}$
C. $x-y=\frac{2}{3 \sqrt{3}}$
D. $x-y=\frac{-2}{3 \sqrt{3}}$

Answer: C::D

- View Text Solution

13. Given $f(x)=4-\left(\frac{1}{2}-x\right)^{\frac{2}{3}}, g(x)=\left\{\frac{\tan [x]}{x}, x \neq 01, x=0\right.$ $h(x)=\{x\}, k(x)=5^{(\log)_{2}(x+3)}$ Then in [0,1], lagranges mean value theorem is not applicable to (where [.] and \{.\} represents the greatest integer functions and fractional part functions, respectively). f (b) g (c) k
(d) h
A. f
B. g
C. k
D. h

Answer: A::B::D

- Watch Video Solution

14. Let $f(x)=a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x$, where a_{i} ' s are real and $f(x)=0$ has a positive root α_{0}. Then $f^{\prime}(x)=0$ has a positive root α_{1} such that ${ }^{`} 0$
A. $\mathbf{f}^{\prime}(\mathbf{x})=0$ has a root α_{1} such that $<\alpha_{1}<\alpha_{0}$
B. $f^{\prime}(x)=0$ has at least one real root
C. f " $(x)=0$ has at least one real root
D. none of these

D Watch Video Solution

15. Which of the following is/are correct ?
A. Between any two root of $e^{x} \cos x=1$, there exists at least one root of $\tan x=1$.
B. Between any two roots of $e^{x} \sin x=1$, there exists at least one root of $\tan x=-1$.
C. Between any two roots of $e^{x} \cos x=1$, there exists at least one root of $e^{x} \sin x=1$.
D. Between any two roots of $e^{x} \sin x=1$, then exists at least one root of $e^{x} \cos x=1$.

Answer: A::B::C

16. Among the following, the function (s) on which LMVT theorem is applicable in the indecatd intervals is/are
A. $f(x)=x^{\frac{1}{3}} \operatorname{in}[-1,1]$
B. $f(x)=x+\frac{1}{x} \operatorname{in}\left[\frac{1}{2}, 3\right]$
C. $f(x)=(x-1)|(x-1)(x-2)| \operatorname{in}[-1,1]$
D. $f(x)=e^{|(x-1)(x-3)|} \operatorname{in}[1,3]$

Answer: B::C::D

- View Text Solution

17. Let $f(x)$ be a differentiable function and $f(\alpha)=f(\beta)=0(\alpha<\beta)$, then the interval (α, β)
A. $f(x)+f^{\prime}(x)=0$ has at least one root
B. $f(x)-f^{\prime}(x)=0$ has at least one real root
C. $f(x) \times f^{\prime}(x)=0$ has at lease one real root
D. none of these

Answer: A::B::C

- Watch Video Solution

Exercise (Comprehension)

1. Tangent at a point P_{1} [other than $(0,0)$] on the curve $y=x^{3}$ meets the curve again at P_{2}. The tangent at P_{2} meets the curve again at P_{3} and so on.

If P_{1} has corrdinates $(1,1)$ then the sum lim_(ntooo)sum_($\left.\mathrm{r}=1\right)^{\wedge}(\mathrm{n})$
(1)/(x_(n))is (where $x_{-}(1), x_{-}(2), . .$. 'are abscissas of" $P_{-}(1), P_{-}(2)$....,' respectively
A. $2 / 3$
B. $1 / 3$
C. $1 / 2$
D. $3 / 2$

Answer: A

- View Text Solution

2. Tangent at a point P_{1} [other than $(0,0)$] on the curve $y=x^{3}$ meets the curve again at P_{2}. The tangent at P_{2} meets the curve again at P_{3} and so on.

If P_{1} has co-ordinates $(1,1)$ then the sum in $\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{y_{n}} i s\left(\right.$ where $_{1}, y_{2}, \ldots$ are abscissas of P_{1}, P_{2}, \ldots, respectively
A. $1 / 8$
B. $1 / 9$
C. $8 / 9$
D. $9 / 8$

Answer: C

3. Tangent at a point P_{1} [other than $(0,0)$] on the curve $y=x^{3}$ meets the curve again at P_{2}. The tangent at P_{2} meets the curve at $P_{3} \&$ so on. Show that the abscissae of $P_{1}, P_{2}, P_{3}, \ldots \ldots \ldots P_{n}$, form a GP. Also find the ratio area of $A\left(P_{1} P_{2} P_{3}.\right)$ area of $\Delta\left(P_{2} P_{3} P_{4}\right)$
A. $1 / 4$
B. $1 / 2$
C. $1 / 8$
D. $1 / 16$

Answer: D

- Watch Video Solution

4. Consider the curve $x=1-3 t^{2}, y=t-3 t^{3}$. A tangent at point $\left(-a 3 t^{2}, t-3 t^{3}\right)$ is inclined at an angle θ to the possitive \mathbf{x}-axis and
another tangent at point $P(-2,2)$ cuts the curve agains at \mathbf{Q}.
The value of $\tan \theta+\sec \theta$ is equal to
A. 3 t
B. t
C. $t-t^{2}$
D. $t^{2}-2 t$

Answer: A

- View Text Solution

5. Consider the curve $x=1-3 t^{2}, y=t-3 t^{3}$. A tangent at point $\left(-a 3 t^{2}, t-3 t^{3}\right)$ is inclined at an angle θ to the possitive \mathbf{x}-axis and another tangent at point $P(-2,2)$ cuts the curve agains at \mathbf{Q}.

The point Q will be
A. $(1,-2)$
B. $\left(-\frac{1}{3},-\frac{2}{9}\right)$
C. $(-2,1)$
D. none of these

Answer: B

- View Text Solution

6. Consider the curve $x=1-3 t^{2}, y=t-3 t^{3}$. A tangent at point $\left(-a 3 t^{2}, t-3 t^{3}\right)$ is inclined at an angle θ to the possitive x-axis and another tangent at point $P(-2,2)$ cuts the curve agains at \mathbf{Q}.

The angle between the tangents at P and Q will be
A. $\frac{\pi}{4}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{3}$
7. A spherical balloon is being inflated so that its volume increase uniformaly at the rate of $40 \mathrm{~cm}^{3} /$ minute. The rate of increase in its surface area when the radius is 8 cm , is
A. $8 \mathrm{~cm}^{2} / \mathrm{min}$
B. $10 \mathrm{~cm}^{2} / \mathrm{min}$
C. $20 \mathrm{~cm}^{2} / \mathrm{min}$
D. none of these

Answer: B

- Watch Video Solution

8. A spherical balloon is being inflated so that its volume increase uniformly at the rate of $40 c \frac{\mathrm{~m}^{3}}{\mathrm{~min}}$. How much the radius will increases during the next $1 / 2$ minute ?
A. 0.025 cm
B. 0.050 cm
C. 0.075 cm
D. 0.01 cm

Answer: A

- Watch Video Solution

9. A conical paper cup 20 cm across the top and 15 cm deep is full of water. The cup springs a leak at the bottom and losses water at $5 \mathrm{cu} . \mathrm{cm}$ per minute.

How fast is the water level dropping at the instant when the water is exactly 7.5 cm deep ?
A. $\frac{1}{\pi} c m / \min$
B. $\frac{1}{5 \pi} \mathrm{~cm} / \mathrm{min}$
C. $\frac{1}{2 \pi} \mathrm{~cm} / \mathrm{min}$
D. $\frac{2}{3 \pi} \mathrm{~cm} / \mathrm{min}$

Answer: B

- View Text Solution

10. A conical paper cup 20 cm across the top and 15 cm deep is full of water. The cup springs a leak at the bottom and losses water at $5 \mathrm{cu} . \mathrm{cm}$ per minute.

The amount of water (in cm^{3}) when the hight of water is 3 cm is
A. 4π
B. 3π
C. 27π
D. 2π

Answer: A

11. A conical paper cup 20 cm across the top and 15 cm deep is full of water. The cup springs a leak at the bottom and losses water at $5 \mathrm{cu} . \mathrm{cm}$ per minute.
The value of $\frac{d^{2} h}{d t^{2}}\left(\mathrm{in} \mathrm{cm} / \mathrm{min}^{2}\right)$ when the water is exactly 7.5 cm deep and $\frac{d^{2} V}{d t^{2}}=-\frac{4}{9} \mathrm{~cm}^{3} / \stackrel{2}{\min }$ is
A. $-\frac{2}{5}$
B. $\frac{-2}{125 \pi^{3}}$
C. $\frac{-2}{5 \pi^{3}}$
D. none of these

Answer: D

- View Text Solution

12. Let $\mathbf{A}(0,0)$ and $\mathbf{B}(8,2)$ be two fixed points on the curve $y^{3}=|x|$ A point C (abscissa is less than 0) starts moving from origin along the curve such that rate of change in the ordinate is $\mathbf{2 ~ c m} / \mathrm{sec}$. After t_{0} seconds, triangle
$A B C$ becomes a right triangle.
The value of t_{0} is
A. 1 sec
B. 2 sec
C. $\frac{1}{4} \mathrm{sec}$
D. $\frac{1}{2} \mathrm{sec}$

Answer: C

D View Text Solution

13. Let $\mathbf{A}(0,0)$ and $\mathbf{B}(8,2)$ be two fixed points on the curve $y^{3}=|x| \mathbf{A}$ point C (abscissa is less than 0) starts moving from origin along the curve such that rate of change in the ordinate is $\mathbf{2 ~ c m} / \mathrm{sec}$. After t_{0} seconds, triangle ABC becomes a right triangle.

After t_{0} secods, tangent is drawn to teh curve at point \mathbf{C} to intersect it again at (α, β). Then the value of $4 \alpha+3 \beta$ is
A. $\frac{4}{3}$
B. $\frac{3}{4}$
C. 2
D. 1

Answer: D

- Watch Video Solution

Exercise (Numerical)

1. There is a point (\mathbf{p}, \mathbf{q}) on the graph of $f(x)=x^{2}$ and a point (r, s) on the graph of $g(x)=\frac{-8}{x}$, where $p>0$ and $r>0$. If the line through (p, q) and (r, s) is also tangent to both the curves at these points, respectively, then the value of $P+r$ is \qquad .

- Watch Video Solution

2. A curve is defined parametrically be equations $x=t^{2} a n d y=t^{3}$. A variable pair of perpendicular lines through the origin O meet the curve of PandQ. If the locus of the point of intersection of the tangents at PandQ is $a y^{2}=b x-1$, then the value of $(a+b)$ is \qquad

- Watch Video Solution

3. If d is the minimum distance between the curves $f(x)=e^{x} a n d g(x)=(\log)_{e} x$, then the value of d^{0} is

- Watch Video Solution

4. Let $f(x 0$ be a non-constant thrice differentiable function defined on $(-\infty, \infty)$ such that $f(x)=f(6-x)$ and $f^{\prime}(0)=0=f^{\prime}(x)^{2}=f(5)$. If n is the minimum number of roots of $\left(f^{\prime}(x)^{2}+f^{\prime}(x) f^{x}=0\right.$ in the interval $[0,6]$, then the value of $\frac{n}{2}$ is
5. At the point $P\left(a, a^{n}\right)$ on the graph of $y=x^{n},(n \in N)$, in the first quadrant, a normal is drawn. The normal intersects the $y-a \xi s$ at the point $(0, b)$. If (lim) $\overrightarrow{a 0} b=\frac{1}{2}$, then n equals $\mathbf{1}$ (b) $\mathbf{3}$ (c) $\mathbf{2}$ (d) $\mathbf{4}$

- Watch Video Solution

6. A curve is given by the equations $x=\sec ^{2} \theta, y=\cot \theta$. If the tangent at Pwhere $\theta=\frac{\pi}{4}$ meets the curve again at Q, then $[P Q]$ is, where [.] represents the greatest integer function, \qquad .

Watch Video Solution

7. Water is dropped at the rate of $2 \mathrm{~m}^{3} / \mathrm{s}$ into a cone of semi-vertical angle is 45°. If the rate at which periphery of water surface changes when the height of the water in the cone is 2 m is d . Then the value of 5 d is \qquad $\mathrm{m} / \mathrm{sec}$
8. If the slope of line through the origin which is tangent to the curve $y=x^{3}+x+16$ is m, then the value of $m-4$ is \qquad .

Watch Video Solution

9. Let $y=f(x)$ be drawn with $f(0)=2$ and for each real number a the line tangent to $y=f(x)$ at ($a, f(a)$) has \mathbf{x}-intercept $(a-2)$. If $f(x)$ is of the form of $k e^{p x}$ then $\frac{k}{p}$ has the value equal to

- Watch Video Solution

10. Suppose a, b, c are such that the curve $y=a x^{2}+b x+c$ is tangent to $y=3 x-3$ at $(1,0)$ and is also tangent to $y=x+1$ at $(3,4)$. Then the value of $(2 a-b-4 c)$ equals \qquad

- Watch Video Solution

11. Let C be a curve defined by $y=e^{a}+b x^{2}$. The curve C passes through the point $P(1,1)$ and the slope of the tangent at P is (-2). Then the value of $2 a-3 b$ is \qquad .

- Watch Video Solution

12. If the curve C in the $x y$ plane has the equation $x^{2}+x y+y^{2}=1$, then the fourth power of the greatest distance of a point on C from the origin is \qquad .

- Watch Video Solution

13. If a, b are two real numbers with `a

- Watch Video Solution

14. Let $f:[1,3] \rightarrow[0, \infty)$ be continuous and differentiabl function. If $(f(3)-f(1))\left(f^{2}(3)+f^{2}(1)+f(3) f(1)\right)=k f^{2}(c) f^{\prime}(c)$ wherec $\in(1,3)$, then the value of k is \qquad

- View Text Solution

15. The \mathbf{x} intercept of the tangent to a curve $f(x, y)=0$ is equal to the ordinate of the point of contact. Then the value of $\frac{d^{2} x}{d y^{2}}$ at the point $(1,1)$ on the curve is \qquad .

- View Text Solution

16. if $f(x)$ is differentiable function such that $f(1)=\sin 1, f(2)=\sin 4$ and $f(3)$ $=\sin 9$, then the minimum number of distinct roots of $\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x} \cos x^{2}$ in $(1,3)$ is \qquad

- View Text Solution

17. Let $f(x)=x\left(x^{2}+m x+n\right)+2, \quad$ for all $x \neq R$ and $m, n \in R$. If Rolle's theorem holds for $f(x) a t x=4 / 3 x \in[1,2], \quad$ then $(m+n)$ equal \qquad .

- View Text Solution

18. If length of the perpendicular from the origin upon the tangent drawn to the curve $x^{2}-x y+y^{2}+\alpha(x-2)=4$ at $(2,2)$ is equal to 2 then α equals

- Watch Video Solution

19. If $\mathbf{f}(\mathbf{x})=\left\{\begin{array}{ll}x \log _{e} x, & x>0 \\ 0, & x=0\end{array}\right.$ not conclusion of LMVT holds \quad at $\mathbf{x}=\mathbf{1}$ in the interval $[0, a]$ for $f(x)$, then $\left[a^{2}\right]$ is equal to (where [.] denotes the greatest interger) \qquad .

- View Text Solution

1. The shortest distance between line $\mathrm{y}-\mathrm{x}=1$ and curve $x=y^{2}$ is
A. $\frac{3 \sqrt{2}}{8}$
B. $\frac{2 \sqrt{3}}{8}$
C. $\frac{3 \sqrt{2}}{5}$
D. $\frac{\sqrt{3}}{4}$

Answer: A

- Watch Video Solution

2. The equation of the tangent to the curve $y=x+\frac{4}{x^{2}}$, that is parallel to the x - axis, is
A. $y=8$
B. $y=0$
C. $y=3$
D. $y=2$

Answer: C

- Watch Video Solution

3. Consider the function $f(x)=|x-2|+|x-5|, c \in R$.

Statement 1: $f^{\prime}(4)=0$
Statement 2: f is continuous in $[2,5]$, differentiable in
A. Statement 1 is false, statement $\mathbf{2}$ is true.
B. Statement 1 is true, Statement 2 is true, statement 2 is correct explanation for Statement 1.
C. Statement $\mathbf{1}$ is true, Statement $\mathbf{2}$ is trur, Statement 2 is no a correct explanation for statement 1.
D. Statement 1 is true, Statement 2 is false.

D View Text Solution

4. If f and g are differentiable functions in $[0,1]$ satisfying $f(0)=2=g(1), g(0)=0$ and $f(1)=6$, then for some $c \in] 0,1[$ (1)
$2 f^{\prime}(c)=g^{\prime}(c)$
(2) $\quad 2 f^{\prime}(c)=3 g^{\prime}(c)$
(3) $\quad f^{\prime}(c)=g^{\prime}(c)$
$f^{\prime}(c)=2 g^{\prime}(c)$
A. $2 f^{\prime}(c)=g^{\prime}(c)^{\prime}$
B. $2 f^{\prime}(c)=3 g^{\prime}(c)^{\prime}$
C. $f^{\prime}(c)=g^{\prime}(c)^{\prime}$
D. $f^{\prime}(c)=2 g^{\prime}(c)^{\prime}$

Answer: D

5. The normal to the curve $x^{2}+2 x y-3 y^{2}=0$, at $(1,1)$
A. does not meet the curve again.
B. meets the curve again in the second quadrant.
C. meets the curve again in the third quadrant.
D. meets the curve again in the fourth quadrant.

Answer: D

- Watch Video Solution

6. Consider $f(x)=\tan ^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right), x \in\left(0, \frac{\pi}{2}\right)$. A normal to $y=f(x)$ at $x=\frac{\pi}{6}$ also passes through the point:
A. $\left(0, \frac{2 \pi}{3}\right)$
B. $\left(\frac{\pi}{6}, 0\right)$
C. $\left(\frac{\pi}{4}, 0\right)$
D. $(0,0)$

Answer: A

- Watch Video Solution

7. The normal to the curve $y(x-2)(x-3)=x+6$ at the point where the curve intersects the $y-a \xi s$, passes through the point : $\left(\frac{1}{2},-\frac{1}{3}\right)$
(2) $\left(\frac{1}{2}, \frac{1}{3}\right)$ (3) $\left(-\frac{1}{2},-\frac{1}{2}\right)$ (4) $\left(\frac{\frac{1}{2,1}}{2}\right)$
A. $\left(\frac{1}{2}, \frac{1}{3}\right)$
B. $\left(-\frac{1}{2},-\frac{1}{2}\right)$
C. $\left(\frac{1}{2}, \frac{1}{2}\right)$
D. $\left(\frac{1}{2}, \frac{1}{3}\right)$

Answer: C

8. If the curves $y^{2}=6 x, 9 x^{2}+b y^{2}=16$ intersect each other at right angles then the value of b is:
A. $9 / 2$
B. 6
C. $7 / 2$
D. 4

Answer: A

Watch Video Solution

9. Let $f, g:[-1,2] \rightarrow \mathbb{R}$ be continuous functions which are twice differentiable on the interval ($-1,2$). Let the values of f and g at the points -1, 0 and 2 be as given in the following table : $x=-1 x=0 x=2 f(x) 360 g(x) 01-1$ In each of the intervals ($-1,0$) and $(0,2)$ the function ($f-3 g$)" never vanishes. Then the correct statement(s) is(are)
A. $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly three solution in $(-1,0) \cup(0,2)$
B. $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in $(-1,0)$
C. $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in (0,2)
D. $f^{\prime}(x)-3 g^{\prime}(x)=0$ has excatly two solutions in ($-1,0$) and exactly
two solution in (0,2)

Answer: B::C

- Watch Video Solution

10. For every twice differentiable function $f: R \rightarrow[-2,2]$ with $(f(0))^{2}+\left(f^{\prime}(0)\right)^{2}=85$, which of the following statement(s) is (are) TRUE?
A. There exist $\mathbf{r}, \mathbf{s} \in R$, where $r<s$, such that \mathbf{f} is one-one on the open interval (r,s)
B. There exist $x_{0} \in(-4,0)$ such that $\left|f^{\prime}\left(x_{0}\right)\right| \leq 1$
C. $\lim _{x \rightarrow \infty} f(x)=1$
D. There exists $\alpha \in(-4,4)$ such that $f(\alpha)+f^{\prime \prime}(\alpha)=0$ and $f^{\prime}(\alpha) \neq 0$

Answer: A::B::D

- Watch Video Solution

Solved Examples And Exercises

1. The two curves $x^{3}-3 x y^{2}+2=0$ and $3 x^{2} y-y^{3}-2=0$

- Watch Video Solution

2. Find the angle of intersection of $y=a^{x} a n d y=b^{x}$
3. If the sub-normal at any point on $y=a^{1-n} x^{n}$ is of constant length, then find the value of n.

- Watch Video Solution

4. Find the cosine of the angle of intersection of curves
$f(x)=2^{x}(\log)_{e} \operatorname{xandg}(x)=x^{2 x}-1$.

- Watch Video Solution

5. Find the value of a if the curves $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1 a n d y^{3}=16 x$ cut orthogonally.

- Watch Video Solution

6. The acute angle between the curves $y=\left|x^{2}-1\right|$ and $y=\left|x^{2}-3\right|$ at their points of intersection when when $x>0$, is
7. In the curve $x^{m+n}=a^{m-n} y^{2 n}$, prove that the m th power of the subtangent varies as the nth power of the sub-normal.

- Watch Video Solution

8. Find the length of the tangent for the curve $y=x^{3}+3 x^{2}+4 x-1$ at point $x=0$.

- Watch Video Solution

9. For the curve $y=a 1 n\left(x^{2}-a^{2}\right)$, show that the sum of length of tangent and sub-tangent at any point is proportional to product of coordinates of point of tangency.
10. For the curve $y=f(x)$ prove that (lenght \mathbf{n} or mal) ${ }^{\wedge} 2 /($ lenght or tanght)^2

- Watch Video Solution

11. Find the condition if the equation $3 x^{2}+4 a x+b=0$ has at least one root in $(0,1)$.

- Watch Video Solution

12. Find c of Lagranges mean value theorem for the function $f(x)=3 x^{2}+5 x+7$ in the interval $[1,3]$.

- Watch Video Solution

13. Let ${ }^{\circ} 0$

O

14. Let $f(x) \operatorname{andg}(x)$ be differentiable for $0 \leq x \leq 2$ such that $f(0)=2, g(0)=1, \operatorname{and} f(2)=8$. Let there exist a real number c in $[0,2]$ such that $f^{\prime}(c)=3 g^{\prime}(c)$. Then find the value of $g(2)$.

- Watch Video Solution

15. Prove that if $2 a 02<15 a$ all roots of
$x^{5}-a_{0} x^{4}+3 a x^{3}+b x^{2}+c x+d=0$ cannot be real. It is given that $a_{0}, a, b, c, d \in R$.

- Watch Video Solution

16. If $f(x)$ is continuous in $[a, b]$ and differentiable in (a,b), then prove that there exists at least one $c \in(a, b)$ such that $\frac{f^{\prime}(c)}{3 c^{2}}=\frac{f(b)-f(a)}{b^{3}-a^{3}}$

- Watch Video Solution

17. Prove that $\left|\tan ^{-1} x-\tan ^{-1} y\right| \leq|x-y| \forall x, y \in R$.

- Watch Video Solution

18. Using Lagranges mean value theorem, prove that $\frac{b-a}{b}<\log \left(\frac{b}{a}\right)<\frac{b-a}{a}=a$, where $0<a<b$.

- Watch Video Solution

19. If $a>b>0$, with the aid of Lagranges mean value theorem, prove that

$$
n b^{n-1}(a-b)<a^{n}-b^{n}<n a^{n-1}(a-b), \text { if } n>1 .
$$

$n b^{n-1}(a-b)>a^{n}-b^{n}>n a^{n-1}(a-b), \quad$ if $0<n<1$.

- Watch Video Solution

20. Let $f(x) \operatorname{andg}(x)$ be two functions which are defined and differentiable for all $x \geq x_{0}$. If $f\left(x_{0}\right)=g\left(x_{0}\right) \operatorname{and} f^{\prime}(x)>g^{\prime}(x)$ for all
$x>x_{0}$, then prove that $f(x)>g(x)$ for all $x>x_{0}$.

- Watch Video Solution

21. If the tangent to the curve $x y+a x+b y=0$ at $(1,1)$ is inclined at an angle $\tan ^{-1} 2$ with x -axis, then find $a a n d b$?

- Watch Video Solution

22. Find the condition that the line $A x+B y=1$ may be normal to the curve $a^{n-1} y=x$

- Watch Video Solution

23. Find the value of $n \in N$ such that the curve $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2$ touches the straight line $\frac{x}{a}+\frac{y}{b}=2$ at the point (a, b).
24. If the equation of the tangent to the curve $y^{2}=a x^{3}+b$ at point $(2,3) i s y=4 x-5$, then find the values of $a a n d b$.

- Watch Video Solution

25. Find the length of sub-tangent to the curve $y=e^{x / a}$

- Watch Video Solution

26. In the curve $x^{a} y^{b}=K^{a+b}$, prove that the potion of the tangent intercepted between the coordinate axes is divided at its points of contact into segments which are in a constant ratio. (All the constants being positive).

- Watch Video Solution

27. Does there exists line/lines which is/are tangent to the curve $y=\sin x a t\left(x_{1}, y_{1}\right)$ and normal to the curve at $\left(x_{2}, y_{2}\right) ?$

Watch Video Solution

28. If the tangent at $(1,1)$ on $y^{2}=x(2-x)^{2}$ meets the curve again at P, then find coordinates of P.

- Watch Video Solution

29. Find the length of normal to the curve $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ at $\theta=\frac{\pi}{2}$.

- Watch Video Solution

30. Determine p such that the length of the such-tangent and sub-normal is equal for the curve $y=e^{p x}+p x$ at the point $(0,1)$.
31. If $f(x) \operatorname{andg}(x)$ are continuous functions in $[a, b]$ and are differentiable in (a, b) then prove that there exists at least one $c \in(a, b)$ for which. $|f(\mathrm{a}) \mathrm{f}(\mathrm{b}) \mathrm{g}(\mathrm{a}) \mathrm{g}(\mathrm{b})|=(\mathrm{b}-\mathrm{a}) \mid \mathrm{f}(\mathrm{a}) \mathrm{f}^{\wedge}($ prime $)(\mathrm{c}) \mathrm{g}(\mathrm{a}) \mathrm{g}^{\wedge}($ prime $)(\mathrm{c}) \mid$, w her

ea

D Watch Video Solution

32. If $f(x) \operatorname{and} g(x)$ be two function which are defined and differentiable for all $x \geq x_{0}$. If $f\left(x_{0}\right)=g\left(x_{0}\right)$ and $f^{\prime}(x)>g^{\prime}(x)$ for all $f>x_{0}$, then prove that $f(x)>g(x)$ for all $x>x_{0}$.

- Watch Video Solution

33. On the curve $x^{3}=12 y$, find the interval of values of x for which the abscissa changes at a faster rate than the ordinate?
34. The length x of a rectangle is decreasing at the rate of $5 c \frac{m}{m}$ and the width y is increasing at the rate of $4 c \frac{\mathrm{~m}}{\mathrm{~m}}$ When $x=8 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$, find the rate of change of (a) the perimeter and (b) the area of the rectangle.

- Watch Video Solution

35. Find the minimum value of
$\left(x_{1}-x_{2}\right)^{2}+\left(\frac{x_{1}^{2}}{20}-\sqrt{\left(17-x_{2}\right)\left(x_{2}-13\right)}\right)^{2}$
where
$x_{1} \in R^{+}, x_{2} \in(13,17)$.

- Watch Video Solution

36. Displacement s of a particle at time t is expressed as $s=\frac{1}{2} t^{3}-6 t$.

Find the acceleration at the time when the velocity vanishes (i.e., velocity tends to zero).
37. Find the distance of the point on $y=x^{4}+3 x^{2}+2 x$ which is nearest to the line $y=2 x-1$

- Watch Video Solution

38. The graph $y=2 x^{3}-4 x+2 a n d y=x^{3}+2 x-1$ intersect in exactly 3 distinct points. Then find the slope of the line passing through two of these points.

- Watch Video Solution

39. The tangent at any point on the curve $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ meets the axes in PandQ. Prove that the locus of the midpoint of $P Q$ is a circle.
40. Prove that all the point on the curve $y=\sqrt{x+\sin x}$ at which the tangent is parallel to x -axis lie on parabola.

- Watch Video Solution

41. The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of $3 \mathrm{~cm} / \mathrm{s}$. How fast is the area decreasing when the two equal sides are equal to the base?

- Watch Video Solution

42. A lamp is $50 f t$. above the ground. A ball is dropped from the same height from a point 30 ft . away from the light pole. If ball falls a distance $s=16 t^{2} f t$. in t second, then how fast is the shadow of the ball moving along the ground $\frac{1}{2} s$ later?

- Watch Video Solution

43. Find the possible values of p such that the equation $p x^{2}=(\log)_{e} x$ has exactly one solution.

- Watch Video Solution

44. Find the angle between the curves $2 y^{2}=x^{3} a n d y^{2}=32 x$.

- Watch Video Solution

45. Find the locus of point on the curve $y^{2}=4 a\left(x+a s \in \frac{x}{a}\right)$ where tangents are parallel to the axis of x.

- Watch Video Solution

46. Find the values of a if equation $1-\cos x=\frac{\sqrt{3}}{2}|x|+a, x \in(0, \pi)$, has exactly one solution.
47. Find the angle at which the curve $y=K e^{K x}$ intersects the y -axis.

- Watch Video Solution

48. Find the angle of intersection of the curves $x y=a^{2} a n d x^{2}+y^{2}=2 a^{2}$

- Watch Video Solution

49. Find the angle between the curves $x^{2}-\frac{y^{2}}{3}=a^{2} a n d C_{2}: x y^{3}=c$

- Watch Video Solution

50. If the curves $a y+x^{2}=7 a n d x^{3}=y$ cut orthogonally at $(1,1)$, then find the value a.

- Watch Video Solution

51. Find the point on the curve $3 x^{2}-4 y^{2}=72$ which is nearest to the line $3 x+2 y+1=0$.

- Watch Video Solution

52. Find the shortest distance between the line $y=x-2$ and the parabola $y=x^{2}+3 x+2$.

- Watch Video Solution

53. If $1^{0}=\alpha$ radians, then find the approximate value of $\cos 60^{\circ} 1^{\prime}$.

- Watch Video Solution

54. If in a triangle $A B C$, the side c and the angle C remain constant, while the remaining elements are changed slightly, show that $\frac{d a}{\cos A}+\frac{d b}{\cos B}=0$.
55. Find the approximate value of $(0.0037)^{\frac{1}{2}}$.

- Watch Video Solution

56. Find the approximate value of $(26)^{\frac{1}{3}}$.

- Watch Video Solution

57. Find the approximate change in the volume V of a cube of side x meters caused by increasing side by 1%.

- Watch Video Solution

58. Find the approximate value of $f(5.001)$, where

$$
f(x)=x^{3}-7 x^{2}+15
$$

59. In an acute triangle $A B C$ if sides a, b are constants and the base angles AandB vary, then show that
$\frac{d A}{\sqrt{a^{2}-b^{2} \sin ^{2} A}}=\frac{d B}{\sqrt{b^{2}-a^{2} \sin ^{2} B}}$

- Watch Video Solution

60. Find the approximate value of $f(3.02)$, where $f(x)=3 x^{2}+5 x+3$.

- Watch Video Solution

61. If the radius of a sphere is measured as 9 cm with an error of 0.03 cm , then find the approximate error in calculating its volume.

- Watch Video Solution

62. Find the approximate value of $(1.999)^{6}$.

- Watch Video Solution

63. Let f be differentiable for all x, If $f(1)=-2 a n d f^{\prime}(x) \geq 2$ for all $x \in[1,6]$, then find the range of values of $f(6)$.

- Watch Video Solution

64. Let $f:[2,7] \overrightarrow{0, \infty}$ be a continuous and differentiable function. Then show that $(f(7)-f(2)) \frac{(f(7))^{2}+(f(2))^{2}+f(2) f(7)}{3}=5 f^{2}(c) f^{\prime}(c)$, where $c \in[2,7]$.

- Watch Video Solution

65. Let $f(x) \operatorname{andg}(x)$ be differentiable functions such that $f^{\prime}(x) g(x) \neq f(x) g^{\prime}(x)$ for any real x. Show that between any two real
solution of $f(x)=0$, there is at least one real solution of $g(x)=0$.

- Watch Video Solution

66. Consider the function $f(x)=8 x^{2}-7 x+5$ on the interval $[-6,6]$.

Find the value of c that satisfies the conclusion of Lagranges mean value theorem.

- Watch Video Solution

67. Using mean value theorem, show that $\frac{\beta-\alpha}{1+\beta^{2}}<\tan ^{-1} \beta-\tan ^{-1} \alpha<(\beta-\alpha)\left(1+\alpha^{2}\right), \beta>\alpha>0$.

- Watch Video Solution

68. Let $f(x) \operatorname{andg}(x)$ be two differentiable functions in $\operatorname{Randf}(2)=8, g(2)=0, f(4)=10, \operatorname{andg}(4)=8$. Then prove that $g^{\prime}(x)=4 f^{\prime}(x)$ for at least one $x \in(2,4)$.
69. Using Lagranges mean value theorem, prove that $|\cos a-\cos b| \leq|a-b|$.

- Watch Video Solution

70. Let $f(x) \operatorname{and} g(x)$ be differentiable function in (a, b), continuous at aandb, $\operatorname{andg}(x) \neq 0 \quad$ in $\quad[a, b]$. Then prove that $\frac{g(a) f(b)-f(a) g(b)}{g(c) f^{\prime}(c)-f(c) g^{\prime}(c)}=\frac{(b-a) g(a) g(b)}{(g(c))^{2}}$

- Watch Video Solution

71. Suppose α, β andth η are angles satisfying ` 0

- Watch Video Solution

72. Let f be continuous on $[a, b], a>0$, and differentiable on (a, b). Prove that there exists $c \in(a, b)$ such that $\frac{b f(a)-a f(b)}{b-a}=f(c)-c f^{\prime}(c)$

- Watch Video Solution

73. Two men PandQ start with velocity u at the same time from the junction of two roads inclined at 45^{0} to each other. If they travel by different roads, find the rate at which they are being separated.

- Watch Video Solution

74. $x a n d y$ are the sides of two squares such that $y=x-x^{2}$. Find the rate of the change of the area of the second square with respect to the first square.

- Watch Video Solution

75. A spherical iron ball 10 cm in radius is coated with a layer of ice of uniform thickness that melts at a rate of $50 \mathrm{~cm}^{3} / \mathrm{m} \in$. When the thickness of ice is 5 cm , then find the rate at which the thickness of ice decreases.

- Watch Video Solution

76. Two cyclists start from the junction of two perpendicular roads, there velocities being $3 u m / m \in$ and $4 u m / m \in$, respectively. Find the rate at which the two cyclists separate.

- Watch Video Solution

77. Tangent of an angle increases four times as the angle itself. At what rate the sine of the angle increases w.r.t. the angle?

- Watch Video Solution

78. The distance covered by a particle moving in a straight line from a fixed point on the line is s, where $s^{2}=a t^{2}+2 b t+$. Then prove that acceleration is proportional to s^{-3}.

- Watch Video Solution

79. A horse runs along a circle with a speed of $20 \mathrm{~km} / \mathrm{h}$. A lantern is at the centre of the circle. A fence is along the tangent to the circle at the point at which the horse starts. Find the speed with which the shadow of the horse moves along the fence at the moment when it covers $1 / 8$ of the circle in km / h.

- Watch Video Solution

80. Let x be the length of one of the equal sides of an isosceles triangle, and let θ be the angle between them. If x is increasing at the rate ($1 / 12$) m / h, and θ is increasing at the rate of $\frac{\pi}{180}$ radius $/ \mathrm{h}$, then find the rate in
m^{3} / h at which the area of the triangle is increasing when $x=12$ mandth $\eta=\pi / 4$.

- Watch Video Solution

81. If water is poured into an inverted hollow cone whose semi-vertical angel is 30°, show that its depth (measured along the axis) increases at the rate of $1 \mathrm{~cm} / \mathrm{s}$. Find the rate at which the volume of water increases when the depth is 24 cm .

- Watch Video Solution

82. If $f:[-5,5] \rightarrow R$ is differentiable function and $\operatorname{if} f^{\prime}(x)$ does not vanish anywhere, then prove that $f(-5) \neq f(5)$.

- Watch Video Solution

83. Discuss the applicability of Rolles theorem for the following functions on the indicated intervals: $f(x)=|x| \in[-1,1] f(x)=3+(x-2)^{2 / 3}$ in $[1,3] f(x)=\tan \xi n[0, \pi] f(x)=\log \left\{\frac{x^{2}+a b}{x(a+b)}\right\}$ in $\left.\mathfrak{[a}, \mathbf{b}\right]$, where-

- Watch Video Solution

84. How many roots of the equation
$(x-1)(x-2)(x-3)+(x-1)(x-2)(x-4)+(x-2)(x-3)(x-4)$ are positive?

- Watch Video Solution

85. If the function $f(x)=x^{3}-6 x^{2}+a x+b$ defined on [1,3] satisfies Rolles theorem for $c=\frac{2 \sqrt{3}+1}{\sqrt{3}}$ then find the value of $a a n d b$

- Watch Video Solution

86. If $\varphi(x)$ is differentiable function $\forall x \in R$ and $a \in R^{+}$such that $\varphi(0)=\varphi(2 a), \varphi(a)=\varphi(3 a) \operatorname{and} \varphi(0) \neq \varphi(a)$ then show that there is at least one root of equation $\varphi^{\prime}(x+a)=\varphi^{\prime}(x) \in(0,2 a)$

- Watch Video Solution

87. Let $f(x)$ be differentiable function and $g(x)$ be twice differentiable function. Zeros of $f(x), g^{\prime}(x)$ be a, b, respectively, (\mathbf{a}

- Watch Video Solution

88. Show that between any two roots of $e^{-x}-\cos x=0$, there exists at least one root of $\sin x-e^{-x}=0$

- Watch Video Solution

89. If $2 a+3 b+6 c=0$, then prove that at least one root of the equation $a x^{2}+b x+c=0$ lies in the interval (0,1).

- Watch Video Solution

90. If the equation $a x^{2}+b x+c=0$ has two positive and real roots, then prove that the equation $a x^{2}+(b+6 a) x+(c+3 b)=0$ has at least one positive real root.

- Watch Video Solution

91. Let $P(x)$ be a polynomial with real coefficients, Let \mathfrak{a}, \mathbf{b} in \mathbf{R}, \mathbf{a}

Watch Video Solution

92. If the curve $y=a x^{2}-6 x+b$ pass through $(0,2)$ and has its tangent parallel to the x -axis at $x=\frac{3}{2}$, then find the values of $a a n d b$.
93. Find the equation of the tangent to the curve $\left(1+x^{2}\right) y=2-x$, where it crosses the x -axis.

- Watch Video Solution

94. A curve is given by the equations $x=\sec ^{2} \theta, y=\cot \theta$. If the tangent at Pwhere $\theta=\frac{\pi}{4}$ meets the curve again at Q, then $[P Q]$ is, where [.] represents the greatest integer function, \qquad .

- Watch Video Solution

95. Find the point on the curve where tangents to the curve $y^{2}-2 x^{3}-4 y+8=0$ pass through (1,2).

- Watch Video Solution

96. At the point $P\left(a, a^{n}\right)$ on the graph of $y=x^{n},(n \in N)$, in the first quadrant, a normal is drawn. The normal intersects the $y-a \xi s$ at the point $(0, b)$. If $(\lim)_{a \overrightarrow{0}}=\frac{1}{2}$, then n equals \qquad .

- Watch Video Solution

97. Find the equation of the normal to the curve $x^{3}+y^{3}=8 x y$ at the point where it meets the curve $y^{2}=4 x$ other than the origin.

- Watch Video Solution

98. If the slope of line through the origin which is tangent to the curve $y=x^{3}+x+16$ is m, then the value of $m-4$ is \qquad .

- Watch Video Solution

99. For the curve $x y=c$, prove that the portion of the tangent intercepted between the coordinate axes is bisected at the point of

- Watch Video Solution

100. Water is dropped at the rate of $2 \mathrm{~m}^{3} / \mathrm{s}$ into a cone of semi-vertical angle is 45°. If the rate at which periphery of water surface changes when the height of the water in the cone is 2 m is d . Then the value of 5 d is $\ldots \mathrm{m} / \mathrm{sec}$

- Watch Video Solution

101. Find the equation of all possible normals to the parabola $x^{2}=4 y$ drawn from the point $(1,2)$.

- Watch Video Solution

102. Suppose a, b, c are such that the curve $y=a x^{2}+b x+c$ is tangent to $y=3 x-3 a t(1,0)$ and is also tangent to $y=x+1 a t(3,4)$. Then the
value of $(2 a-b-4 c)$ equals

- Watch Video Solution

103. Show that the tangent to the curve $3 x y^{2}-2 x^{2} y=1 a t(1,1)$ meets the curve again at the point $\left(-\frac{16}{5},-\frac{1}{20}\right)$.

- Watch Video Solution

104. Let $y=f(x)$ be drawn with $f(0)=2$ and for each real number a the line tangent to $y=f(x)$ at $(a, f(a))$ has x -intercept $(a-2)$. If $f(x)$ is of the form of $k e^{p x}$ then $\frac{k}{p}$ has the value equal to

- Watch Video Solution

105. Find the normal to the curve $x=a(1+\cos \theta), y=a \sin \theta a \mathrm{~h} \eta$. Prove that it always passes through a fixed point and find that fixed point.
106. If the curve C in the $x y$ plane has the equation $x^{2}+x y+y^{2}=1$, then the fourth power of the greatest distance of a point on C from the origin is \qquad .

- Watch Video Solution

107. Show that the straight line $x \cos \alpha+y \sin \alpha=p$ touches the curve $x y=a^{2}$, if $p^{2}=4 a^{2} \cos \alpha \sin \alpha$.

- Watch Video Solution

108. Let C be a curve defined by $y=e^{a}+b x^{2}$. The curve C passes through the point $P(1,1)$ and the slope of the tangent at P is (-2). Then the value of $2 a-3 b$ is \qquad .
109. If the line $x \cos \theta+y \sin \theta=P$ is the normal to the curve $(x+a) y=1, \quad$ then show
$\theta \in\left(2 n \pi+\frac{\pi}{2},(2 n+1) \pi\right) \cup\left(2 n \pi+\frac{3 \pi}{2},(2 n+2) \pi\right), n \in Z$

- Watch Video Solution

110. Let f defined on $[0,1]$ be twice differentiable such that $|f(x)| \leq 1$ for $x \in[0,1]$. if $f(0)=f(1)$ then show that $\mid f^{\prime}(x)<1$ for all $x \in[0,1]$.

- Watch Video Solution

111. If the tangent at any point $\left(4 m^{2}, 8 m^{2}\right)$ of $x^{3}-y^{2}=0$ is a normal to the curve $x^{3}-y^{2}=0$, then find the value of m.

- Watch Video Solution

112. If a, b are two real numbers with $a<b$, then a real number c can be found between a and b such that the value of $\frac{a^{2}+a b+b^{2}}{c^{2}} i s_{---}$

- Watch Video Solution

113. For the curve $y=4 x^{3}-2 x^{5}$, find all the points at which the tangent passes through the origin.

- Watch Video Solution

114. Find the total number of parallel tangents of $f_{1}(x)=x^{2}-x+1 \operatorname{and} f_{2}(x)=x^{3}-x^{2}-2 x+1$.

- Watch Video Solution

115. Find the equation of the normal to the curve $y=\left|x^{2}-|x|\right|$ atx $=-2$.

- Watch Video Solution

116. There is a point (\mathbf{p}, \mathbf{q}) on the graph of $f(x)=x^{2}$ and a point (r, s) on the graph of $g(x)=\frac{-8}{x}$, wherep $>0 a n d r>0$. If the line through $(p, q) \operatorname{and}(r, s)$ is also tangent to both the curves at these points, respectively, then the value of $P+r$ is \qquad .

- Watch Video Solution

117. Prove that the tangent drawn at any point to the curve $f(x)=x^{5}+3 x^{3}+4 x+8$ would make an acute angle with the x -axis.

- Watch Video Solution

118. A curve is defined parametrically be equations $x=t^{2} a n d y=t^{3}$. A variable pair of perpendicular lines through the origin O meet the curve of PandQ. If the locus of the point of intersection of the tangents at PandQ is $a y^{2}=b x-1$, then the value of $(a+b)$ is \qquad
119. Find the equation of the tangent to the curvey $=\left\{x^{2} \frac{\sin 1}{x}, x \neq 00, x=0 a\right.$ he or $i g \in$

(Watch Video Solution

120. Statement 1: If $f(x)$ is differentiable in $[0,1]$ such that $f(0)=f(1)=0$, then for any $\lambda \in R$, there exists c such that $f^{\prime}(\mathbf{c})$ $=\lambda \mathbf{f}(\mathbf{c}), 0<c<1$. statement 2: if $g(x)$ is differentiable in [0,1], where $g(0)=g(1)$, then there exists c such that $g^{\prime}(\mathbf{c})=\mathbf{0}$,

- Watch Video Solution

121. Find the equation of tangent to the curve $y=\frac{\sin ^{-1}(2 x)}{1+x^{2}} a t x=\sqrt{3}$

- Watch Video Solution

122. Statement 1: For the function $f(x)=x^{2}+3 x+2, L M V T$ is applicable in $[1,2]$ and the value of c is $3 / 2$. Statement 2 : If LMVT is known to be applicable for any quadratic polynomial in $[a, b]$, then c of $L M V T$ is $\frac{a+b}{2}$.

- Watch Video Solution

123. Find the equations of the normal to the curve $y=x^{3}+2 x+6$ which are parallel to the line $x+14 y+4=0$.

- Watch Video Solution

124. Let $y=f(x)$ be a polynomial of odd degree (≥ 3) with real coefficients and (a, b) be any point. Statement 1: There always exists a line passing through (a, b) and touching the curve $y=f(x)$ at some point. Statement 2: A polynomial of odd degree with real coefficients has at least one real root.
125. Find the equation of tangent and normal to the curve $x=\frac{2 a t^{2}}{\left(1+t^{2}\right)}, y=\frac{2 a t^{3}}{\left(1+t^{2}\right)}$ at the point for which $t=\frac{1}{2}$.

(Watch Video Solution

126. If d is the minimum distance between the curves $f(x)=e^{x} \operatorname{andg}(x)=(\log)_{e} x$, then the value of d^{6} is

- Watch Video Solution

127. Let $f(x 0$ be a non-constant thrice differentiable function defined on $(-\infty, \infty)$ such that $f(x)=f(6-x)$ and $f^{\prime}(0)=0=f^{\prime}(x)^{2}=f(5)$. If n is the minimum number of roots of $\left(f^{\prime}(x)^{2}+f^{\prime}(x) f^{x}=0\right.$ in the interval $[0,6]$, then the value of $\frac{n}{2}$ is
128. Points on the curve $f(x)=\frac{x}{1-x^{2}}$ where the tangent is inclined at an angle of $\frac{\pi}{4}$ to the \mathbf{x}-axis are $(0,0)(b)\left(\sqrt{3},-\frac{\sqrt{3}}{2}\right)\left(-2, \frac{2}{3}\right)$ $\left(-\sqrt{3}, \frac{\sqrt{3}}{2}\right)$

(Watch Video Solution

129. In the curve $y=c e^{\frac{x}{a}}$, the sub-tangent is constant sub-normal varies as the square of the ordinate tangent at $\left(x_{1}, y_{1}\right)$ on the curve intersects the \mathbf{x}-axis at a distance of $\left(x_{1}-a\right)$ from the origin equation of the normal at the point where the curve cuts $y-a \xi s$ is $c y+a x=c^{2}$

- Watch Video Solution

130. Let $f^{\prime}(x)=e^{x \wedge} 2$ and $f(0)=10$. If A

- Watch Video Solution

131. If f is a continuous function on $[0,1]$, differentiable in $(0,1)$ such that $f(1)=0, \quad$ then there exists some $c \in(0,1)$ such that $c f^{\prime}(c)-f(c)=0 \quad c f^{\prime}(c)+c f(c)=0 \quad f^{\prime}(c)-c f(c)=0$ $c f^{\prime}(c)+f(c)=0$

- Watch Video Solution

132. Given $g(x)=\frac{x+2}{x-1}$ and the line $3 x+y-10=0$. Then the line is tangent to $g(x)$ (b) normal to $g(x)$ chord of $g(x)$ (d) none of these

- Watch Video Solution

133. Let f be a continuous, differentiable, and bijective function. If the tangent to $y=f(x) a t x=a$ is also the normal to $y=f(x) a t x=b$, then there exists at least one $c \in(a, b)$ such that $f^{\prime}(c)=0$
$f^{\prime}(c)>0 f^{\prime}(c)<0$ (d) none of these
134. If $f(x) \operatorname{andg}(x)$ are differentiable functions for $0 \leq x \leq 1$ such that $f(0)=10, g(0)=2, f(1)=2, g(1)=4$, then in the interval $(0,1)$. $f^{\prime}(x)=0 f$ or allx $\quad f^{\prime}(x)+4 g^{\prime}(x)=0 \quad$ for at least one x $f(x)=2 g^{\prime}(x)$ for at most one x none of these

(D) Watch Video Solution

135. A continuous and differentiable function $y=f(x)$ is such that its graph cuts line $y=m x+c$ at n distinct points. Then the minimum number of points at which $f^{x}=0$ is/are $n-1$ (b) $n-3 n-2$ (d) cannot say

(Watch Video Solution

136. If $f(x)$ is continuous in $[a, b]$ and differentiable in ($a, b)$, then prove that there exists at least one $c \in(a, b)$ such that $\frac{f^{\prime}(c)}{3 c^{2}}=\frac{f(b)-f(a)}{b^{3}-a^{3}}$
137. The radius of the base of a cone is increasing at the rate of $3 \mathrm{~cm} / \mathrm{min}$ and the altitude is decreasing at the rate of $4 \mathrm{~cm} / \mathrm{min}$. The rate of change of lateral surface when the radius is 7 cm and altitude is 24 cm is (a) $108 \pi \mathrm{~cm}^{2} / \min$ (b) $54 \pi \mathrm{~cm}^{2} / \mathrm{min}$ (c) $27 \pi \mathrm{~cm}^{2} / \mathrm{min}$ (d) none of these

- Watch Video Solution

138. Let $f(x) \operatorname{andg}(x)$ be differentiable for $0 \leq x \leq 1$, such that $f(0)=0, g(0)=0, f(1)=6$. Let there exists real number c in (0,1) such taht $f^{\prime}(c)=2 g^{\prime}(c)$. Then the value of $g(1)$ must be $\mathbf{1}$ (b) $\mathbf{3}$ (c) -2 (d) -1

- Watch Video Solution

139. If $3(a+2 c)=4(b+3 d)$, then the equation
$a x^{3}+b x^{2}+c x+d=0$ will have no real solution at least one real root in $(-1,0)$ at least one real root in $(0,1)$ none of these
140. If $f(x)=x^{3}+7 x-1$, then $f(x)$ has a zero between $x=0 a n d x=1$. The theorem that best describes this is a. mean value theorem b. maximum-minimum value theorem c. intermediate value theorem none of these

- Watch Video Solution

141. Consider the function $f(x)=\left\{x \frac{\sin \pi}{x}, f\right.$ or $x>00, f$ or $x=0$ The, the number of point in $(0,1)$ where the derivative $f^{\prime}(x)$ vanishes is 0 (b) 1 (c) 2 (d) infinite

- Watch Video Solution

142. Let $f(x)$ be a twice differentiable function for all real values of x and satisfies $f(1)=1, f(2)=4, f(3)=9$. Then which of the following is definitely true? (a). $f^{\prime \prime}(x)=2 \forall x$ in (1,3) (b) $f^{\prime \prime}(x)=5$ for some \mathbf{x} in $(2,3)$ (c) $f^{\prime \prime}(x)=3 \forall x$ in (2,3) (d) $f^{\prime \prime}(x)=2$ for some x in $(1,3)$
143. The value of c in Lagranges theorem for the function $f(x)=\log \sin x$ in the interval $\left[\frac{\pi}{6}, \frac{5 \pi}{6}\right]$ is $\frac{\pi}{4}$ (b) $\frac{\pi}{2} \frac{2 \pi}{3}$ (d) none of these

- Watch Video Solution

144. If the function $f(x)=a x^{3}+b x^{2}+11 x-6$ satisfies conditions of Rolles theorem in $[1,3]$ and $f^{\prime}\left(2+\frac{1}{\sqrt{3}}\right)=0$, then values of a and b , respectively, are
(A) $-3,2$
(B) $2,-4$
(C) $1,-6$
(D) none of these

Watch Video Solution

145. A value of C for which the conclusion of Mean Value Theorem holds for the function $f(x)=(\log)_{e} x$ on the interval $[1,3]$ is (1) $2(\log)_{3} e$ (2) $\frac{1}{2}(\log)_{e} 3(3)(\log)_{3} e(4)(\log)_{e} 3$

- Watch Video Solution

146. Each question has four choices, a, b, c and d, out of which only one is correct. Each question contains STATEMENT 1 and STATEMENT 2. If both the statement are TRUE and STATEMENT 2 is the correct explanation of STATEMENT 1. If both the statements are TRUE but STATEMENT 2 is NOT the correct explanation of STATEMENT 1. If STATEMENT 1 is TRUE and STATEMENT 2 is FLASE. If STATEMENT 1 is FALSE and STATEMENT 2 is TURE.

Statement 1: Lagrange mean value theorem is not applicable to $f(x)=|x-1|(x-1)$ Statement 2: $|x-1|$ is not differentiable at $x=1$.

- Watch Video Solution

147. The abscissa of the point on the curve $\sqrt{x y}=a+x$ the tangent at which cuts off equal intercepts from the coordinate axes is $-\frac{a}{\sqrt{2}}$ $a / \sqrt{2}$ (c) $-a \sqrt{2}$ (d) $a \sqrt{2}$

- Watch Video Solution

148. In which of the following functions is Rolles theorem applicable?
(a) $f(x)=\{x, 0 \leq x<10, x=1$ on $[0,1]$
(b) $f(x)=\left\{\frac{\sin x}{x},-\pi \leq x<00, x=0 o n[-\pi, 0)\right.$
(c) $f(x)=\frac{x^{2}-x-6}{x-1}$ on $[-2,3]$
(d) $f(x)=\left\{\frac{x^{3}-2 x^{2}-5 x+6}{x-1}\right.$ if $x \neq 1,-6$ if $x=1$ on $[-2,3]$

(Watch Video Solution

149. A point on the parabola $y^{2}=18 x$ at which the ordinate increases at twice the rate of the abscissa is $(\mathrm{a})(2,6)(\mathrm{b})(2,-6)$ (c) $\left(\frac{9}{8},-\frac{9}{2}\right)$ $\left(\frac{9}{8}, \frac{9}{2}\right)$
150. Statement 1: If $g(x)$ is a differentiable function, $g(2) \neq 0, g(-2) \neq 0, \quad$ and Rolles theorem is not applicable to $f(x)=\frac{x^{2}-4}{g(x)} \in[-2,2]$, theng (x) has at least one root in $(-2,2)$. Statement 2: If $f(a)=f(b)$, theng (x) has at least one root in $(-2,2)$. Statement 2: If $f(a)=f(b)$, then Rolles theorem is applicable for $x \in(a, b)$.

- Watch Video Solution

151. Statement 1: The maximum value of $\left(\sqrt{-3+4 x-x^{2}}+4\right)^{2}+(x-5)^{2}($ where $1 \leq x \leq 3) i s 36$. Statement

2: The maximum distance between the point $(5,-4)$ and the point on the circle $(x-2)^{2}+y^{2}=1$ is 6

- Watch Video Solution

152. Statement 1: If both functions $f(t) \operatorname{and} g(t)$ are continuous on the closed interval $[1, \mathbf{b}]$, differentiable on the open interval (\mathbf{a}, \mathbf{b}) and $g^{\prime}(t)$ is not zero on that open interval, then there exists some c in (a, b) such that $\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$ Statement 2: If $f(t) \operatorname{and} g(t)$ are continuou and differentiable in [a, b], then there exists some c in (\mathbf{a}, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \operatorname{andg}^{\prime}(c) \frac{g(b)-g(a)}{b-a}$ from Lagranes mean value theorem.

- Watch Video Solution

153. Statement 1: If $27 a+9 b+3 c+d=0$, then the equation $f(x)=4 a x^{3}+3 b x^{2}+2 c x+d=0$ has at least one real root lying between $(0,3)$. Statement 2: If $f(x)$ is continuous in [a,b], derivable in (a, b) such that $f(a)=f(b)$, then there exists at least one point $c \in(a, b)$ such that $f^{\prime}(c)=0$.

- Watch Video Solution

154. Find the angle of intersection of curves $y=[|\sin x|+|\cos x|]$ and $x^{2}+y^{2}=5$, where [.] denotes the greatest integral function.

- Watch Video Solution

155. Show the condition that the curves $a x^{2}+b y^{2}=1$ and $a^{\prime} x^{2}+b^{\prime} y^{2}=1$ should intersect orthogonally is $\frac{1}{a}-\frac{1}{b}=\frac{1}{a^{\prime}}-\frac{a}{b^{\prime}}$.

- Watch Video Solution

156. If the area of the triangle included between the axes and any tangent to the curve $x^{n} y=a^{n}$ is constant, then find the value of n.

- Watch Video Solution

157. If the tangent at $\left(x_{1}, y_{1}\right)$ to the curve $x^{3}+y^{3}=a^{3}$ meets the curve again in $\left(x_{2}, y_{2}\right)$, then prove that $\frac{x_{2}}{x_{1}}+\frac{y_{2}}{y_{1}}=-1$

- Watch Video Solution

158. Show that the segment of the tangent to the curve $y=\frac{a}{2} \operatorname{In}\left(\frac{a+\sqrt{a^{2}-x^{2}}}{a-\sqrt{a^{2}-x^{2}}}\right)-\sqrt{a^{2}-x^{2}}$ contained between the $\mathrm{y}=\mathrm{axis}$ and the point of tangency has a constant length.

- Watch Video Solution

159. Prove that the equation of the normal to $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ is $y \cos \theta-x \sin \theta=a \cos 2 \theta$, where θ is the angle which the normal makes with the axis of x.

- Watch Video Solution

160.	Prove that	the	curves
$y=f(x),[f(x)>0]$, and $y=f(x) \sin x$, where $f(x)$	is differentiable		

161. Tangents are drawn from the origin to curve $y=\sin x$. Prove that points of contact lie on $y^{2}=\frac{x^{2}}{1+x^{2}}$

- Watch Video Solution

162. Given $f(x)=4-\left(\frac{1}{2}-x\right)^{\frac{2}{3}}, g(x)=\left\{\frac{\tan [x]}{x}, x \neq 01, x=0\right.$ $h(x)=\{x\}, k(x)=5^{(\log)_{2}(x+3)}$ Then in [0,1], lagranges mean value theorem is not applicable to (where [.] and \{.\} represents the greatest integer functions and fractional part functions, respectively). f (b) g (c) k (d) h

- Watch Video Solution

163. Show that the angle between the tangent at any point P and the line joining P to the origin O is same at all points on the curve $\log \left(x^{2}+y^{2}\right)=k \tan ^{-1}\left(\frac{y}{x}\right)$

(D) Watch Video Solution

164. The angle between the tangents to the curves

$$
\begin{align*}
& y=x^{2} a n d x=y^{2} a t(1,1) \text { is } \cos ^{-1}\left(\frac{4}{5}\right) \text { (b) } \sin ^{-1}\left(\frac{3}{5}\right) \tan ^{-1}\left(\frac{3}{4}\right) \tag{d}\\
& \tan ^{-1}\left(\frac{1}{3}\right)
\end{align*}
$$

- Watch Video Solution

165. If the tangent at any point $\left(4 m^{2}, 8 m^{2}\right)$ of $x^{3}-y^{2}=0$ is a normal to the curve $x^{3}-y^{2}=0$, then find the value of m.

- Watch Video Solution

166. The angle formed by the positive $y-a \xi s$ and the tangent to $y=x^{2}+4 x-17 a t\left(\frac{5}{2},-\frac{3}{4}\right)$ is: (a) $\tan ^{-1}(9)$ (b) $\frac{\pi}{2}-\tan ^{-1}(9)$
$\frac{\pi}{2}+\tan ^{-1}(9)$ (d) none of these
167. The abscissa of a point on the curve $x y=(a+x)^{2}$, the normal which cuts off numerically equal intercepts from the coordinate axes, is $-\frac{1}{\sqrt{2}}$ (b) $\sqrt{2} a$ (c) $\frac{a}{\sqrt{2}}$ (d) $-\sqrt{2} a$

- Watch Video Solution

168. The corrdinate of the points(s) on the graph of the function, $f(x)=\frac{x^{3}}{3}-\frac{5 x^{2}}{2}+7 x-4$ where the tangent drawn cuts offintercepts from the coordinate axes which are equal in magnitude but opposite is sign, is

Watch Video Solution

169. Which of the following pair(s) of curves is/are orthogonal? $y^{2}=4 a x ; y=e^{-\frac{x}{2 a}} y^{2}=4 a x ; x^{2}=4 a y a t(0,0) x y=a^{2} ; x^{2}-y^{2}=b^{2}$ $y=a x ; x^{2}+y^{2}=c^{2}$
170. Let the parabolas $y=x(c-x) a n d y=x^{2}+a x+b$ touch each other at the point (1,0). Then $a+b+c=0 a+b=2 b-c=1$
$a+c=-2$

- Watch Video Solution

171. Let $f(x)=a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x$, where $a_{i}{ }^{\prime} s$ are real and $f(x)=0$ has a positive root α_{0}. Then $f^{\prime}(x)=0$ has a positive root α_{1} such that ${ }^{\circ} 0$

- Watch Video Solution

172. If there is an error of $k \%$ in measuring the edge of a cube, then the percent error in estimating its volume is (a) k (b) $3 k$ (c) $\frac{k}{3}$ (d) none of these
173. The rate of change of the volume of a sphere w.r.t. its surface area, when the radius is $\mathbf{2 c m}$, is 1
(b) 2
(c) 3
(d) 4

- Watch Video Solution

174. A man is moving away from a tower 41.6 m high at the rate of 2 $\mathrm{m} / \mathrm{sec}$. Find the rate at which the angle of elevation of the top of tower is changing, when he is at a distance of 30 m from the foot of the tower. Assume that the eye level of the man is 1.6 m from the ground.

- Watch Video Solution

175. A lamp of negligible height is placed on the ground l_{1} away from a wall. A man $l_{2} m$ tall is walking at a speed of $\frac{l_{1}}{10} m / s$ from the lamp to the nearest point on the wall. When he is midway between the lamp and the wall, the rate of change in the length of this shadow on the wall is $-\frac{5 l_{2}}{2} m / s$ (b) $-\frac{2 l_{2}}{5} m / s-\frac{l_{2}}{2} m / s$ (d) $-\frac{l_{2}}{5} m / s$

- Watch Video Solution

176. At the point $P\left(a, a^{n}\right)$ on the graph of $y=x^{n},(n \in N)$, in the first quadrant, a normal is drawn. The normal intersects the $y-a \xi s$ at the point $(0, b)$. If $(\lim)_{a \rightarrow 0} b=\frac{1}{2}$, then n equals $\mathbf{1}$ (b) $\mathbf{3}$ (c) $\mathbf{2}$ (d) 4

- Watch Video Solution

177. The coordinates of a point on the parabola $y^{2}=8 x$ whose distance from the circle $x^{2}+(y+6)^{2}=1$ is minimum is $(\mathbf{a})(2,4)$ (b) $(2,-4)$ (c) $(18,-12)(d)(8,8)$

- Watch Video Solution

178. The radius of a right circular cylinder increases at the rate of 0.1 $\mathrm{cm} / \mathrm{min}$, and the height decreases at the rate of $0.2 \mathrm{~cm} / \mathrm{min}$. The rate of change of the volume of the cylinder, in $\mathrm{cm}^{2} / m \in$, when the radius is $2 c m$ and the height is 3 cm is $-2 p$ (b) $-\frac{8 \pi}{5}-\frac{3 \pi}{5}$ (d) $\frac{2 \pi}{5}$

(D) Watch Video Solution

179. Suppose that f is differentiable for all x and that $f^{\prime}(x) \leq 2 f$ or allx. If $f(1)=2 \operatorname{and} f(4)=8, \operatorname{then} f(2)$ has the value equal to $\mathbf{3}$ (b) 4 (c) 6 (d) 8

- Watch Video Solution

180. The tangent to the curve $y=e^{k x}$ at a point (0,1) meets the x -axis at (a,0), where $a \in[-2,-1]$. Then $k \in\left[-\frac{1}{2}, 0\right]$ (b) $\left[-1,-\frac{1}{2}\right]$ $[0,1]$ (d) $\left[\frac{1}{2}, 1\right]$

- Watch Video Solution

181. A cube of ice melts without changing its shape at the uniform rate of $4 \frac{\mathrm{~cm}^{3}}{\mathrm{~m} \in}$. The rate of change of the surface area of the cube, in $\frac{\mathrm{cm}^{2}}{\mathrm{~m} \epsilon}$,
when
$-\frac{8}{15}$

- Watch Video Solution

182. Using Rolles theorem, prove that there is at least one root in $\left(45^{\frac{1}{100}}, 46\right)$ of the equation.
$P(x)=51 x^{101}-2323(x)^{100}-45 x+1035=0$.

- Watch Video Solution

183. if $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq\left(x_{1}-x_{2}\right)^{2}$ Find the equation of gent to the curve $y=f(x)$ at the point (1,2).

- Watch Video Solution

184. If $f(x)$ is a twice differentiable function such that $f(a)=0, f(b)=2$, $\mathrm{f}(\mathrm{c})=-1, \mathrm{f}(\mathrm{d})=2, \mathrm{f}(\mathrm{e})=0$ where $\mathrm{a}<\mathrm{b}<\mathrm{c}<\mathrm{de} \mathrm{e}$ then the minimum number of
zeroes of $g(x)=f^{\prime}(x)^{2}+f^{\prime \prime}(x) f(x)$ in the interval $[\mathrm{a}, \mathrm{e}]$ is

- Watch Video Solution

185. A function $y-f(x)$ has a second-order derivative $f^{x}=6(x-1)$. It its graph passes through the point $(2,1)$ and at that point tangent to the graph is $y=3 x-5$, then the value of $f(0)$ is $\mathbf{1}$ (b) -1 (c) 2 (d) 0

- Watch Video Solution

186. If $x+4 y=14$ is a normal to the curve $y^{2}=\alpha x^{3}-\beta$ at $(2,3)$, then the value of $\alpha+\beta$ is 9 (b) -5 (c) 7 (d) -7

- Watch Video Solution

187. In the curve represented parametrically by the equations $x=2 \log \cot t+1$ and $y=\tan t+\cot t, \quad$ A. tangent and normal intersect at the point $(2,1)$ B. normal at $t=\frac{\pi}{4}$ is parallel to the y-axis. C.
tangent at $t=\frac{\pi}{4}$ is parallel to the line $y=x$ D. tangent at $t=\frac{\pi}{4}$ is parallel to the x-axis.

- Watch Video Solution

188. The abscissas of point $\operatorname{Pand} Q$ on the curve $y=e^{x}+e^{-x}$ such that tangents at PandQ make 60^{0} with the x -axis are.
$1 n\left(\frac{\sqrt{3}+\sqrt{7}}{7}\right) a n d 1 n\left(\frac{\sqrt{3}+\sqrt{5}}{2}\right) \quad \ln \left(\frac{\sqrt{3}+\sqrt{7}}{2}\right)$
$1 n\left(\frac{\sqrt{7}-\sqrt{3}}{2}\right) \pm 1 n\left(\frac{\sqrt{3}+\sqrt{7}}{2}\right)$

- Watch Video Solution

189. The normal to the curve $2 x^{2}+y^{2}=12$ at the point $(2,2)$ cuts the curve again at (A) $\left(-\frac{22}{9},-\frac{2}{9}\right)$ (B) $\left(\frac{22}{9}, \frac{2}{9}\right)$ (C) $(-2,-2)$ none of these

- Watch Video Solution

190. At what point of curve $y=\frac{2}{3} x^{3}+\frac{1}{2} x^{2}$, the tangent makes equal angle with the axis? $\left(\frac{1}{5}, \frac{5}{24}\right) \operatorname{and}\left(-1,-\frac{1}{6}\right)\left(\frac{1}{2}, \frac{4}{9}\right) \operatorname{and}(-1,0)$ $\left(\frac{1}{3}, \frac{1}{7}\right)$ and $\left(-3, \frac{1}{2}\right)\left(\frac{1}{3}, \frac{4}{47}\right) \operatorname{and}\left(-1,-\frac{1}{3}\right)$

- Watch Video Solution

191. The equation of the tangent to the curve $y=b e^{-x / a}$ at the point where it crosses the y-axis is $a) \frac{x}{a}-\frac{y}{b}=1 \quad$ (b) $a x+b y=1$ c) $a x-b y=1$ (d) $\frac{x}{a}+\frac{y}{b}=1$

- Watch Video Solution

192. Then angle of intersection of the normal at the point $\left(-\frac{5}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$ of the curves $x^{2}-y^{2}=8$ and $9 x^{2}+25 y^{2}=225$ is 0
(b) $\frac{\pi}{2}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{4}$

- Watch Video Solution

193. If a variable tangent to the curve $x^{2} y=c^{3}$ makes intercepts a, bonx - andy - axes, respectively, then the value of $a^{2} b$ is $27 c^{3}$
$\frac{4}{27} c^{3}$ (c) $\frac{27}{4} c^{3}$ (d) $\frac{4}{9} c^{3}$

- Watch Video Solution

194. Let C be the curve $y=x^{3}$ (where x takes all real values). The tangent at A meets the curve again at B. If the gradient at B is K times the gradient at A, then K is equal to $\mathbf{4}$ (b) 2 (c) -2 (d) $\frac{1}{4}$

- Watch Video Solution

195. If H is the number of horizontal tangents and V is the number of vertical tangents to the curve $y^{3}-3 x y+2=0$, then the value of ($H+V$) equals

- Watch Video Solution

196. Let $f(1)=-2 a n d f^{\prime}(x) \geq 4.2 f$ or $1 \leq x \leq 6$. The smallest possible value of $f(6)$ is 9 (b) 12 (c) 15 (d) 19

Watch Video Solution

197. The curves $4 x^{2}+9 y^{2}=72$ and $x^{2}-y^{2}=5 a t(3,2)$ touch each other (b) cut orthogonally intersect at 45^{0} (d) intersect at 60^{0}

- Watch Video Solution

198. If the length of sub-normal is equal to the length of sub-tangent at any point $(3,4)$ on the curve $y=f(x)$ and the tangent at $(3,4)$ to $y=f(x)$ meets the coordinate axes at $\operatorname{Aand} B$, then the maximum area of the triangle $O A B$, where O is origin, is $45 / 2$ (b) $49 / 2$ (c) $25 / 2$ (d) $81 / 2$

- Watch Video Solution

199. At any point on the curve $2 x^{2} y^{2}-x^{4}=c$, the mean proportional between the abscissa and the difference between the abscissa and the sub-normal drawn to the curve at the same point is equal to or $d \in$ ate (b) radius vector $x-\in$ tercep \rightarrow ftan $\geq n t$ (d) sub-tangent

- Watch Video Solution

200. The x-intercept of the tangent at any arbitrary point of the curve $\frac{a}{x^{2}}+\frac{b}{y^{2}}=1$ is proportional to square of the abscissa of the point of tangency square root of the abscissa of the point of tangency cube of the abscissa of the point of tangency cube root of the abscissa of the point of tangency

- Watch Video Solution

201. A curve is represented by the equations $x=\sec ^{2} \operatorname{tandy}=\cot t$, where t is a parameter. If the tangent at the point P on the curve where
$t=\frac{\pi}{4}$ meets the curve again at the point Q, then $|P Q|$ is equal to
$\frac{5 \sqrt{3}}{2}$
(b) $\frac{5 \sqrt{5}}{2}$
(c) $\frac{2 \sqrt{5}}{3}$ (d)
(d) $\frac{3 \sqrt{5}}{2}$

- Watch Video Solution

202. The two curves $x=y^{2}, x y=a^{3}$ cut orthogonally at a point. Then a^{2} is equal to $\frac{1}{3}$ (b) 3 (c) 2 (d) $\frac{1}{2}$

- Watch Video Solution

203. The line tangent to the curves $y^{3}-x^{2} y+5 y-2 x=0$ and $x^{2}-x^{3} y^{2}+5 x+2 y=0$ at the origin intersect at an angle θ equal to
$\frac{\pi}{6}$
(b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$

- Watch Video Solution

204. Tangent of acute angle between the curves $y=\left|x^{2}-1\right|$ and $y=\sqrt{7-x^{2}}$ at their points of intersection is $\frac{5 \sqrt{3}}{2}$ (b) $\frac{3 \sqrt{5}}{2} \frac{5 \sqrt{3}}{4}$

- Watch Video Solution

205. The number of point in the rectangle $\{(x, y)\}-12 \leq x \leq 12 a n d-3 \leq y \leq 3\}$ which lie on the curve $y=x+\sin x$ and at which in the tangent to the curve is parallel to the x-axis is $\mathbf{0}$ (b) $\mathbf{2}$ (c) $\mathbf{4}$ (d) 8

- Watch Video Solution

206. Statement 1: The tangent at $x=1$ to the curve $y=x^{3}-x^{2}-x+2$ again meets the curve at $x=0$. Statement 2:

When the equation of a tangent is solved with the given curve, repeated roots are obtained at point of tangency.

- Watch Video Solution

207. An aeroplane is flying horizontally at a height of $\frac{2}{3} \mathrm{~km}$ with a velocity of $15 \mathrm{~km} / \mathrm{h}$. Find the rate at which it is receding from a fixed point on the ground which it passed over 2 min ago.

- Watch Video Solution

208. Use the mean value theorem to prove $e^{x} \geq 1+x \forall x \in R$

- Watch Video Solution

209. Find the condition for the line $y=m x$ to cut at right angles the conic $a x^{2}+2 h x y+b y^{2}=1$.

- Watch Video Solution

210. Show that for the curve $b y^{2}=(x+a)^{3}$, the square of the subtangent varies as the sub-normal.
211. Let a, b, c be three real numbers such that 'a

- Watch Video Solution

212. Prove that the portion of the tangent to the curve $\frac{x+\sqrt{a^{2}-y^{2}}}{a}=(\log)_{e} \frac{a+\sqrt{a^{2}-y^{2}}}{y}$ intercepted between the point of contact and the x-axis is constant.

- Watch Video Solution

213. Let a, b, c be nonzero real numbers such that $\int_{0}^{1}\left(1+\cos ^{8} x\right)\left(a x^{2}+b x+c\right) d x$
$=\int_{0}^{2}\left(1+\cos ^{8} x\right)\left(a x^{2}+b x+c\right) d x=0$ Then show that the equation $a x^{2}+b x+c=0$ will have one root between 0 and 1 and other root between 1 and 2.
214. If f is continuous and differentiable function and $f(0)=1, f(1)=2$, then prove that there exists at least one $c \in[0,1] f$ or which $f^{\prime}(c)(f(c))^{n-1}>\sqrt{2^{n-1}}$, where $n \in N$.

Watch Video Solution

215. Sand is pouring from a pipe at the rate of $12 \mathrm{~cm}^{3} / \mathrm{s}$. The falling sand forms a cone on the ground in such a way that the height of the cone is always $1 / 6$ th of the radius of the base. How fast does the height of the sand cone increase when the height in $\mathbf{~ c m}$?

- Watch Video Solution

216. Let $\frac{a_{0}}{n+1}+\frac{a_{1}}{n}+\frac{a_{2}}{n-1}++\frac{a_{n-1}}{2}+a_{n}=0$. Show that there exists at least real x between 0 and 1 such that $a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}++a_{n}=0$
217. If the line $a x+b y+c=0$ is a normal to the curve $x y=1$, then $a>0, b>0 a>0, b<0 a\langle 0, b\rangle 0$ (d) $a<0, b<0$ none of these

- Watch Video Solution

218. Which one of the following curves cut the parabola at right angles?
$x^{2}+y^{2}=a^{2}$ (b) $y=e^{-x / 2 a} y=a x$ (d) $x^{2}=4 a y$

- Watch Video Solution

219. Let $f, g:[-1,2] \rightarrow \mathbb{R}$ be continuous functions which are twice differentiable on the interval $(-1,2)$. Let the values of f and g at the points -1, 0 and 2 be as given in the following table : $x=-1 x=0 x=2 f(x) 360 g(x) 01-1$ In each of the intervals ($-1,0$) and $(0,2)$ the function ($f-3 g$)" never vanishes. Then the correct statement(s) is(are)

Watch Video Solution

220. Which of the following is/are correct?
(A) Between any two roots of $e^{x} \cos x=1$, there exists at least one root of $\tan x=1$.
(B) Between any two roots of $e^{x} \sin x=1$, there exists at least one root of $\tan x=-1$.
(C) Between any two roots of $e^{x} \cos x=1$, there exists at least one root of $e^{x} \sin x=1$.
(D) Between any two roots of $e^{x} \sin x=1$, there exists at least one root of $e^{x} \cos x=1$.

- Watch Video Solution

221. Which of the following pairs(s) of curves is/are orthogonal? $y^{2}=4 a x ; y=e^{-\frac{x}{2 a}} \mathbf{y}^{\wedge} \mathbf{2}=\mathbf{4 a x} ; \mathbf{x}^{\wedge} \mathbf{2}=\mathbf{4 a y}$ at $(\mathbf{0}, \mathbf{0}) x y=a^{2} ; x^{2}-y^{2}=b^{2}$ $y=a x ; x^{2}+y^{2}=c^{2}$
222. Find the equation of tangents to the curve $y=\cos (x+y),-2 \pi \leq x \leq 2 \pi$ that are parallel to the line $x+2 y=0$.

- Watch Video Solution

223. Find the equation of the normal to the curve $y=(1+x)^{y}+\sin ^{-1}\left(\sin ^{2} x\right)$ at $\mathbf{x}=\mathbf{0}$.

- Watch Video Solution

224. Let fandg be differentiable on $[0,1]$ such that
$f(0)=2, g(0), f(1)=6 \operatorname{andg}(1)=2$. Show that there exists $c \in(0,1)$ such that $f^{\prime}(c)=2 g^{\prime}(c)$.

- Watch Video Solution

225. Find the shortest distance of the point ($0, \mathrm{c}$) from the parabola $y=x^{2}$, where $0 \leq c \leq 5$.

- Watch Video Solution

226. The distance between the origin and the tangent to the curve $y=e^{2 x}+x^{2}$ drawn at the point $x=0$ is

- Watch Video Solution

227.

$f(x)=\left\{-x^{2}, f\right.$ or $x<0 x^{2}+8, f$ or $x \geq 0$ then $x-\in$ terce $p \rightarrow$ fthe line, that is, the tangent to the graph of $f(x)$, is zero (b) -1 (c) -2 (d) -4

- Watch Video Solution

228. The curve $y=a x^{3}+b x^{2}+c x+5$ touches the \mathbf{x}-axis at $P(-2,0)$ and cuts the y -axis at the point Q where its gradient is 3 . Find the equation of the curve completely.

- Watch Video Solution

229. The slope of the tangent to the curve $y=\sqrt{4-x^{2}}$ at the point where the ordinate and the abscissa are equal is - 1 (b) 1 (c) 0 (d) none of these

- Watch Video Solution

230. If at each point of the curve $y=x^{3}-a x^{2}+x+1$, the tangent is inclined at an acute angle with the positive direction of the x-axis, then
$a>0$ (b) $a<-\sqrt{3}-\sqrt{3} \leq a \leq \sqrt{3}$ (d) noneofthese

- Watch Video Solution

231. If the line joining the points $(0,3) \operatorname{and}(5,-2)$ is a tangent to the curve $y=\frac{C}{x+1}$, then the value of c is 1 (b) -2 (c) 4 (d) none of these

- Watch Video Solution

232. The curve given by $x+y=e^{x y}$ has a tangent parallel to the $y-a \xi s$ at the point $(0,1)$ (b) $(1,0)(1,1)$ (d) none of these

- Watch Video Solution

233. The number of tangents to the curve $x^{\frac{3}{2}}+y^{\frac{3}{2}}=2 a^{\frac{3}{2}}, a>0$, which are equally inclined to the axes, is $\mathbf{2}$ (b) $\mathbf{1}$ (c) $\mathbf{0}$ (d) $\mathbf{4}$

- Watch Video Solution

234. Show that the square roots of two successive natural numbers greater than N^{2} differ by less than $\frac{1}{2 N}$.
235. If m is the slope of a tangent to the curve $e^{y}=1+x^{2}$, then $|m|>1$ (b) $m>1 m \succ 1$ (d) $|m| \leq 1$

- Watch Video Solution

236. The angle made by the tangent of the curve $x=a(t+\sin t \cos t), y=a(1+\sin t)^{2}$ with the x -axis at any point on it is (A) $\frac{1}{4}(\pi+2 t)$ (B) $\frac{1-\sin t}{\cos t}$ (C) $\frac{1}{4}(2 t-\pi)$ (D) $\frac{1+\sin t}{\cos 2 t}$

- Watch Video Solution

237. If $f(x)=\left\{\begin{array}{ll}x^{\alpha} \log x & x>0 \\ 0 & x=0\end{array}\right.$ and Rolle's theorem is applicable to $f(x)$ for $x \in[0,1]$ then α may equal to (A) -2 (B) -1 (C) 0 (D) $\frac{1}{2}$

- Watch Video Solution

238. In $[0,1]$ Lagranges Mean Value theorem in NOT applicable to $f(x)=\left\{\frac{1}{2}-x ; x<\frac{1}{2}\left(\frac{1}{2}-x\right)^{2} ; x \geq \frac{1}{2}\right.$
b.
$f(x)=\left\{\frac{\sin x}{x}, x \neq 01, x=0\right.$ c. $f(x)=x|x|$ d. $f(x)=|x|$

- Watch Video Solution

239. The point(s) on the curve $y^{3}+3 x^{2}=12 y$ where the tangent is vertical, is(are) ?? $\left(\pm \frac{4}{\sqrt{3}},-2\right)$ (b) $\left(\pm \sqrt{\frac{11}{3}}, 1\right)(0,0)$ (d) $\left(\pm \frac{4}{\sqrt{3}}, 2\right)$

- Watch Video Solution

240. The triangle formed by the tangent to the curve $f(x)=x^{2}+b x-b$ at the point $(1,1)$ and the coordinate axes, lies in the first quadrant. If its area is 2 , then the value of b is (a) -1 (b) 3 (c) -3 (d) 1
241. If the normal to the curve $y=f(x)$ at the point $(3,4)$ makes an angle $\frac{3 \pi}{4}$ with the positive x-axis, then $f^{\prime}(3)=$ (a) -1 (b) $-\frac{3}{4}$ (c) $\frac{4}{3}$ (d) 1

- Watch Video Solution

242. The slope of the tangent to a curve $y=f(x)$ at $(x, f(x))$ is $2 x+1$. If the curve passes through the point $(1,2)$ then the area of the region bounded by the curve, the x -axis and the line $x=1$ is (A) $\frac{5}{6}$ (B) $\frac{6}{5}$ (C) $\frac{1}{6}$ (D) 1

- Watch Video Solution

243. Show that the normal at any point θ to the curve $x=a \cos \theta+a \theta \sin \theta, y=a \sin \theta-a \theta \cos \theta$ is at a constant distance from the origin.
244. If $a, b, c \in R$ and $a+b+c=0$, then the quadratic equation $3 a x^{2}+2 b x+c=0$ has (a) at least one root in $[0,1]$ (b) at least one root in $[1,2]$ (c) at least one root in $\left[\frac{3}{2}, 2\right]$ (d) none of these

- Watch Video Solution

245. The tangent to the curve $y=e^{x}$ drawn at the point $\left(c, e^{c}\right)$ intersects the line joining $\left(c-1, e^{c-1}\right)$ and $\left(c+1, e^{c+1}\right)$ (a) on the left of $n=c$
(b) on the right of $n=c$ (c) at no points (d) at all points

- Watch Video Solution

246. Let S denote the set of all polynomials $P(x)$ of degree ≤ 2 such that $P(1)=1, P(0)=0$ and $P^{\prime}(x)>0 \forall x \in[0,1]$, then $S=\varphi$ b. `S= $\left\{(1-a) x^{\wedge} 2+a x ; 0\right.$
\square
