

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

CROSS PRODUCTS

Dpp 2 2

1. Let \overrightarrow{a} and \overrightarrow{b} be two vectors of equal magnitude 5 units. Let \overrightarrow{p} , \overrightarrow{q} be

vectors such that $\overrightarrow{p}=\overrightarrow{a}-\overrightarrow{b}$ and $\overrightarrow{q}=\overrightarrow{a}+\overrightarrow{b}$.

$$\left|\overrightarrow{p} imes\overrightarrow{q}
ight|=2igg\{\lambda-\left(\overrightarrow{a}.\stackrel{
ightarrow}{b}
ight)^2igg\}^{rac{1}{2}}$$
 , then value of λ is

A. 25

B. 125

C. 625

D. none of these

Answer: C

Watch Video Solution

- **2.** Let $\overrightarrow{u}=2\hat{i}-\hat{j}+\hat{k},$ $\overrightarrow{v}=-3\hat{j}+2\hat{k}$ be vectors and \overrightarrow{w} be a unit vector in the xy-plane. Then the maximum possible value of $\left|\left(\overrightarrow{u}\times\overrightarrow{v}\right)\right|.$ $\left|\overrightarrow{w}\right|$ is
 - A. $\sqrt{5}$
 - B. $\sqrt{12}$
 - C. $\sqrt{13}$
 - D. $\sqrt{17}$

Answer: D

3. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three unit vectors in a plane such that they are

$$\left(\overrightarrow{a} imes\overrightarrow{b}
ight)\!.\left(\overrightarrow{b} imes\overrightarrow{c}
ight)\!+\left(\overrightarrow{b} imes\overrightarrow{c}
ight)\!.\left(\overrightarrow{c} imes\overrightarrow{a}
ight)\!+\left(\overrightarrow{c}$$

equally inclined to each other, then the value of
$$\left(\overrightarrow{a}\times\overrightarrow{b}\right).\left(\overrightarrow{b}\times\overrightarrow{c}\right)+\left(\overrightarrow{b}\times\overrightarrow{c}\right).\left(\overrightarrow{c}\times\overrightarrow{a}\right)+\left(\overrightarrow{c}\times\overrightarrow{a}\right).\left(\overrightarrow{a}\times\overrightarrow{b}\right)$$

A.
$$\frac{9}{4}$$

B.
$$-\frac{9}{4}$$

D.
$$-\frac{3}{4}$$

Answer: A

Watch Video Solution

(3a,0,0),(0,3b,0) and (0,0,3c) respectively, then the area of ΔPQR is

4. The coordinates of the mid-points of the sides of ΔPQR , are

A.
$$18\sqrt{b^2c^2+c^2a^2+a^2b^2}$$

B.
$$9\sqrt{b^2c^2+c^2a^2+a^2b^2}$$

C.
$$rac{9}{12}\sqrt{b^2c^2+c^2a^2+a^2b^2}$$

D.
$$rac{9}{2}\sqrt{b^2c^2+c^2a^2+a^2b^2}$$

Answer: A

Watch Video Solution

5. If
$$\overrightarrow{a}=\hat{i}+\hat{j}+\hat{k},$$
 $\overrightarrow{a}.$ $\overrightarrow{b}=1$ and $\overrightarrow{a} imes\overrightarrow{b}=\hat{j}-\hat{k}$ then \overrightarrow{b}

- A. 3
- B. 9
- C. 10
- D. 12

Answer: A

. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are unit

$$c^{\prime}$$
 are unit vectors such

that

$$\overrightarrow{a}$$
. $\overrightarrow{b}=0$, $\left(\overrightarrow{a}-\overrightarrow{c}\right)$. $\left(\overrightarrow{b}+\overrightarrow{c}\right)=0$ and $\overrightarrow{c}=\lambda\overrightarrow{a}+\mu\overrightarrow{b}+\omega\left(\overrightarrow{a} imes\overrightarrow{b}\right)$, where λ,μ,ω are scalars, then

A.
$$\mu^2+\omega^2=1$$

$$B.\lambda + \mu = 1$$

C.
$$\left(\mu+1\right)^2+\mu^2+\omega^2=1$$

D.
$$\lambda^2 + \mu^2 = 1$$

Answer: C

Watch Video Solution

7. Let $\ \triangle \ ABC$ be a given triangle. If $\left|\overrightarrow{BA}-\overrightarrow{tBC}\right|\geq\left|\overrightarrow{AC}\right|$ for any $t\in R$,then $\ \triangle \ ABC$ is

A. Equilateral

B. Right angled

C. Isosceles

D. None of these

Answer: B

View Text Solution

8. If $\overrightarrow{a}, \overrightarrow{b}$ are vectors perpendicular to each other and

$$\left|\overrightarrow{a}
ight|=2,\left|\overrightarrow{b}
ight|=3,\overrightarrow{c} imes\overrightarrow{a}=\overrightarrow{b}$$
 , then the least value of $2\left|\overrightarrow{c}-\overrightarrow{a}
ight|$ is

A. 1

B. 2

C. 3

D. 4

Answer: C

9. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are two vectors such that $\left|\overrightarrow{a}\right|=1,\left|\overrightarrow{b}\right|=4,\overrightarrow{a}$. $\overrightarrow{b}=2$. If

$$\overrightarrow{c}=\left(2\overrightarrow{a} imes\overrightarrow{b}
ight)-3\overrightarrow{b}$$
 , then the angle between \overrightarrow{a} and \overrightarrow{c} is

A.
$$\frac{\pi}{3}$$

$$\mathsf{B.}\;\frac{\pi}{6}$$

C.
$$\frac{3\pi}{4}$$
D. $\frac{5\pi}{6}$

Answer: D

$$\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{b}\right|^2 + \left|\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{a} \times \overrightarrow{b}\right|^2$$
 equals

A.
$$\left(1 + \overrightarrow{a} \cdot \overrightarrow{a}\right) \left(1 + \overrightarrow{b} \cdot \overrightarrow{c}\right)$$

10. If \overrightarrow{a} and \overrightarrow{b} are non-zero, non parallel vectors, then the value of

$$\operatorname{B.2}\!\left(1+\stackrel{\rightarrow}{a},\stackrel{\rightarrow}{a}\right)\!\left(1+\stackrel{\rightarrow}{b},\stackrel{\rightarrow}{b}\right)$$

$$\mathsf{C.}\,2\bigg\{\Big(1+\stackrel{\longrightarrow}{a},\stackrel{\longrightarrow}{a}\Big)\bigg(1+\stackrel{\longrightarrow}{b},\stackrel{\longrightarrow}{b}\bigg)-\bigg(1-\stackrel{\longrightarrow}{a},\stackrel{\longrightarrow}{b}\bigg)^2\bigg\}$$

$$\mathsf{D.}\,2\bigg\{\bigg(1-\overrightarrow{a}\,.\,\overrightarrow{a}\bigg)\bigg(1-\overrightarrow{b}\,.\,\overrightarrow{b}\bigg)+\bigg(1-\overrightarrow{a}\,.\,\overrightarrow{b}\bigg)^2\bigg\}$$

Answer: C

Watch Video Solution

11. If
$$a^2+b^2+c^2=1$$
 where, a,b, $c\in R$, then the maximum value of $(4a-3b)^2+(5b-4c)^2+(3c-5a)^2$ is

$$(-3b)^* + (5b - 4c)^* + (3c - 5a)^*$$
 1

C. 144

A. 25

Answer: B

12. Three vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are such that $\overrightarrow{a} \times \overrightarrow{b} = 4 \left(\overrightarrow{a} \times \overrightarrow{c} \right)$ and

$$\left|\overrightarrow{a}\right|=\left|\overrightarrow{b}\right|=$$
 and $\left|\overrightarrow{c}\right|=\frac{1}{4}.$ If the angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{3}$ then \overrightarrow{b} is

A.
$$\overrightarrow{a} + 4\overrightarrow{c}$$

B.
$$\overrightarrow{a}-4\overrightarrow{c}$$

$$\mathsf{C.}\, 4\overrightarrow{c} - \overrightarrow{a}$$

D.
$$2\overrightarrow{c}-\overrightarrow{a}$$

Answer: A::C

13. If $2\overrightarrow{a}$, $3\overrightarrow{b}$, $2\left(\overrightarrow{a}\times\overrightarrow{b}\right)$ are position vectors of the vectors A,B,C, of $\triangle ABC$ and $\left|\overrightarrow{a}\right|=\left|\overrightarrow{b}\right|=1$, \overrightarrow{OA} . $\overrightarrow{OB}=-3$ (where O is the origin),

then

A. Triangle ABC is right-angled triangle

B. Angle B is 90°

$$\mathsf{C.}\,A = \cos^{-1}\!\left(\sqrt{\frac{7}{19}}\right)$$

D. The position vector of orthocenter is $2\left(\overrightarrow{a}\times\overrightarrow{b}\right)$

Answer: A::C::D

View Text Solution