© 'doubtnut

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

APPLICATION OF INTEGRALS

Solved Examples And Exercises

1. Find the area of the figure enclosed by the curve $5 x^{2}+6 x y+2 y^{2}+7 x+6 y+6=0$. (in Sq. unit)
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. π
D. 2π
2. If the area by $y=x^{2}+2 x-3$ and the line $y=k x+1$ is the least, find k.
A. $k=1$
B. $k=2$
C. $k=3$
D. $k=4$

Answer: B

- Watch Video Solution

3. Area enclosed by the curve $y=f(x)$ defined parametrically as $x=\frac{1-t^{2}}{1+t^{2}}, y=\frac{2 t}{1+t^{2}}$ is equal
4. Sketch and find the area bounded by the curve
$\sqrt{|x|}+\sqrt{|y|}=\sqrt{\text { a }}$ and $x^{2}+y^{2}=a^{2}($ wherea $>0) \quad$ If \quad curve $|x|+|y|=a$ divides the area in two parts, then find their ratio in the first quadrant only.

- Watch Video Solution

5. Let $f(x)=\operatorname{minimum}(x+1, \sqrt{1-x})$ for all $x \leq 1$. Then the area bounded by $y=f(x)$ and the x -axis is
A. $\frac{7}{3}$ sq. units
B. $\frac{1}{6}$ sq. units
C. $\frac{11}{6}$ sq. units
D. $\frac{7}{6}$ sq. units

Answer: D

6. The area inside the parabola $5 x^{2}-y=0$ but outside the parabola $2 x^{2}-y+9=0 \quad$ is $\quad 12 \sqrt{3}$ squinits $\quad 6 \sqrt{3}$ squinits $\quad 8 \sqrt{3}$ squinits $4 \sqrt{3}$ squinits

- Watch Video Solution

7. If A_{n} is the area bounded by $y=x a n d y=x^{n}, n \in N$, then $A_{2} \dot{A}_{3} A_{n}=\frac{1}{n(n+1)}$ (b) $\frac{1}{2^{n}(n+1)}$
$\frac{1}{2^{n-1} n(n+1)}$ (d) $\frac{1}{2^{n-2} n(n+1)}$

- Watch Video Solution

8. Area enclosed between the curves $|y|=1-x^{2} a n d x^{2}+y^{2}=1$ is $\frac{3 \pi-8}{3}$ (b) $\frac{\pi-8}{3} \frac{2 \pi-8}{3}$ (d) None of these

- Watch Video Solution

9. If the area of bounded between the x-axis and the graph of $y=6 x-3 x^{2}$ between the ordinates $x=1$ and $x=a$ is 19 units, then a can take the value: (A) 4 or $-2(B)$ one value is in $(2,3)$ and one in $(-1,0)$ (C) one value is in $(3,4)$ and one in $(-2,-1)$ (D) none of these

- Watch Video Solution

10. The area enclosed between the curves
$y=(\log)_{e}(x+e), x=(\log)_{e}\left(\frac{1}{y}\right)$, and the x -axis is 2squinits (b) 1squinits 4 squinits (d) none of these

- Watch Video Solution

11. If A_{n} be the area bounded by the curve $y=\left(\tan x^{n}\right)$ ands the lines $x=0, y=0, x=\pi / 4$, then for $x>2 . \quad A_{n}+A_{n-1}=\frac{1}{n-1} \mathrm{~b}$. $A_{n}+A_{n-2}<\frac{1}{n-1}$ c. $A_{n}+A_{n-2}=\frac{1}{n-1}$ d. none of these
12. Find all the possible values of $b>0$, so that the area of the bounded region enclosed between the parabolas $y=x-b x^{2} a n d y=\frac{x^{2}}{b}$ is maximum.

- Watch Video Solution

13. Let $f(x)=\mathrm{M}$ a xi mu $\mathrm{m}\left\{x^{2},(1-x)^{2}, 2 x(1-x)\right\}$, where $0 \leq x \leq 1$. Determine the area of the region bounded by the curves $y=f(x), \mathrm{x}$-axis , $\mathrm{x}=0$, and $\mathrm{x}=1$.'

- Watch Video Solution

14. Let $O(0,0), A(2,0)$, $\operatorname{and} B\left(1 \frac{1}{\sqrt{3}}\right)$ be the vertices of a triangle. Let R be the region consisting of all those points P inside $O A B$ which satisfy $d(P, O A) \leq \min [d(p, O B), d(P, A B)]$, where d denotes the distance from the point to the corresponding line. Sketch the region R and find its area.

- Watch Video Solution

15. The area bounded by the curve $f(x)=x+\sin x$ and its inverse function between the ordinates $x=0 a n d x=2 \pi$ is 4π squinits 8π squinits 4 squinits (d) 8 squinits

- Watch Video Solution

16. The area bounded by the x-axis, the curve $y=f(x)$, and the lines $x=1, x=b$ is equal to $\sqrt{b^{2}+1}-\sqrt{2}$ for all $b>1$, then $f(x)$ is $\sqrt{x-1}$ (b) $\sqrt{x+1} \sqrt{x^{2}+1}$ (d) $\frac{x}{\sqrt{1+x^{2}}}$

- Watch Video Solution

17. Let $f(x)$ be a non-negative continuous function such that the area bounded by the curve $y=f(x)$, the x-axis, and the ordinates
$x=\frac{\pi}{4} a n d x=\beta>\frac{\pi}{4} i s \beta \sin \beta+\frac{\pi}{4} \cos \beta+\sqrt{2} \beta$. Then $f^{\prime}\left(\frac{\pi}{2}\right)$ is $\left(\frac{\pi}{2}-\sqrt{2}-1\right)$ (b) $\left(\frac{\pi}{4}+\sqrt{2}-1\right)-\frac{\pi}{2}$ (d) $\left(1-\frac{\pi}{4}-\sqrt{2}\right)$

- Watch Video Solution

18. The area bounded by the curves
$y=\sin ^{-1}|\sin x|$ and $y=\left(\sin ^{-1}|\sin x|^{2}\right.$, where $0 \leq x \leq 2 \pi$,
$\frac{1}{3}+\frac{\pi^{2}}{4}$ squinits (b) $\frac{1}{6}+\frac{\pi^{3}}{8}$ squinits 2 squinits (d) none of these

- Watch Video Solution

19. The area bounded by the two branches of curve $(y-x)^{2}=x^{3}$ and the straight line $x=1$ is $\frac{1}{5}$ squinits (b) $\frac{3}{5}$ squinits $\frac{4}{5}$ squinits $\frac{8}{4}$ squinits

- Watch Video Solution

20. The area bounded by the curves $y=\log _{e} x$ and $y=\left(\log _{e} x\right)^{2}$ is (A) $e-2$ sq. units (B) $3-e$ sq. units (C) e sq. units (D) $e-1$ sq. units

- Watch Video Solution

21. The area of the region containing the points (x, y) satisfying $4 \leq x^{2}+y^{2} \leq 2(|x|+|y|)$ is 8squinits (b) 2squinits 4 4π squinits
2π squinits

- Watch Video Solution

22. Let $f(x)=x^{3}+3 x+2 a n d g(x)$ be the inverse of it. Then the area bounded by $g(x)$, the x-axis, and the ordinate at $x=-2 a n d x=6$ is $\frac{1}{4}$ squinits (b) $\frac{4}{3}$ squinits $\frac{5}{4}$ squinits (d) $\frac{7}{3}$ squinits

- Watch Video Solution

23. Consider two curves $C_{1}: y^{2}=4[\sqrt{y}] \operatorname{xandC}_{2}: x^{2}=4[\sqrt{x}] y$, where [.] denotes the greatest integer function. Then the area of region enclosed by these two curves within the square formed by the lines $x=1, y=1, x=4, y=4$ is $\frac{8}{3}$ sqünits (b) $\frac{10}{3}$ squinits $\frac{11}{3}$ squinits (d) $\frac{11}{4}$ squinits

- Watch Video Solution

24. The area enclosed between the curve $y^{2}(2 a-x)=x^{3}$ and the line $x=2 a$ above the x-axis is (a) πa^{2} squinits (b) $\frac{3 \pi a^{2}}{2}$ squinits (c) $2 \pi a^{2}$ squinits (d) $3 \pi a^{2}$ squinits

- Watch Video Solution

25. The area of the region of the plane bounded by $\max (|x|,|y|) \leq 1$ andxy $\leq \frac{1}{2}$ is $\frac{1}{2}+1 n 2$ squinits (b) $3+1$ n2squinits $\frac{31}{4}$ squinits (d) $1+21 n 2$ squinits
26. The area of the figure bounded by the parabola $(y-2)^{2}=x-1$, the tangent to it at the point with the ordinate $y=3$, and the x-axis is

- Watch Video Solution

27. The area of the loop of the curve $a y^{2}=x^{2}(a-x)$ is ($\left.a\right) 4 a^{2}$ squinits
(b) $\frac{8 a^{2}}{15}$ squinits $\frac{16 a^{2}}{9}$ squinits (d) None of these

- Watch Video Solution

28. The area of the region bounded by
$x=0, y=0, x=2, y=2, y \leq e^{x}$ and $y \geq 1 n x$ is $6-41 n 2$ squinits
$41 n 2-2$ sqünits $21 n 2-4$ squinits (d) $6-21 n 2 s q u ̈ n i t s$

- Watch Video Solution

29.

$f(x)=\sin x, \forall x \in\left[0, \frac{\pi}{2}\right], f(x)+f(\pi-x)=2, \forall x \in\left(\frac{\pi}{2}, \pi\right) \operatorname{and} f(x)$ then the area enclosed by $y=f(x)$ and the x -axis is π squinits
2π squinits 2 squinits (d) 4squinits

Watch Video Solution

30. The area enclosed by the curve $y=\sqrt{4-x^{2}}, y \geq \sqrt{2} \sin \left(\frac{x \pi}{2 \sqrt{2}}\right)$, and the x -axis is divided by the y -axis in the ratio. (a) $\frac{\pi^{2}-8}{\pi^{2}+8}$ (b) $\frac{\pi^{2}-4}{\pi^{2}+4}$
(c) $\frac{\pi-4}{\pi-4}$
(d) $\frac{2 \pi^{2}}{2 \pi+\pi^{2}-8}$

(-) Watch Video Solution

31. The area bounded by the curves $y=x e^{x}, y=x e^{-x}$ and the lines $x=1$ is

- Watch Video Solution

32. The area enclosed by the curves $x y^{2}=a^{2}(a-x)$ and $(a-x) y^{2}=a^{2} x$ is

- Watch Video Solution

33. The area bounded by the loop of the curve $4 y^{2}=x^{2}\left(4-x^{2}\right)$ is $7 / 3$ sq. units (b) $\frac{8}{3}$ sqünites $\frac{11}{3}$ squinits (d) $\frac{16}{3}$ sqünits

- Watch Video Solution

34. The area of the region enclosed between the curves $x=y^{2}-1$ and $x=|y| \sqrt{1-y^{2}}$ is 1 squinits (b) $\frac{4}{3}$ squinits $\frac{2}{3}$ squinits (d) 2squinits

- Watch Video Solution

35. The area enclosed by the curve $y=\sin x+\cos$ xandy $=|\cos x-\sin x|$ over the interval $\left[0, \frac{\pi}{2}\right]$ is $4(\sqrt{2}-2)$ (b) $2 \sqrt{2}(\sqrt{2}-1) 2(\sqrt{2}+1)$ (d) $2 \sqrt{2}(\sqrt{2}+1)$

- Watch Video Solution

36. For which of the following values of m is the area of the regions bounded by the curve $y=x-x^{2}$ and the line $y=m x$ equal $\frac{9}{2}$? (a) -4 (b) -2 (c) 2 (d) 4

- Watch Video Solution

37. The area of the region bounded by the curve $y=e^{x}$ and lines $\mathrm{x}=0$ and $y=e$ is

- Watch Video Solution

38. Find the area bounded by the curves $x^{2}+y^{2}=4, x^{2}=-\sqrt{2} y$ and $x=y$

- Watch Video Solution

39. For a point P in the plane, let $d_{1}(P) a n d d_{2}(P)$ be the distances of the point P from the lines $x-y=0 a n d x+y=0$ respectively. The area of the region R consisting of all points P lying in the first quadrant of the plane and satisfying $2 \leq d_{1}(P)+d_{2}(P) \leq 4$, is

- Watch Video Solution

40. If ' $a^{\prime}(a>0)$ is the value of parameter for each of which the area of the figure bounded by the straight line $y=\frac{a^{2}-a x}{1+a^{4}}$ and the parabola $y=\frac{x^{2}+2 a x+3 a^{2}}{1+a^{4}}$ is the greatest, then the value of a^{4} is

- Watch Video Solution

41. Consider two curves $C_{1}: y=\frac{1}{x} a n d C_{2}: y=1 n x$ on the $x y$ plane. Let D_{1} denotes the region surrounded by C_{1}, C_{2}, and the line $x=1$ and D_{2} denotes the region surrounded by C_{1}, C_{2} and the line $x=a$. If $D_{1}=D_{2}$, then the sum of logarithm of possible value of a is \qquad

- Watch Video Solution

42. Find the area bounded by $y^{2} \leq 4 x, x^{2}+y^{2} \geq 2 x$, and $x \leq y+2$ in the first quadrant.

- Watch Video Solution

43. Find the area of the region R which is enclosed by the curve $y \geq \sqrt{1-x^{2}}$ and $\max \{|x|,|y|\} \leq 4$.

- Watch Video Solution

44. Find the area of the region enclosed by the curves $y=x \log x a n d y=2 x-2 x^{2}$.

Watch Video Solution

45. Find the area of the region $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$

- Watch Video Solution

46. Find the area of the figure bounded by the parabolas $x=-2 y^{2}, x=1-3 y^{2}$.

- Watch Video Solution

47. Find the area bounded by $y=\frac{1}{x^{2}-2 x+2}$ and x-axis.

- Watch Video Solution

48. Find the area bounded by $x=2 y-y^{2}$ andthey $-a \xi s$.

- Watch Video Solution

49. Find the area bounded by $y=\sin ^{-1} x, y=\cos ^{-1} x$, andthe $x-a \xi s$.

- Watch Video Solution

50. Find the ratio in which the area bounded by the curves $y^{2}=12 x$ and $x^{2}=12 y$ is divided by the line $x=3$.

- Watch Video Solution

51. Find the area bounded by a . $y=(\log)_{e}|x| a n d y=0 \quad \mathrm{~b}$ $y=\left|(\log)_{3}\right| x|\quad|$ and $y=0$

- Watch Video Solution

52. Sketch the curves and identity the region bounded by $x=\frac{1}{2}, x=2, y=1 n x$, and $y=2^{x}$. Find the area of this region.

- Watch Video Solution

53. Sketch the region bounded by the curves $y=x^{2} a n d y=\frac{2}{1+x^{2}}$. Find the area.

- Watch Video Solution

54. Find the area of the region bounded by the curve $C: y=\tan x$, tan $\geq n t d r a w n \rightarrow C$ at $x=\frac{\pi}{4}$, and the x-axis.

- Watch Video Solution

55. Compute the area of the region bounded by the curves $y=e x(\log)_{e} x a n d y=\frac{\log x}{e x}$
56. $A O B$ is the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ which $O A=a, O B=b$. Then find the area between the are $A B$ and the chord $A B$ of the elipse.

- Watch Video Solution

57. Find the area bounded by the curves $y=s \in x a n d y=\cos x$ between two consecutive points of the intersection.

- Watch Video Solution

58. In what ratio does the x-axis divide the area of the region bounded by the parabolas $y=4 x-x^{2} a n d y=x^{2}-x$?

- Watch Video Solution

$(1,1)(-1,1)(-1,-1)$ and $(1,-1)$. Let S be the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region S and find its area.

- Watch Video Solution

60. Find the area bounded by $y=x^{3}-x a n d y=x^{2}+x$.

- Watch Video Solution

 $x^{2}+y^{2}=8 x$ and the parabola $y^{2}=4 x$.

- Watch Video Solution

62. Consider the region formed by the lines $x=0, y=0, x=2, y=2$. If the area enclosed by the curves $y=e^{x} a n d y=1 n x$, within this region, is being removed, then find the area of the remaining region.

- Watch Video Solution

63. Find the area bounded by the curve $y=(x-1)(x-2)(x-3)$ lying between the ordinates $x=0 a n d x=3$.

- Watch Video Solution

64. Find the area bounded by the parabola $y=x^{2}+1$ and the straight line $x+y=3$.

- Watch Video Solution

65. Find the area of the closed figure bounded by the curves $y=\sqrt{x}, y=\sqrt{4-3 x} a n d y=0$

Watch Video Solution

66. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$

- Watch Video Solution

67. The area enclosed by the curve $c: y=x \sqrt{9-x^{2}}(x \geq 0)$ and the x axis is \qquad

- Watch Video Solution

68. Consider two regions: R_{1} : Point P is nearer to $(1,0)$ then to $x=-1 R_{2}$: Point P is nearer to $(0,0)$ then to $(8,0)$ Statement $1:$ The
area of the region common to $R_{1} a n d R_{2}$ is $\frac{128}{3}$ squinits Statement 2 :
The area bounded by $x=4 \sqrt{y}$ andy $=4$ is $\frac{32}{3}$ squinits

- Watch Video Solution

69. Statement 1 : The area bounded by $2 \geq \max |x-y|,|x| y \mid$ is 8 sq. units. Statement 2 : The area of the square of side length 4 is 16 sq . units.

- Watch Video Solution

70. Statement 1 : The area enclosed between the parabolas $y^{2}-2 y+4 x+5=0$ and $x^{2}+2 x-y+2=0$ is same as that of bounded by curves $y^{2}=-4 x a n d x^{2}=y$. Statement 2 : Shifting of origin to point (h, k) does not change the bounded area.

- Watch Video Solution

71. Statement 1 : The area of the region bounded by the curve $2 y=(\log)_{e} x, y=e^{2 x}, \quad$ and \quad the pair of lines $(x+y-1) x(x+y-3)=0 i s 2 k s q u n i t s$ Statement 2 : The area of the region bounded by the curves $2 y=(\log)_{e} x, y=e^{2 x}$, and the pair of lines $x^{2}+y^{2}+2 x y-4 x-4 y+3=0$ is k units.

- Watch Video Solution

72. Let S be the area bounded by the curve $y=\sin x(0 \leq x \leq \pi)$ and the x-axis and T be the area bounded by the curves $y=\sin x\left(0 \leq x \leq \frac{\pi}{2}\right), y a \cos x\left(0 \leq x \leq \frac{\pi}{2}\right), \quad$ and \quad the $\quad x$-axis (wherea $\in R^{+}$) The value of ($3 a$) such that $S: T=1: \frac{1}{3}$ is \qquad

- Watch Video Solution

73. Let C be a curve passing through $M(2,2)$ such that the slope of the tangent at anypoint to the curve is reciprocal of the ordinate of the
point. If the area bounded by curve C and $\operatorname{lin} \mathrm{x}=2 \mathrm{i} \mathrm{s} \mathrm{A}$, th ent hevalue of $\frac{3 A}{2}$ i s_-

- Watch Video Solution

74. Let $f(x)$ be continuous function given by $f(x)=\left\{2 x,|x| \leq 1 x^{2}+a x+b,|x|>1\right\}$. Find the area of the region in the third quadrant bounded by the curves $x=-2 y^{2}$ andy $=f(x)$ lying on the left of the line $8 x+1=0$.

- Watch Video Solution

75. Find the area bounded by the curves $x^{2}=y, x^{2}=-y$ and $y^{2}=4 x-3$

- Watch Video Solution

76. The area of the region bounded by the curves $y=x^{2}, y=\left|2-x^{2}\right|$ and $y=2$ which lies to the right of the line $x=1$, is

Watch Video Solution

77. The area bounded by the curves $y=|x|-1$ and $y=-|x|+1$ is 1 sq. units (b) 2 sq. units $2 \sqrt{2}$ sq. units (d) 4 sq. units

- Watch Video Solution

78. If the area bounded by the curve $y=f(x), x-a x i s$ and the ordinates $x=1$ and $\mathrm{x}=\mathrm{b}$ is $(\mathrm{b}-1) \sin (3 \mathrm{~b}+4)$, then-

- Watch Video Solution

79. The area bounded by the parabolas $y=(x+1)^{2}$ and $y=(x-1)^{2}$ andy $=(x-1)^{2}$ and the line $y=\frac{1}{4}$ is 4 sq. units (b) $1 / 6$
sq. units $4 / 3$ sq. units (d) $1 / 3$ sq. units

D Watch Video Solution

80. The area bounded by the curves $y=\sqrt{x}, 2 y+3=x$, and x-axis in the 1st quadrant is (A) 18 sq. units (B) $\frac{27}{4}$ sq.units (C) $\frac{4}{3}$ sq.units (D) 9 sq. units

- Watch Video Solution

81. Find the area bounded by $y=\tan ^{-1} x, y=\cot ^{-1} x$, and y-axis in the first quadrant.

- Watch Video Solution

82. Prove that area common to ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and its auxiliary circle $x^{2}+y^{2}=a^{2}$ is equal to the area of another ellipse of semi-axis $a a n d a-b$.

83. the area of region for which $0<y<3-2 x-x^{2}$ and $x>0$ is

- Watch Video Solution

85. The area common to regions $x^{2}+y^{2}-2 x \leq 0$ and $y \geq \frac{\sin (\pi x)}{2}$.

- Watch Video Solution

86. Draw a rough sketch of the curve $y=\frac{x^{2}+3 x+2}{x^{2}-3 x+2}$ and find the area of the bounded region between the curve and the x-axis.

Watch Video Solution

87. $f(x)$ is a continuous and bijective function on R. If $\forall t \in R$, then the area bounded by $y=f(x), x=a-t, x=a$, and the x-axis is equal to the area bounded by $y=f(x), x=a+t, x=a$, and the x -axis. Then prove that $\int_{-\lambda}^{\lambda} f^{-1}(x) d x=2 a \lambda($ giventhat $f(a)=0)$.

- Watch Video Solution

88. Find the continuous function f where $\left(x^{4}-4 x^{2}\right) \leq f(x) \leq\left(2 x^{2}-x^{3}\right)$ such that the area bounded by $y=f(x), y=x^{4}-4 x^{2}$. then y-axis, and the line $x=t$, where $(0 \leq t \leq 2) \quad$ is $\quad k \quad$ times the area bounded by $y=f(x), y=2 x^{2}-x^{3}, y-a \xi s$, and line $x=t(w h e r e 0 \leq t \leq 2)$.

- Watch Video Solution

89. Find the area bounded by the curves $y=-x^{2}+6 x-5, y=-x^{2}+4 x-3, \quad$ and the straight line $y=3 x-15$ and lying right to $x=1$.

- Watch Video Solution

90. Find the value of a where $(a>2)$ for which the reciprocal of the area enclosed between $y=\frac{1}{x^{2}}, y=\frac{1}{4(x-1)}, x=2, a n d x=a$ is a itself and for what values of $b \in(1,2)$, the area of the figure bounded by the lines $x=b a n d x=2 i s 1-\frac{1}{b}$.

- Watch Video Solution

91. The area enclosed by the curves $x=a \sin ^{3} \operatorname{tand} y=\mathrm{acos}{ }^{3} t$ is equal to (A) $12 a^{2} \int_{0}^{\frac{\pi}{2}} \cos ^{4} t \sin ^{2} t d t \quad$ (B) $12 a^{2} \int_{0}^{\frac{\pi}{2}} \cos ^{2} t \sin ^{4} t d t$ $2 \int_{-a}^{a}\left(a^{\frac{2}{3}}-x^{\frac{2}{3}}\right)^{\frac{3}{2}} d x$ (D) $4 \int_{0}^{a}\left(a^{\frac{2}{3}}-x^{\frac{2}{3}}\right)^{\frac{3}{2}} d x$
92. If the curve $y=a x^{\frac{1}{2}}+b x$ passes through the point $(1,2)$ and lies above the x -axis for $0 \leq x \leq 9$ and the area enclosed by the curve, the x axis, and the line $x=4$ is 8 sq. units, then $a=1$ (b) $b=1 a=3$ (d) $b=-1$

- Watch Video Solution

93. Each question has four choices a,b,c and d, out of which only one is correct. Each question contains STATEMENT 1 and STATEMENT 2. If both the statements are TRUE and STATEMENT 2 is the correct explanation of STATEMENT 1 If both the statements are TRUE but STATEMENT 2 is NOT the correct explanation of STATEMENT 1. If STATEMENT 1 is TRUE and STATEMENT 2 is FALSE. If STATEMENT 1 is FALSE and STATEMENT 2 is TRUE.

Statement 1: The area bounded by $y=e^{x}, y=0 a n d x=0$ is 1 sq. unites. Statement 2 : The area bounded by $y=(\log)_{e} x, x=0$, and $y=0$ is 1 sq. units.
94. If $A_{1}, A_{2}, A_{3}, \ldots$ are sets such that $n\left(A_{i}\right)=101-i$, $A_{1} \supset A_{2} \supset A_{3} \supset \ldots \supset A_{100}$ and $A=\cap_{i=5}^{100} A_{i}$ then $\mathrm{n}(\mathrm{A})$ is equal to

- Watch Video Solution

95. Let $A(k)$ be the area bounded by the curves $y=x^{2}-3$ and $y=k x+2$ The range of $A(k)$ is $\left(\frac{10 \sqrt{5}}{3}, \infty\right)$ The range of $A(k)$ is $\left(\frac{20 \sqrt{5}}{3}, \infty\right)$ If function $k \vec{A}(k)$ is defined for $k \in[-2, \infty)$, then $A(k)$ is many-one function. The value of k for which area is minimum is 1 .

- Watch Video Solution

96. The area bounded by the curve $y^{2}=1-x$ and the lines
$y=\frac{|x|}{x}, x=-1$, and $x=\frac{1}{2} i s \quad \frac{3}{\sqrt{2}}-\frac{11}{6}$ squinits
$3 \sqrt{2}-\frac{11}{4}$ squinits $\frac{6}{\sqrt{2}}-\frac{11}{5}$ squnits (d) none of these

- Watch Video Solution

97. Which of the following have the same bounded area
$f(x)=s \in x, g(x)=\sin ^{2} x$, where $0 \leq x \leq 10 \pi$
$f(x)=s \in x, g(x)=|s \in x|$, where $0 \leq x \leq 20 \pi$
$f(x)=|s \in x|, g(x)=\sin ^{3} x$, where $0 \leq x \leq 10 \pi$
$f(x)=s \in x, g(x)=\sin ^{4} x$, where $0 \leq x \leq 10 \pi$

- Watch Video Solution

98. The parabolas $y^{2}=4 x a n d x^{2}=4 y$ divide the square region bounded by the lines $x=4, y=4$ and the coordinate axes. If S_{1}, S_{2}, S_{3} are the areas of these parts numbered from top to bottom, respectively, then $S_{1}: S_{2} \equiv 1: 1$ (b) $S_{2}: S_{3} \equiv 1: 2 S_{1}: S_{3} \equiv 1: 1$ (d) $S_{1}:\left(S_{1}+S_{2}\right)=1: 2$

- Watch Video Solution

99. Statement 1 : The area bounded by parabola $y=x^{2}-4 x+3$ andy $=0$ is $\frac{4}{3}$ sq. units. Statement $2:$ The area
bounded by curve $y=f(x) \geq 0$ and $=0 \quad$ between ordinates $x=a a n d x=b\left(\right.$ where $b>a$) is $\int_{a}^{b} f(x) d x$

- Watch Video Solution

100. $f(x)$ is a polynomial of degree 3 passing through the origin having local extrema at $x= \pm 2$ Statement 1 : Ratio of areas in which $f(x)$ cuts the circle $x^{2}+y^{2}=36 i s 1: 1$. Statement 2: Both $y=f(x)$ and the circle are symmetric about the origin.

- Watch Video Solution

101. The value of $a(a>0)$ for which the area bounded by the curves
$y=\frac{x}{6}+\frac{1}{x^{2}}, y=0, x=a, a n d x=2 a$ has the least value is

- Watch Video Solution

102. Area bounded by the relation $[2 x]+[y]=5, x, y>0$ is \qquad
103. The area bounded by the curves $y=x(x-3)^{2}$ andy $=x$ is \qquad (in sq. units)

- Watch Video Solution

104.

If
the
area
of
the
region
$\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$ is A, then the value of $3 A-17$ is \qquad

- Watch Video Solution

105. The area enclosed by $f(x)=12+a x-x^{2}$ coordinates axes and the ordinates at $x=3(f(3)>0)$ is 45 sq. units. If mandn are the x-axis intercepts of the graph of $y=f(x)$, then the value of $(m+n+a)$ is \qquad
106. If the area bounded by the curve $f(x)=x^{\frac{1}{3}}(x-1)$ and the x-axis is A, then the value of $28 A$ is \qquad

- Watch Video Solution

107. If the area bounded by the curve $y=x^{2}+1$ and the tangents to it drawn from the origin is A, then the value of $3 A$ is_-

- Watch Video Solution

108. If the area enclosed by the curve $y=\sqrt{x}$ and $x=-\sqrt{y}$, the circle $x^{2}+y^{2}=2$ above the x -axis is A, then the value of $\frac{16}{\pi} A$ is

- Watch Video Solution

109. If S is the sum of possible values of c for which the area of the figure bounded by the curves $y=s \in 2 x$, the straight lines $x=\frac{\pi}{6}, x=c$, and the abscissa axis is equal to $\frac{1}{2}$, then the value of π / S is \qquad

- Watch Video Solution

110. If A is the area bounded by the curves $y=\sqrt{1-x^{2}}$ and $y=x^{3}-x$, then of $\frac{\pi}{A}$.

- Watch Video Solution

111.

A curve
is
given
by
$y=\left\{\left(\sqrt{4-x^{2}}\right), 0 \leq x<1\right.$ and $\sqrt{(3 x)}, 1 \leq x \leq 3$. Find the area lying between the curve and x -axis.

- Watch Video Solution

112. Find the area enclosed by the curves $x^{2}=y, y=x+2, a n d x-a \xi s$.

- Watch Video Solution

113. Find the area of the region bounded by the curves $y=x^{2}+2 y=x, x=0, a n d x=3$.

- Watch Video Solution

114. Find the area of that part of the circle $x^{2}+\backslash y^{2}=16$ which is exterior to the parabola $\mathrm{y}^{2}=6 \mathrm{x}$.

- Watch Video Solution

115. Find the area bounded by the y-axis,
$y=\cos x$, and $y=\sin x w h e n 0 \leq x \leq \frac{\pi}{2}$.
116. Find the area lying in the first quadrant and bounded by the curve $y=x^{3}$ and the line $y=4 x$.

- Watch Video Solution

117. If the area enclosed by curve $y=f(x) a n d y=x^{2}+2$ between the abscissa $x=2 a n d x=\alpha, \alpha>2$, is $\left(\alpha^{3}-4 \alpha^{2}+8\right) s q$. unit. It is known that curve $y=f(x)$ lies below the parabola $y=x^{2}+2$.

- Watch Video Solution

118. Plot the region in the first quadrant in which points are nearer to the origin than to the line $x=3$.

- Watch Video Solution

119. Find the area bounded by the curve $y=\sin ^{-1} x$ and the line $x=0,|y|=\frac{\pi}{2}$.

- Watch Video Solution

120. Find the area of the region bounded by the limits $x=0, x=\frac{\pi}{2}, \operatorname{andf}(x)=\sin x, g(x)=\cos x$.

- Watch Video Solution

121. The area bounded by $y=\sec ^{-1} x, y=\operatorname{cosec}{ }^{-1} x$, and line $x-1=0$ is (a) $\log (3+2 \sqrt{2})-\frac{\pi}{2}$ sq. units (b) $\frac{\pi}{2}-\log (3+2 \sqrt{2})$ sq. units (c) $\pi-(\log)_{e} 3$ sq. units (d) non of these

- Watch Video Solution

122. The area of the region whose boundaries are defined by the curves $y=2 \cos x, y=3 \tan x$, andthey - a乡sis $\quad 1+31 n\left(\frac{2}{\sqrt{3}}\right)$ squinits $1+\frac{3}{2} 1 n 3-31 n 2$ squinits $1+\frac{3}{2} 1 n 3-1 n 2$ squnits $1 n 3-1 n 2$ squinits

- Watch Video Solution

123. Area bounded by the curve $x y^{2}=a^{2}(a-x)$ and the y -axis is $\frac{\pi a^{2}}{2}$ squinits (b) πa^{2} squinits $3 \pi a^{2}$ squinits (d) None of these

- Watch Video Solution

124. The area of the closed figure bounded by $x=-1, y=0, y=x^{2}+x+1, \quad$ and the tangent to the curve $y=x^{2}+x+1$ at $A(1,3)$ is (a) $\frac{4}{3}$ sq. units (b) $\frac{7}{3}$ sq. units (c) $\frac{7}{6}$ sq. units (d) non of these

- Watch Video Solution

125. The area of the closed figure bounded by $y=\frac{x^{2}}{2}-2 x+2$ and the tangents to it at $\left(1, \frac{1}{2}\right)$ and (4,2) is (A) $\frac{9}{8}$ sq.unit (B) $\frac{3}{8}$ sq.units (C) $\frac{3}{2}$ sq.units (D) $\frac{9}{4}$ sq.units

- Watch Video Solution

126. The area of the closed figure bounded by $x=-1, x=2$, and $y=\left\{-x^{2}+2, x \leq 12 x-1, x>1\right.$ andtheabscissaa ξ sis $\frac{16}{3}$ squinits
(b) $\frac{10}{3}$ squinits $\frac{13}{3}$ squinits (d) $\frac{7}{3}$ squinits

- Watch Video Solution

127. The area between the curve $y=2 x^{4}-x^{2}$, the axis, and the ordinates of the two minima of the curve is $11 / 60$ sq. units (b) $7 / 120 \mathrm{sq}$. units $1 / 30$ sq. units (d) $7 / 90$ sq. units

- Watch Video Solution

128. The area bounded by the curve $a^{2} y=x^{2}(x+a)$ and the x-axis is $\frac{a^{2}}{3}$ sqünits (b) $\frac{a^{2}}{4}$ squinits $\frac{3 a^{2}}{4}$ squinits (d) $\frac{a^{2}}{12}$ squinits

- Watch Video Solution

129. The area of the region bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$ is

- Watch Video Solution

130. If S is the sum of cubes of possible value of c for which the area of the figure bounded by the curve $y=8 x^{2}-x^{5}$, then straight lines $x=1 a n d x=c$ and the abscissa axis is equal to $\frac{16}{3}$, then the value of [S], where[.] denotest the greatest integer function, is \qquad

- Watch Video Solution

131. The area of the region bounded by $x^{2}+y^{2}-2 x-3=0$ and $y=|x|+1 \frac{\pi}{2}-1$ sqünits (b) 2π squinits 4π squinits (d) $\frac{\pi}{2}$ sqünits

- Watch Video Solution

132. The value of the parameter a such that the area bounded by $y=a^{2} x^{2}+a x+1$, coordinate axes, and the line $x=1$ attains its least value is equal to $\frac{1}{4}$ squinits (b) $\frac{1}{2}$ squinits $\frac{3}{4}$ squinits (d) -1 squinits

- Watch Video Solution

133. Sketch the region bounded by the curves $y=\sqrt{5-x^{2}}$ and $y=|x-1|$ and find its area.

- Watch Video Solution

134. Find the area of the region bounded by the x-axis and the curves defined by $y=\tan x\left(\right.$ where $\left.-\frac{\pi}{3} \leq x \leq \frac{\pi}{3}\right)$ and
$y=\cot x\left(\right.$ where $\left.\frac{\pi}{6} \leq x \leq \frac{3 x}{2}\right)$.

- Watch Video Solution

135. Find the area bounded by the x-axis, part of the curve $y=\left(1+\frac{8}{x^{2}}\right)$, and the ordinates at $x=2 a n d x=4$. If the ordinate at $x=a$ divides the area into two equal parts, then find a.

- Watch Video Solution

136. For any real $t, x=\frac{1}{2}\left(e^{t}+e^{-t}\right), y=\frac{1}{2}\left(e^{t}-e^{-t}\right)$ is a point on the hyperbola $x^{2}-y^{2}=1$ Show that the area bounded by the hyperbola and the lines joining its centre to the points corresponding to t_{1} and $-t_{1}$ is t_{1}.
137. Find the area bounded by the curves $x^{2}+y^{2}=25,4 y=\left|4-x^{2}\right|$, and $x=0$ above the x-axis.
