© 'doubtnut

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

CROSS PRODUCTS

1. Let \vec{a} and \vec{b} be two vectors of equal magnitude 5 units. Let \vec{p}, \vec{q} be vectors such that $\vec{p}=\vec{a}-\vec{b}$ and $\vec{q}=\vec{a}+\vec{b}$. If $|\vec{p} \times \vec{q}|=2\left\{\lambda-(\vec{a} \cdot \vec{b})^{2}\right\}^{\frac{1}{2}}$, then value of λ is
A. 25
B. 125
C. 625
D. none of these

- Watch Video Solution

2. Let $\vec{u}=2 \hat{i}-\hat{j}+\hat{k}, \vec{v}=-3 \hat{j}+2 \hat{k}$ be vectors and \vec{w} be a unit vector in the $x y$-plane. Then the maximum possible value of $|(\vec{u} \times \vec{v})| \cdot|\vec{w}|$ is
A. $\sqrt{5}$
B. $\sqrt{12}$
C. $\sqrt{13}$
D. $\sqrt{17}$

Answer: D

3. Let \vec{a}, \vec{b} and \vec{c} are three unit vectors in a plane such that they are equally inclined to each other, then the value of $(\vec{a} \times \vec{b}) \cdot(\vec{b} \times \vec{c})+(\vec{b} \times \vec{c}) \cdot(\vec{c} \times \vec{a})+(\vec{c} \times \vec{a}) \cdot(\vec{a} \times \vec{b}$
can be
A. $\frac{9}{4}$
B. $-\frac{9}{4}$
C. $\frac{3}{4}$
D. $-\frac{3}{4}$

Answer: A

- Watch Video Solution

4. The coordinates of the mid-points of the sides of $\triangle P Q R$, are $(3 a, 0,0),(0,3 b, 0)$ and $(0,0,3 c)$ respectively, then the area of $\triangle P Q R$ is
A. $18 \sqrt{b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}}$
B. $9 \sqrt{b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}}$
C. $\frac{9}{12} \sqrt{b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}}$
D. $\frac{9}{2} \sqrt{b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}}$

Answer: A

- Watch Video Solution

5. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{a} \cdot \vec{b}=1$ and $\vec{a} \times \vec{b}=\hat{j}-\hat{k}$ then \vec{b}
A. 3
B. 9
C. 10
D. 12

Answer: A

6. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that
$\vec{a} \cdot \vec{b}=0,(\vec{a}-\vec{c}) \cdot(\vec{b}+\vec{c})=0$
$\vec{c}=\lambda \vec{a}+\mu \vec{b}+\omega(\vec{a} \times \vec{b})$, where λ, μ, ω are scalars, then
A. $\mu^{2}+\omega^{2}=1$
B. $\lambda+\mu=1$
C. $(\mu+1)^{2}+\mu^{2}+\omega^{2}=1$
D. $\lambda^{2}+\mu^{2}=1$

Answer: C

- Watch Video Solution

7. Let $\triangle A B C$ be a given triangle. If $|\overrightarrow{B A}-t \overrightarrow{B C}| \geq|\overrightarrow{A C}|$ for any $t \in R$,then $\triangle A B C$ is
A. Equilateral
B. Right angled
C. Isosceles
D. None of these

Answer: B

D View Text Solution

8. If \vec{a}, \vec{b} are vectors perpendicular to each other and $|\vec{a}|=2,|\vec{b}|=3, \vec{c} \times \vec{a}=\vec{b}$, then the least value of $2|\vec{c}-\vec{a}|$ is
A. 1
B. 2
C. 3
D. 4

Answer: C

9. If \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=1,|\vec{b}|=4, \vec{a} \cdot \vec{b}=2$. If $\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b}$, then the angle between \vec{a} and \vec{c} is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{3 \pi}{4}$
D. $\frac{5 \pi}{6}$

Answer: D

- Watch Video Solution

10. If \vec{a} and \vec{b} are non-zero, non parallel vectors, then the value of $|\vec{a}+\vec{b}+\vec{a} \times \vec{b}|^{2}+|\vec{a}+\vec{b}-\vec{a} \times \vec{b}|^{2}$ equals
A. $(1+\vec{a} \cdot \vec{a})(1+\vec{b} \cdot \vec{c})$
B. $2(1+\vec{a} \cdot \vec{a})(1+\vec{b} \cdot \vec{b})$
C. $2\left\{(1+\vec{a} \cdot \vec{a})(1+\vec{b} \cdot \vec{b})-(1-\vec{a} \cdot \vec{b})^{2}\right\}$
D. $2\left\{(1-\vec{a} \cdot \vec{a})(1-\vec{b} \cdot \vec{b})+(1-\vec{a} \cdot \vec{b})^{2}\right\}$

Answer: C

- Watch Video Solution

11. If $a^{2}+b^{2}+c^{2}=1$ where, $\mathrm{a}, \mathrm{b}, c \in R$, then the maximum value of $(4 a-3 b)^{2}+(5 b-4 c)^{2}+(3 c-5 a)^{2}$ is
A. 25
B. 50
C. 144
D. none of these

Answer: B

12. Three vectors $\vec{a}, \vec{b}, \vec{c}$ are such that $\vec{a} \times \vec{b}=4(\vec{a} \times \vec{c})$ and $|\vec{a}|=|\vec{b}|=$ and $|\vec{c}|=\frac{1}{4}$. If the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ then \vec{b} is
A. $\vec{a}+4 \vec{c}$
B. $\vec{a}-4 \vec{c}$
C. $4 \vec{c}-\vec{a}$
D. $2 \vec{c}-\vec{a}$

Answer: A:C

- Watch Video Solution

13. If $2 \vec{a}, 3 \vec{b}, 2(\vec{a} \times \vec{b})$ are position vectors of the vectors A, B, C, of $\triangle A B C$ and $|\vec{a}|=|\vec{b}|=1, \overrightarrow{O A} \cdot \overrightarrow{O B}=-3$ (where O is the origin), then
A. Triangle ABC is right-angled triangle
B. Angle B is 90°
C. $A=\cos ^{-1}\left(\sqrt{\frac{7}{19}}\right)$
D. The position vector of orthocenter is $2(\vec{a} \times \vec{b})$

Answer: A::C::D

- View Text Solution

