© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

Examples

1. Find the angel between the following pairs of vectors $3 \hat{i}+2 \hat{j}-6 \hat{k}, 4 \hat{i}-3 \hat{j}+\hat{k} \hat{i}-2 \hat{j}+3 \hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

2. If \vec{a}, \vec{b} and \vec{c} are non-zero vectors such that \vec{a}. $\vec{b}=\vec{a}$. \vec{c}, the find the goemetrical relation between the vectors.
3. if $\vec{r} \cdot \vec{i}=\vec{r} \cdot \vec{j}=\vec{r} \cdot \vec{k}$ and $|\vec{r}|=3$, then find vector \vec{r}.

- Watch Video Solution

4. If \vec{a}, \vec{b} and \vec{c} are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, then the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is

- Watch Video Solution

5. if \vec{a}, \vec{b} and \vec{c} are mutally perpendicular vectors of equal magnitudes, then find the angle between vectors and $\vec{a}+\vec{b}+\vec{c}$.

- Watch Video Solution

6. If $|\vec{a}|+|\vec{b}|=|\vec{c}|$ and $\vec{a}+\vec{b}=\vec{c}$ then find the angle between \vec{a} and \vec{b}.
7. If three unit vectors \vec{a}, \vec{b} and \vec{c} satisfy $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$. Then find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

8. If θ is the angle between the unit vectors \vec{a} and \vec{b}, then prove that
i. $\cos \left(\frac{\theta}{2}\right)=\frac{1}{2}|\vec{a}+\vec{b}|$
ii. $\sin \left(\frac{\theta}{2}\right)=\frac{1}{2}|\vec{a}-\vec{b}|$

- Watch Video Solution

9. find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$

- Watch Video Solution

10. If the scalar projection of vector $x \hat{i}-\hat{j}+\hat{k} 1$ on vector $2 \hat{i}-\hat{j}+5 \hat{k} i s \frac{1}{\sqrt{30}}$. The find the value of x.

- Watch Video Solution

11. If $\vec{a}=x \hat{i}+(x-1) \hat{j}+\hat{k}$ and $\vec{b}=(x+1) \hat{i}+\hat{j} a \hat{k}$ make an acute angle $\forall x \in R$, then find the values of a.

- Watch Video Solution

12. If $\vec{a} . \vec{i}=\vec{a} \cdot(\hat{i}+\hat{j})=\vec{a} .(\hat{i}+\hat{j}+\hat{k})$. Then find the unit vector \vec{a}.

- Watch Video Solution

13. Prove by vector method that $\cos (A+B) \cos A \cos B-\sin A \sin B$
14. In any triangle $A B C$, prove the projection formula $a=b \cos C+$ os B using vector method.

- Watch Video Solution

15. Prove that an angle inscribed in a semi-circle is a right angle using vector method.

- Watch Video Solution

16. Using dot product of vectors, prove that a parallelogram, whose diagonals are equal, is a rectangle

- Watch Video Solution

17. If $a+2 b+3 c=4$, then find the least value of $a^{2}+b^{2}+c^{2}$
18. A unit vector a makes angle $\frac{\pi}{4}$ with z-axis. If $a+i+j$ is a unit vector, then a can be equal to

- Watch Video Solution

19. vectors \vec{a}, \vec{b} and \vec{c} are of the same length and when taken pair-wise they form equal angles. If $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=\hat{j}+\hat{k}$ then find vector \vec{c}.

- Watch Video Solution

20. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular unit vectors and \vec{d} is a unit vector which makes equal angal with \vec{a}, \vec{b} and \vec{c}, then find the value of $|\vec{a}+\vec{b}+\vec{c}+\vec{d}|^{2}$.
21. A particle acted on by constant forces $4 \vec{i}+\vec{j}-3 \vec{k}$ and $3 \vec{i}+\vec{j}-\vec{k}$ is displaced from the point $\vec{i}+2 \vec{j}+3 \vec{k}$ to the point $5 \vec{i}+4 \vec{j}+\vec{k}$. Find the total work done by the forces

- Watch Video Solution

22. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitude show that $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c}

- Watch Video Solution

23. If $\vec{a}=4 \hat{i}+6 \hat{j}$ and $\vec{b}=3 \hat{i}+4 \hat{k}$ find the vector component of $\vec{a} a l o n d \vec{b}$.

- Watch Video Solution

24. If $|\vec{a}|=|\vec{b}|=|\vec{a}+\vec{b}|=1$ then find the value of $|\vec{a}-\vec{b}|$

- Watch Video Solution

25. If $\vec{a}=-\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+0 \hat{j}+\hat{k}$ then find vector \vec{c} satisfying the following conditions, (i) that it is coplaner with \vec{a} and \vec{b}, (ii) that it is \perp to \vec{b} and (iii) that $\vec{a} . \vec{c}=7$.

- Watch Video Solution

26. If \vec{a}, \vec{b} and \vec{c} are vectors such that $|\vec{a}|=3,|\vec{b}|=4$ and $\mid \vec{\imath}=5$ and $(\vec{a}+\vec{b})$ is perpendicular to vecc, (vecb+vecc) is perpendicular to veca and (vecc+veca)isperpendicar \rightarrow vecb then|veca+vecb+vecc|=(A)4 $\sqrt{3}$ (B) $5 \sqrt{2}$ (C) 2 (D) 12

- Watch Video Solution

27. Prove that in a tetrahedron if two pairs of opposite edges are perpendicular , then the third pair is also perpendicular.
28. In the isosceles triangle $A B C,|\overrightarrow{A B}|=|\overrightarrow{B C}|=8$,a point E divide $A B$ internally in the ratio $1: 3$, then the cosine of the angle between $C E$ and
$\overrightarrow{C A}$ is (where $|\overrightarrow{C A}|=12$)

D Watch Video Solution

29. An arc $A C$ of a circle subtends a right angle at then the center O. the point B divides the are in the ratio $1: 2$, If $\vec{O} A=a \& \vec{O} B=b$. then the vector $\vec{O} C$ in terms of $a \& b$, is

D Watch Video Solution

30. Vector $\vec{O} A=\hat{i}+2 \hat{j}+2 \hat{k}$ turns through a right angle passing through the positive x-axis on the way. Show that the vector in its new position is

$4 \hat{i}-\hat{j}-\hat{k}$. $\sqrt{2}$

- Watch Video Solution

31. The base of the pyramid $A O B C$ is an equilateral triangle $O B C$ with each side equal to $4 \sqrt{2}, O$ is the origin of reference, $A O$ is perpendicualar to the plane of $O B C$ and $|\vec{A} O|=2$. Then find the cosine of the angle between the skew straight lines, one passing though A and the midpoint of $O B a n d$ the other passing through O and the mid point of $B C$

- Watch Video Solution

32. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=\hat{i}-7 \hat{j}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$.

- Watch Video Solution

33. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$ then $\mid \vec{a} \times \vec{b}$ is a unit vector. If the angle between \vec{a} and \vec{b} is ?

- Watch Video Solution

34. Prove that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$ also interpret this result.

- Watch Video Solution

35. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{a}=2 \hat{i}-2 \hat{j}+4 \hat{k}$. Find a vector
\vec{d} which perpendicular to both \vec{a} and \vec{b} and $\vec{c} . \vec{d}=15$.

- Watch Video Solution

36. If A, $B a n d C$ are the vetices of a triangle $A B C$, then prove sine rule

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

37. Using cross product of vectors, prove that $\sin (A+B)=\sin A \cos B+\cos A \sin B$

- Watch Video Solution

38. Find a unit vector perpendicular to the plane determined by the points (1, - 1, 2), (2, 0, - 1) and($0,2,1$)

- Watch Video Solution

39. If \vec{a} and \vec{b} are two vectors, then prove that $(\vec{a} \times \vec{b})^{2}=\left|\begin{array}{ll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b}\end{array}\right|$

- Watch Video Solution

40. If $|\vec{a}|=2$ then find the value of $|\vec{a} \times \vec{i}|^{2}+|\vec{a} \times \vec{j}|^{2}+|\vec{a} \times \vec{k}|^{2}$

- Watch Video Solution

41. $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}, \vec{r} \times \vec{b}=\vec{a} \times \vec{b}, \vec{a} \neq \overrightarrow{0}, \vec{b} \neq \overrightarrow{0}, \vec{a} \neq \lambda \vec{b}$ and \vec{a} is not perpendicular to \vec{b}, then find \vec{r} in terms of \vec{a} and \vec{b}.

Watch Video Solution

42. $A, B, C a n d D$ are any four points in the space, then prove that
$|\vec{A} B \times \vec{C} D+\vec{B} C \times \vec{A} D+\vec{C} A \times \vec{B} D|=4$ (area of $A B C$.

- Watch Video Solution

43. If \vec{a}, \vec{b} and \vec{c} are the position vectors of the vertices A, B and C. respectively, of $\triangle A B C$. Prove that the perpendicualar distance of the vertex A from the base $B C$ of the triangle $A B C$ is $\frac{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}{}$

$$
|\vec{c}-\vec{b}|
$$

44. Using vectors, find the area of the triangle with vertices $A(1,1,2), B(2,3,5)$ and $C(1,5,5)$

- Watch Video Solution

45. Find the area of the parallelogram whsoe adjacent sides are given by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k} d n \vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$

- Watch Video Solution

46. Area of a parallelogram, whose diagonals are $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+4 \hat{k}$ will be:
47. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $\vec{a} \neq 0,|\vec{a}|=|\vec{c}|=1,|\vec{b}|=4$ and $|\vec{b} \times \vec{c}|=\sqrt{15}$. If $\vec{b}-2 \vec{c}=\lambda \vec{a}$ then find the value of λ.

- Watch Video Solution

48. Find the moment about (1,-1,-1) of the force $3 \hat{i}+4 \hat{j}-5 \hat{k}$ acting at $(1,0,-2)$

- Watch Video Solution

49. A rigid body is spinning about a fixed point ($3,-2,-1$) with an angular velocity of $4 \mathrm{rad} / \mathrm{s}$, the axis of rotation being in the direction of $(1,2,2)$. Find the velocity of the particle at point $(4,1,1)$.

- Watch Video Solution

50. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ show that $(\vec{a}-\vec{d})$ is parallel to \wedge $(\vec{b}-\vec{c})$. Itisgivent vec! =vecd and vecb!=vecc.

- Watch Video Solution

51. Show by a numerical example and geometrically also that $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ does not imply $\vec{b}=\overrightarrow{.}$

- Watch Video Solution

52. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are the position vectors of the vertices of a cycle quadrilateral

$$
A B C D, \quad \text { prove }
$$

that

$$
\frac{|\vec{a} \times \vec{b}+\vec{b} \times \vec{d}+\vec{d} \times \vec{a}|}{(\vec{b}-\vec{a}) \cdot(\vec{d}-\vec{a})}+\frac{|\vec{b} \times \vec{c}+\vec{c} \times \vec{d}+\vec{d}+\vec{d} \times \vec{b}|}{(\vec{b}-\vec{c}) \cdot(\vec{d}-\vec{c})}
$$

- Watch Video Solution

53. The postion vectors of the vertrices fo aquadrilateral with A as origian are $B(\vec{b}), D(\vec{d})$ and $C(\vec{b}+m \vec{d})$. Prove that the area of the quadrilateral is $\frac{1}{2}(l+m)|\vec{b} \times \vec{d}|$.

- Watch Video Solution

54. Let \vec{a} and \vec{b} be unit vectors such that $|\vec{a}+\vec{b}|=\sqrt{3}$. Then find the value of $(2 \vec{a}+5 \vec{b}) \cdot(3 \vec{a}+\vec{b}+\vec{a} \times \vec{b})$

- Watch Video Solution

55. uandv are two non-collinear unit vectors such that $\left|\frac{\hat{u}+\hat{v}}{2}+\hat{u} \times \hat{v}\right|=1$. Prove that $|\hat{u} \times \hat{v}|=\left|\frac{\hat{u}-\hat{v}}{2}\right|$.

- Watch Video Solution

56. In a $\triangle A B C$ points D, E, F are taken on the sides $B C, C A$ and $A B$ respectively such that $\frac{B D}{D C}=\frac{C E}{E A}=\frac{A F}{F B}=n$ prove that $\triangle D E F=\frac{n^{2}-n+1}{(n+1)^{2}} /-\backslash \mathrm{ABC}{ }^{\prime}$

(Watch Video Solution

57. Let A, B, C be points with position vectors
$2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}+\hat{k}$ and $3 \hat{i}+\hat{j}+2 \hat{k}$ respectively. Find the shortest distance between point B and plane OAC.

- Watch Video Solution

58. Let $\vec{a}=x \hat{i}+12 \hat{j}-\hat{k},=2 \hat{i}+2 x \hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{k}$. If the ordered set $[\vec{b} \vec{c} \vec{a}]$ is left handed, then find the value of x.

- Watch Video Solution

59. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar vectors, then find the value of $\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{\vec{b} \cdot(\vec{c} \times \vec{a})}+\frac{\vec{b} \cdot(\vec{c} \times \vec{a})}{\vec{c} \cdot(\vec{a} \times \vec{b})}+\frac{\vec{c} \cdot(\vec{b} \times \vec{a})}{\vec{a} \cdot(\vec{b} \times \vec{c})}$

(Watch Video Solution

60. if the vectors $2 \hat{i}-3 \hat{j}, \hat{i}+\hat{j}-\hat{k}$ and $3 \hat{i}-\hat{k}$ from three concurrent edges of a parallelpiped, then find the volume of the parallelepied.

- Watch Video Solution

61. The postion vectors of the four angular points of a tetrahedron are $A(\hat{j}+2 \hat{k}), B(3 \hat{i}+\hat{k}), C(4 \hat{i}+3 \hat{j}+6 \hat{k})$ and $D(2 \hat{i}+3 \hat{j}+2 \hat{k})$ find the volume of the tetrahedron $A B C D$.

- Watch Video Solution

62. Let $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors and $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=0$. If the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ then find the value of $|[\vec{a} \vec{b} \vec{c}]|$

- Watch Video Solution

63. Prove that $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

64. Show that: $[\vec{l} \vec{m} \vec{n}][\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}\vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \cdot \vec{c} \\ \vec{m} \cdot \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \cdot \vec{c} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n} \cdot \vec{c}\end{array}\right|$

- Watch Video Solution

65. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \hat{b}=\hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j}-\hat{k}$, then find the value of
$\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}\end{array}\right|$

- Watch Video Solution

66. The value of a so thast the volume of parallelpiped formed by vectors
$\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}, a \hat{i}+\hat{k}$ becomes minimum is (A) $\sqrt{93}$) (B) 2 (C) $\frac{1}{\sqrt{3}}$ (D) 3

- Watch Video Solution

67. If \vec{u}, \vec{v} and \vec{w} are three non coplanar vectors then
$(\vec{u}+\vec{v}-\vec{w}) \cdot(\vec{u}-\vec{c}) \times(\vec{v}-\vec{w})$ equals
(A) $\vec{u} \cdot \vec{v} \times \vec{w}$
(B) $\vec{u} \cdot \vec{w} \times \vec{v}$
$3 \vec{u} . \vec{u} \times \vec{w}$ (D) 0
68. If \vec{a} and \vec{b} are two vectors, such that $|\vec{a} \times \vec{b}|=2$, then find the value of $[\vec{a} \vec{b} \vec{a} \times \vec{b}]$

- Watch Video Solution

69. Find th altitude of a parallelepiped whose three coterminous edges are vectors $\vec{A}=\hat{i}+\hat{j}+\hat{k}, \vec{B}=2 \hat{i}+4 \hat{j}-\hat{k}$ and $\vec{C}=\hat{i}+\hat{j}+3 \hat{k}$ with \vec{A} and \vec{B} as the sides of the base of the parallelepiped.

- Watch Video Solution

70. If $[\vec{a} \vec{b} \vec{c}]=2$, then find the value of $[(\vec{a}+2 \vec{b}-\vec{c})(\vec{a}-\vec{b})(\vec{a}-\vec{b}-\vec{c})]$

- Watch Video Solution

71. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vector and $\vec{a}=\alpha(\vec{a} \times \vec{b})+\beta(\vec{b} \times \vec{c})+\gamma(\vec{c} \times \vec{a})$ and $[\vec{a} \vec{b} \vec{c}]=1$ then $\vec{\alpha}+\vec{\beta}+\vec{\gamma}=$
$|\vec{a}|^{2}$ (B) $-|\vec{a}|^{2}$ (C) 0 (D) none of these

- Watch Video Solution

72. If $\vec{a}, \vec{b} a$ and \vec{c} are non- coplanar vecotrs, then prove that $\mid(\vec{a} \cdot \vec{d})(\vec{b} \times \vec{c})+(\vec{b} \cdot \vec{d})(\vec{c} \times \vec{a})+(\vec{c} \cdot \vec{d})(\vec{a} \times \vec{b})$ is independent of \vec{d} where \vec{d} is a unit vector.

Watch Video Solution

73. Prove that vectors $\vec{u}=\left(a l+a_{1} l_{1}\right) \hat{i}+\left(a m+a_{1} m_{1}\right) \hat{j}+\left(a n+a_{1} n_{1}\right) \hat{k}$ $\vec{v}=\left(b l+b_{1} l_{1}\right) \hat{i}+\left(b m+b_{1} m_{1}\right) \hat{j}+\left(b n+b_{1} n_{1}\right) \hat{k}$
$\vec{w}=\left(b l+b_{1} l_{1}\right) \hat{i}+\left(b m+b_{1} m_{1}\right) \hat{j}+\left(b n+b_{1} n_{1}\right) \hat{k}$

- Watch Video Solution

74. Let G_{1}, G_{2} and G_{3} be the centroids of the trianglular faces OBC,OCA and OAB, respectively, of a tetrahedron OABC. If V_{1} denotes the volume of
the tetrahedron OABC and V_{2} that of the parallelepiped with $O G_{1}, O G_{2}$ and $O G_{3}$ as three concurrent edges, then prove that $4 V_{1}=9 V_{2}$.

- Watch Video Solution

75. Prove that : $\vec{i} \times(\vec{a} \times \vec{i})+\vec{j} \times(\vec{a} \times \vec{j})+\vec{k} \times(\vec{a} \times \vec{k})=\overrightarrow{2 a}$

- Watch Video Solution

76. If $\hat{i} \times[(\vec{a}-\hat{j}) \times \hat{i}] \times[(\vec{a}-\hat{k}) \times \hat{j}]+\vec{k} \times[(\vec{a}-\vec{i}) \times \hat{k}]=0$, then find vector \vec{a}.

- Watch Video Solution

77. Prove that: $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=[\vec{a} \vec{b} \vec{c}]^{2}$
78. Prove that: (vecb $x x$ vecc).(vecaxxvecd)+(veccxxveca).(vecbxxvecd)+ (vecaxxvecb).(veccxxvecd)=0`

- Watch Video Solution

79. If \vec{b} and \vec{c} are two non-collinear such that $\vec{a}|\mid(\vec{b} \times \vec{c})$. Then prove that $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$ is equal to $|\vec{a}|^{2}(\vec{b} \cdot \vec{c})$ '

- Watch Video Solution

80. Find the vector of length 3 unit which is perpendicular to $\hat{i}+\hat{j}+\hat{k}$ and lies in the plane of $\hat{i}+\hat{j}+\hat{k}$ and $2 \hat{i}-3 \hat{j}$

- Watch Video Solution

81. Let \hat{a}, \vec{b} and \vec{c} be the non-coplanar unit vectors. The angle between \hat{b} and $\hat{c} i s \alpha$ betweenc \hat{c} and $\hat{a} i s \beta$ and betweenâ and $\hat{b} i s \gamma$.
$A(\hat{a} \cos \alpha), B(\hat{b} \cos \beta)$ and $C(\hat{c} \cos \gamma)$, then show that in triangle $A B C$, $\frac{|\hat{a} \times(\hat{b} \times \hat{c} a)|}{\sin A}=\frac{|\hat{b} \times(\hat{c} \times \hat{a})|}{\sin B}=\frac{|\hat{c} \times(\hat{a} \times \hat{b})|}{\sin C}=\frac{\Pi \mid \hat{a} \times(\hat{\times} \hat{c} \mid)}{\sum \sin \alpha-\cos \beta \cdot \cos \gamma \hat{n}_{1}}$
where $\hat{n}_{1}=\frac{\hat{b} \times \hat{c}}{|\hat{b} \times \hat{c}|}, \hat{n}_{2}=\frac{\hat{c} \times \hat{a}}{|\hat{c} \times \hat{a}|}$ and $\hat{n}_{3}=\frac{\hat{a} \times \hat{b}}{|\hat{a} \times \hat{b}|}$

- View Text Solution

82. If \vec{a}, \vec{b} and \vec{c} are three non-coplannar vectors, then prove that $\frac{|\hat{a} \times(\hat{b} \times \hat{c})|}{\sin A}=\frac{|\hat{b} \times(\hat{c} \times \hat{a})|}{\sin B}=\frac{|\hat{c} \times(\hat{a} \times \hat{b})|}{\sin C}=\frac{\Pi|\hat{a} \times(\hat{b} \times \hat{c})|}{\left|\sum \sin \alpha \cos \beta \cos \gamma \hat{n}_{1}\right|}$

D View Text Solution

83. If \vec{b} is not perpendicular to \vec{c}. Then find the vector \vec{r} satisfying the equation $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ and $\vec{r} \cdot \vec{c}=0$

- Watch Video Solution

84. If \vec{a} and \vec{b} are two given vectors and k is any scalar, then find the vector \vec{r} satisfying $\vec{r} \times \vec{a}+k \vec{r}=\vec{b}$.

- Watch Video Solution

85. If $\vec{r} \cdot \vec{a}=0, \vec{r} \cdot \vec{b}=1$ and $[\vec{r} \vec{a} \vec{b}]=1, \vec{a} \cdot \vec{b} \neq 0,(\vec{a} \cdot \vec{b})^{2}-|\vec{a}|^{2}|\vec{b}|^{2}=1$, then find \vec{r} in terms of \vec{a} and \vec{b}.

- Watch Video Solution

86. if vector \vec{x} satisfying $\vec{x} \times \vec{a}+(\vec{x} \cdot \vec{b}) \vec{c}=\vec{d}$ is given by

$$
\vec{a} \times(\overrightarrow{d x x \vec{c}})
$$

$\vec{x}=\lambda \vec{a}+\vec{a} \times \frac{}{(\vec{a} \cdot \vec{c})| |^{2}}$
$(\vec{a} . \vec{c})|\vec{a}|^{2}$

- View Text Solution

87. If \vec{a}, \vec{b} and \vec{c} are non coplnar and non zero vectors and \vec{r} is any vector in space then $[\vec{c} \vec{r} \vec{b}] \vec{a}+p \vec{a} \vec{r} \vec{c}] \vec{b}+[\vec{b} \vec{r} \vec{a}]_{c}=$ (A) $[\vec{a} \vec{b} \vec{c}]$ (B) $[\vec{a} \vec{b} \vec{c}] \vec{r}$
\vec{r}
$[\vec{a} \vec{b} \vec{c}$]
(D) $\vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$

- Watch Video Solution

88. If \vec{a}, \vec{b} and \vec{c} are non coplanar and unit vectors such that $\left.\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{92}}\right)$ then the angle between vea and \vec{b} is (A) $\frac{3 \pi}{4}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) π

- Watch Video Solution

89.

Prove
that
$\vec{R}+\frac{[\vec{R} \cdot(\vec{\beta} \times(\vec{\beta} \times \vec{\alpha}))] \vec{\alpha}}{|\vec{\alpha} \times \vec{\beta}|^{2}}+\frac{[\vec{R} \cdot(\vec{\alpha} \times(\vec{\alpha} \times \vec{\beta}))] \vec{\beta}}{|\vec{\alpha} \times \vec{\beta}|^{2}}=\frac{[\vec{R} \vec{\alpha} \vec{\beta}](\vec{\alpha} \times \vec{\beta})}{|\vec{\alpha} \times \vec{\beta}|^{2}}$
90. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar non-zero vectors, then prove that $(\vec{a} \cdot \vec{a}) \vec{b} \times \vec{c}+(\vec{a} \cdot \vec{b}) \vec{c} \times \vec{a}+(\vec{a} \cdot \vec{c}) \vec{a} \times \vec{b}=[\vec{b} \vec{c} \vec{a}] \vec{a}$

- Watch Video Solution

91. Find a set of vectors reciprocal to the $-\hat{i}+\hat{j}+\hat{k}, \hat{i}-\hat{j}+\hat{k}, \hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

92. Let \vec{a}, \vec{b} and \vec{c} be a set of non- coplanar vectors and \vec{a}^{\prime} veab' and \vec{c}^{\prime} be its reciprocal set.
prove that $\vec{a}=\frac{b^{\prime} \times c^{\prime}}{\left[\vec{a}^{\prime} \overrightarrow{b^{\prime}} \vec{c}^{\prime}\right]}, \vec{b}=\frac{c^{\prime} \times a^{\prime}}{\left[\vec{a}^{\prime} \vec{b}^{\prime} \vec{c}^{\prime}\right]}$ and $\vec{c}=\frac{a^{\prime} \times b^{\prime}}{\left[\vec{a}^{\prime} \vec{b}^{\prime} \vec{c}^{\prime}\right]}$

- Watch Video Solution

93. Prove that $\vec{a}^{\prime} \times \vec{b}^{\prime}+\vec{b}^{\prime} \times \vec{c}^{\prime}+\vec{c}^{\prime} \times \vec{a}^{\prime}=\frac{\vec{a}+\vec{b}+\vec{c}}{[\vec{a} \vec{b} \vec{c}]}$

- Watch Video Solution

94. If \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and a^{\prime}, b and c^{\prime} constitute the reciprocal system of vectors, then prove that
i. $\vec{r}=\left(\vec{r} \cdot \vec{a}^{\prime}\right) \vec{a}+\left(\vec{r} \cdot \vec{b}^{\prime}\right) \vec{b}+\left(\vec{r} \cdot \vec{c}^{\prime}\right) \vec{c}$
ii. $\vec{r}=(\vec{r} \cdot \vec{a}) \vec{a}^{\prime}+(\vec{r} \cdot \vec{b}) \vec{b}^{\prime}+(\vec{r} \cdot \vec{c}) \vec{c}^{\prime}$

- Watch Video Solution

95. Find the angel between the following pairs of vectors $3 \hat{i}+2 \hat{j}-6 \hat{k}, 4 \hat{i}-3 \hat{j}+\hat{k} \hat{i}-2 \hat{j}+3 \hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

96. If \vec{a}, \vec{b} and \vec{c} are non-zero vectors such that $\vec{a} . \vec{b}=\vec{a}$. \vec{c}, the find the goemetrical relation between the vectors.

- Watch Video Solution

97. if $\vec{r} \cdot \vec{i}=\vec{r} . \vec{j}=\vec{r} . \vec{k}$ and $|\vec{r}|=3$, then find vector \vec{r}.

- Watch Video Solution

98. If \vec{a}, \vec{b} and \vec{c} are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, then the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is

D Watch Video Solution

99. if \vec{a}, \vec{b} and \vec{c} are mutally perpendicular vectors of equal magnitudes, then find the angle between vectors and $\vec{a}+\vec{b}=\vec{c}$.
100. If $|\vec{a}|=|\vec{b}|=|\vec{c}|$ and $\vec{a}+\vec{b}=\vec{c}$ then find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

101. If three unit vectors \vec{a}, \vec{b} and \vec{c} satisfy $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$. Then find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

102. If θ is the angle between the unit vectors \vec{a} and \vec{b}, then prove that
i. $\cos \left(\frac{\theta}{2}\right)=\frac{1}{2}|\vec{a}+\vec{b}|$
ii. $\sin \left(\frac{\theta}{2}\right)=\frac{1}{2}|\vec{a}-\vec{b}|$
103. find the projection of the vector $\hat{i}+3 \hat{j}=7 \hat{k}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$

Watch Video Solution

104. If the scalar projection of vector $x \hat{i}-\hat{j}+\hat{k} 1$ on vector $2 \hat{i}-\hat{j}+5 \hat{k} i s \frac{1}{\sqrt{30}}$. The find the value of x.

- Watch Video Solution

105. If $\vec{a}=x \hat{i}+(x-1) \hat{j}+\hat{k}$ and $\vec{b}=(x+1) \hat{i}+\hat{j} a \hat{k}$ make an acute angle $\forall x \in R$, then find the values of a.

- Watch Video Solution

106. If \vec{a}. $\vec{i}=\vec{a} .(\hat{i}+\hat{j})=\vec{a} .(\hat{i}+\hat{j}+\hat{k})$. Then find the unit vector \vec{a}.
107. Prove by vector method that $\cos (A+B) \cos A \cos B-\sin A \sin B$

- Watch Video Solution

108. In any triangle $A B C$, prove the projection formula $a=b \cos C+o s B$ using vector method.

- Watch Video Solution

109. Prove that an angle inscribed in a semi-circle is a right angle using vector method.

- Watch Video Solution

110. Using dot product of vectors, prove that a parallelogram, whose diagonals are equal, is a rectangle
111. If $a+2 b+3 c=4$, then find the least value of $a^{2}+b^{2}+c^{2}$

- Watch Video Solution

112. A unit vector a makes an angle $\frac{\pi}{4}$ with z -axis. If $a+i+j$ is a unit vector, then a can be equal to

- Watch Video Solution

113. vectors \vec{a}, \vec{b} and \vec{c} are of the same length and when taken pair-wise they form equal angles. If $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=\hat{j}+\hat{k}$ then find vector \vec{c}.

- Watch Video Solution

114. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular unit vectors and \vec{d} is a unit vector which makes equal angal with \vec{a}, \vec{b} and \vec{c}, then find the value
of $|\vec{a}+\vec{b}+\vec{c}+\vec{d}|^{2}$.

- Watch Video Solution

115. A paticle acted on by constant forces $4 \hat{i}=\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{j}-\hat{k}$ is displaced from the point $\hat{i}+2 \hat{j}+3 \hat{k} \rightarrow 5 \hat{i}+4 \hat{j}+\hat{k}$. Find the work done

- Watch Video Solution

116. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitude show that $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c}

- Watch Video Solution

117. If $\vec{a}=4 \hat{i}+6 \hat{j}$ and $\vec{b}=3 \hat{i}+4 \hat{k}$ find the vector component of $\vec{a} a$ lond \vec{b}.

- Watch Video Solution

118. If $|\vec{a}|=|\vec{b}|=|\vec{a}+\vec{b}|=1$ then find the value of $|\vec{a}-\vec{b}|$

- Watch Video Solution

119. If $\vec{a}=-\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+0 \hat{j}+\hat{k}$ then find vector \vec{c} satisfying the following conditions, (i) that it is coplaner with \vec{a} and \vec{b}, (ii) that it is \perp to \vec{b} and (iii) that $\vec{a} . \vec{c}=7$.

- Watch Video Solution

120. Let \vec{a}, \vec{b} and \vec{c} are vectors such that $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=5$, and $(\vec{a}+\vec{b})$ is perpendicular to $\vec{c},(\vec{b}+\vec{c})$ is perpendiculatr to \vec{a} and $(\vec{c}+\vec{a})$ is perpendicular to \vec{b}. Then find the value of $|\vec{a}+\vec{b}+\vec{c}|$.

- Watch Video Solution

121. Prove that in a tetrahedron if two pairs of opposite edges are perpendicular , then the third pair is also perpendicular.

Watch Video Solution

122. In the isosceles triangle $A B C,|\overrightarrow{A B}|=|\overrightarrow{B C}|=8$,a point E divide $A B$ internally in the ratio $1: 3$, then the cosine of the angle between $C E$ and $\overrightarrow{C A}$ is (where $|\overrightarrow{C A}|=12$)

- Watch Video Solution

123. An arc $A C$ of a circle subtends a right angle at then the center O. the point B divides the are in the ratio $1: 2$, If $\vec{O} A=a \& \vec{O} B=b$. then the vector $\overrightarrow{O C} C$ in terms of $a \& b$, is
124. Vector $\vec{O} A=\hat{i}+2 \hat{j}+2 \hat{k}$ turns through a right angle passing through the positive x-axis on the way. Show that the vector in its new position is $\frac{4 \hat{i}-\hat{j}-\hat{k}}{\sqrt{2}}$

- Watch Video Solution

125. The base of the pyramid $A O B C$ is an equilateral triangle $O B C$ with each side equal to $4 \sqrt{2}, O$ is the origin of reference, $A O$ is perpendicualar to the plane of $O B C$ and $|\vec{A} O|=2$. Then find the cosine of the angle between the skew straight lines, one passing though A and the midpoint of $O B a n d$ the other passing through O and the mid point of $B C$

- Watch Video Solution

126. Find $\vec{a} \times \vec{b}$ and $|\vec{a} \times \vec{b}|$ if $\overrightarrow{=} \hat{i}-7 \hat{j}+7 \hat{k} \vec{b}=3 \hat{i}-2 \hat{+} 2 \hat{k}$
127. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$ then $\mid \vec{a} \times \vec{b}$ is a unit vector. If the angle between \vec{a} and \vec{b} is ?

- Watch Video Solution

128. Prove that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$ also interpret this result.

- Watch Video Solution

129. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-2 \hat{j}+4 \hat{k}$. Find a vector \vec{d} which perpendicular to both \vec{a} and \vec{b} and $\vec{c} . \vec{d}=15$.

- Watch Video Solution

130. If A, B and C are the vetices of a triangle $A B C$, then prove sine rule

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

131. Using cross product of vectors, prove that $\sin (A+B)=\sin A \cos B+\cos A \sin B$

- Watch Video Solution

132. Find a unit vector perpendicular to the plane determined by the points $(1,-1,2),(2,0,-1) \operatorname{and}(0,2,1)$

D Watch Video Solution

133. If \vec{a} and \vec{b} are two vectors, then prove that $(\vec{a} \times \vec{b})^{2}=\left|\begin{array}{ll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b}\end{array}\right|$
134. If $|\vec{a}|=2$ then find the value of $|\vec{a} \times \vec{i}|^{2}+|\vec{a} \times \vec{j}|^{2}+|\vec{a} \times \vec{k}|^{2}$

(Watch Video Solution

135. $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}, \vec{r} \times \vec{b}=\vec{a} \times \vec{b}, \vec{a} \neq \overrightarrow{0}, \vec{b} \neq \overrightarrow{0}, \vec{a} \neq \lambda \vec{b}$ and \vec{a} is not perpendicular to \vec{b}, then find \vec{r} in terms of \vec{a} and \vec{b}.

Watch Video Solution

136. $A, B, C a n d D$ are any four points in the space, then prove that
$|\vec{A} B \times \vec{C} D+\vec{B} C \times \vec{A} D+\vec{C} A \times \vec{B} D|=4$ (area of $A B C$.)

- Watch Video Solution

137. If \vec{a}, \vec{b} and \vec{c} are the position vectors of the vertices A, B and C. respectively, of $\triangle A B C$. Prove that the perpendicualar distance of the
vertex A from the base $B C$ of the triangle $A B C$ is $\underline{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}$
vertex A from the base $B C$ of the triangle $A B C$ is

$$
|\vec{c}-\vec{b}|
$$

- View Text Solution

138. Using vectors, find the area of the triangle with vertices $A(1,1,2), B(2,3,5)$ and $C(1,5,5)$

- Watch Video Solution

139. Find the area of the parallelogram whsoe adjacent sides are given by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k} d n \vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$

- Watch Video Solution

140. find the area of a parallelogram whose diagonals are $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}-3 \hat{j}+4 \hat{k}$.
141. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $\vec{a} \neq 0,|\vec{a}|=|\vec{c}|=1,|\vec{b}|=4$ and $|\vec{b} \times \vec{c}|=\sqrt{15}$. If $\vec{b}-2 \vec{c}=\lambda \vec{a}$ then find the value of λ.

- Watch Video Solution

142. Find the moment about (1,-1,-1) of the force $3 \hat{i}+4 \hat{j}-5 \hat{k}$ acting at (1,0,-2)

- Watch Video Solution

143. A rigid body is spinning about a fixed point ($3,-2,-1$) with an angular velocity of $4 \mathrm{rad} / \mathrm{s}$, the axis of rotation being in the direction of $(1,2,2)$.

Find the velocity of the particle at point $(4,1,1)$.
144. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ show that $(\vec{a}-\vec{d})$ is parallel to \wedge $(\vec{b}-\vec{c})$. Itisgivent vec! =vecd and vecb!=vecc.

- Watch Video Solution

145. Show by a numerical example and geometrically also that $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ does not imply $\vec{b}=\overrightarrow{.}$

- Watch Video Solution

146. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are the position vectors of the vertices of a cycle quadrilateral ABCD,
prove that

$$
\frac{|\vec{a} \times \vec{b}+\vec{b} \times \vec{d}+\vec{d} \times \vec{a}|}{(\vec{b}-\vec{a}) \cdot(\vec{d}-\vec{a})}+\frac{|\vec{b} \times \vec{c}+\vec{c} \times \vec{d}+\vec{d}+\vec{d} \times \vec{b}|}{(\vec{b}-\vec{c}) \cdot(\vec{d}-\vec{c})}
$$

- Watch Video Solution

147. The postion vectors of the vertrices fo aquadrilateral with A as origian are $B(\vec{b}), D(\vec{d})$ and $C(l \vec{b}+m \vec{d})$. Prove that the area of the quadrilateral is $\frac{1}{2}(l+m)|\vec{b} \times \vec{d}|$.

- Watch Video Solution

148. Let \vec{a} and \vec{b} be unit vectors such that $|\vec{a}+\vec{b}|=\sqrt{3}$, then the value of $(2 \vec{a}+5 \vec{b})$.
$(3 \vec{a}+\vec{b}+\vec{a} \times \vec{b})=$

- Watch Video Solution

149. \hat{u} and \hat{v} are two non-collinear unit vectors such that $\left|\frac{\hat{u}+\hat{v}}{2}+\hat{u} \times \vec{v}\right|=1$. Prove that $|\hat{u} \times \hat{v}|=\left|\frac{\hat{u}-\hat{v}}{2}\right|$

- Watch Video Solution

150. In a $\triangle A B C$ points D, E, F are taken on the sides $B C, C A$ and $A B$ respectively such that $\frac{B D}{D C}=\frac{C E}{E A}=\frac{A F}{F B}=n$ prove that $\triangle D E F=\frac{n^{2}-n+1}{(n+1)^{2}} / \triangle \mathrm{ABC}$.

- Watch Video Solution

151. Let A, B, C be points with position vectors
$2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}+\hat{k}$ and $3 \hat{i}+\hat{j}+2 \hat{k}$ respectively. Find the shortest distance between point B and plane OAC.

- Watch Video Solution

152. Let $\vec{a}=x \hat{i}+12 \hat{j}-\hat{k},=2 \hat{i}+2 x \hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{k}$. If the ordered set $[\vec{b} \vec{c} \vec{a}]$ is left handed, then find the value of x .

- Watch Video Solution

153. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar vectors, then find the value of $\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{\vec{b} \cdot(\vec{c} \times \vec{a})}+\frac{\vec{b} \cdot(\vec{c} \times \vec{a})}{\vec{c} \cdot(\vec{a} \times \vec{b})}+\frac{\vec{c} \cdot(\vec{b} \times \vec{a})}{\vec{a} \cdot(\vec{b} \times \vec{c})}$

(Watch Video Solution

154. if the vectors $2 \hat{i}-3 \hat{j}, \hat{i}+\hat{j}-\hat{k}$ and $3 \hat{i}-\hat{k}$ from three concurrent edges of a parallelpiped, then find the volume of the parallelepied.

- Watch Video Solution

155. The postion vectors of the four angular points of a tetrahedron are $A(\hat{j}+2 \hat{k}), B(3 \hat{i}+\hat{k}), C(4 \hat{i}+3 \hat{j}+6 \hat{k})$ and $D(2 \hat{i}+3 \hat{j}+2 \hat{k})$ find the volume of the tetrahedron $A B C D$.

- Watch Video Solution

156. Let $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors and $\vec{a} \cdot \vec{b}=\vec{a}$. $\vec{c}=0$. If the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ then find the value of $|[\vec{a} \vec{b} \vec{c}]|$

- Watch Video Solution

157. Prove that $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

158. Show that : $[\vec{l} \vec{m} \vec{n}][\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}\vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \cdot \vec{c} \\ \vec{m} . \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \cdot \vec{c} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n} \cdot \vec{c}\end{array}\right|$
159. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \hat{b}=\hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j}-\hat{k}$, then find the value of
$\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}\end{array}\right|$

- Watch Video Solution

160. find the value of a so that th volume fo a so that the valume of the parallelepiped formed by vectors $\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ becomes minimum.

Watch Video Solution

161. If \vec{u}, \vec{v}, and \vec{w} are three non-caplanar vectors, then prove that

$$
(\vec{u}+\vec{v}-\vec{w}) \cdot(\vec{u}-\vec{v}) \times(\vec{v}-\vec{w})=\vec{u} \cdot \vec{v} \times \vec{w}
$$

162. If \vec{a} and \vec{b} are two vectors, such that $|\vec{a} \times \vec{b}|=2$, then find the value of $[\vec{a} \vec{b} \vec{a} \times \vec{b}]$

- Watch Video Solution

163. Find th altitude of a parallelepiped whose three coterminous edges are vectors $\vec{A}=\hat{i}+\hat{j}+\hat{k}, \vec{B}=2 \hat{i}+4 \hat{j}-\hat{k}$ and $\vec{C}=\hat{i}+\hat{j}+3 \hat{k} w i t h \vec{A}$ and \vec{B} as the sides of the base of the parallelepiped.

- Watch Video Solution

164. If $[\vec{a} \vec{b} \vec{c}]=2$, then find the value of $[(\vec{a}+2 \vec{b}-\vec{c})(\vec{a}-\vec{b})(\vec{a}-\vec{b}-\vec{c})]$

- Watch Video Solution

165. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vector and $\vec{a}=\alpha(\vec{a} \times \vec{b})+\beta(\vec{b} \times \vec{c})+\gamma(\vec{c} \times \vec{a})$ and $[\vec{a} \vec{b} \vec{c}]=1$ then $\vec{\alpha}+\vec{\beta}+\vec{\gamma}=$
$|\vec{a}|^{2}(\mathrm{~B})-|\vec{a}|^{2}$ (C) 0 (D) none of these

- Watch Video Solution

166. If $\vec{a}, \vec{b} a$ and \vec{c} are non- coplanar vecotrs, then prove that $\mid(\vec{a} . \vec{d})(\vec{b} \times \vec{c})+(\vec{b} \cdot \vec{d})(\vec{c} \times \vec{a})+(\vec{c} . \vec{d})(\vec{a} \times \vec{b})$ is independent of \vec{d} where \vec{d} is a unit vector.

- Watch Video Solution

167. Prove that vectors

$$
\begin{aligned}
& \vec{u}=\left(a l+a_{1} l_{1}\right) \hat{i}+\left(a m+a_{1} m_{1}\right) \hat{j}+\left(a n+a_{1} n_{1}\right) \hat{k} \\
& \vec{v}=\left(b l+b_{1} l_{1}\right) \hat{i}+\left(b m+b_{1} m_{1}\right) \hat{j}+\left(b n+b_{1} n_{1}\right) \hat{k} \\
& \vec{w}=\left(w l+c_{1} l_{1}\right) \hat{i}+\left(c m+c_{1} m_{1}\right) \hat{j}+\left(c n+c_{1} n_{1}\right) \hat{k}
\end{aligned}
$$

- Watch Video Solution

168. Let G_{1}, G_{2} and G_{3} be the centroids of the trianglular faces OBC,OCA and $O A B$, respectively, of a tetrahedron $O A B C$. If V_{1} denotes the volume of the tetrahedron OABC and V_{2} that of the parallelepiped with $O G_{1}, O G_{2}$ and $O G_{3}$ as three concurrent edges, then prove that $4 V_{1}=9 V_{1}$.

D Watch Video Solution

169. Prove that $\hat{i} \times(\vec{a} \times \vec{i})+\hat{j} \times(\vec{a} \times \vec{j})+\hat{k} \times(\vec{a} \times \vec{k})=2 \vec{a}$

(Watch Video Solution

170. If $\hat{i} \times[(\vec{a}-\hat{j}) \times \hat{i}]+\hat{j} \times[(\vec{a}-\hat{k}) \times \hat{j}]+\vec{k} \times[(\vec{a}-\vec{i}) \times \hat{k}]=0$, then find vector \vec{a}.

- Watch Video Solution

171. Prove that: $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=[\vec{a} \vec{b} \vec{c}]^{2}$

- Watch Video Solution

172. For any four vectors prove that

$$
(\vec{b} \times \vec{c}) \cdot(\vec{a} \times \vec{d})+(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{d})+(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=0
$$

- Watch Video Solution

173. If \vec{b} and \vec{c} are two non-collinear such that $\vec{a}|\mid(\vec{b} \times \vec{c})$. Then prove that $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$ is equal to $|\vec{a}|^{2}(\vec{b} \cdot \vec{c})$ '

- Watch Video Solution

174. Find the vector of length 3 unit which is perpendicular to $\hat{i}+\hat{j}+\hat{k}$ and lies in the plane of $\hat{i}+\hat{j}+\hat{k}$ and $2 \hat{i}-3 \hat{j}$
175. Let \hat{a}, \vec{b} and \vec{c} be the non-coplanar unit vectors. The angle between \hat{b} and $\hat{c} i s \alpha$ betweenĉ and $\hat{a} i s \beta$ and betweenâ and $\hat{b} i s \gamma$.
$A(\hat{a} \cos \alpha), B(\hat{b} \cos \beta)$ and $C(\hat{c} \cos \gamma)$, then show that in triangle $A B C$, $\frac{|\hat{a} \times(\hat{b} \times \hat{c} a)|}{\sin A}=\frac{|\hat{b} \times(\hat{c} \times \hat{a})|}{\sin B}=\frac{|\hat{c} \times(\hat{a} \times \hat{b})|}{\sin C}=\frac{\Pi \mid \hat{a} \times(\hat{\times} \hat{c} \mid)}{\sum \sin \alpha-\cos \beta \cdot \cos \gamma \hat{n}_{1}}$
where $\hat{n}_{1}=\frac{\hat{b} \times \hat{c}}{|\hat{b} \times \hat{c}|}, \hat{n}_{2}=\frac{\hat{c} \times \hat{a}}{|\hat{c} \times \hat{a}|}$ and $\hat{n}_{3}=\frac{\hat{a} \times \hat{b}}{|\hat{a} \times \hat{b}|}$

- View Text Solution

176. If \vec{a}, \vec{b} and \vec{c} are three non-coplannar vectors, then prove that $\frac{|\hat{a} \times(\hat{b} \times \hat{c})|}{\sin A}=\frac{|\hat{b} \times(\hat{c} \times \hat{a})|}{\sin B}=\frac{|\hat{c} \times(\hat{a} \times \hat{b})|}{\sin C}=\frac{\Pi|\hat{a} \times(\hat{b} \times \hat{c})|}{\left|\sum \sin \alpha \cos \beta \cos \gamma \hat{n}_{1}\right|}$

- View Text Solution

177. If \vec{b} is not perpendicular to \vec{c}. Then find the vector \vec{r} satisfying the equation $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ and $\vec{r} . \vec{c}=0$

- Watch Video Solution

178. If \vec{a} and \vec{b} are two given vectors and k is any scalar,then find the vector \vec{r} satisfying $\vec{r} \times \vec{a}+k \vec{r}=\vec{b}$.

- Watch Video Solution

179. If $\vec{r} \cdot \vec{a}=0, \vec{r} \cdot \vec{b}=1$ and $[\vec{r} \vec{a} \vec{b}]=1, \vec{a} \cdot \vec{b} \neq 0,(\vec{a} \cdot \vec{b})^{2}-|\vec{a}|^{2}|\vec{b}|^{2}=1$, then find \vec{r} in terms of \vec{a} and \vec{b}.

- Watch Video Solution

180. if vector \vec{x} satisfying $\vec{x} \times \vec{a}+(\vec{x} \cdot \vec{b}) \vec{c}=\vec{d}$ is given by

$$
\vec{a} \times(\overrightarrow{d x x \vec{c}})
$$

$\vec{x}=\lambda \vec{a}+\vec{a} \times$

$$
(\vec{a} \cdot \vec{c})|\vec{a}|^{2}
$$

D View Text Solution

181. \vec{a}, \vec{b} and \vec{c} are three non-coplanar vectors and \vec{r}. Is any arbitrary vector. Prove that $[\vec{b} \vec{c} \vec{r}] \vec{a}+[\vec{c} \vec{a} \vec{r}] \vec{b}+[\vec{a} \vec{b} \vec{r}] \vec{c}=[\vec{a} \vec{b} \vec{c}] \vec{r}$.

- Watch Video Solution

182. If \vec{a}, \vec{b} and \vec{c} are non -coplanar unit vectors such that
$\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b} \times \vec{c}}{\sqrt{2}}, \vec{b}$ and \vec{c} are non- parallel, then prove that the angle between \vec{a} and $\vec{b} \mathrm{is} 3 \pi / 4$

- Watch Video Solution

$\vec{R}+\frac{[\vec{R} \cdot(\vec{\beta} \times(\vec{\beta} \times \vec{\alpha}))] \vec{\alpha}}{|\vec{\alpha} \times \vec{\beta}|^{2}}+\frac{[\vec{R} \cdot(\vec{\alpha} \times(\vec{\alpha} \times \vec{\beta}))] \vec{\beta}}{|\vec{\alpha} \times \vec{\beta}|^{2}}=\frac{[\vec{R} \vec{\alpha} \vec{\beta}](\vec{\alpha} \times \vec{\beta})}{|\vec{\alpha} \times \vec{\beta}|^{2}}$

- View Text Solution

184. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar non-zero vectors, then prove that $(\vec{a} \cdot \vec{a}) \vec{b} \times \vec{c}+(\vec{a} \cdot \vec{b}) \vec{c} \times \vec{a}+(\vec{a} \cdot \vec{c}) \vec{a} \times \vec{b}=[\vec{b} \vec{c} \vec{a}] \vec{a}$

- Watch Video Solution

185. Find a set of vectors reciprocal to the set $-\hat{i}+\hat{j}+\hat{k}, \hat{i}+\hat{k}, \hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

186. Let \vec{a}, \vec{b} and \vec{c} be a set of non- coplanar vectors and \vec{a}^{\prime} veab' and \vec{c}^{\prime} be its reciprocal set.
prove that $\vec{a}=\frac{b^{\prime} \times c^{\prime}}{\left[\vec{a}^{\prime} \vec{b}^{\prime} \vec{c}^{\prime}\right]}, \vec{b}=\frac{c^{\prime} \times a^{\prime}}{\left[\vec{a}^{\prime} \vec{b}^{\prime} \vec{c}^{\prime}\right]}$ and $\vec{c}=\frac{a^{\prime} \times b^{\prime}}{\left[\vec{a}^{\prime} \vec{b}^{\prime} \vec{c}^{\prime}\right]}$

Watch Video Solution

187. If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{a}^{\prime}, \vec{b}^{\prime}, \vec{c}^{\prime}$ are reciprocal system of vectors, then prove that $\vec{a}^{\prime} \times \vec{b}^{\prime}+\vec{b}^{\prime} \times \vec{c}^{\prime}+\vec{c}^{\prime} \times \vec{a}^{\prime}=\frac{\vec{a}+\vec{b}+\vec{c}}{[\vec{a} \vec{b} \vec{c}]}$

- Watch Video Solution

188. If \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and $\mathrm{a}^{\prime}, \mathrm{b}$ ' and c^{\prime} constitute the reciprocal system of vectors, then prove that
i. $\vec{r}=\left(\vec{r} \cdot \vec{a}^{\prime}\right) \vec{a}+\left(\vec{r} \cdot \vec{b}^{\prime}\right) \vec{b}+\left(\vec{r} \cdot \vec{c}^{\prime}\right) \vec{c}$
ii. $\vec{r}=(\vec{r} \cdot \vec{a}) \vec{a}^{\prime}+(\vec{r} \cdot \vec{b}) \vec{b}^{\prime}+(\vec{r} \cdot \vec{c}) \vec{c}^{\prime}$

- Watch Video Solution

1. Find '|veca| and |vecb| if (veca+vecb).(veca-vecb) $=8$ and \mid veca| $=8 \mid$ vecb|.

- Watch Video Solution

2. Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$ for any two non zero vectors `veca and vecb.

- Watch Video Solution

3. If the vectors A, B, C of a triangle $A B C$ are $(1,2,3),(-1,0,0),(0,1,2)$, respectively then find $\angle A B C$

- Watch Video Solution

4. If $|\vec{a}|=3,|\vec{b}|=4$ and the angle between \vec{a} and \vec{b} is 120°. Then find the value of $|4 \vec{a}+3 \vec{b}|$
5. If vectors $\hat{i}-2 x \hat{j}-3 y \hat{k}$ and $\hat{i}+3 x \hat{j}+2 y \hat{k}$ are orthogonal to each other, then find the locus of th point (x, y).

- Watch Video Solution

6. Let $\vec{a} \vec{b}$ and \vec{c} be pairwise mutually perpendicular vectors, such that $|\vec{a}|=1,|\vec{b}|=2,|\vec{c}|=2$, the find the length of $\vec{a}+\vec{b}+\vec{c}$.

- Watch Video Solution

7. If $\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, then find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

8. If the angle between unit vectors \vec{a} and $\vec{b} i s 60^{\circ}$. Then find the value of $|\vec{a}-\vec{b}|$.

Watch Video Solution

9. Let $\vec{u}=h a i+\hat{j}, \vec{v}=\hat{i}-\hat{j}$ and $\vec{w}=\hat{i}+2 \hat{j}+3 \hat{k}$. If \hat{n} isa unit vector such that $\vec{u} . \hat{n}=0$ and $\vec{v} \cdot \hat{n}=0,|\vec{w} \cdot \hat{n}|$ is equal to (A) 0 (B) 1 (C) 2 (D) 3

- Watch Video Solution

10. A, B, C, D are any four points, prove that $\vec{A} B \vec{C} D+\vec{B} C \vec{A} D+\vec{C} A \vec{B} D=0$.

- Watch Video Solution

11. $P(1,0,-1), Q(2,0,-3), R(-1,2,0)$ and $S(,-2,-1)$, then find the projection length of \vec{P} Qon $\vec{R} S$
12. If the vectors $3 \vec{P}+\vec{q}, 5 \vec{P}-3 \vec{q}$ and $2 \vec{p}+\vec{q}, 4 \vec{p}-2 \vec{q}$ are pairs of mutually perpendicular vectors, the find the angle between vectors \vec{p} and \vec{q}.

- Watch Video Solution

13. Let \vec{A} and \vec{B} be two non-parallel unit vectors in a plane. If $(\alpha \vec{A}+\vec{B})$ bisets the internal angle between \vec{A} and \vec{B} then find the value of α.

- Watch Video Solution

14. Let \vec{a}, \vec{b} and \vec{c} be unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\vec{x}, \vec{a} \cdot \vec{x}=1, \vec{b} \cdot \vec{x}=\frac{3}{2},|\vec{x}|=2$ then find theh angle between \vec{c} and \vec{x}.

- Watch Video Solution

15. If \vec{a} and \vec{b} are unit vectors, then find the greatest value of $|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|$.

- Watch Video Solution

16. Constant forces $P_{1}=\hat{i}-\hat{j}+\hat{k}, P_{2}=-\hat{i}+2 \hat{j}-\hat{i} k$ and $P_{3}=\hat{j}-\hat{k}$ act on a particle at a point A. Determine the work done when particle is displaced from position $A(4 \hat{i}-3 \hat{j}-2 \hat{k})$ to $B(6 \hat{i}+\hat{j}-3 \hat{k})$

- Watch Video Solution

17. Find '|veca| and |vecb| if (veca+vecb).(veca-vecb)=8 and |veca|=8|vecb|.

- Watch Video Solution

18. If A, B, C, D are four distinct point in space such that $A B$ is not perpendicular to
$C D$ and
satisfies
$\vec{A} B \vec{C} D=k\left(|\vec{A} D|^{2}+|\vec{B} C|^{2}-|\vec{A} C|^{2}=|\vec{B} D|^{2}\right)$, then find the value of k

- Watch Video Solution

19. If $\vec{a}=2 \hat{i}+3 \hat{j}-5 \hat{k}, \vec{b}=m \hat{i}+n \hat{j}+12 \hat{k}$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$ then find (m,n)

- Watch Video Solution

20. Find $\vec{a} . \vec{b}$ if $|\vec{a}| 2,|\vec{b}|=5, a$ and $|\vec{a} \times \vec{b}|=8$

- Watch Video Solution

21. If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq 0$ where \vec{a}, \vec{b} and \vec{c} are coplanar vectors, then for some scalar k prove that $\vec{a}+\vec{c}=k b \vec{b}$.

- Watch Video Solution

22. If $\vec{a}=2 \vec{j}+3 \vec{j}-\vec{k}, \vec{b}=-\vec{i}+2 \vec{j}-4 \vec{k}$ and $\vec{c}=\vec{i}+\vec{j}+\vec{k}$, then find the value of $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$

- Watch Video Solution

23. I the vectors $\vec{a}, \vec{a}=x \hat{i}+y \hat{j}+z \hat{k} a$ and $\vec{b}=\hat{j}$ are such that \vec{a}, \vec{c} and \vec{b} form a righat handed system then \vec{c} is (A) $z \vec{i}-x \vec{k}$ (B) $\overrightarrow{0}$ (C) $y \hat{j}$ (D) $-z \hat{i}+x \hat{k}$

- Watch Video Solution

24. given that $\vec{a} . \vec{b}=\vec{a} \cdot \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ and \vec{a} is not a zero vector. Show that $\vec{b}=\vec{c}$.

- Watch Video Solution

25. Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2 \vec{a} \times \vec{b}$ and give a genometrical interpretation of it.

Watch Video Solution

26. If \vec{x} and \vec{y} are unit vectors and $|\vec{z}|=\frac{2}{\sqrt{7}}$ such that $\vec{z}+\vec{z} \times \vec{x}=\vec{y}$ then find the angle θ between \vec{x} and \vec{z}

- Watch Video Solution

27. prove that $(\vec{a} . \hat{i})(\vec{a} \times \hat{i})+(\vec{a} . \hat{j})(\vec{a} \times \hat{j})+(\vec{a} \cdot \hat{k})(\vec{a} \times \hat{k})=\overrightarrow{0}$

- Watch Video Solution

28. Let $\vec{a} \vec{b}$ and \vec{c} be three non-zero vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $\lambda \vec{b} \times \vec{a} \times \vec{a}+\vec{b} \times \vec{c}+\vec{c}+\vec{a}=\overrightarrow{0}$ then find the value of λ.

- Watch Video Solution

29. A particle has an angular speed of $3 \mathrm{rad} / \mathrm{s}$ and the axis of rotation passes through the points $(1,1,2)$ and $(1,2,-2)$ Find the velocity of the particle at point $P(3,6,4)$

- Watch Video Solution

30. Let vea, \vec{b} and \vec{c} be unit vectors such that $\vec{a} \cdot \vec{b}=0=\vec{a}$. \vec{c}. It the angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$ then find \vec{a}.

- Watch Video Solution

31. If $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}=144$ and $|\vec{a}|=4$, then $|\vec{b}|$ is equal to

- Watch Video Solution

32. Given $|\vec{a}|=|\vec{b}|=1$ and $|\vec{a}+\vec{b}|=\sqrt{3} \operatorname{ifc} \vec{c}$ is a vector such that $\vec{c}-\vec{a}-2 \vec{b}=3(\vec{a} \times \vec{b})$ then find the value of \vec{c}. Vecb.

- Watch Video Solution

33. Find the moment of \vec{F} about point (2, -1, 3), where force $\vec{F}=3 \hat{i}+2 \hat{j}-4 \hat{k}$ is acting on point $(1,-1,2)$.

Watch Video Solution

34. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are four non-coplanar unit vectors such that \vec{d} makes equal angles with all the three vectors $\vec{a}, \vec{b}, \vec{c}$ then prove that $[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{b}]=[\vec{d} \vec{c} \vec{a}]$

- Watch Video Solution

35. If $\vec{l}, \vec{m}, \vec{n}$ are three non coplanar vectors prove that $[\vec{~}$ vecm vecn $]$ (vecaxxvecb) =|(vec1.veca, vec1.vecb, vec1),(vecm.veca, vecm.vecb, vecm), (vecn.veca, vecn.vecb, vecn)|`
36. if the volume of a parallelpiped whose adjacent egges are $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+\alpha \hat{j}+2 \hat{k}, \vec{c}=\vec{i}+2 \hat{j}+\alpha \hat{k} i s 15$ then find of α if $(\alpha>0)$

- Watch Video Solution

37. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$ then find vector \vec{c} such that $\vec{a} \cdot \vec{a}=2$ and $\vec{a} \times \vec{c}=\vec{b}$

- Watch Video Solution

38. If \vec{x}. $\vec{a}=0 \vec{x} \cdot \vec{b}=0$ and \vec{x}. $\vec{c}=0$ for some non zero vector \vec{x} then show that $[\vec{a} \vec{b} \vec{c}]=0$
39. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$ then find the vector \vec{c} such that $\vec{a} \cdot \vec{c}=2$ and $\vec{a} \times \vec{c}=\vec{b}$.

- Watch Video Solution

40. If \vec{a}, \vec{b} and \vec{c} are three vectors such that
$\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}, \vec{c} \times \vec{a}=\vec{b}$ then prove that $|\vec{a}|=|\vec{b}|=|\vec{c}|$

- Watch Video Solution

41. If $\vec{a}=\vec{P}+\vec{q}, \vec{P} \times \vec{b}=\overrightarrow{0}$ and \vec{q}. Vecb $=0$ then prove that
$\vec{b} \times(\vec{a} \times \vec{b})$
$\vec{b} . \vec{b}$

- Watch Video Solution

42. prove that $(\vec{a} .(\vec{b} \times \hat{i}) \hat{i}(\vec{a} .(\vec{b} \times \hat{j})) \hat{j}+(\vec{a} .(\vec{b} \times \hat{k})) \hat{k}=\vec{a} \times \vec{b}$
43. for any four vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} prove that
$\vec{d} \cdot(\vec{a} \times(\vec{b} \times(\vec{c} \times \vec{d})))=(\vec{b} . \vec{d})[\vec{a} \vec{c} \vec{d}]$

- Watch Video Solution

44. If \vec{a} and \vec{b} be two non-collinear unit vectors such that $\vec{a} \times(\vec{a} \times \vec{b})=\frac{1}{2} \vec{b}$ then find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

45. show that $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$ if and only if \vec{a} and \vec{c} are collinear or $(\vec{a} \times \vec{c}) \times \vec{b} \times \overrightarrow{0}$

- Watch Video Solution

46. Let \vec{a}, \vec{b} and \vec{c} be the non zero vectors such that $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$. if theta is the acute angle between the vectors
\vec{b} and \vec{a} then theta equals (A) $\frac{1}{3}$ (B) $\frac{\sqrt{2}}{3}$ (C) $\frac{2}{3}$ (D) $2 \frac{\sqrt{2}}{3}$

- Watch Video Solution

47. If $\vec{p}, \vec{q}, \vec{r}$ denote vectors $\vec{b} \times \vec{c}, \vec{c} \times \vec{c} \times \vec{a}, \vec{a} \times \vec{b}$. Respectively, show that \vec{a} is parallel to $\vec{q} \times \vec{r}, \vec{b}$ is parallel to $\vec{r} \times \vec{p}, \vec{c}$ is parallel to $\vec{p} \times \vec{q} . \$

- Watch Video Solution

48. Let $\vec{a}, \vec{b}, \vec{c}$ be non -coplanar vectors and let equations $\vec{a}^{\prime}, \vec{b}^{\prime}, \vec{c}^{\prime}$ are reciprocal system of vector $\vec{a}, \vec{b}, \vec{c}$ then prove that $\vec{a} \times \vec{a}^{\prime}+\vec{b} \times \vec{b}^{\prime}+\vec{c} \times \vec{c}^{\prime}$ is a null vector.

- Watch Video Solution

49. Given unit vectors $\hat{m} \hat{n}$ and \hat{p} such that angle between \hat{m} and $\hat{n} i s \alpha$ and angle between \hat{p} and

- Watch Video Solution

50. \vec{a}, \vec{b}, and \vec{c} are three unit vectors and every two are inclined to each other at an angel $\cos ^{-1}(3 / 5)$ If $\vec{a} \times \vec{b}=p \vec{a}+q \vec{b}+r \vec{c}$, wherep, q, r are scalars, then find the value of q

(Watch Video Solution

51. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both vectors, \vec{a} and \vec{b}. If the angle between \vec{a} and $\vec{b} i s \pi / 6$ then $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|^{2}$ is equal to
52. If $\left|\begin{array}{ccc}(a-x)^{2} & (a-y)^{2} & (a-z)^{2} \\ (b-x)^{2} & (b-y)^{2} & (b-z)^{2} \\ (c-x)^{2} & (c-y)^{2} & (c-a)^{2}\end{array}\right|=0$ and vectors \vec{A}, \vec{B} and \vec{C}, where
$\vec{A}=a^{2} \hat{i}=a \hat{j}+\hat{k}$ etc. are non-coplanar, then prove that vectors \vec{X}, \vec{Y} and \vec{Z} where $\vec{X}=x^{2} \hat{i}+x \hat{j}+\hat{k}$. etc.may be coplanar.

- Watch Video Solution

53. $O A B C$ is a tetrahedron where O is the origin and A, B, C have position vectors $\vec{a}, \vec{b}, \vec{c}$ respectively prove that circumcentre of tetrahedron OABC is $\left(a^{\wedge} 2(\right.$ vecbxxvecc $)+b^{\wedge} 2($ veccxxveca $)+c^{\wedge} 2($ vecaxxvecb $\left.)\right) /\left(2[\right.$ veca vecb vecc] $]{ }^{\wedge}$

- Watch Video Solution

54. Let k be the length of any edge of a regular tetrahedron (a tetrahedron whose edges are equal in length is called a regular
tetrahedron). Show that the angel between any edge and a face not containing the edge is $\cos ^{-1}(1 / \sqrt{3})$.

- Watch Video Solution

55. In $A B C$, a point P is taken on $A B$ such that $A P / B P=1 / 3$ and point Q is taken on $B C$ such that $C Q / B Q=3 / 1$. If R is the point of intersection of the lines $A Q a n d C P$, ising vedctor method, find the are of $A B C$ if the area of $B R C$ is 1 unit

- Watch Video Solution

56. Let O be an interior point of $\triangle A B C$ such that $O A+2 O B+3 O C=0$.

Then the ratio of a $\triangle A B C$ to area of $\triangle A O C$ is

- Watch Video Solution

57. The lengths of two opposite edges of a tetrahedron of aandb; the shortest distane between these edgesis d, and the angel between them if θ Prove using vector4s that the volume of the tetrahedron is $\frac{a b d i s n \theta}{6}$.

- Watch Video Solution

58. Find the volume of a parallelopiped having three coterminus vectors of equal magnitude $|a|$ and equal inclination θ with each other.

- Watch Video Solution

59. Let \vec{p} and \vec{q} any two othogonal vectors of equal magnitude 4 each.

Let \vec{a}, \vec{b} and \vec{c} be any three vectors of lengths $7 \sqrt{15}$ and $2 \sqrt{33}$, mutually perpendicular to each other. Then find the distance of the vector

$$
\begin{aligned}
& (\vec{a} \cdot \vec{p}) \vec{p}+(\vec{a} \cdot \vec{q}) \vec{q}+(\vec{a} \cdot(\vec{p} \times \vec{q}))(\vec{p} \times \vec{q})+(\vec{b} \cdot \vec{p}) \vec{p}+(\vec{b} \cdot \vec{p}) \vec{q}+(\vec{b} \cdot(\vec{b} \cdot \vec{q})) \\
& (\vec{a} \cdot \vec{p}) \vec{p}+(\vec{a} \cdot \vec{q}) \vec{q}+(\vec{a} \cdot(\vec{p} \times \vec{q}))(\vec{p} \times \vec{q})+(\vec{b} \cdot \vec{p}) \vec{p}+ \\
& +(\vec{c} \cdot(\vec{p} \times \vec{q}))(\vec{p} \times \vec{q})
\end{aligned}
$$

from the origin.

- Watch Video Solution

60. Given that $\vec{A}, \vec{B}, \vec{C}$ form triangle such that $\vec{A}=\vec{B}+\vec{C}$. Find a,b,c,d such that area of the triangle is $5 \sqrt{6}$ where $\vec{A}=a \vec{i}+b \vec{i}+c \vec{k} \cdot \vec{B}=d \vec{i}+3 \vec{j}+3 \vec{k}$ and $\vec{C}=3 \vec{i}+\vec{j}-2 \vec{k}$.

- Watch Video Solution

61. A line I is passing through the point \vec{b} and is parallel to vector \vec{c}. Determine the distance of point $\mathrm{A}(\vec{a})$ from the line 1 in from $\left|\vec{b}-\vec{a}+\frac{(\vec{a}-\vec{b}) \vec{c}}{|\vec{c}|^{2}} \vec{c}\right|$ or $\frac{|(\vec{b}-\vec{a}) \times \vec{c}|}{|\vec{c}|}$

- Watch Video Solution

62. If $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3} a n d \vec{E}_{1}, \vec{E}_{2}, \vec{E}_{3}$ are two sets of vectors such that $\vec{e}_{i} \vec{E}_{j}=1$, if $i=\operatorname{jand}_{\vec{e}}^{i} \vec{E}_{j}=0$ and if $i \neq j$, then prove that $\left[\vec{e}_{1} \vec{e}_{2} \vec{e}_{3}\right]\left[\vec{E}_{1} \vec{E}_{2} \vec{E}_{3}\right]=1$.

- Watch Video Solution

63. In a quadrilateral $A B C D$, it is given that $A B|\mid C D$ and the diagonals $A C$ and $B D$ are perpendicular to each other. Show that $A D . B C \geq A B . C D$.

- Watch Video Solution

64. $O A B C$ is regular tetrahedron in which D is the circumcentre of $O A B$ and E is the midpoint of edge $A C$ Prove that $D E$ is equal to half the edge of tetrahedron.

- Watch Video Solution

65. If $\mathrm{A}(\vec{a}) \cdot B(\vec{b})$ and $C(\vec{c})$ are three non-collinear point and origin does not lie in the plane of the points A, B and C, then for any point $P(\vec{P})$ in the plane of the $\triangle A B C$ such that vector $O P$ is \perp to plane of triangIABC, show that $\overrightarrow{O P}=\frac{[\vec{a} \vec{b} \vec{c}](\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})}{4 \Delta^{2}}$

- View Text Solution

66. If $\vec{a}, \vec{b}, \vec{c}$ are three given non-coplanar vectors and any arbitrary vector
\vec{r}
$\Delta_{1}=\left|\begin{array}{lll}\vec{r} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{c} \cdot \vec{a} \\ \vec{r} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{c} \cdot \vec{b} \\ \vec{r} \cdot \vec{c} & \vec{b} \cdot \vec{c} & \vec{c} \cdot \vec{c}\end{array}\right|, \Delta_{2}=\mid(\vec{a} \cdot \vec{a}, \vec{r} \cdot \vec{a}, \vec{c} \cdot \vec{a}),(\vec{a} \cdot \vec{b}, \vec{r} \cdot \vec{b}, \vec{c} \cdot \vec{b}),(\vec{a} \cdot \vec{c}, \vec{r} . \vec{c} \vec{c}$
$\Delta_{3}=\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{r} \cdot \vec{a} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{r} \cdot \vec{b} \\ \vec{a} \cdot \vec{c} & \vec{b} \cdot \vec{c} & \vec{r} \cdot \vec{c}\end{array}\right|, \Delta=\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{c} \cdot \vec{a} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{c} \cdot \vec{b} \\ \vec{a} \cdot \vec{c} & \vec{b} \cdot \vec{c} & \vec{c} \cdot \vec{c}\end{array}\right|$, then prove that $\vec{r}=\frac{\Delta_{1}}{\Delta} \vec{a}+\frac{\Delta_{2}}{\Delta}$

- Watch Video Solution

67. Two vectors in space are equal only if they have equal component in a. a given direction b. two given directions c . three given directions d . in any arbitrary direction
A. a given direction
B. two given directions
C. three given direction
D. in any arbitrary direaction

Answer: c

- Watch Video Solution

68. Let \vec{a}, \vec{b} and \vec{c} be the three vectors having magnitudes, 1,5 and 3 , respectively, such that the angle between \vec{a} and \vec{b} is θ and $\vec{a} \times(\vec{a} \times \vec{b})=\vec{c}$. Then $\tan \theta$ is equal to
A. 0
B. $\frac{2}{3}$
C. $\frac{3}{5}$
D. $\frac{3}{4}$

Answer: d

- Watch Video Solution

69. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors of equal magnitude such that the angle
between each pair is $\frac{\pi}{3}$. If $|\vec{a}+\vec{b}+|=\sqrt{6}$, then $|\vec{a}|=$
A. 2
B. -1
C. 1
D. $\sqrt{6} / 3$

Answer: c

70. If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is (A) $\vec{a}+\vec{b}+\vec{c}$

$$
\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}+\vec{\jmath}|\vec{c}| \text { (C) } \frac{\vec{a}}{|\vec{a}|^{2}}+\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{c}}{|\vec{c}|^{2}} \text { (D) }|\vec{a}| \vec{a}-|\vec{b}| \vec{b}+|\vec{c}| \vec{c}
$$

A. $\vec{a}+\vec{b}+\vec{c}$
B. $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}+\frac{\vec{c}}{|\vec{c}|}$
C. $\frac{\vec{a}}{|\vec{a}|^{2}}+\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{c}}{|\vec{c}|^{2}}$
D. $|\vec{a}| \vec{a}-|\vec{b}| \vec{b}+|\vec{c}| \vec{c}$

Answer: b

Watch Video Solution
71. Let $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=2 \hat{i}-\hat{k}$. Then the point of intersection of the lines $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b} \quad$ is (A) $\quad(3,-1,10 \quad$ (B) $\quad(3,1,-1)$
$(-3,1,1)(D)(-3,-1,-10$
A. $\hat{i}-\hat{j}+\hat{k}$
B. $3 \hat{i}-\hat{j}+\hat{k}$
C. $3 \hat{i}+\hat{j}-\hat{k}$
D. $\hat{i}-\hat{j}-\hat{k}$

Answer: c

- Watch Video Solution

72. If \vec{a} and \vec{b} are two vectors, such that $\vec{a} \cdot \vec{b}<0$ and $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ then the angle between angles between the vectors \vec{a} and \vec{b} is
A. π
B. $7 \pi / 4$
C. $\pi / 4$
D. $3 \pi / 4$

Answer: d

D Watch Video Solution

73. If \hat{a}, \hat{b} and \hat{c} are three unit vectors such that $\hat{a}+\hat{b}+\hat{c}$ is also a unit vector and θ_{1}, θ_{2} and θ_{3} are angles between the vectors $\hat{a}, \hat{b}, \hat{b}, \hat{c}$ and \hat{c}, \hat{a}, respectively m then among θ_{1}, θ_{2} and θ_{3}
A. all are acute angles
B. all are right angles
C. at least one is obtuse angle
D. none of these

Answer: c

74. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} . \vec{b}=0=\vec{a} . \vec{c}$ and the angle between \vec{b} and $\vec{c} i s \pi / 3$ then the value of $|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|$ is
A. $1 / 2$
B. 1
C. 2
D. none of these

Answer: b

- Watch Video Solution

75. $\mathrm{P}(\vec{p})$ and $Q(\vec{q})$ are the position vectors of two fixed points and $R(\vec{r})$ is the postion vector of a variable point. If R moves such that $(\vec{r}-\vec{p}) \times(\vec{r}-\vec{q})=\overrightarrow{0}$ then the locus of R is
A. a plane containing the origian O and parallel to two non-collinear vectors $\overrightarrow{O P}$ and $\overrightarrow{O Q}$
B. the surface of a sphere described on PQ as its diameter
C. a line passing through points P and Q
D. a set of lines parallel to line $P Q$

Answer: c

- View Text Solution

76. Two adjacent sides of a parallelogram $A B C D$ are
$2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. Then the value of $|\overrightarrow{A C} \times \overrightarrow{B D}|$ is
A. $20 \sqrt{5}$
B. $22 \sqrt{5}$
C. $24 \sqrt{5}$
D. $26 \sqrt{5}$

D Watch Video Solution

77. If \hat{a}, \hat{b} and \hat{c} are three unit vectors inclined to each other at an angle θ. The maximum value of θ is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{2 \pi}{3}$
D. $\frac{5 \pi}{5}$

Answer: c

- Watch Video Solution

78. Let the pair of vector \vec{a}, \vec{b} and $\vec{c}, \vec{c} d$ each determine a plane. Then the planes are parallel if
A. $(\vec{a} \times \vec{c}) \times(\vec{b} \times \vec{d})=\overrightarrow{0}$
B. $(\vec{a} \times \vec{c}) \cdot(\vec{b} \times \vec{d})=\overrightarrow{0}$
C. $(\vec{a} \times \vec{c}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$
D. $(\vec{a} \times \vec{c}) \cdot(\vec{c} \times \vec{d})=\overrightarrow{0}$

Answer: c

- Watch Video Solution

79. If \vec{r}. $\vec{a}=\vec{r} . \vec{b}=\vec{r} . \vec{c}=0$ where \vec{a}, \vec{b} and \vec{c} are non-coplanar, then
A. $\vec{r} \perp(\vec{c} \times \vec{a})$
B. $\vec{r} \perp(\vec{a} \times \vec{b})$
C. $\vec{r} \perp(\vec{b} \times \vec{c})$
D. $\vec{r}=\overrightarrow{0}$

Answer: d

80. If \vec{a} satisfies $\vec{a} \times(\hat{i}+2 \hat{j}+\hat{k})=\hat{i}-\hat{k}$ then \vec{a} is equal to
A. $\lambda \hat{i}+(2 \lambda-1) \hat{j}+\lambda \hat{k}, \lambda \in R$
B. $\lambda \hat{i}+(1-2 \lambda) \hat{j}+\lambda \hat{k}, \lambda \in R$
C. $\lambda \hat{i}+(2 \lambda+1) \hat{j}+\lambda \hat{k}, \lambda \in R$
D. $\lambda \hat{i}+(1+2 \lambda) \hat{j}+\lambda \hat{k}, \lambda \in R$

Answer: c

- Watch Video Solution

81. Vectors $3 \vec{a}-5 \vec{b}$ and $2 \vec{a}+\vec{b}$ are mutually perpendicular. If $\vec{a}+4 \vec{b}$ and $\vec{b}-\vec{a}$ are also mutually perpendicular, then the cosine of the angle between $\vec{a} n a d \vec{b}$ is
A. $\frac{19}{5 \sqrt{43}}$
B. $\frac{19}{3 \sqrt{43}}$
C. $\frac{19}{\sqrt{45}}$
D. $\frac{19}{6 \sqrt{43}}$

Answer: a

- Watch Video Solution

82. The units vectors orthogonal to the vector $-\hat{i}+2 \hat{j}+2 \hat{k}$ and making equal angles with the X and Y axes islare) :
A. $\pm \frac{1}{3}(2 \hat{i}+2 \hat{j}-\hat{k})$
B. $\frac{19}{5 \sqrt{43}}$
C. $\pm \frac{1}{3}(\hat{i}+\hat{j}-\hat{k})$
D. none of these

Answer: a

83. The value of x for which the angle between $\vec{a}=2 x^{2} \hat{i}+4 x \hat{j}=\hat{k}+\hat{k}$ and $\vec{b}=7 \hat{i}-2 \hat{j}=x \hat{k} \quad$, is obtuse and the angle between \vec{b} and the z-axis is acute and less than $\pi / 6$, are
A. $a<x<1 / 2$
B. $1 / 2<x<15$
C. $x<1 / 2$ or $x<0$
D. none of these

Answer: b

- Watch Video Solution

84. If vectors \vec{a} and \vec{b} are two adjacent sides of parallelograsm then the vector representing the altitude of the parallelogram which is
perpendicular to \vec{a} is (A) $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$
(B) $\frac{\vec{a} \cdot \vec{b}}{\left.\vec{b}\right|^{2}}$
(C) $\left.\vec{b}-\frac{\vec{b} \cdot \vec{a}}{(|\vec{a}|)^{2}}\right)$
$\vec{a} \times(\vec{b} \times \vec{a})$
$\left.\vec{b}\right|^{20}$
A. $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$
$\vec{a} . \vec{b}$
B.
$|\vec{b}|^{2}$
C. $\vec{b}-\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}$
$\vec{a} \times(\vec{b} \times \vec{a})$
$|\vec{b}|^{2}$

Answer: a

- Watch Video Solution

85.

$3 \vec{a}+\vec{b}$ and $\vec{a}-4 \vec{b}$, where $|\vec{a}|=6$ and $|\vec{b}|=8$ and \vec{a} and \vec{b} are anti parallel then the length of the longer diagonal is (A) 40 (B) 64 (C) 32 (D) 48
A. 40
B. 64
C. 32
D. 48

Answer: c

- Watch Video Solution

86. Let \vec{a}. $\vec{b}=0$ where \vec{a} and \vec{b} are unit vectors and the vector \vec{c} is inclined an anlge θ to both
\vec{a} and $\vec{b} . \operatorname{If} \vec{c}=m \vec{a}+n \vec{b}+p(\vec{a} \times \vec{b}),(m, n, p \in R)$ then
A. $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$
B. $\frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}$
C. $0 \leq \theta \leq \frac{\pi}{4}$
D. $0 \leq \theta \leq \frac{3 \pi}{4}$

Answer: a

- Watch Video Solution

87. \vec{a} and \vec{c} are unit vectors and $|\vec{b}|=4$ the angle between \vec{a} and \vec{b} is cos ${ }^{-1}(1 / 4)$ and $\vec{b}-2 \vec{c}=\lambda \vec{a}$ the value of λ is
A. 3,-4
B. 1/4,3/4
C. $-3,4$
D. $-1 / 4, \frac{3}{4}$

Answer: a

- Watch Video Solution

88. Let the position vectors of the points PandQ be $4 \hat{i}+\hat{j}+\lambda \hat{k}$ and $2 \hat{i}-\hat{j}+\lambda \hat{k}$, respectively. Vector $\hat{i}-\hat{j}+6 \hat{k}$ is perpendicular to
the plane containing the origin and the points PandQ. Then λ equals $1 / 2$
b. 1/2 c. 1 d . none of these
A. $-1 / 2$
B. 1/2
C. 1
D. none of these

Answer: a

- Watch Video Solution

89. A vector of magnitude $\sqrt{2}$ coplanar with the vectors $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}, \quad$ and perpendicular to the vector $\vec{c}=\hat{i}+\hat{j}+\hat{k}$ is
A. $-\hat{j}+\hat{k}$
B. \hat{i} and \hat{k}
C. $\hat{i}-\hat{k}$
D. hati- hatj'

Answer: a

- Watch Video Solution

90. Let P be a point interior to the acute triangle $A B C$ If $P A+P B+P C$ is a null vector, then w.r.t traingel $A B C$, point P is its a. centroid b. orthocentre c. incentre d. circumcentre
A. centroid
B. orthocentre
C. incentre
D. circumcentre

Answer: a

91. G is the centroid of triangle ABC and A_{1} and B_{1} are the midpoints of sides $A B$ and $A C$, respectively. If Δ_{1} is the area of quadrilateral $G A_{1} A B_{1}$ and Δ is the area of triangle $A B C$, then $\frac{\Delta}{\Delta_{1}}$ is equal to
A. $\frac{3}{2}$
B. 3
C. $\frac{1}{3}$
D. none of these

Answer: b

- Watch Video Solution

92. Points $\vec{a}, \vec{b} \vec{c}$ and \vec{d}
are coplanar
and
$(\sin \alpha) \vec{a}+(2 \sin 2 \beta) \vec{b}+(3 \sin 3 \gamma) \vec{c}-\vec{d}=\overrightarrow{0}$. Then the least value of $\sin ^{2} \alpha+\sin ^{2} 2 \beta+\sin ^{2} 3 \gamma$ is
B. 14
C. 6
D. $1 / \sqrt{6}$

Answer: a

- Watch Video Solution

93. If \vec{a} and \vec{b} are any two vectors of magnitudes 1and 2 . respectively, and $(1-3 \vec{a} \cdot \vec{b})^{2}+|2 \vec{a}+\vec{b}+3(\vec{a} \times \vec{b})|^{2}=47$ then the angle between \vec{a} and \vec{b} is
A. $\pi / 3$
B. $\pi-\cos ^{-1}(1 / 4)$
C. $\frac{2 \pi}{3}$
D. $\cos ^{-1}(1 / 4)$

Answer: c

94. If \vec{a} and \vec{b} are any two vectors of magnitude 2 and 3 respectively such that $|2(\vec{a} \times \vec{b})|+|3(\vec{a} \cdot \vec{b})|=k$ then the maximum value of k is
A. $\sqrt{13}$
B. $2 \sqrt{13}$
C. $6 \sqrt{13}$
D. $10 \sqrt{13}$

Answer: c

- Watch Video Solution

95. \vec{a}, \vec{b} and \vec{c} are unit vecrtors such that $|\vec{a}+\vec{b}+3 \vec{c}|=4$ Angle between \vec{a} and $\vec{b} i s \theta_{1}$, between \vec{b} and $\vec{c} i s \theta_{2}$ and between \vec{a} and \vec{b} varies $[\pi / 6,2 \pi / 3]$. Then the maximum value of $\cos \theta_{1}+3 \cos \theta_{2}$ is
A. 3
B. 4
C. $2 \sqrt{2}$
D. 6

Answer: b

- Watch Video Solution

96. If the vector product of a constant vector $\vec{O} A$ with a variable vector $\vec{O} B$ in a fixed plane $O A B$ be a constant vector, then the locus of B is a straight line perpendicular to $\overrightarrow{O A} \mathrm{~b}$. a circle with centre O and radius equal to $|\vec{O} A|$ c. a straight line parallel to $\vec{O} A$ d. none of these
A. a straight line perpendicular to $O A$
B. a circle with centre O and radius equal to $|\overrightarrow{O A}|$
C. a striaght line parallel to $O A$
D. none of these

Answer: c

- Watch Video Solution

97. Let $\vec{u}, \vec{v}, \vec{w}$ be such that $|\vec{u}|=1,|\vec{v}|=2,|\vec{w}| 3$. If the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{v}, \vec{w} are perpendicular to each other then $|\vec{u}-\vec{v}+\vec{w}|$ equals (A) 2 (B) $\sqrt{7}$ (C) $\sqrt{14}$ (D) 14
A. 2
B. $\sqrt{7}$
C. $\sqrt{14}$
D. 14

Answer: c

- Watch Video Solution

98. If the two adjacent sides of two rectangles are reprresented by
vectors

$$
\vec{p}=5 \vec{a}-3 \vec{b}, \vec{q}=-\vec{a}-2 \vec{b} \text { and } \vec{r}=-4 \vec{a}-\vec{b}, \vec{s}=-\vec{a}+\vec{b},
$$

respectively, then the angle between the vectors
$\vec{x}=\frac{1}{3}(\vec{p}+\vec{r}+\vec{s})$ and $\vec{y}=\frac{1}{5}(\vec{r}+\vec{s})$ is
A. $-\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
B. $\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
C. $\pi \cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
D. cannot of these

Answer: b

- Watch Video Solution

99. If $\left.\quad \vec{\alpha}|\mid(\vec{b} \times \vec{\gamma})$, then $(\vec{\alpha} \times \vec{\beta}) \cdot(\vec{\alpha} \times \vec{\gamma})=$ (A) $| \vec{\alpha}\right|^{2}(\vec{\beta} \cdot \vec{\gamma})$
$|\vec{\beta}|^{2}(\vec{\gamma} \cdot \vec{\alpha})$ (C) $|\vec{\gamma}|^{2}(\vec{\alpha} \cdot \vec{\beta})$ (D) $|\vec{\alpha}||\vec{\beta}||\vec{\gamma}|$
A. $|\vec{\alpha}|^{2}(\vec{\beta} \cdot \vec{\gamma})$
B. $|\vec{\beta}|^{2}(\vec{\gamma} \cdot \vec{\alpha})$
C. $|\vec{\gamma}|^{2}(\vec{\alpha} \cdot \vec{\beta})$
D. $|\vec{\alpha}||\vec{\beta}||\vec{\gamma}|$

Answer: a

- Watch Video Solution

100. The position vectors of points A, B and C are $\hat{i}+\hat{j}, \hat{i}+5 \hat{j}-\hat{k}$ and $2 \hat{i}+3 \hat{j}+5 \hat{k}$, respectively the greatest angle of triangle $A B C$ is
A. 120°
B. 90°
C. $\cos ^{-1}(3 / 4)$
D. none of these

- Watch Video Solution

101. Given three vectors $e \vec{a}, \vec{b}$ and \vec{c} two of which are non-collinear. Futrther if $(\vec{a}+\vec{b})$ is collinear with $\vec{c},(\vec{b}+\vec{c})$ is collinear with $\vec{a},|\vec{a}|=|\vec{b}|=|\vec{c}|=\sqrt{2}$ find the value of \vec{a}. Vecb $+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$
A. 3
B. -3
C. 0
D. cannot of these

Answer: b

102. If \vec{a} and \vec{b} are unit vectors such that $(\vec{a}+\vec{b}) \cdot(2 \vec{a}+3 \vec{b}) \times(3 \vec{a}-2 \vec{b})=\overrightarrow{0}$ then angle between \vec{a} and \vec{b} is
A. 0
B. $\pi / 2$
C. π
D. indeterminate

Answer: d

- Watch Video Solution

103. If in a right-angled triangle $A B C$, the hypotenuse
$A B=p$, then $\vec{A} B \dot{A} C+\vec{B} C \vec{B} A+\vec{C} A \vec{C} B$ is equal to $2 p^{2}$ b. $\frac{p^{2}}{2}$ c. p^{2} d. none of these
A. $2 p^{2}$
B. $\frac{p^{2}}{2}$
C. p^{2}
D. none of these

Answer: c

- Watch Video Solution

104. Resolved part of vector \vec{a} and along vector \vec{b} is $\vec{a} 1$ and that prependicular to \vec{b} is $\vec{a} 2$ then $\vec{a} 1 \times \vec{a} 2$ is equal to
A. $\frac{(\vec{a} \times \vec{b}) \cdot \vec{b}}{|\vec{b}|^{2}}$
B. $\xrightarrow{(\vec{a} . \vec{b}) \vec{a}}$
$|\vec{a}|^{2}$
C. $\frac{(\vec{a} \cdot \vec{b})(\vec{b} \times \vec{a})}{}$
$|\vec{b}|^{2}$
D. $\underline{(\vec{a} . \vec{b})(\vec{b} \times \vec{a})}$

$$
|\vec{b} \times \vec{a}|
$$

Answer: c

- Watch Video Solution

105. Let $\vec{a}=2 \hat{i}=\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-2 \hat{k}$ be three vectors. A vector in the pland of \vec{b} and \vec{c} whose projection on \vec{a} is of magnitude
$\sqrt{\left(\frac{2}{3}\right)}$ is (A) $2 \hat{i}+3 \hat{j}+3 \hat{k}$ (B) $2 \hat{i}+3 \hat{j}-3 \hat{k}$ (C) $-2 \hat{i}-\hat{j}+5 \hat{k}$ (D) $2 \hat{i}+\hat{j}+5 \hat{k}$
A. $2 \hat{i}+3 \hat{j}-3 \hat{k}$
B. $-2 \hat{i}-\hat{j}+5 \hat{k}$
C. $2 \hat{i}+3 \hat{j}+3 \hat{k}$
D. $2 \hat{i}+\hat{j}+5 \hat{k}$

Answer: b

D Watch Video Solution

106. If P is any arbitrary point on the circumcirlce of the equllateral trangle of side length l units, then $|\vec{P} A|^{2}+|\vec{P} B|^{2}+|\vec{P} C|^{2}$ is always equal to $2 l^{2}$ b. $2 \sqrt{3} l^{2}$ c. l^{2} d. $3 l^{2}$
A. $2 l^{2}$
B. $2 \sqrt{3} l^{2}$
C. l^{2}
D. 31^{2}

Answer: a

- Watch Video Solution

107. If \vec{r} and \vec{s} are non-zero constant vectors and the scalar b is chosen such that $|\vec{r}+b \vec{s}|$ is minimum, then the value of $|b \vec{s}|^{2}+|\vec{r}+b \vec{s}|^{2}$ is equal to
A. $2|\vec{r}|^{2}$
B. $|\vec{r}|^{2 / 2}$
C. $3|\vec{r}|^{2}$
D. $|\vec{r}|^{2}$

Answer: b

- Watch Video Solution

108. \vec{a} and \vec{b} are two unit vectors that are mutually perpendicular. A unit vector that if equally inclined to \vec{a}, \vec{b} and $\vec{a} \times \vec{b}$ is equal to
A. $\frac{1}{\sqrt{2}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$
B. $\frac{1}{2}(\vec{a} \times \vec{b}+\vec{a}+\vec{b})$
C. $\frac{1}{\sqrt{3}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$
D. $\frac{1}{3}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$

Answer: a

109. Given that $\vec{a}, \vec{b}, \vec{p}, \vec{q}$ are four vectors such that $\vec{a}+\vec{b}=\mu \vec{p}, \vec{b} \cdot \vec{q}=0$ and $(\vec{b})^{2}$ where μ is a sclar. Then $|(\vec{a} \cdot \vec{q}) \vec{p}-(\vec{p} \cdot \vec{q}) \vec{a}|$ is equal to
A. $2|\vec{p} \vec{q}|$
B. $(1 / 2)|\vec{p} \cdot \vec{q}|$
C. $|\vec{p} \times \vec{q}|$
D. $|\vec{p} . \vec{q}|$

Answer: d

- Watch Video Solution

110. The position vectors of the vertices A, B and C of a triangle are three unit vectors \vec{a}, \vec{b} and \vec{c} respectively. A vector \vec{d} is such that $\vec{d} \cdot \hat{a}=\vec{d}$. Hatb $=\vec{d}$. \hat{c} and $\vec{d}=\lambda(\hat{b}+\hat{c})$. Then triangle ABC is
A. acute angled
B. obtuse angled
C. right angled
D. none of these

Answer: a

D Watch Video Solution

111. If a is real constant $A, B a n d C$ are variable angles and $\sqrt{a^{2}-4} \tan A+a \tan B \sqrt{a^{2}+4} \tan c=6 a, \quad$ then the least vale of $\tan ^{2} A+\tan ^{2} b+\tan ^{2}$ Cis 6 b. 10 c. 12 d. 3
A. 6
B. 10
C. 12
D. 3

D Watch Video Solution

112. The vertex A of triangle $A B C$ is on the line $\vec{r}=\hat{i}+\hat{j}+\lambda \hat{k}$ and the vertices B and C have respective position vectors \hat{i} and \hat{j}. Let Δ be the area of the triangle and $\Delta \in[3 / 2, \sqrt{33} / 2]$ then the range of value of λ corresponding to A is
A. $[-8,-4]$ cup $[4,8]^{`}$
B. $[-4,4]$
C. $[-2,2]$
D. $[-4,-2] \cup[2,4]$

Answer: c

113. A non-zero vecto \vec{a} is such tha its projections along vectors $\frac{\hat{i}+\hat{j}}{\sqrt{2}}, \frac{-\hat{i}+\hat{j}}{\sqrt{2}}$ and \hat{k} are equal , then unit vector along \vec{a} us
$\sqrt{2} \hat{j}-\hat{k}$
A. $\frac{\sqrt{3}}{\sqrt{3}}$
$\hat{j}-\sqrt{2} \hat{k}$
B. $\frac{\sqrt{3}}{\sqrt{2}}$
C. $\frac{\sqrt{2}}{\sqrt{3}} \hat{j}+\frac{\hat{k}}{\sqrt{3}}$
D. $\frac{\hat{j}-\hat{k}}{\sqrt{2}}$

Answer: a

- Watch Video Solution

114. Position vector \hat{k} is rotated about the origin by angle 135° in such a way that the plane made by it bisects the angel between $\hat{i} a n d \hat{j}$ Then its new position is $\pm \frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$ b. $\pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$ c. $\frac{\hat{i}}{\sqrt{2}}-\frac{\hat{k}}{\sqrt{2}}$ d. none of these
A. $\pm \frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$
B. $\pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$
C. $\frac{\hat{i}}{\sqrt{2}}-\frac{\hat{k}}{\sqrt{2}}$
D. none of these

Answer: d

- Watch Video Solution

115. In a quadrilateral $A B C D, \overrightarrow{A C}$ is the bisector of the $(\overrightarrow{A B} \wedge \overrightarrow{A D})$ which is $\frac{2 \pi}{3}, 15|\overrightarrow{A C}|=2|\overrightarrow{A B}|=5|\overrightarrow{A D}|$ then $\cos (\overrightarrow{B A} \wedge \overrightarrow{C D})$ is
A. $\cos ^{-1} \frac{\sqrt{14}}{7 \sqrt{2}}$
B. $\cos ^{-1} \frac{\sqrt{21}}{7 \sqrt{3}}$
C. $\cos ^{-1} \frac{2}{\sqrt{7}}$
D. $\cos ^{-1} \frac{2 \sqrt{7}}{14}$

Answer: c

- Watch Video Solution

116. In fig. 2.33 AB, DE and GF are parallel to each other and $A D, B G$ and $E F$ ar parallel to each other. If $C D: C E=C G: C B=2: 1$ then the value of area ($\triangle A E G$): area $(\triangle A B D)$ is equal to
A. $7 / 2$
B. 3
C. 4
D. 9/2

Answer: b

117. Vectors \hat{a} in the plane of $\vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=\hat{i}-\hat{j}+\hat{k}$ is such that it equally inclined to \vec{b} and \vec{d} where $\vec{d}=\hat{j}+2 \hat{k}$ the value of \hat{a} is
A. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
B. $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$
C. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$
D. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$

Answer: b

- Watch Video Solution

118. Let $A B C D$ be a tetrahedron such that the edges $A B, A C a n d A D$ are mutually perpendicular. Let the area of triangles $A B C, A C D a n d A D B$ be 3 , 4 and 5 sq. units, respectively. Then the area of triangle $B C D$ is $5 \sqrt{2}$ b. 5 c. $\frac{\sqrt{5}}{2}$ d. $\frac{5}{2}$
A. $5 \sqrt{2}$
B. 5
C. $\frac{\sqrt{5}}{2}$
D. $\frac{5}{2}$

Answer: a

- Watch Video Solution

119. Let $f(t)=[t] \hat{i}+(t-[t]) \hat{j}+[t+1] \hat{k}$, where[.] denotes the greatest integer function. Then the vectors ` vecf(5/4)a $n \operatorname{df}(\mathrm{t}), 0$
A. parallel to each other
B. perpendicular to each other
C. inclined at $\frac{\cos ^{-1} 2}{\sqrt{7}\left(1-t^{2}\right)}$
D. inclined at $\frac{\cos ^{-1}(8+t)}{9 \sqrt{1+t^{2}}}$

- Watch Video Solution

120. If \vec{a} is parallel to $\vec{b} \times \vec{c}$, then $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$ is equal to
A. $|\vec{a}|^{2}(\vec{b} . \vec{c})$
B. $|\vec{b}|^{2}(\vec{a} \cdot \vec{c})$
C. $|\vec{c}|^{2}(\vec{a} . \vec{b})$
D. none of these

Answer: a

D Watch Video Solution

121. The three vectors $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}$ taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume:
A. $1 / 3$
B. 4
C. $(3 \sqrt{3}) / 4$
D. $4 \sqrt{3}$

Answer: d

- Watch Video Solution

122. If $\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a} \quad$ is a on zero vector and
$|(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b})+(\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a})|=0 \quad$ then
$|\vec{a}|+|\vec{b}|+|\vec{c}|=|\vec{d}|$ (B) $|\vec{a}|=|\vec{b}|=|\vec{c}|$ (C) $\vec{a}, \vec{b}, \vec{c}$ are coplanar
$\vec{a}+\vec{c}=2 b$
A. $|\vec{a}|=|\vec{b}|=|\vec{c}|$
B. $|\vec{a}|+|\vec{b}|+|\vec{c}|=|\vec{d}|$
C. \vec{a}, \vec{b} and \vec{c} are coplanar
D. none of these

Answer: c

- Watch Video Solution

123. If $|\vec{a}|=2$ and $|\vec{b}|=3$ and $\vec{a} . \vec{b}=0$, then $(\vec{a} \times(\vec{a} \times(\vec{a} \times(\vec{a} \times \vec{b}))))$ is equal to the given diagonal is $\vec{c}=4 \hat{k}=8 \hat{k}$ then, the volume of a parallelpiped is
A. $48 \hat{b}$
B. $-48 \hat{b}$
C. $48 \hat{a}$
D. $-48 \hat{a}$

Answer: a

124. If two diagonals of one of its faces are $6 \hat{i}+6 \hat{k}$ and $4 \hat{j}+2 \hat{k}$ and of the edges not containing the given diagonals is $\vec{c}=4 \hat{j}-8 \hat{k}$, then the volume of a parallelpiped is
A. 60
B. 80
C. 100
D. 120

Answer: d

- Watch Video Solution

125. The volume of a tetrahedron fomed by the coterminus edges \vec{a}, \vec{b} and $\vec{c} i s 3$. Then the volume of the parallelepiped formed by the coterminus edges $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ is
A. 6
B. 18
C. 36
D. 9

Answer: c

- Watch Video Solution

126. If \vec{a}, \vec{b} and \vec{c} are three mutually orthogonal unit vectors, then the triple product $[\vec{a}+\vec{b}+\vec{c} \vec{a}+\vec{b} \vec{b}+\vec{c}]$ equals
A. 0
B. 1 or -1
C. 1
D. 3
127. vector \vec{c} are perpendicular to vectors
$\vec{a}=(2,-3,1)$ and $\vec{b}=(1,-2,3)$ and satifies the condition
$\vec{c} \cdot(\hat{i}+2 \hat{j}-7 \hat{k})=10$ then vector \vec{c} is equal to
A. 7,5,1
B. $(-7,-5,-1)$
C. 1,1,-1
D. none of these

Answer: a

- Watch Video Solution

128. Given $\vec{a}=x \hat{i}+y \hat{j}+2 \hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j}, \vec{a} \perp \vec{b}, \vec{a} . \vec{c}=4$ then
A. $[\vec{a} \vec{b} \vec{c}]^{2}=|\vec{a}|$
B. $[\vec{a} \vec{b} \vec{c}]=|\vec{a}|$
C. $[\vec{a} \vec{b} \vec{c}]=0$
D. $[\vec{a} \vec{b} \vec{c}]=0$

Answer: d

- Watch Video Solution

129. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non zero vectors such that \vec{c} is a unit vector perpendicular to both
\vec{a} and \vec{b}. If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|^{2}$ is equal to
A. 0
B. 1
C. $\frac{1}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$
D. $\frac{3}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$

Answer: c

- Watch Video Solution

130. Let $\vec{r}, \vec{a}, \vec{b}$ and \vec{c} be four non-zero vectors such that $\vec{r} \cdot \vec{a}=0,|\vec{r} \times \vec{b}|=|\vec{r}||\vec{b}|,|\vec{r} \times \vec{c}|=|\vec{r}||\vec{c}|$ then
$\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=$
A. $|a||b||c|$
B. $-|a||b||c|$
C. 0
D. none of these

Answer: c

131. If \vec{a}, \vec{b} and \vec{c} are such that $[\vec{a} \vec{c} \vec{c}]=1, \vec{c}=\lambda \vec{a} \times \vec{b}$, angle between \vec{a} and $\vec{b} i s 2 \pi / 3,|\vec{a}|=\sqrt{2}|\vec{b}|=\sqrt{3}$ and $|\vec{c}|=\frac{1}{\sqrt{3}}$ then the angle between \vec{a} and \vec{b} is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: b

D Watch Video Solution

132. If $4 \vec{a}+5 \vec{b}+9 \vec{c}=0$ then $(\vec{a} \times \vec{b}) \times[(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})]$ is equal to
A. a vector perpendicular to the plane of \vec{a}, \vec{b} and \vec{c}
B. a scalar quantity
C. $\overrightarrow{0}$
D. none of these

Answer: c

- Watch Video Solution

133. Value of $[\vec{a} \times \vec{b}, \vec{a} \times \vec{c}, \vec{d}]$ is always equal to
A. $(\vec{a} . \vec{d})[\vec{a} \vec{b} \vec{c}]$
B. `(veca.vecc)[veca vecb vecd]
C. $(\vec{a} . \vec{b})[\vec{a} \vec{b} \vec{d}]$
D. none of these

Answer: a

134. Let \hat{a} and \hat{b} be mutually perpendicular unit vectors. Then for ant arbitrary \vec{r}.
A. $\vec{r}=(\vec{r} \cdot \hat{a}) \hat{a}+(\vec{r} \cdot \hat{b}) \hat{b}+(\vec{r} \cdot(\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$
B. $\vec{r}=(\vec{r} . \hat{a})-(\vec{r} . \hat{b}) \hat{b}-(\vec{r} .(\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$
C. $\vec{r}=(\vec{r} \cdot \hat{a}) \hat{a}-(\vec{r} \cdot \hat{b}) \hat{b}-(\vec{r} \cdot(\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$
D. none of these

Answer: a

- Watch Video Solution

135. Let \vec{a} and \vec{b} be unit vectors that are perpendicular to each other I. then $[\vec{a}+(\vec{a} \times \vec{b}) \vec{b}+(\vec{a} \times \vec{b}) \vec{a} \times \vec{b}]$ will always be equal to
A. 1
B. 0
C. -1
D. none of these

Answer: a

- Watch Video Solution

136. \vec{a} and \vec{b} are two vectors such that
$|\vec{a}|=1,|\vec{b}|=4$ and \vec{a}. Vecb $=2$.If $\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b}$ then find angle between \vec{b} and \vec{c}.
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{3 \pi}{4}$
D. $\frac{5 \pi}{6}$

Answer: d
$\vec{a},(((\vec{a} \times \vec{b})+(\vec{a} \times \vec{b})) \times(\vec{b} \times \vec{c}))(\vec{b}-\vec{c})$ is always equal to

- Watch Video Solution

138. If \vec{a}. $\vec{b}=\beta$ and $\vec{a} \times \vec{b}=\vec{c}$, then \vec{b} is
A. $\frac{(\beta \vec{a}-\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$
B. $\frac{(\beta \vec{a}+\vec{a} \times \vec{c})}{}$
$|\vec{a}|^{2}$
C. $\frac{(\beta \vec{c}+\vec{a} \times \vec{c})}{|a|^{2}}$
$|\vec{a}|^{2}$
D. $\frac{(\beta \vec{c}+\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$

Answer: a

139. If $a(\vec{\alpha} \times \vec{\beta})=b(\vec{\beta} \times \vec{\gamma})+c(\vec{\gamma} \times \vec{\alpha})=\overrightarrow{0}$ and at least one of a, b and c is non zero then vectors $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are (A) parallel (B) coplanar (C) mutually perpendicular (D) none of these
A. parallel
B. coplanar
C. mutually perpendicular
D. none of these

Answer: b

- Watch Video Solution

140. If $(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})=\vec{b}$, where \vec{a}, \vec{b} and \vec{c} are non zero vectors then
(A) \vec{a}, \vec{b} and \vec{c} canbecoplanar(B)veca,vecb and vecchstbecoplanar(C) veca, vecb and vecc cannot be coplanar (D) none of these
A. \vec{a}, \vec{b} and \vec{v} can be coplanar
B. \vec{a}, \vec{b} and \vec{c} must be coplanar
C. \vec{a}, \vec{b} and \vec{c} cannot be coplanar
D. none of these

Answer: c

- Watch Video Solution

141. If $\vec{r} \cdot \vec{a}=\vec{r}, \vec{b}=\vec{r} \cdot \vec{c}=\frac{1}{2}$ for some non zero vector \vec{r} and $\vec{a}, \vec{b}, \vec{c}$ are non coplanar, then the area of the triangle whose vertices are
$A(\vec{a}), B(\vec{b})$ and $C(\vec{c} 0$ is (A) $|[\vec{a} \vec{b} \vec{c}]|$
(B) $|\vec{r}|$
(C) $|[\vec{a} \vec{b} \vec{r}] \vec{r}|$
(D) none of these
A. $|[\vec{a} \vec{b} \vec{c}]|$
B. $|\vec{r}|$
C. $|[\vec{a} \vec{b} \vec{c}] \vec{r}|$
D. none of these

Answer: c

- Watch Video Solution

142. A vector of magnitude 10 along the normal to the curve $3 x^{2}+8 x y+2 y^{2}-3=0$ at its point $P(1,0)$ can be $6 \hat{i}+8 \hat{j}$ b. $-8 \hat{i}+3 \hat{j}$ c. $6 \hat{i}-8 \hat{j}$ d. $8 \hat{i}+6 \hat{j}$
A. $6 \hat{i}+8 \hat{j}$
B. $-8 \hat{i}+3 \hat{j}$
C. $6 \hat{i}-8 \hat{j}$
D. $8 \hat{i}+6 \hat{j}$

Answer: a

143. If \vec{a} and \vec{b} are two unit vectors inclined at an angle $\pi /$ 3then $\{\vec{a} \times(\vec{b}+\vec{a} \times \vec{b})\} \cdot \vec{b}$ is equal to
A. $\frac{-3}{4}$
B. $\frac{1}{4}$
C. $\frac{3}{4}$
D. $\frac{1}{2}$

Answer: a

- Watch Video Solution

144. If \vec{a} and \vec{b} are othogonal unit vectors, then for a vector \vec{r} non coplanar with \vec{a} and \vec{b} vector $\vec{r} \times \vec{a}$ is equal to
A. $[\vec{r} \vec{a} \vec{b}] \vec{b}-(\vec{r} \cdot \vec{b})(\vec{b} \times \vec{a})$
B. $[\vec{r} \vec{a} \vec{b}](\vec{a}+\vec{b})$
C. $[\vec{r} \vec{a} \vec{b}] \vec{a}+(\vec{r} \cdot \vec{a}) \vec{a} \times \vec{b}$
D. none of these

Answer: a

- Watch Video Solution

145. If $\vec{a}+\vec{b}, \vec{c}$ are any three non- coplanar vectors then the equation
$[\vec{b} \times \vec{c} \vec{c} \times \vec{a} \vec{a} \times \vec{b}] x^{2}+[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}] x+1+[\vec{b}-\vec{c} \vec{c}-\vec{c}-\vec{a} \vec{a}-\vec{b}]=0$ has roots
A. real and distinct
B. real
C. equal
D. imaginary

Answer: c

146. Sholve the simultasneous vector equations for 'vecx aedn vecy: vecx+veccxxvecy=veca and vecy+veccxxvecx=vecb, vec!=0
A. $\vec{x}=\frac{\vec{b} \times \vec{c}+\vec{a}+(\vec{c} \cdot \vec{a}) \vec{c}}{1+\vec{c} \cdot \vec{c}}$
B. $\vec{x}=\xrightarrow{\vec{c} \times \vec{b}+\vec{b}+(\vec{c} \cdot \vec{a}) \vec{c}}$
$1+\vec{c} \cdot \vec{c}$
c. $\vec{y}=\underline{\vec{a} \times \vec{c}+\vec{b}+(\vec{c} \cdot \vec{b}) \vec{c}}$
C. $\vec{y}=\frac{1+\vec{c} . \vec{c}}{}$
D. none of these

Answer: b

- Watch Video Solution

147. The condition for equations $\vec{r} \times \vec{a}=\vec{b}$ and $\vec{r} \times \vec{c}=\vec{d}$ to be consistent is
A. $\vec{b} \cdot \vec{c}=\vec{a} \cdot \vec{d}$
B. $\vec{a} \cdot \vec{b}=\vec{c} \cdot \vec{d}$
C. $\vec{b} \cdot \vec{c}+\vec{a} \cdot \vec{d}=0$
D. $\vec{a} \cdot \vec{b}+\vec{c} \cdot \vec{d}=0$

Answer: c

- Watch Video Solution

148. If $\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}, \vec{b}=\hat{i}-2 \hat{j}+\hat{k}$ and $\vec{c}=-3 \hat{i}+\hat{j}+2 \hat{k}$, then $[\vec{a} \vec{b} \vec{c}]=$

- Watch Video Solution

149.

$\vec{a}=2 \hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+2 \hat{k}, \vec{c}=\hat{i}+\hat{j}+2 \hat{k}$ and $(1+\alpha) \hat{i}+\beta(1+\alpha) \hat{j}+\gamma(1+\alpha)($
A. $-2,-4,-\frac{2}{3}$
B. $2,-4, \frac{2}{3}$
C. $-2,4, \frac{2}{3}$
D. $2,4,-\frac{2}{3}$

Answer: a

- Watch Video Solution

150. Let $(\vec{a}(x)=(\sin x) \hat{i}+(\cos x) \hat{j}$ and $\vec{b}(x)=(\cos 2 x) \hat{i}+(\sin 2 x) \hat{j}$ be two variable vectors $(x \in R)$. Then $\vec{a}(x)$ and $\vec{b}(x)$ are
A. collinear for unique value of x
B. perpendicular for infinte values of x .
C. zero vectors for unique value of x
D. none of these

Answer: b

- Watch Video Solution

\vec{a} and $\vec{b},(\vec{a} \times \hat{i})+(\vec{b} \times \hat{i})+(\vec{a} \times \hat{j}) \cdot(\vec{b} \times \hat{j})+(\vec{a} \times \hat{k}) \cdot(\vec{b} \times \hat{k})$ is always equal to
A. $\vec{a} . \vec{b}$
B. $2 \vec{a}$. Vecb
C. zero
D. none of these

Answer: b

- Watch Video Solution

152. If \vec{a}, \vec{b} and \vec{c} are three non coplanar vectors and \vec{r} is any vector in space, then $(\overrightarrow{\times} \vec{b}),(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{r} \times \vec{b})=$
(A) $[\vec{a} \vec{b} \vec{c}]$
(B) $2[\vec{a} \vec{b} \vec{c}] \vec{r}$
(C) $3[\vec{a} \vec{b} \vec{c}] \vec{r}$
(D) $4[\vec{a} \vec{b} \vec{c}] \vec{r}$
A. $[\vec{a} \vec{b} \vec{c}] \vec{r}$
B. $2[\vec{a} \vec{b} \vec{c}] \vec{r}$
C. $3[\vec{a} \vec{b} \vec{c}] \vec{r}$
D. none of these

Answer: b

- Watch Video Solution

153. If $\vec{P}=\frac{\vec{b} \times \vec{c}}{} \cdot \vec{q}=\frac{\vec{c} \times \vec{a}}{}$ and $\vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{c}]}$, where \vec{a}, \vec{b} and \vec{c} are $[\vec{a} \vec{b} \vec{c}] \quad[\vec{a} \vec{b} \vec{c}] \quad[\vec{a} \vec{b} \vec{c}]$
three non- coplanar vectors then the value of the expression $(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{q}+\vec{q}+\vec{r})$ is
A. 3
B. 2
C. 1
D. 0

- Watch Video Solution

154. $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ are the vertices of triangle $A B C$ and $R(\vec{r})$ is any point in the plane of triangle ABC, then $\vec{r},(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})$ is always equal to
A. zero
B. $[\vec{a} \vec{b} \vec{c}]$
C. $-[\vec{a} \vec{b} \vec{c}]$
D. none of these

Answer: b
155. If \vec{a}, \vec{b} and \vec{c} are non- coplanar vectors and $\vec{a} \times \vec{c}$ is perpendicular to $\vec{a} \times(\vec{b} \times \vec{c})$, then the value of $[\vec{a} \times(\vec{b} \times \vec{c})] \times \vec{c}$ is equal to
A. $[\vec{a} \vec{b} \vec{c}] \vec{c}$
B. $[\vec{a} \vec{b} \vec{c}] \vec{b}$
C. $\overrightarrow{0}$
D. $[\vec{a} \vec{b} \vec{c}] \vec{a}$

Answer: c

- Watch Video Solution

156. If V be the volume of a tetrahedron and V^{\prime} be the volume of another tetrahedran formed by the centroids of faces of the previous tetrahedron and $V=K V^{\prime}$, then K is equal to 9 b. 12 c. 27 d. 81
A. 9
B. 12
C. 27
D. 81

Answer: c

- Watch Video Solution

157. $[(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b})]$ is equal to
(where \vec{a}, \vec{b} and \vec{c} are non-zero non- colanar vectors).
A. $[\vec{a} \vec{b} \vec{c}]^{2}$
B. $[\vec{a} \vec{b} \vec{c}]^{3}$
C. $[\vec{a} \vec{b} \vec{c}]^{4}$
D. $[\vec{a} \vec{b} \vec{c}]$

Answer: c

- Watch Video Solution

$\vec{r}=x_{1}(\vec{a} \times \vec{b})+x_{2}(\vec{b} \times \vec{a})+x_{3}(\vec{c} \times \vec{d})$ and $4[\vec{a} \vec{b} \vec{c}]=1$ then $x_{1}+x_{2}+x_{3}$ is equal to
A. $\frac{1}{2} \vec{r} .(\vec{a}+\vec{b}+\vec{c})$
B. $\frac{1}{4} \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
C. $2 \vec{r} .(\vec{a}+\vec{b}+\vec{c})$
D. $4 \vec{r} .(\vec{a}+\vec{b}+\vec{c})$

Answer: d

- Watch Video Solution

159. If the vectors \vec{a} and \vec{b} are perpendicular to each other then a vector \vec{v} in terms of \vec{a} and \vec{b} satisfying the equations $\vec{v} \cdot \vec{a}=0, \vec{v} \cdot \vec{b}=1$ and $\left[\begin{array}{ccc}\vec{v} & \vec{a} & \vec{b}\end{array}\right]=1$ is

$$
\text { A. } \frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{2}}
$$

B. $\frac{\vec{b}}{}+\xrightarrow{\vec{a} \times \vec{b}}$
$|\vec{b}| \quad|\vec{a} \times \vec{b}|^{2}$
C. $\frac{\vec{b}}{|\vec{b}|}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
D. none of these

Answer: a

- Watch Video Solution

160. If $\vec{a},{ }^{\prime}=\hat{i}+\hat{j}, \vec{b}^{\prime}=\hat{i}-\hat{j}+2 \hat{k} n a d \vec{c}^{\prime}=2 \hat{i}=\hat{j}-\hat{k}$ then the altitude of the parallelepiped formed by the vectors, \vec{a}, \vec{b} and \vec{c} having baswe formed by \vec{b} and \vec{c} is (where \vec{a}^{\prime} is recipocal vector \vec{a}, etc.
A. 1
B. $3 \sqrt{2} / 2$
C. $1 / \sqrt{6}$
D. $1 / \sqrt{2}$

- Watch Video Solution

161. If $\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{j}+\hat{k}, \vec{c}=\hat{k}+\hat{i}$ then in the reciprocal system of vectors
$\vec{a}, \vec{b}, \vec{c}$ reciprocal \vec{a} of vector \vec{a} is
A. $\frac{\hat{i}+\hat{j}+\hat{k}}{2}$
B. $\frac{\hat{i}-\hat{j}+\hat{k}}{2}$
C. $\frac{-\hat{i}-\hat{j}+\hat{k}}{2}$
D. $\frac{\hat{i}+\hat{j}-\hat{k}}{2}$

Answer: d

- Watch Video Solution

162. If unit vectors \vec{a} and \vec{b} are inclined at an angle 2θ such that $|\vec{a}-\vec{b}|<1$ and $0 \leq \theta \leq \pi$, then θ lies in the interval
A. $[0, \pi / 6)$
B. $(5 \pi / 6, \pi]$
C. $[\pi / 6, \pi / 2]$
D. $(\pi / 2,5 \pi / 6]$

Answer: a,b

- Watch Video Solution

163. \vec{b} and \vec{c} are non-collinear if [Math Processing Error] then
A. $x=1$
B. $x=-1$
C. $y=(4 n+1) \frac{\pi}{2}, n \in I$
D. $y(2 n+1) \frac{\pi}{2}, n \in I$

Answer: a,c

- Watch Video Solution

164. Unit vectors \vec{a} and \vec{b} ar perpendicular, and unit vector \vec{c} is inclined at an angle θ to both \vec{a} and \vec{b}. If $\alpha \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})$ then.
A. $\alpha=\beta$
B. $\gamma^{2}=1-2 \alpha^{2}$
C. $\gamma^{2}=-\cos 2 \theta$
D. $\beta^{2}=\frac{1+\cos 2 \theta}{2}$

Answer: a,b,c,d

- Watch Video Solution

165. If vectors \vec{a} and \vec{b} are two adjacent sides of parallelograsm then the vector representing the altitude of the parallelogram which is
perpendicular to \vec{a} is (A) $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$
(B) $\frac{\vec{a} \cdot \vec{b}}{\left.\vec{b}\right|^{2}}$
(C) $\left.\vec{b}-\frac{\vec{b} \cdot \vec{a}}{(|\vec{a}|)^{2}}\right)$
$\vec{a} \times(\vec{b} \times \vec{a})$
$\left.\vec{b}\right|^{20}$
A. $\frac{(\vec{a} \cdot \vec{b})}{|\vec{a}|^{2}} \vec{a}-\vec{b}$
B. $\frac{1}{|\vec{a}|^{2}}\left\{|\vec{a}|^{2} \vec{b}-(\vec{a} \cdot \vec{b}) \vec{a}\right\}$
C. $\frac{\vec{a} \times(\vec{a} \times \vec{b})}{|\vec{a}|^{2}}$
D. $\vec{a} \times(\vec{b} \times \vec{a})$
$|\vec{b}|^{2}$

Answer: a,b,c

- Watch Video Solution

166. If $\vec{c} a \times(\vec{b} \times \vec{c})$ is perpendicular to $(\vec{a} \times \vec{b}) \times \vec{c}$, we may have
A. $(\vec{a} \cdot \vec{b})|\vec{b}|^{2}=(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})$
B. $\vec{a} \cdot \vec{b}=0$
C. $\vec{a} \cdot \vec{c}=0$
D. $\vec{b} \cdot \vec{c}=0$

Answer: ac

- Watch Video Solution

167. If $\vec{p}=\frac{\vec{b} \times \vec{c}}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]}, \vec{r}=\frac{\vec{a} \times \vec{b}}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{b}\end{array}\right]}$ where $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors, then the value of the expression $(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{p}+\vec{q}+\vec{r})$ is
A. $x[\vec{a} \vec{b} \vec{c}]+\frac{[\vec{p} \vec{q} \vec{r}]}{x}$ has least value 2
B. $x^{2}[\vec{a} \vec{b} \vec{c}]^{2}+\frac{[\vec{p} \vec{q} \vec{r}]}{x^{2}}$ has least value $\left(3 / 2^{2 / 3}\right)$
C. $[\vec{p} \vec{q} \vec{r}]>0$
D. none of these

Answer: a,c

- Watch Video Solution

168. $a_{1}, a_{2}, a_{3} \in R-\{0\}$ and $+a_{1}+a_{2} \cos 2 x+a_{3} \sin ^{2} x=0$ " for all " x in R then
A. vectors $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=4 \hat{i}+2 \hat{j}+\hat{k}$ are perpendicular to each other
B. vectors $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+2 \hat{k}$ are parallel to each each other
C. if vector $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ is of length $\sqrt{6}$ units, then on of the ordered trippplet $\left(a_{1}, a_{2}, a_{3}\right)=(1,-1,-2)$
D. if $2 a_{1}+3 a_{2}+6 a_{3}+6 a_{3}=26$, then $\left|\vec{a} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right|$ is $2 \sqrt{6}$

D Watch Video Solution

169. If \vec{a} and \vec{b} are two vectors and angle between them is θ, then
A. $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2}$
B. $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}, \quad$ if $\quad \theta=\pi / 4$
C. $\vec{a} \times \vec{b}=(\vec{a}$. Vecb $) \hat{n}($ where \hat{n} is a normal unit vector) if $\theta f=\pi / 4$
D. $(\vec{a} \times \vec{b}) \cdot(\vec{a}+\vec{b})=0$

Answer: a,b,c,d

- Watch Video Solution

170. Let \vec{a} and \vec{b} be two non- zero perpendicular vectors. A vector \vec{r} satisfying the equation $\vec{r} \times \vec{b}=\vec{a}$ can be
A. $\vec{b}-\frac{\vec{a} \times \vec{b}}{}$

$$
|\vec{b}|^{2}
$$

B. $2 \vec{b}-\frac{\vec{a} \times \vec{b}}{}$

$$
|\vec{b}|^{2}
$$

C. $|\vec{a}| \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
D. $|\vec{b}| \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$

Answer: a,b,cd,

- Watch Video Solution

171. If vector $\vec{b}=(\tan \alpha,-12 \sqrt{\sin \alpha / 2})$ and $\vec{c}=\left(\tan \alpha, \tan \alpha-\frac{3}{\sqrt{\sin \alpha / 2}}\right)$ are orthogonal and vector $\vec{a}=(13, \sin 2 \alpha)$ makes an obtuse angle with the $z-$ axis, then the value of α is $\alpha=(4 n+1) \pi+\tan ^{-1} 2$ b. $\alpha=(4 n+1) \pi-\tan ^{-1} 2$ c. $\alpha=(4 n+2) \pi+\tan ^{-1} 2$ d. $\alpha=(4 n+2) \pi-\tan ^{-1} 2$
A. $\alpha=(4 n+1) \pi+\tan ^{-1} 2$
B. $\alpha=(4 n+1) \pi-\tan ^{-1} 2$
C. $\alpha=(4 n+2) \pi+\tan ^{-1} 2$
D. $\alpha=(4 n+2) \pi-\tan ^{-1} 2$

Answer: b,d

- Watch Video Solution

172. Let \vec{r} be
a unit
vector
satisfying
$\vec{r} \times \vec{a}=\vec{b}$, where $|\vec{a}|=\sqrt{3}$ and $|\vec{b}|=\sqrt{2}$
A. $\vec{r}=\frac{2}{3}(\vec{a}+\vec{a} \times \vec{b})$
B. $\vec{r}=\frac{1}{3}(\vec{a}+\vec{a} \times \vec{b})$
C. $\vec{r}=\frac{2}{3}(\vec{a}-\vec{a} \times \vec{b})$
D. $\vec{r}=\frac{1}{3}(-\vec{a}+\vec{a} \times \vec{b})$

Answer: b,d
173. If \vec{a} and \vec{b} are unequal unit vectors such that $(\vec{a}-\vec{b}) \times[(\vec{b}+\vec{a}) \times(2 \vec{a}+\vec{b})]=\vec{a}+\vec{b}$ then angle θ between \vec{a} and \vec{b} is
A. 0
B. $\pi / 2$
C. $\pi / 4$
D. π

Answer: b,d

- Watch Video Solution

174. If \vec{a} and \vec{b} are two unit vectors perpenicualar to each other and $\vec{c}=\lambda_{1} \vec{a}+\lambda_{2} \vec{b}+\lambda_{3}(\vec{a} \times \vec{b})$, then which of the following is (are) true ?
A. $\lambda_{1}=\vec{a} . \vec{c}$
B. $\lambda_{2}=|\vec{b} \times \vec{c}|$
C. $\lambda_{3}=\mid(\vec{a} \times \vec{b}|\times \vec{c}|$
D. $\lambda_{1} \vec{a}+\lambda_{2} \vec{b}+\lambda_{3}(\vec{a} \times \vec{b})$

Answer: a,d

- Watch Video Solution

175. If vectors \vec{a} and \vec{b} are non collinear then $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}$ is (A) a unit vector \in thepla $\neq o f v e c a \quad$ and $\operatorname{vecb}(B) \in$ thepla $\neq o f v e c a \quad$ and vecb
(C)equally $\in \mathrm{cl} \in$ edotäs and \vec{b} (D) perpendicat \rightarrow veca xx vecb`
A. a unit vector
B. in the plane of \vec{a} and \vec{b}
C. equally inclined to \vec{a} and \vec{b}
D. perpendicular to $\vec{a} \times \vec{b}$

Answer: b,c,d

176. If \vec{a} and \vec{b} are non-zero vectors such that $|\vec{a}+\vec{b}|=|\vec{a}-2 \vec{b}|$ then
A. $2 \vec{a} \cdot \vec{b}=|\vec{b}|^{2}$
B. $\vec{a} \cdot \vec{b}=|\vec{b}|^{2}$
C. least value of \vec{a}. Vecb $+\frac{1}{1}$ is $\sqrt{2}$

$$
|\vec{b}|^{2}+2
$$

D. least value of $\vec{a} \cdot \vec{b}+\frac{1}{|\vec{b}|^{2}+2}$ is $\sqrt{2}-1$

Answer: add

- Watch Video Solution

177. Let $\vec{a} \vec{b}$ and \vec{c} be non- zero vectors ane $\vec{V}_{1}=\vec{a} \times(\vec{b} \times \vec{c})$ and $\vec{V}_{2}=(\vec{a} \times \vec{b}) \times \vec{c}$.vectors \vec{V}_{1} and \vec{V}_{2} are equal. Then
A. \vec{a} and \vec{b} ar orthogonal
B. \vec{a} and \vec{c} are collinear
C. \vec{b} and \vec{c} ar orthogonal
D. $\vec{b}=\lambda(\vec{a} \times \vec{c})$ when λ is a scalar

Answer: b,d

- Watch Video Solution

178. Vectors \vec{A} and \vec{B} satisfying the vector equation $\vec{A}+\vec{B}=\vec{a}, \vec{A} \times \vec{B}=\vec{b}$ and $\vec{A} \cdot \vec{a}=1$. Vectors and \vec{b} are given vectosrs, are
A. $\vec{A}=\frac{(\vec{a} \times \vec{b})-\vec{a}}{a^{2}}$
B. $\vec{B}=\frac{(\vec{b} \times \vec{a})+\vec{a}\left(a^{2}-1\right)}{a^{2}}$
C. $\vec{A}=\frac{(\vec{a} \times \vec{b})+\vec{a}}{a^{2}}$
D. $\vec{B}=\frac{(\vec{b} \times \vec{a})-\vec{a}\left(a^{2}-1\right)}{a^{2}}$

- Watch Video Solution

179. A vector \vec{d} is equally inclined to three vectors $\vec{a}=\hat{i}-\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=3 \hat{j}-2 \hat{k}$. Let \vec{x}, \vec{y} and \vec{z} be three vectors in the plane of $\vec{a}, \vec{b} ; \vec{b}, \overrightarrow{;} \vec{c}, \vec{a}$, respectively. Then
A. $\vec{x} \cdot \vec{d}=-1$
B. $\vec{y} \cdot \vec{d}=1$
C. vecz.vecd=0`
D. vecr.vecd=0, " where " vecr=lambda vecx + mu vecy +deltavecz'

Answer: c.d

- Watch Video Solution

180. Vectors perpendicular to $\hat{i}-\hat{j}-\hat{k}$ and in the plane of $\hat{i}+\hat{j}+\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ are (A) $\hat{i}+\hat{k}$
(B) $2 \hat{i}+\hat{j}+\hat{k}$
(C) $3 \hat{i}+2 \hat{j}+\hat{k}$
$-4 \hat{i}-2 \hat{j}-2 \hat{k}$
A. $\hat{i}+\hat{k}$
B. $2 \hat{i}+\hat{j}+\hat{k}$
C. $3 \hat{i}+2 \hat{j}+\hat{k}$
D. $-4 \hat{i}-2 \hat{j}-2 \hat{k}$

Answer: bed

- Watch Video Solution

181. If the sides $A B$ of an equilateral triangle $A B C$ lying in the xy-plane is $3 \hat{i}$ then the side $\overrightarrow{C B}$ can be (A) $-\frac{3}{2}(\hat{i}-\sqrt{3})$ (B) $\frac{3}{2}(\hat{i}-\sqrt{3})$ (C) $-\frac{3}{2}(\hat{i}+\sqrt{3})$ $\frac{3}{2}(\hat{i}+\sqrt{3})$
A. $-\frac{3}{2}(\hat{i}-\sqrt{3} \hat{j})$
B. $-\frac{3}{2}(\hat{i}-\sqrt{3} \hat{j})$
C. $-\frac{3}{2}(\hat{i}+\sqrt{3} \hat{j})$
D. $\frac{3}{2}(\hat{i}+\sqrt{3 \hat{j}})$

Answer: b,d

- Watch Video Solution

182. Let \hat{a} be a unit vector and \hat{b} a non zero vector non parallel to \vec{a}. Find the angles of the triangle tow sides of which are represented by the vectors. $\sqrt{3}(\hat{x} \vec{b})$ and $\vec{b}-(\hat{a} . \vec{b}) \hat{a}$
A. $\tan ^{-1}(\sqrt{3})$
B. $\tan ^{-1}(1 / \sqrt{3})$
C. $\cot ^{-1}(0)$
D. $\operatorname{tant}^{\wedge}(-1)(1)^{\wedge}$
183. \vec{a}, \vec{b} and \vec{c} are unimdular and coplanar. A unit vector \vec{d} is perpendicualt to them, $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\frac{1}{6} \hat{i}-\frac{1}{3} \hat{j}+\frac{1}{3} \hat{k}$, and the angle between \vec{a} and \vec{b} is 30° then \vec{c} is
A. $(\hat{i}-2 \hat{j}+2 \hat{k}) / 3$
B. $(-\hat{i}+2 \hat{j}-2 \hat{k}) / 3$
C. $(-\hat{i}+2 \hat{j}-\hat{k}) / 3$
D. $(-2 \hat{i}-2 \hat{j}+\hat{k}) / 3$

Answer: a,b

- Watch Video Solution

184. If $\vec{a}+2 \vec{b}+3 \vec{c}=\overrightarrow{0}$ then $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=$
A. $2(\vec{a} \times \vec{b})$
B. $6(\vec{b} \times \vec{c})$
C. $3(\vec{c} \times \vec{a})$
D. $\overrightarrow{0}$

Answer: c,d

- Watch Video Solution

185. Let \vec{a} and \vec{b} be two non-collinear unit vectors. If $\vec{u}=\vec{a}-(\vec{a} . \vec{b}) \vec{b}$ and $\overrightarrow{=} \vec{a} \times \vec{b}$, then $|\vec{v}|$ is
A. $|\vec{u}|$
B. $|\vec{u}|+|\vec{u} . \vec{b}|$
C. $|\vec{u}|+|\vec{u} . \vec{a}|$
D. none of these

Answer: b,d

186. if $\vec{a} \times \vec{b}=\vec{c} . \vec{b} \times \vec{c}=\vec{a}$, where $\vec{c} \neq \overrightarrow{0}$ then
A. $|\vec{a}|=|\vec{c}|$
B. $|\vec{a}|=|\vec{b}|$
c. $|\vec{b}|=1$
D. $|\vec{a}|=\vec{b}|=|\vec{c}|=1$

Answer: a,c

- Watch Video Solution

187. Let \vec{a}, \vec{b}, and \vec{c} be three non- coplanar vectors and \vec{d} be a non -zero, which is perpendicular to
$(\vec{a}+\vec{b}+\vec{c})$. Now $\vec{d}=(\vec{a} \times \vec{b}) \sin x+(\vec{b} \times \vec{c}) \cos y+2(\vec{c} \times \vec{a})$. Then
$\vec{d} \cdot(\vec{a}+\vec{c})$
A. $[\vec{a} \vec{b} \vec{c}]$
B. $\frac{\vec{d} \cdot(\vec{a}+\vec{c})}{=-2}$
$[\vec{a} \vec{b} \vec{c}]$
C. minimum value of $x^{2}+y^{2} i s \pi^{2} / 4$
D. minimum value of $x^{2}+y^{2} i s 5 \pi^{2} / 4$

Answer: b,d

Watch Video Solution

188. If \vec{a}, \vec{b} and \vec{c} are three unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}$, then (\vec{b} and \vec{c} being non parallel)
A. angle between \vec{a} and $\vec{b} i s \pi / 3$
B. angle between \vec{a} and $\vec{c} i s \pi / 3$
C. angle between \vec{a} and $\vec{b} i s \pi / 2$
D. angle between \vec{a} and $\vec{c} i s \pi / 2$

Answer: b,c

189. If in triangle $A B C, \overrightarrow{A B}=\frac{\vec{u}}{|\vec{u}|}-\frac{\vec{v}}{|\vec{v}|}$ and $\overrightarrow{A C}=\frac{2 \vec{u}}{|\vec{u}|}$, where $|\vec{u}| \neq|\vec{v}|$, then
A. $1+\cos 2 A+\cos 2 B+\cos 2 C=0$
B. $\sin A=\cos C$
C. projection of $A C$ on $B C$ is equal to $B C$
D. projection of $A B$ on $B C$ is equal to $A B$

Answer: a,b,c

- Watch Video Solution

190. $\left[\begin{array}{lll}\vec{a} \times \vec{b} & \vec{c} \times \vec{d} & \vec{e} \times \vec{f}\end{array}\right]$ is equal to
A. $[\vec{a} \vec{b} \vec{d}][\vec{c} \vec{e} \vec{f}]-[\vec{a} \vec{b} \vec{c}][\vec{d} \vec{e} \vec{f}]$
B. $[\vec{a} \vec{b} \vec{e}][\vec{f} \vec{c} \vec{d}]-[\vec{a} \vec{b} \vec{f}][\vec{e} \vec{c} \vec{d}]$
C. $[\vec{c} \vec{d} \vec{a}][\vec{b} \vec{e} \vec{f}]-[\vec{a} \vec{d} \vec{b}][\vec{a} \vec{e} \vec{f}]$
D. $[\vec{a} \vec{c} \vec{e}][\vec{b} \vec{d} \vec{f}]$

Answer: a,b,c

- Watch Video Solution

191. The scalars I and m such that $l \vec{a}+m \vec{b}=\vec{c}$, where \vec{a}, \vec{b} and \vec{c} are given vectors, are equal to
A. I $=\frac{(\vec{c} \times \vec{b}) \cdot(\vec{a} \times \vec{b})}{(\vec{a} \times \vec{b})^{2}}$
B. $l=\frac{(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{a})}{(\vec{b} \times \vec{a})}$
$(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{a})$
C. $m=$
$(\vec{b} \times \vec{a})^{2}$
D. $m=\frac{(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{a})}{(\vec{b} \times \vec{a})}$

D Watch Video Solution

192. If $(\vec{a} \times v \vec{b}) \times(\vec{c} \times \vec{d}) \cdot(\vec{a} \times \vec{d})=0$ then which of the following may be true?
A. \vec{a}, \vec{b} and \vec{d} are nenessarily coplanar
B. \vec{a} lies in the plane of \vec{c} and \vec{d}
C. $\vec{v} b$ lies in the plane of \vec{a} and \vec{d}
D. \vec{c} lies in the plane of \vec{a} and \vec{d}

Answer: b,c,d

D Watch Video Solution

193. $A, B \quad C$ and $d D$ are four points such that
$\overrightarrow{A B}=m(2 \hat{i}-6 \hat{j}+2 \hat{k}) \overrightarrow{B C}=(a h t i-2 \hat{j})$ and $\overrightarrow{C D}=n(-6 \hat{i}+15 \hat{j}-3 \hat{k})$. If CD
intersects $A B$ at some points E, then
A. $m \geq 1 / 2$
B. $n \geq 1 / 3$
C. $m=n$
D. $m<n$

Answer: a,b

D Watch Video Solution

194. If the vectors $\vec{a}, \vec{b}, \vec{c}$ are non -coplanar and l, m, n are distinct scalars such that
$[l \vec{a}+m \vec{b}+n \vec{c} \quad l \vec{b}+m \vec{c}+n \vec{a} \quad l \vec{c}+m \vec{a}+n \vec{b}]=0$ then
A. $l+m+n=0$
B. roots of the equation $l x^{2}+m x+n=0$ are equal
C. $l^{2}+m^{2}+n^{2}=0$
D. $l^{3}+m^{2}+n^{3}=3 l m n$

Answer: a,b,d

- Watch Video Solution

195. Let $\vec{\alpha}=a \hat{i}+b \hat{j}+c \hat{k}, \vec{\beta}=b \hat{i}+c \hat{j}+a \hat{k}$ and $\vec{\gamma}=c \hat{i}+a \hat{j}+b \hat{k}$ be three coplnar vectors with $a \neq b$, and $\vec{v}=\hat{i}+\hat{j}+\hat{k}$. Then \vec{v} is perpendicular to
A. $\vec{\alpha}$
B. $\vec{\beta}$
C. $\vec{\gamma}$
D. none of these

Answer: a,b,c

- Watch Video Solution

196. If vectors $\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{B}=\hat{i}+\hat{j}+5 \hat{k}$ and \vec{C} form a left handed system then \vec{C} is (A) $11 \hat{i}-6 \hat{j}-\hat{k}$
(B) $-11 \hat{i}+6 \hat{j}+\hat{k} \quad$ (C) $-11 \hat{i}+6 \hat{j}-\hat{k}$
$-11 \hat{i}+6 \hat{j}-\hat{k}$
A. $11 \hat{i}-6 \hat{j}-\hat{k}$
B. $-11 \hat{i}-6 \hat{j}-\hat{k}$
C. $-11 \hat{i}-6 \hat{j}+\hat{k}$
D. $-11 \hat{i}+6 \hat{j}-\hat{k}$

Answer: b,d

- Watch Video Solution

197.

$\vec{a}=x \hat{i}+y \hat{j}+z \hat{k}, \vec{b}=y \hat{i}+z \hat{j}+x \hat{k}$ and $\vec{c}=z \hat{i}+x \hat{j}+y \hat{k}$, , then $\vec{a} \times(\vec{b} \times \vec{c})$ is
A. parallel to $(y-z) \hat{i}+(z-x) \hat{j}+(x-y) \hat{k}$
B. orthogonal to $\hat{i}+\hat{j}+\hat{k}$
C. orthogonal to $(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$
D. orthogonal to $x \hat{i}+y \hat{j}+z \hat{k}$

Answer: a,b,c,d

- Watch Video Solution

198. If $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$ then
A. $(\vec{c} \times \vec{a}) \times \vec{b}=\overrightarrow{0}$
B. $\vec{c} \times(\vec{a} \times \vec{b})=\overrightarrow{0}$
C. $\vec{b} \times(\vec{c} \times \vec{a})=\overrightarrow{0}$
D. $\vec{c} \times \vec{a} \times \vec{b}=\vec{b} \times(\vec{c} \times \vec{a})=\overrightarrow{0}$

Answer: a,c,d

- Watch Video Solution

199. A vector \vec{d} is equally inclined to three vectors $\vec{a}=\hat{i}-\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=3 \hat{j}-2 \hat{k}$. Let \vec{x}, \vec{y} and \vec{z} be three vectors in the plane of $\vec{a}, \vec{b} ; \vec{b}, \overrightarrow{;} \vec{c}, \vec{a}$, respectively. Then
A. $\vec{z} \cdot \vec{d}=0$
B. $\vec{x} \cdot \vec{d}=1$
C. $\vec{y} . \vec{d}=32$
D. $\vec{r} \cdot \vec{d}=0$, where $\vec{r}=\lambda \vec{x}+\mu \vec{y}+\gamma \vec{z}$

Answer: a,d

- Watch Video Solution

200. A parallelogram is constructed on the vectors $\vec{a}=3 \vec{\alpha}-\vec{\beta}, \vec{b}=\vec{\alpha}+3 \vec{\beta}$. If $|\vec{\alpha}|=|\vec{\beta}|=2$ and angle between $\vec{\alpha}$ and $\vec{\beta}$ is $\frac{\pi}{3}$ then the length of a diagonal of the parallelogram is (A) $4 \sqrt{5}$ (B) $4 \sqrt{3}$ (C) $4 s q r t(7)^{\prime}(D)$ none of these
A. $4 \sqrt{5}$
B. $4 \sqrt{3}$
C. $4 \sqrt{7}$
D. none of these

Answer: b,c

- Watch Video Solution

201. Statement 1: Vector $\vec{c}=-5 \hat{i}+7 \hat{j}+2 \hat{k}$ is along the bisector of angle between $\vec{a}=\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=8 \hat{i}+\hat{j}-4 \hat{k}$.

Statement $2: \vec{c}$ is equally inclined to \vec{a} and \vec{b}.
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: b

- Watch Video Solution

202. Statement1: A component of vector $\vec{b}=4 \hat{i}+2 \hat{j}+3 \hat{k}$ in the direction perpendicular to the direction of vector $\vec{a}=\hat{i}+\hat{j}+\hat{k} i s \hat{i}-\hat{j}$

Statement 2: A component of vector in the direction of $\vec{a}=\hat{i}+\hat{j}+\hat{k} i s 2 \hat{i}+2 \hat{j}+2 \hat{k}$
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: c

- Watch Video Solution

203. Statement 1: Distance of point $D(1,0,-1)$ from the plane of points $A($ $1,-2,0), B(3,1,2)$ and $C(-1,1,-1)$ is $\frac{8}{\sqrt{229}}$

Statement 2: volume of tetrahedron formed by the points A, B, C and D is $\sqrt{229}$
2
A. Both the statements are true and statement 2 is the correct
explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: d

204. Let \vec{r} be a non-zero vector satisfying $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$ for given non- zero vectors $\vec{a} \vec{b}$ and \vec{c}

Statement 1: $[\vec{a}-\vec{b} \vec{b}-\vec{c} \vec{c}-\vec{a}]=0$
Statement 2: $[\vec{a} \vec{b} \vec{c}]=0$
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: b
205. Statement 1: If $a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ are three mutually perpendicular unit vectors then $a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}, a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}$ and $a_{3} \hat{i}+b_{3} \hat{j}+c_{3} \hat{k}$ may be mutually perpendicular unit vectors.

Statement 2 : value of determinant and its transpose are the same.
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: a

- Watch Video Solution

206. Statement 1: $\vec{A}=2 \hat{i}+3 \hat{j}+6 \hat{k}, \vec{B}=\hat{u}+\hat{j}-2 \hat{k}$ and $\vec{C}=\hat{i}+2 \hat{j}+\hat{k}$ then
$|\vec{A} \times(\vec{A} \times(\vec{A} \times \vec{B})) \cdot \vec{C}|=243$
Statement 2: $|\vec{A} \times(\vec{A} \times(\vec{A} \times \vec{B})) \cdot \vec{C}|=|\vec{A}|^{2}|[\vec{A} \vec{B} \vec{C}]|$
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: d

- Watch Video Solution

207. Statement $1: \vec{a}, \vec{b}$ and \vec{c} arwe three mutually perpendicular unit vectors and \vec{d} is a vector such that $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are non- coplanar. If
$[\vec{d} \vec{b} \vec{c}]=[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{a}]=1$, then $\vec{d}=\vec{a}+\vec{b}+\vec{c}$
Statement 2: $[\vec{d} \vec{b} \vec{c}]=[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{a}] \Rightarrow \vec{d}$ is equally inclined to \vec{a}, \vec{b} and \vec{c}.
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: b

- Watch Video Solution

208. Consider three vectors \vec{a}, \vec{b} and \vec{c}

Statement 1: $\vec{a} \times \vec{b}=((\hat{i} \times \vec{a}) \cdot \vec{b}) \hat{i}+((\hat{j} \times \vec{a}) \cdot \vec{b}) \hat{j}+(\hat{k} \times \vec{a}) \cdot \vec{b}) \hat{k}$
Statement 2: $\vec{c}=(\hat{i} \cdot \vec{c}) \hat{i}+(\hat{j} \cdot \vec{c}) \hat{j}+(\hat{k} \cdot \vec{c}) \hat{k}$
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: a

- Watch Video Solution

209. Let \vec{u}, \vec{v} and \vec{w} be three unit vectors such that $\vec{u}+\vec{v}+\vec{w}=\vec{a}, \vec{u} \times(\vec{v} \times \vec{w})=\vec{b},(\vec{u} \times \vec{v}) \times \vec{w}=\vec{c}, \vec{a} \cdot \vec{u}=3 / 2, \vec{a} \cdot \vec{v}=7 / 4$ and Vector \vec{u} is
A. $\vec{a}-\frac{2}{3} \vec{b}+\vec{c}$
B. $\vec{a}+\frac{4}{3} \vec{b}+\frac{8}{3} \vec{c}$
C. $2 \vec{a}-\vec{b}+\frac{1}{3} \vec{c}$
D. $\frac{4}{3} \vec{a}-\vec{b}+\frac{2}{3} \vec{c}$

Answer: b

- Watch Video Solution

210. Let \vec{u}, \vec{v} and \vec{w} be three unit vectors such that $\vec{u}+\vec{v}+\vec{w}=\vec{a}, \vec{u} \times(\vec{v} \times \vec{w})=\vec{b},(\vec{u} \times \vec{v}) \times \vec{w}=\vec{c}, \vec{a} \cdot \vec{u}=3 / 2, \vec{a} \cdot \vec{v}=7 / 4$ and

Vector \vec{u} is
A. $2 \vec{a}-3 \vec{c}$
B. $3 \vec{b}-4 c$
C. $-4 \vec{c}$
D. $\vec{a}+\vec{b}+2 \vec{c}$

Answer: c

211. Let \vec{u}, \vec{v} and \vec{w} be three unit vectors such that $\vec{u}+\vec{v}+\vec{w}=\vec{a}, \vec{u} \times(\vec{v} \times \vec{w})=\vec{b},(\vec{u} \times \vec{v}) \times \vec{w}=\vec{c}, \vec{a} \cdot \vec{u}=3 / 2, \vec{a} \cdot \vec{v}=7 / 4$ and Vector \vec{u} is
A. $\frac{2}{3}(2 \vec{c}-\vec{b})$
B. $\frac{1}{3}(\vec{a}-\vec{b}-\vec{c})$
C. $\frac{1}{3} \vec{a}-\frac{2}{3} \vec{b}-2 \vec{c}$
D. $\frac{4}{3}(\vec{c}-\vec{b})$

Answer: d

- Watch Video Solution

212. Vectors $\vec{x}, \vec{y}, \vec{z}$ each of magnitude $\sqrt{2}$ make angles of 60° with each other. If $\vec{x} x(\vec{y} \times(\vec{z} \times \vec{x})=\vec{b} n d \vec{x} x \vec{y}=\vec{c}, f \in d \vec{x}, \vec{y}, \vec{z}$ in terms of \vec{a}, \vec{b} and \vec{c}.
A. $\frac{1}{2}[(\vec{a}-\vec{b}) \times \vec{c}+(\vec{a}+\vec{b})]$
B. $\frac{1}{2}[(\vec{a}+\vec{b}) \times \vec{c}+(\vec{a}-\vec{b})]$
C. $\frac{1}{2}[-(\vec{a}+\vec{b}) \times \vec{c}+(\vec{a}+\vec{b})]$
D. $\frac{1}{2}[(\vec{a}+\vec{b}) \times \vec{c}-(\vec{a}+\vec{b})]$

Answer: d

- Watch Video Solution

213. Vectors $\vec{x}, \vec{y}, \vec{z}$ each of magnitude $\sqrt{2}$ make angles of 60° with each other. If $\vec{x} x(\vec{y} \times(\vec{z} \times \vec{x})=\vec{b} n d \overrightarrow{\times} x \vec{y}=\vec{c}, f \in d \vec{x}, \vec{y}, \vec{z}$ in terms of \vec{a}, \vec{b} and \vec{c}.
A. $\frac{1}{2}[(\vec{a}+\vec{c}) \times \vec{b}-\vec{b}-\vec{a}]$
B. $\frac{1}{2}[(\vec{a}-\vec{c}) \times \vec{b}+\vec{b}+\vec{a}]$
C. $\frac{1}{2}[(\vec{a}-\vec{b}) \times \vec{c}+\vec{b}+\vec{a}]$
D. $\frac{1}{2}[(\vec{a}-\vec{c}) \times \vec{a}+\vec{b}-\vec{a}]$

Answer: c

- Watch Video Solution

214. Vectors $\vec{x}, \vec{y}, \vec{z}$ each of magnitude $\sqrt{2}$ make angles of 60° with each other. If $\vec{x} x(\vec{y} \times(\vec{z} \times \vec{x})=\vec{b} n d \vec{x} x \vec{y}=\vec{c}, f \in d \vec{x}, \vec{y}, \vec{z}$ in terms of \vec{a}, \vec{b} and \vec{c}.
A. $\frac{1}{2}[(\vec{a}-\vec{c}) \times \vec{c}-\vec{b}+\vec{a}]$
B. $\frac{1}{2}[(\vec{a}-\vec{b}) \times \vec{c}+\vec{b}-\vec{a}]$
C. $\frac{1}{2}[\vec{c} \times(\vec{a}-\vec{b})+\vec{b}+\vec{a}]$
D. none of these

Answer: b

215. If $\vec{x} x \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} \cdot \vec{b}=\gamma, \vec{x} \cdot \vec{y}=1$ and $\vec{y} \cdot \vec{z}=1$ then find x, y, z in terms of 'veca,vecb and gamma.
A. $\frac{1}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times(\vec{a} \times \vec{b})]$
B. $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times \vec{b}-\vec{a} \times(\vec{a} \times \vec{b})]$
C. $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times \vec{b}+\vec{a} \times(\vec{a} \times \vec{b})]$
D. none of these

Answer: b

- Watch Video Solution

216. If $\vec{x} x \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} \cdot \vec{b}=\gamma, \vec{x} \cdot \vec{y}=1$ and $\vec{y} \cdot \vec{z}=1$ then find x, y, z in terms of 'veca,vecb and gamma.
A. $\frac{\vec{a} \times \vec{b}}{\gamma}$
B. $\vec{a}+\frac{\vec{a} \times \vec{b}}{\gamma}$
C. $\vec{a}+\vec{b}+\frac{\vec{a} \times \vec{b}}{\gamma}$
D. none of these

Answer: a

Watch Video Solution

217. If $\overrightarrow{\times} x \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} . \vec{b}=\gamma, \vec{x} . \vec{y}=1$ and $\vec{y} . \vec{z}=1$ then find x, y, z in terms of `veca, vecb and gamma.
A. $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a}+\vec{b} \times(\vec{a} \times \vec{b})]$
B. $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a}+\vec{b}-\vec{a} \times(\vec{a} \times \vec{b})]$
C. $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a}+\vec{b}+\vec{a} \times(\vec{a} \times \vec{b})]$
D. none of these
218. Given two orthogonal vectors \vec{A} and VecB each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B}=\vec{A}-\vec{P}$. then
$(\vec{P} \times \vec{B}) \times \vec{B}$ is equal to
A. \vec{P}
B. $-\vec{P}$
C. $2 \vec{B}$
D. \vec{A}

Answer: b

- Watch Video Solution

219. Given two orthogonal vectors \vec{A} and VecB each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B}=\vec{A}-\vec{P}$. then
\vec{P} is equal to
A. $\frac{\vec{A}}{2}+\frac{\vec{A} \times \vec{B}}{2}$
B. $\frac{\vec{A}}{2}+\frac{\vec{B} \times \vec{A}}{2}$
C. $\frac{\vec{A} \times \vec{B}}{2}-\frac{\vec{A}}{2}$
D. $\vec{A} \times \vec{B}$

Answer: b

- Watch Video Solution

220. Given two orthogonal vectors \vec{A} and VecB each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B}=\vec{A}-\vec{P}$. then which of the following statements is false ?
A. vectors \vec{P}, \vec{A} and $\vec{P} \times \vec{B}$ ar linearly dependent.
B. vectors \vec{P}, \vec{B} and $\vec{P} \times \vec{B}$ ar linearly independent
C. \vec{P} is orthogonal to \vec{B} and has length $\frac{1}{\sqrt{2}}$.
D. none of these

Answer: d

- Watch Video Solution

221. Let $\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{c}=-2 \hat{i}+3 \hat{j}+6 \hat{k}$. Let \vec{a}_{1} be the projection of $\vec{a} O n \vec{b}$ and \vec{a}_{2} be the projection of \vec{a}_{1} on \vec{c}. Then \vec{a}_{2} is equal to
A. $\frac{943}{49}(2 \hat{i}-3 \hat{j}-6 \hat{k})$
B. $\frac{943}{49^{2}}(2 \hat{i}-3 \hat{j}-6 \hat{k})$
c. $\frac{943}{49}(-2 \hat{i}+3 \hat{j}+6 \hat{k})$
D. $\frac{943}{49^{2}}(-2 \hat{i}+3 \hat{j}+6 \hat{k})$

Answer: b
222. Let $\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{c}=-2 \hat{i}+3 \hat{j}+6 \hat{k}$. Let \vec{a}_{1} be the projection of \vec{a} on \vec{b} and \vec{a}_{2} be the projection of \vec{a}_{1} on \vec{c}. Then $\vec{a}_{1} \cdot \vec{b}$ is equal to
A. -41
B. $-41 / 7$
C. 41
D. 287

Answer: a

- Watch Video Solution

223. Let $\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{c}=-2 \hat{i}+3 \hat{j}+6 \hat{k}$. Let \vec{a}_{1} be the projection of $\vec{a} o n \vec{b}$ and \vec{a}_{2} be the projection of \vec{a}_{1} on \vec{c}. Then which of the following is true ?
A. \vec{a} and $v c e a_{2}$ are collinear
B. \vec{a}_{1} and \vec{c} are collinear
C. $\vec{a} m \vec{a}_{1}$ and \vec{b} are coplanar
D. \vec{a}, \vec{a}_{1} and a_{2} are coplanar

Answer: c

- Watch Video Solution

224. Consider a triangular pyramid $A B C D$ the position vectors of whone agular points are $A(3,0,1), B(-1,4,1), C(5,3,2)$ and $D(0,-5,4)$ Let G be the point of intersection of the medians of the triangle BCT. The length of the vector $A G$ is
A. $\sqrt{17}$
B. $\sqrt{51} / 3$
C. $3 / \sqrt{6}$
D. $\sqrt{59} / 4$

D Watch Video Solution

225. Consider a triangular pyramid $A B C D$ the position vectors of whone agular points are $A(3,0,1), B(-1,4,1), C(5,3,2)$ and $D(0,-5,4)$ Let G be the point of intersection of the medians of the triangle $B C T$. The length of
the vector $A G$ is
A. 24
B. $8 \sqrt{6}$
C. $4 \sqrt{6}$
D. none of these

Answer: c

226. Consider a triangular pyramid $A B C D$ the position vectors of whone agular points are $A(3,0,1), B(-1,4,1), C(5,3,2)$ and $D(0,-5,4)$ Let G be the point of intersection of the medians of the triangle $B C T$. The length of the vector $A G$ is
A. $14 / \sqrt{6}$
B. $2 / \sqrt{6}$
C. $3 / \sqrt{6}$
D. none of these

Answer: a

- Watch Video Solution

227. Vertices of a parallelogram taken in order are $A,(2,-1,4), B(1,0,-1), C($ 1,2,3) and D.

The distance between the parallel lines $A B$ and $C D$ is
A. $\sqrt{6}$
B. $3 \sqrt{6 / 5}$
C. $2 \sqrt{2}$
D. 3

Answer: c

- Watch Video Solution

228. Vertices of a parallelogram taken in order are $A,(2,-1,4), B(1,0,-1), C($ $1,2,3$) and D .

Distance of the point $P(8,2,-12)$ from the plane of the parallelogram is
A. $\frac{4 \sqrt{6}}{9}$
B. $\frac{32 \sqrt{6}}{9}$
C. $\frac{16 \sqrt{6}}{9}$
D. none

- Watch Video Solution

229. Vertices of a parallelogram taken in order are $A,(2,-1,4), B(1,0,-1), C($ $1,2,3$) and D.

The distance between the parallel lines $A B$ and $C D$ is
A. $14,4,2$
B. 2,4,14
C. $4,2,14$
D. 2,14,4

Answer: d

230. Let \vec{r} is a positive vector of a variable pont in cartesian OXY plane such that $\quad \vec{r} .(10 \hat{j}-8 \hat{i}-\vec{r})=40 \quad$ and $p_{1}=\max \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}, p_{2}=\min \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}$. A tangent line is drawn to the curve $y=\frac{8}{x^{2}}$ at the point A with abscissa 2. The drawn line cuts x-axis at a point B
A. 9
B. $2 \sqrt{2}-1$
C. $6 \sqrt{6}+3$
D. $9-4 \sqrt{2}$

Answer: d

- Watch Video Solution

231. Let \vec{r} is a positive vector of a variable pont in cartesian OXY plane that

$$
\vec{r} .(10 \hat{j}-8 \hat{i}-\vec{r})=40
$$

and
$p_{1}=\max \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}, p_{2}=\min \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}$. A tangent line is drawn to the curve $y=\frac{8}{x^{2}}$ at the point A with abscissa 2. The drawn line cuts x-axis at a point B
A. 2
B. 10
C. 18
D. 5

Answer: c

- Watch Video Solution

232. Let \vec{r} is a positive vector of a variable pont in cartesian OXY plane such that $\quad \vec{r} .(10 \hat{j}-8 \hat{i}-\vec{r})=40 \quad$ and $p_{1}=\max \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}, p_{2}=\min \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}$. A tangent line is drawn to the curve $y=\frac{8}{x^{2}}$ at the point A with abscissa 2. The drawn line cuts x -axis at a point B
A. 1
B. 2
C. 3
D. 4

Answer: c

- Watch Video Solution

233. $A b, A C$ and $A D$ are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector \vec{a}. The vector of the faces containing vertices A, B, C and $\mathrm{A}, \mathrm{B}, \mathrm{D}$ are \vec{b} and \vec{c}, respectively, i.e. $A B \times A C$ and $A D \times A B=\vec{c}$ the projection of each edge $A B$ and $A C$ on diagonal vector $\vec{a} i s \frac{|\vec{a}|}{3}$
vector $A B$ is
A. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}$
B. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}+\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
C. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}-\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
D. none of these

Answer: a

D View Text Solution

234. $A b, A C$ and $A D$ are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector \vec{a}. The vector of the faces containing vertices A, B, C and projection of each edge $A B$ and $A C$ on diagonal vector $\vec{a} i s \frac{|\vec{a}|}{3}$ vector $\overrightarrow{A C}$ is
A. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}$
B. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}+\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
C. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}-\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
D. none of these

Answer: b

- Watch Video Solution

235. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector \vec{a}. The vector of the faces containing vertices A, B, C and projection of each edge $A B$ and $A C$ on diagonal vector $\vec{a} i \frac{|\vec{a}|}{3}$ vector $\overrightarrow{A D}$ is
A. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}$
B. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}+\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
C. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}-\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
D. none of these

Answer: c

- Watch Video Solution

- View Text Solution

- View Text Solution

239. Given two vectors $\vec{a}=-\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}-2 \hat{j}-\hat{k}$

- View Text Solution

240. Given two vectors $\vec{a}=-\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}+2 \hat{k}$

View Text Solution
242. Valume of parallelpiped formed by vectors $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ is 36 sq. units.

- View Text Solution

243. If \vec{a} and \vec{b} are any two unit vectors, then find the greatest postive integer in the range of $\frac{3|\vec{a}+\vec{b}|}{2}+2|\vec{a}-\vec{b}|$

- Watch Video Solution

244. Let \vec{u} be a vector on rectangular coodinate system with sloping angle 60° suppose that $|\vec{u}-\hat{i}|$ is geomtric mean of $|\vec{u}|$ and $|\vec{u}-2 \hat{i}|$, where \hat{i} is the unit vector along the x-axis. Then find the value of $(\sqrt{2}+1)|\vec{u}|$
245. Find the absolute value of parameter t for which the area of the triangle whose vertices the $A(-1,1,2) ; B(1,2,3)$ and $C(5,1,1)$ is minimum.

- Watch Video Solution

246.

$\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}, \vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ and $[3 \vec{a}+\vec{b}=\vec{c} 3 \vec{c}$

Watch Video Solution

247. Let $\vec{a}=\alpha \hat{i}+2 \hat{j}-3 \hat{k}, \vec{b}=\hat{i}+2 \alpha \hat{j}-2 \hat{k}$ and $\vec{c}=2 \hat{i}-\alpha \hat{j}+\hat{k}$. Find the value of 6α. Such that $\{(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})\} \times(\vec{c} \times \vec{a})=0$
248. If \vec{x}, \vec{y} are two non-zero and non-collinear vectors satisfying $\left[(a-2) \alpha^{2}+(b-3) \alpha+c\right] \vec{x}+\left[(a-2) \beta^{2}+(b-3) \beta+c\right] \vec{y}+\left[(a-2) \gamma^{2}+(b-3) \gamma+c\right.$ are three distinct real numbers, then find the value of $\left(a^{2}+b^{2}+c^{2}-4\right)$

- Watch Video Solution

249. Let \vec{u} and \vec{v} be unit vectors such that $\vec{u} \times \vec{v}+\vec{u}=\vec{w}$ and $\vec{w} \times \vec{u}=\vec{v}$.

Find the value of [$\vec{u} \vec{v} \vec{w}$]

- Watch Video Solution

250. The volume of the tetrahedronwhose vertices are the points with position vectors $\hat{i}-5 \hat{j}+10 \hat{k},-\hat{i}-3 \hat{j}+7 \hat{k}, 5 \hat{i}-\hat{j}+\lambda \hat{k}$ and $7 \hat{i}-4 \hat{j}+7 \hat{k}$ is 11 cubic units then the value of λ is (A) 7 (B) 1 (C) -7 (D) -1

- Watch Video Solution

$\vec{u}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{v}=2 \hat{i}+\hat{k}+4 \hat{k}, \vec{w}=\hat{i}+3 \hat{j}+3 \hat{k}$ and $(\vec{u} \cdot \vec{R}-15) \hat{i}+(\vec{c} \cdot \vec{R}-30) \hat{j}$
. Then find the greatest integer less than or equal to $|\vec{R}|$.

- Watch Video Solution

252. Let a three- dimensional vector \vec{V} satissgy the condition, $2 \vec{V}+\vec{V} \times(\hat{i}+2 \hat{j})=2 \hat{i}+\hat{k} \cdot I f 3|\vec{V}|=\sqrt{m}$. Then find the value of m.

- Watch Video Solution

253. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that \vec{a}. Vecb $=0=\vec{a} . \vec{c}$ and the angle between \vec{b} and $\vec{c} i s \frac{\pi}{3}$, then find the value of $|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|$

- Watch Video Solution

254. Let $O A=\vec{a}, \vec{O} B=10 \vec{a}+2 \vec{b}$ and $\overrightarrow{O C}=\vec{b}$, where O, A and C are noncollinear points. Let P denote the area of quadrilateral OACB. And let q denote the area of parallelogram with OA nad OC as adjacent sides. If $p=k q$, then find k .

- Watch Video Solution

255. Find the work done by the force $F=3 \hat{i}-\hat{j}-2 \hat{k}$ acrting on a particle such that the particle is displaced from point $A(-3,-4,1) \top o \in t B(-1,-1,-2)$

- Watch Video Solution

256. From a point O inside a triangle $A B C$, perpendiculars $O D, O E$ and $O F$ are drawn to the sides $B C, C A$ and $A B$, respectively. Prove that the perpendiculars from A, B and C to the sides EF, FD and DE are concurrent
257. $A_{1}, A_{2}, \ldots . A_{n}$ are the vertices of a regular plane polygon with n sides and O ars its centre. Show that $\sum_{i=1}^{n-1}\left(\overrightarrow{O A_{i}} \times \overrightarrow{O A_{i+1}}\right)=(1-n)\left(\overrightarrow{O A_{2}} \times \overrightarrow{O A_{1}}\right)$

- Watch Video Solution

258. If c is a given non-zero scalar, and \vec{A} and \vec{B} are given non- zero, vectors such that $\vec{A} \perp \vec{B}$. Then find vector, \vec{X} which satisfies the equations $\vec{A} \cdot \vec{X}=c$ and $\vec{A} \times \vec{X}=\vec{B}$.

- Watch Video Solution

259. $A, B, C a n d D$ are any four points in the space, then prove that $|\vec{A} B \times \vec{C} D+\vec{B} C \times \vec{A} D+\vec{C} A \times \vec{B} D|=4$ (area of $A B C$.

- Watch Video Solution

260. If the vectors \vec{a}, \vec{b}, and \vec{c} are coplanar show that
$\left|\begin{array}{ccc}\vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c}\end{array}\right|=0$

- Watch Video Solution

261. $\vec{A}=(2 \vec{i}+\vec{k}), \vec{B}=(\vec{i}+\vec{j}+\vec{k})$ and $\vec{C}=4 \vec{i}-\overrightarrow{3} j+7 \vec{k}$ determine a vector ver satisfying $\vec{R} \times \vec{B}=\vec{C} \times \vec{B}$ and $\vec{R} \cdot \vec{A}=0$

- Watch Video Solution

262. Determine the value of c so that for the real x, vectors $c x$ $\hat{i}-6 \hat{j}-3 \hat{k}$ and $x \hat{i}+2 \hat{j}+2 c x \hat{k}$ make an obtuse angle with each other .

- Watch Video Solution

$$
(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})+(\vec{a} \times \vec{c}) \times(\vec{d} \times \vec{b})+(\vec{a} \times \vec{d}) \times(\vec{b} \times \vec{c})=2[\vec{b} \vec{c} \vec{d}] \vec{a}
$$

- Watch Video Solution

264. The position vectors of the vertices A, B and C of a tetrahedron $A B C D$ are $\hat{i}+\hat{j}+\hat{k}, \hat{k}, \hat{i}$ and $\hat{3} i$,respectively. The altitude from vertex D to the opposite face $A B C$ meets the median line through Aof triangle $A B C$ at a point E. If the length of the side $A D$ is 4 and the volume of the tetrahedron is $2 / 2 / 3$, find the position vectors of the point E for all its possible positfons

- Watch Video Solution

265. Let \vec{a}, \vec{b} and \vec{c} be non-coplanar unit vectors, equally inclined to one another at an angle θ. If $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=p \vec{a}+q \vec{b}+r \vec{c}$, find scalars p, q and r in terms of θ.
266. If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $|\vec{b}|=|\vec{c}|$ then $\{(\vec{a}+\vec{b}) \times(\vec{a}+\vec{c})\} \times(\vec{b} \times \vec{c}) \cdot(\vec{b}+\vec{c})=$

- Watch Video Solution

267. For any two vectors \vec{u} and \vec{v} prove that
$\left(1+|\vec{u}|^{2}\left(1+|\vec{v}|^{20}=(1-\vec{u} . \vec{c})^{2}+\mid \vec{u}+\vec{v}+\vec{u} \times \vec{l}^{2}\right.\right.$

- Watch Video Solution

268. Let vecu and vecvbeunit $\xrightarrow[\rightarrow]{\vec{\rightarrow}}$ rs.Ifvecwisa $\vec{\rightarrow}$ rsucht \wedge
vecw+vecwxxvecu=vecv, thenprovet |(vecuxxvecv).vecw|le $1 / 2$ and theequalityholds if and only if vecuisperpendicar \rightarrow vecv.

- Watch Video Solution

270. Let \vee be the volume of the parallelepied formed by the vectors,
$\vec{a}=a_{1} \hat{i}=a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k} . \quad$ if $a_{r} b_{r}$ nadc c_{r}
are non- negative real numbers and

3
$\sum_{r=1}\left(a_{r}+b_{r}+c_{r}\right)=3 L$ show that $V \leq L^{3}$

- Watch Video Solution

271. \vec{u}, \vec{v} and \vec{w} are three nono-coplanar unit vectors and α, β and γ are the angles between \vec{u} and \vec{u}, \vec{v} and \vec{w} and \vec{w} and \vec{u}, respectively and \vec{x}, \vec{y} and \vec{z} are unit vectors along the bisectors of the angles α, β and γ. respectively, prove that $[\vec{x} \times \vec{y} \vec{y} \times \vec{z} \vec{z} \times \vec{x})=\frac{1}{16}[\vec{u} \vec{v} \vec{w}]^{2} \frac{\sec ^{2} \alpha}{2} \frac{\sec ^{2} \beta}{2} \frac{\sec ^{2} \gamma}{2}$.
272. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} ar distinct vectors such that $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ and $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$. Prove that $(\vec{a} \times \vec{d}) \cdot(\vec{b} \cdot \vec{c}) \neq 0$, i.e.,$\vec{a} \cdot \vec{b}+\vec{d} \cdot \vec{c} \neq \vec{d} \cdot \vec{b}+\vec{a} \cdot \vec{c}$.

- Watch Video Solution

273. P_{1} and P_{2} are planes passing through origin, L_{1} and L_{2} are two lines on P_{1} and P_{2} respectively such that their intersection is the origin. Show that there exist points, A, B and C , whose perpmutation, $\mathrm{A}, \mathrm{B}^{\prime}$ and C' respectively, can be chosen such that (i) A is on $L_{1}{ }^{\prime} B$ and P_{1} put not on L_{1} and C not on P_{1}, (ii) A is on L_{2}, B^{\prime} on P P_{2} but not on L_{2} and C^{\prime} not on P_{2}.

- View Text Solution

274. If the incident ray on a surface is along the unit vector \vec{v}, the reflected ray is along the unit vector \vec{w} and the normal is along the unit vector \vec{a} outwards, express \vec{w} in terms of \vec{a} and \vec{v}

- Watch Video Solution

275. Let \vec{A}, \vec{B} and \vec{C} be vectors of legth, 3,4and 5 respectively. Let \vec{A} be perpendicular to $\vec{B}+\vec{C}, \vec{B}$ to $\vec{C}+\vec{A}$ and \vec{C} to $\vec{A}+\vec{B}$ then the length of vector $\vec{A}+\vec{B}+\vec{C}$ is \qquad .

- Watch Video Solution

276. The unit vector perendicular to the plane determined by $P(1,-1,2)$, $C(3,-1,2)$ is \qquad .

- Watch Video Solution

277. the area of the triangle whose vertices are $A(1,-1,2), B(1,2,-1), C(3$, $-1,2$) is \qquad .

Watch Video Solution

278. If $\vec{A}, \vec{B}, \vec{C}$ are non-coplanar vectors then $\frac{\vec{A} \cdot \vec{B} \times \vec{C}}{\vec{C} \times \vec{A} \cdot \vec{B}}+\frac{\vec{B} \cdot \vec{A} \times \vec{C}}{\vec{C} \cdot \vec{A} \times \vec{B}}=$

- Watch Video Solution

279. If $\vec{A}=(1,1,1)$ and $\vec{C}=(0,1,-1)$ are given vectors then find a vector \vec{B} satisfying equations $\vec{A} \times \vec{B}=\vec{C}$ and $\vec{A} \cdot \vec{B}=3$

- Watch Video Solution

280. Let $\vec{b}=4 \hat{i}+3 \hat{j}$ and \vec{c} be two vectors perpendicular to each other in the xy-plane. Find all vetors in te same plane having projection 1 and 2
along \vec{b} and \vec{c} respectively.

- Watch Video Solution

281. The components of a vector \vec{a} along and perpendicular to a non-zero vector \vec{b} are \qquad and \qquad , respectively.

Watch Video Solution

282. A unit vector coplanar with $\vec{i}+\vec{j}+2 \vec{k}$ and $\vec{i}+2 \vec{j}+\vec{k}$ and perpendicular to $\vec{i}+\vec{j}+\vec{k}$ is \qquad

- Watch Video Solution

283. A non vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors $\hat{i}, \hat{i}+\hat{j}$ and thepane determined by the vectors $\hat{i}-\hat{j}, \hat{i}+\hat{k}$ then angle between \vec{a} and $\hat{i}-2 \hat{j}+2 \hat{k}$ is =(A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$
284. If \vec{b} and \vec{c} are any two mutually perpendicular unit vectors and \vec{a} is any vector, then $(\vec{a} \cdot \vec{b}) \vec{b}+(\vec{a} \cdot \vec{c}) \vec{c}+\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{|\vec{b} \times \vec{c}|^{2}}(\vec{b} \times \vec{c})=$ (A) 0 (B) $\vec{a}(C)$ veca/2(D)2veca`

- Watch Video Solution

285. Let \vec{a}, \vec{b} and \vec{c} be three vectors having magnitudes 1,1 and 2 resectively. If $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=\overrightarrow{0}$ then the acute angel between \vec{a} and \vec{c} is

- Watch Video Solution

286. A, B C and D are four points in a plane with position vectors, $\vec{a}, \vec{b} \vec{c}$ and \vec{d} respectively, such that
$(\vec{a}-\vec{d}) \cdot(\vec{b}-\vec{c})=(\vec{b}-\vec{d}) \cdot(\vec{c}-\vec{a})=0$ then point D is the ____ of triangle $A B C$.

- Watch Video Solution

287.

$\vec{A}=\lambda(\vec{u} \times \vec{v})+\mu(\vec{v} \times \vec{w})+v(\vec{w} \times \vec{u})$ and $[\vec{u} \vec{v} \vec{w}]=\frac{1}{5}$ then $\lambda+\mu+v=(\mathrm{A}) 5$
(B) 10 (C) 15 (D) none of these

- Watch Video Solution

288. If $\vec{a}=\hat{j}+\sqrt{3} \hat{k} \vec{b}=-\hat{j}+\sqrt{3} \hat{k}$ and $\vec{c}=2 \sqrt{3} \hat{k}$ form a triangle, then the internal angle of the triangle between \vec{a} and \vec{b} is \qquad

- Watch Video Solution

289. Let \vec{A}, \vec{B} and \vec{C} be unit vectors such that $\vec{A} \cdot \vec{B}=\vec{A} \cdot \vec{C}=0$ and the angle between \vec{B} and \vec{C} be $\pi / 3$. Then $\vec{A}= \pm 2(\vec{B} \times \vec{C})$.

(Watch Video Solution

290. If $\vec{x} \cdot \vec{a}=0 \vec{x} \cdot \vec{b}=0$ and \vec{x}. $\vec{c}=0$ for some non zero vector \vec{x} then show that $[\vec{a} \vec{b} \vec{c}]=0$

Watch Video Solution

291.

for
any
three
vectors,
\vec{a}, \vec{b} and $\vec{c},(\vec{a}-\vec{b}) \cdot(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})=2 \vec{a} \cdot \vec{b} \times \vec{c}$.

- Watch Video Solution

292. The scalar $\vec{A} \cdot(\vec{B}+\vec{C}) \times(\vec{A}+\vec{B}+\vec{C})$ equals (A) 0 (B) $[\vec{A} \vec{B} \vec{C}]+[\vec{B} \vec{C} \vec{A}]$
(C) $[\vec{A} \vec{B} \vec{C}]$ (D) none of these
A. 0
B. $[\vec{A} \vec{B} \vec{C}]+[\vec{B} \vec{C} \vec{A}]$
c. $[\vec{A} \vec{B} \vec{C}]$
D. none of these

Answer: a

- Watch Video Solution

293. For non zero vectors $\vec{a}, \vec{b}, \vec{c}$

$$
|(\vec{a} \times \vec{b}) \cdot| \overrightarrow{=}|\vec{a}||\vec{b}||\vec{c}| \text { holds iff }
$$

A. $\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0$
B. $\vec{b} \cdot \vec{c}=0, \vec{c}, \vec{a}=0$
C. $\vec{c} \cdot \vec{a}=0, \vec{a}, \vec{b}=0$
D. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$

Answer: d

294. The volume of he parallelepiped whose sides are given by $\vec{O} A=2 i-2, j, \vec{O} B=i+j-k a n d \vec{O} C=3 i-k$ is $4 / 13 \mathrm{~b} .4 \mathrm{c} .2 / 7 \mathrm{~d} .2$
A. $4 / 13$
B. 4
C. 2/7
D. 2

Answer: d

- Watch Video Solution

295. Let veda, \vec{b}, \vec{c} be three noncolanar vectors and $\vec{p}, \vec{q}, \vec{r}$ are vectors defined by the relations vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxvecca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) thenthevalueoftheexpression(veca+vecb).vecp+(vecb+vecc).vecq+ (vecc+veca).vecr'. is equal to (A) 0 (B) 1 (C) 2 (D) 3
A. 0
B. 1
C. 2
D. 3

Answer: d

- Watch Video Solution

296. Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{j}-\hat{k}, \vec{c}=\hat{k}-\hat{i}$. Ifd is a unit vector such that $\vec{a} \cdot \hat{d}=0=[\vec{b}, \vec{c}, \vec{d}]$ then hatdequals(A)+-(hati+hatj-2hatk)/sqrt(6)(B)+-(hati+hatj-hatk)/sqrt(3)(C)+-(hati+hatj+hatk)/sqrt(3)(D)+-hatk
A. $\pm \frac{\hat{i}+\hat{j}-2 \hat{k}}{\sqrt{6}}$
B. $\pm \frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}$
C. $\pm \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
D. $\pm \hat{k}$

- Watch Video Solution

297. If \vec{a}, \vec{b} and \vec{c} are non coplanar and unit vectors such that $\left.\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{92}}\right)$ then the angle between vea and \vec{b} is (A) $\frac{3 \pi}{4}$ (B) $\frac{\pi}{4}$
(C) $\frac{\pi}{2}$ (D) π
A. $3 \pi / 4$
B. $\pi / 4$
C. $\pi / 2$
D. π

Answer: a

- Watch Video Solution

298. Let \vec{u}, \vec{v} and \vec{w} be vectors such that $\vec{u}+\vec{v}+\vec{w}=0$ if $|\vec{u}|=3,|\vec{v}|=4$ and $|\vec{w}|=5$ then $\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{w}+\vec{w}+\vec{w} \cdot \vec{u}$ is
A. 47
B. -25
C. 0
D. 25

Answer: b

- Watch Video Solution

299. If \vec{a}, \vec{b} and $\vec{c} 1$ are three non-coplanar vectors, then $(\vec{a}+\vec{b}+\vec{c}) \cdot[(\vec{a}+\vec{b}) \times(\vec{a}+\vec{c})]$ equals
A. 0
B. $[\vec{a} \vec{b} \vec{c}]$
C. $2[\vec{a} \vec{b} \vec{c}]$
D. $-[\vec{a} \vec{b} \vec{c}]$

Answer: d

- Watch Video Solution

300. Let $\vec{p}, \vec{q}, \vec{r}$ be three mutually perpendicular vectors of the same magnitude. If a vector \vec{x} satisfies the equation
$\vec{p} \times\{\vec{x}-\vec{q}) \times \vec{p}\}+\vec{q} \times\{\vec{x}-\vec{r}) \times \vec{q}\}+\vec{r} \times\{\vec{x}-\vec{p}) \times \vec{r}\}=\overrightarrow{0}$,
then \vec{x} is given by
A. $\frac{1}{2}(\vec{p}+\vec{q}-2 \vec{r})$
B. $\frac{1}{2}(\vec{p}+\vec{q}+\vec{r})$
C. $\frac{1}{3}(\vec{p}+\vec{q}+\vec{r})$
D. $\frac{1}{3}(2 \vec{p}+\vec{q}-\vec{r})$

Answer: b

301. Let $\vec{a}=2 i+j-2 k$, and $b=i+j$ if c is a vector such that $\vec{a} . \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and \vec{c} is 30°, then $|(\vec{a} \times \vec{b}) \times \vec{c}|$ is equal to
A. $2 / 3$
B. 3/2
C. 2
D. 3

Answer: b

- Watch Video Solution

302. Let $\vec{a}=2 i+j+k, \vec{b}=i+2 j-k$ and a unit vector \vec{c} be coplanar. If \vec{c} is pependicular to \vec{a}. Then \vec{c} is
A. $\frac{1}{\sqrt{2}}(-j+k)$
B. $\frac{1}{\sqrt{3}}(i-j-k)$
C. $\frac{1}{\sqrt{5}}(i-2 j)$
D. $\frac{1}{\sqrt{3}}(i-j-k)$

Answer: a

- Watch Video Solution

303. If the vectors $\vec{a}, \vec{b}, \vec{c}$ form the sides $B C, C A$ and $A B$ respectively of a triangle ABC then (A) $\vec{a} \cdot(\vec{b} \times \vec{c})=\overrightarrow{0}$ (B) $\vec{a} \times(\vec{b} x \vec{c})=\overrightarrow{0}$
$\vec{a} \cdot \vec{b}=\vec{c}=\vec{c}=\vec{a} . a \neq 0$ (D) $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a} \overrightarrow{0}$
A. $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=0$
B. $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$
C. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}$
D. $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=\overrightarrow{0}$

Answer: b
304. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} be such that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$. Let P_{1} and P_{2} be planes determined by pairs of vectors \vec{a}, \vec{b} and \vec{c}, \vec{d} respectively. Thenthe \angle betweenP_1 and $\mathrm{P}_{-} 2 i s(A) 0(B) \mathrm{pi} / 4(C) \mathrm{pi} / 3$ (D) $\mathrm{pi} / 2^{`}$
A. 0
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: a

- Watch Video Solution

305. If \vec{a}, \vec{b} and \vec{c} are unit coplanar vectors, then the scalar triple porduct $\left[\begin{array}{lll}2 \vec{a}-\vec{b} & 2 \vec{b}-\vec{c} & 2 \vec{c}-\vec{a}\end{array}\right]$ is
A. 0
B. 1
C. $-\sqrt{3}$
D. $\sqrt{3}$

Answer: a

- Watch Video Solution

306. if \hat{a}, \hat{b} and \hat{c} are unit vectors. Then $|\hat{a}-\hat{b}|^{2}+|\hat{b}-\hat{c}|^{2}+|\vec{c}-\vec{a}|^{2} \mid$ does not exceed
A. 4
B. 9
C. 8
D. 6
307. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicular to each other then the angle between \vec{a} and \vec{b} is (A) 45°
(B) 60^{0} (C) $\cos ^{-1}\left(\frac{1}{3}\right)$ (D) $\cos ^{-1}\left(\frac{2}{7}\right)$
A. 45°
B. 60°
C. $\cos ^{-1}(1 / 3)$
D. $\cos ^{-1}(2 / 7)$

Answer: b

- Watch Video Solution

308. Let $\vec{V}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{W}=\hat{i}+3 \hat{k}$. It \vec{U} is a unit vector, then the maximum value of the scalar triple product $\left[\begin{array}{lll}\vec{U} & \vec{V} & \vec{W}\end{array}\right]$ is
A. -1
B. $\sqrt{10}+\sqrt{6}$
C. $\sqrt{59}$
D. $\sqrt{60}$

Answer: c

- Watch Video Solution

309. The value of a so thast the volume of parallelpiped formed by vectors
$\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}, a \hat{i}+\hat{k}$ becomes minimum is (A) $\sqrt{93}$) (B) 2 (C) $\frac{1}{\sqrt{3}}$ (D) 3
A. -3
B. 3
C. $1 / \sqrt{3}$
D. $\sqrt{3}$
310. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{a} . \vec{b}=1$ and $\vec{a} \times \vec{b}=\hat{j}-\hat{k}$ then \vec{b}
A. $\hat{i}-\hat{j}+\hat{k}$
B. $2 \hat{i}-\hat{k}$
c. \hat{i}
D. $2 \hat{i}$

Answer: c

- Watch Video Solution

311. The unit vector which is orthogonal to the vector $5 \hat{j}+2 \hat{j}+6 \hat{k}$ and is coplanar with vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$ is
A. $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$
B. $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{13}}$
C. $\frac{3 \hat{i}-\hat{k}}{\sqrt{10}}$
D. $\frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}$

Answer: c

D Watch Video Solution

312. if \vec{a}, \vec{b} and \vec{c} are three non-zero, non- coplanar vectors and
$\vec{b}_{1}=\vec{b}-\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}, \vec{b}_{2}=\vec{b}+\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}, \vec{c}_{1}=\vec{c}-\frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}+\frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^{2}} \vec{b}_{1}, \vec{c}_{2}=\vec{c}-\frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}-\frac{\vec{i}}{\mid \vec{b}}$
, then the set of orthogonal vectors is
A. $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{3}\right)$
B. $\left(\vec{c} a, \vec{b}_{1}, \vec{c}_{2}\right)$
C. $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{1}\right)$
D. $\left(\vec{a}, \vec{b}_{2}, \vec{c}_{2}\right)$

- Watch Video Solution

313. Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-\hat{k}$ A vector in the plane of \vec{a} and \vec{b} whose projections on \vec{c} is $\frac{1}{\sqrt{3}}$ is
A. $4 \hat{i}-\hat{j}+4 \hat{k}$
B. $3 \hat{i}+\hat{j}-3 \hat{k}$
C. $2 \hat{i}+\hat{j}-2 \hat{k}$
D. $4 \hat{i}+\hat{j}-4 \hat{k}$

Answer: a

314. Lelt two non collinear unit vectors \hat{a} and \hat{b} form and acute angle. A point P moves so that at any time t the position vector $O P$ (where O is the origin) is given by âcost $+\hat{b} s i n t$. When P is farthest from origin O , let M be the length of $O P$ and \hat{u} be the unit vector along $O P$ Then (A) $\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ and $M=(1+\hat{a} \cdot \hat{b})^{\frac{1}{2}}$ (B) $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=(1+\hat{a} . \hat{b})^{\frac{1}{2}}$
$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ and $M=(1+2 \hat{a} . \hat{b})^{\frac{1}{2}}$ (D) $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=(1+2 \hat{a} \cdot \hat{b})^{\frac{1}{2}}$
A.,$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ and $M=(1+\hat{a} \cdot \hat{b})^{1 / 2}$
B. , $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=(1+\hat{a} \cdot \hat{b})^{1 / 2}$
C. $\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ and $M=(1+2 \hat{a} \cdot \hat{b})^{1 / 2}$
D. , $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=(1+2 \hat{a} . \hat{b})^{1 / 2}$

Answer: a

315. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=1$ and $\vec{a} \cdot \vec{c}=\frac{1}{2}$ then (A) $\vec{a}, \vec{b}, \vec{c}$ are non coplanar
$\vec{b}, \vec{c}, \vec{d}$ are non coplanar (C) \vec{b}, \vec{d} are non paralel (D) \vec{a}, \vec{d} are paralel and \vec{b}, \vec{c} are parallel
A. \vec{a}, \vec{b} and \vec{c} are non- coplanar
B. \vec{b}, \vec{c} and \vec{d} are non-coplanar
C. \vec{b} and \vec{d} are non- parallel
D. \vec{a} and \vec{d} are parallel and \vec{b} and \vec{c} are parallel

Answer: c

- Watch Video Solution

316. Two adjacent sides of a parallelogram $A B C D$ are given by $\vec{A} B=2 \hat{i}+10 \hat{j}+11 \hat{k}$ and $\vec{A} D=-\hat{i}+2 \hat{j}+2 \hat{k}$ The side $A D$ is rotated by an acute angle α in the plane of the parallelogram so that $A D$ becomes $A D^{\prime}$

If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angel
α is given by $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4 \sqrt{5}}{9}$
A. $\frac{8}{9}$
B. $\frac{\sqrt{17}}{9}$
C. $\frac{1}{9}$
D. $\frac{4 \sqrt{5}}{9}$

Answer: b

- Watch Video Solution

317. Let P, Q, R and S be the points on the plane with position vectors $-2 \hat{i}-\hat{j}, 4 \hat{i}, 3 \hat{i}+3 \hat{j}$ and $-3 \hat{i}+2 \hat{j}$ respectively. The quadrilateral PQRS must be a
A. Parallelogram, which is neither a rhombus nor a rectangle
B. square
C. rectangle, but not a square
D. rhombus, but not a square.

Answer: a

- Watch Video Solution

318. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$ be three vectors. A vectors \vec{v} in the plane of \vec{a} and \vec{b}, whose projection on $\vec{c} i s \frac{1}{\sqrt{3}}$ is given by
A. $\hat{i}-3 \hat{j}+3 \hat{k}$
B. $-3 \hat{i}-3 \hat{j}+\hat{k}$
C. $3 \hat{i}-\hat{j}+3 \hat{k}$
D. $\hat{i}+3 \hat{j}-3 \hat{k}$

Answer: c

319. Let $P R=3 \hat{i}+\hat{j}-2 \hat{k}$ and $S Q=\hat{i}-3 \hat{j}-4 \hat{k}$ determine diagonals of a parallelogram PQRS and $P T=\hat{i}+2 \hat{j}+3 \hat{k}$ be another vector. Then the volume of the parallelepiped determined by the vectors $P T, P Q$ and $P S$ is
A. 5
B. 20
C. 10
D. 30

Answer: c

- Watch Video Solution

320. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non zero vectors such that \vec{c} is a unit vector perpendicular to both
\vec{a} and \vec{b}. If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|^{2}$ is equal to
A. 0
B. 1
C. $\frac{1}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{2}^{2}\right)$
D. $\frac{3}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{2}^{2}\right)\left(c_{1}^{2}+c_{2}^{2}+c_{2}^{2}\right)$

Answer: C

- Watch Video Solution

321. The number of vectors of unit length perpendicular to vectors
$\vec{a}=(1,1,0)$ and $\vec{b}=(0,1,1)$ is a. one b. two c. three d. infinite
A. one
B. two
C. three
D. infinite

Answer: b

- Watch Video Solution

322. Let $\vec{a}=2 \hat{i}=\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-2 \hat{k}$ be three vectors. A vector in the pland of \vec{b} and \vec{c} whose projection on \vec{a} is of magnitude
$\sqrt{\left(\frac{2}{3}\right)}$ is $(\mathrm{A}) 2 \hat{i}+3 \hat{j}+3 \hat{k}$ (B) $2 \hat{i}+3 \hat{j}-3 \hat{k}$ (C) $-2 \hat{i}-\hat{j}+5 \hat{k}$ (D) $2 \hat{i}+\hat{j}+5 \hat{k}$
A. $2 \hat{i}+3 \hat{j}-3 \hat{k}$
B. $2 \hat{i}+3 \hat{j}+3 \hat{k}$
C. $-2 \hat{i}-\hat{j}+5 \hat{k}$
D. $2 \hat{i}+\hat{j}+5 \hat{k}$

Answer: a,c

323. For three vectors $\vec{u}, \vec{v}, \vec{w}$ which of the following expressions is not eqal to any of the remaining three?
A. $\vec{u} .(\vec{v} \times \vec{w})$
B. $(\vec{v} \times \vec{w}) \cdot \vec{u}$
C. $\vec{v} \cdot(\vec{u} \times \vec{w})$
D. $(\vec{u} \times \vec{v}) \cdot \vec{w}$

Answer: c

Watch Video Solution

324. Which of the following expressions are meaningful? $\vec{u} \vec{v} \times \vec{w} \mathrm{~b}$. (i)

A. $\vec{u} .(\vec{v} \times \vec{w})$
B. $(\vec{u} \cdot \vec{v}) \cdot \vec{w}$
C. $(\vec{u} \cdot \vec{v}) \vec{w}$
D. $\vec{u} \times(\vec{v}$. Vecw $)$

Answer: a,c

- Watch Video Solution

325. If \vec{a} and \vec{b} are two non collinear vectors and vecuvecaO(veca.vecb)vecb and vecv=vecaxxvecbthen \mid vecv $|i s(A)|$ vecu $\mid(B)$ \mid vecu|+|vecu.vecb|(C)|vecu|+|vecu.veca| ((D) none of these
A. $|\vec{u}|$
B. $|\vec{u}|+\mid \vec{u}$. Veca \mid
C. $|\vec{u}|+|\vec{u} . \vec{b}|$
D. $|\vec{u}|+\vec{u} \cdot(\vec{a}+\vec{b})$
326. Vector $\frac{1}{3}(2 \hat{i}-2 \hat{j}+\hat{k})$ is
A. a unit vector
B. makes an angle $\pi / 3$ with vector $(2 \hat{i}-4 \hat{j}+3 \hat{k})$
C. parallel to vector $\left(-\hat{i}+\hat{j}-\frac{1}{2} \hat{k}\right)$
D. perpendicular to vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$

Answer: a,c,d

- Watch Video Solution

327. Let \vec{a} be vector parallel to line of intersection of planes P_{1} and P_{2} through origin. If P_{1} is parallel to the vectors $2 \bar{j}+3 \bar{k}$ and $4 \bar{j}-3 \bar{k}$ and P_{2} is parallel to $\bar{j}-\bar{k}$ and $3 \bar{I}+3 \bar{j}$, then the angle between \vec{a} and $2 \bar{i}+\bar{j}-2 \bar{k}$ is:
A. $\pi / 2$
B. $\pi / 4$
C. $\pi / 6$
D. $3 \pi / 4$

Answer: b,d

- Watch Video Solution

328. The vectors which is/are coplanar with vectors $\hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$ and perpendicular to vector $\hat{i}+\hat{j}+\hat{k}$ is /are (A) $\hat{j}-\hat{k}(B)-\hat{i}+\hat{j}(C) \hat{i}-\hat{j}(D)-\hat{j}+\hat{k}$
A. $\hat{j}-\hat{k}$
B. $-\hat{i}+\hat{j}$
C. $\hat{i}-\hat{j}$
D. $-\hat{j}+\hat{k}$
329. Let \vec{x}, \vec{y} and \vec{z} be three vectors each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{3}$ if \vec{a} is a non-zero vector perpendicular to \vec{x} and $\vec{y} \times \vec{z}$ and \vec{b} is a non-zero vector perpendicular to \vec{y} and $\vec{z} \times \vec{x}$, then
A. $\vec{b}=(\vec{b} \cdot \vec{z})(\vec{z}-\vec{x})$
B. $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{y}-\vec{z})$
C. $\vec{a} \cdot \vec{b}=-(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})$
D. $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{z}-\vec{y})$

Answer: a,b,c

- Watch Video Solution

330.

Let
ti $\angle P Q R$
be
triangle
Let
$\vec{a}=Q R, \vec{b}=R P$ and $\vec{c}=P Q$. if $|\vec{a}|=12,|\vec{b}|=4 \sqrt{3}$ and $\vec{b} . \vec{c}=24$ then
which of the following is (are) true ?
A. $\frac{|\vec{c}|^{2}}{2}-|\vec{a}|=12$
B. $\frac{|\vec{c}|^{2}}{2}-|\vec{a}|=30$
C. $|\vec{a} \times \vec{v} b+\vec{c} \times \vec{a}|=48 \sqrt{3}$
D. $\vec{a} . \vec{b}=-72$

Answer: a,c,d

- Watch Video Solution

331.

- View Text Solution

332.

- View Text Solution

334. If \vec{a} and \vec{b} are vectors in space given by $\vec{a}=\frac{\hat{i}-23 \hat{j}}{\sqrt{5}}$
$\vec{b}=\frac{2 \hat{i}+\hat{j}+3 \hat{k}}{\sqrt{14}}$ then the value of $(2 \vec{a}+\vec{b}) .[(\vec{a} \times \vec{b}) \times(\vec{a}-2 \vec{b})]$, is

- Watch Video Solution

335. Let $\vec{a}=-\hat{i}-\hat{k}, \vec{b}=-\hat{i}+\hat{j}$ and $\vec{c}=i+2 \hat{j}+3 \hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{r} \cdot \vec{a}=0$ then find the value of $\vec{r} . \vec{b}$.

- Watch Video Solution

336. If \vec{a}, \vec{b} and \vec{c} are unit vectors satisfying
$|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=9$ then $|2 \vec{a}+5 \vec{b}+5 \vec{c}|$ is

Watch Video Solution

337. Let \vec{a}, \vec{b}, and \vec{c} be three non coplanar unit vectors such that the angle between every pair of them is $\frac{\pi}{3}$. If $\vec{a} \times \vec{b}+\vec{b} \times \vec{x}=p \vec{a}+q \vec{b}+r \vec{c}$ where p, q, r are scalars then the value of $\frac{p^{2}+2 q^{2}+r^{2}}{q^{2}}$ is

D Watch Video Solution

