©゙’ doubtnut

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

DOT PRODUCT

Dep 21

1. Let $a, b>0$ and $\vec{\alpha}=\left(\frac{\vec{i}}{a}+\frac{4 \hat{j}}{b}+b \hat{k}\right)$ and
$\vec{\beta}=b \hat{i}+a \hat{j}+\frac{1}{b} \hat{k}$, then the maximum value of 10
$\frac{10}{5+\vec{\alpha} \cdot \vec{\beta}}$ is
A. 1
B. 2
C. 4
D. 8

Answer: A

- View Text Solution

2. If a vector \vec{r} is equall inclined with the vectors

$$
\vec{a}=\cos \theta \hat{i}+\sin \theta \hat{j}, \vec{b}=-\sin \theta \hat{i}+\cos \theta \hat{j} \quad \text { and }
$$

$\vec{c}=\hat{k}$, then the angle between \vec{r} and \vec{a} is

$$
\text { A. } \cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)
$$

B. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
C. $\cos ^{-1}\left(\frac{1}{3}\right)$
D. $\cos ^{-1}\left(\frac{1}{2}\right)$

Answer: B

- View Text Solution

3. Let G be the centroid of the $\triangle A B C$, whose sides are of lengths $\mathrm{a}, \mathrm{b}, \mathrm{c}$. If P be a point in the plane of $\triangle A B C$, such that $P A=1, P B=3, P C=4$ and $P G=2$, then the value of $a^{2}+b^{2}+c^{2}$ is
A. 42
B. 40
C. 36
D. 28

Answer: A

- View Text Solution

4. If $\vec{a}=3 \hat{i}-\hat{j}+5 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-3 \hat{k}$ are given vectors. A vector \vec{c} which is perpendicular to z -axis satisfying $\vec{c} \cdot \vec{a}=9$ and $\vec{c} \cdot \vec{b}=-4$. If inclination of \vec{c} with x -axis and y -axis and y -axis is α and β respectively, then which of the following is not true?
A. $\alpha>\frac{\pi}{4}$
B. $\beta>\frac{\pi}{2}$
C. $\alpha>\frac{\pi}{2}$
D. $\beta<\frac{\pi}{2}$

Answer: C

(D) Watch Video Solution

5. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that \vec{a} is perpendicular to the plane of \vec{b}, \vec{c} and the angle between \vec{b}, \vec{c} is $\frac{\pi}{3}$, then $|\vec{a}+\vec{b}+\vec{c}|=$ A. 1
B. 2
C. 3
D. 4

Answer: B

D Watch Video Solution

6. A unit vector \vec{a} in the plane of $\vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=\hat{i}-\hat{j}+\hat{k}$ is such that angle between \vec{a} and \vec{d} where $\vec{d}=\vec{j}+2 \vec{k}$ is

$$
\begin{aligned}
& \text { А. } \frac{\vec{i}+\vec{j}+\vec{k}}{\sqrt{3}} \\
& \text { в. } \frac{\vec{i}-\vec{j}+\vec{k}}{\sqrt{3}}
\end{aligned}
$$

C. $\frac{2 \vec{i}+\vec{j}}{\sqrt{5}}$
D. $\frac{2 \vec{i}-\vec{j}}{\sqrt{5}}$

Answer: B

D Watch Video Solution

7. In a tetrahedron OABC, the edges are of lengths,

$$
|O A|=|B C|=a,|O B|=|A C|=b,|O C|=|A B|=c .
$$

Let G_{1} and G_{2} be the centroids of the triangle ABC and AOC such that $O G_{1} \perp B G_{2}$, then the value of $\frac{a^{2}+c^{2}}{b^{2}}$ is
A. 2
B. 3
C. 6
D. 9

Answer: B

- Watch Video Solution

8. The vectors \vec{x} and \vec{y} satisfy the equation $p \vec{x}+q \vec{y}=\vec{a}$ (where p, q are scalar constants and \vec{a} is a known vector). It is given that $\vec{x} \cdot \vec{y} \geq \frac{|\vec{a}|^{2}}{4 p q}$, then $\frac{|\vec{x}|}{|\vec{y}|}$ is equal to $(p q>0)$
A. 1
B. $\frac{p^{2}}{q^{2}}$
C. $\frac{p}{q}$
D. $\frac{q}{p}$

Answer: D

D Watch Video Solution

9. If $\vec{a}, \vec{b}, \vec{c}$ non-zero vectors such that \vec{a} is perpendicular to \vec{b} and \vec{c} and $|\vec{a}|=1,|\vec{b}|=2,|\vec{c}|=1, \vec{b} \cdot \vec{c}=1$. There is a non-zero vector coplanar with $\vec{a}+\vec{b}$ and $2 \vec{b}-\vec{c}$ and $\vec{d} \cdot \vec{a}=1$, then the minimum value of $|\vec{d}|$ is
A. $\frac{2}{\sqrt{13}}$
B. $\frac{3}{\sqrt{3}}$
C. $\frac{4}{\sqrt{5}}$
D. $\frac{4}{\sqrt{13}}$

Answer: D

D View Text Solution

10. Let two non-collinear vectors \vec{a} and \vec{b} inclined at an angle $\frac{2 \pi}{3}$ be such that $|\vec{a}|=3$ and $|\vec{b}|=2$. If a point P moves so that at any time t its position vector $\overrightarrow{O P}$ (where O is the origin) is given as
$\overrightarrow{O P}=\left(t+\frac{1}{t}\right) \vec{a}+\left(t-\frac{1}{t}\right) \vec{b}$ then least distance of P from the origin is
A. $\sqrt{2 \sqrt{133}-10}$
B. $\sqrt{2 \sqrt{133}+10}$
C. $\sqrt{5+\sqrt{133}}$
D. none of these

Answer: B

- Watch Video Solution

11. Four vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{x} satisfy the relation $(\vec{a} \cdot \vec{x}) \vec{b}=\vec{c}+\vec{x}$ where $\vec{b} \cdot \vec{a} \neq 1$. The value of
\vec{x} in terms of \vec{a}, \vec{b} and \vec{c} is equal to

$$
\begin{aligned}
& \text { A. } \frac{(\vec{a} \cdot \vec{c}) \vec{b}-\vec{c}(\vec{a} \cdot \vec{b}-1)}{(\vec{a} \cdot \vec{b}-1)} \\
& \text { B. } \frac{\vec{c}}{\vec{a} \cdot \vec{b}-1} \\
& \text { C. } \frac{2(\vec{a} \cdot \vec{c}) \vec{b}+\vec{c}}{\vec{a} \cdot \vec{b}-1} \\
& \text { D. } \frac{2(\vec{a} \cdot \vec{c}) \vec{c}+\vec{c}}{(\vec{a} \cdot \vec{b})-1}
\end{aligned}
$$

Answer: A

- Watch Video Solution

12. If area of a triangular face $B C D$ of a regular tetrahdedron ABCD is $4 \sqrt{3} \mathrm{sq}$. units, then the area of a triangle whose two sides are represented by vectors $\overrightarrow{A B}$ and $\overrightarrow{C D}$ is
A. 6 sq. units
B. 8 sq.units
C. 12 sq. units
D. 16 sq.units

Answer: B

13. If $O A B C$ is a tetrahedron such that $O A^{2}+B C^{2}=O B^{2}+C A^{2}=O C^{2}+A B^{2}$ then
A. $O A \perp B C$
B. $O B \perp A C$
C. $O C \perp A B$
D. $A B \perp A C$

Answer: D

- Watch Video Solution

14. If \vec{a}, \vec{b} and \vec{c} are three units vectors equally inclined to each other at an angle α. Then the angle
between \vec{a} and plane of \vec{b} and \vec{c} is

$$
\begin{aligned}
& \text { A. } \theta=\frac{\cos ^{-1}(\cos \alpha)}{\frac{\cos \alpha}{2}} \\
& \text { B. } \theta=\frac{\sin ^{-1}(\cos \alpha)}{\frac{\cos \alpha}{2}} \\
& \text { C. } \theta=\frac{\cos ^{-1}\left(\frac{\sin \alpha}{2}\right)}{\sin \alpha} \\
& \text { D. } \theta=\frac{\sin ^{-1}\left(\frac{\sin \alpha}{2}\right)}{\sin \alpha}
\end{aligned}
$$

Answer: A

- View Text Solution

15. If a, b, c and $A, B, C \in R-\{0\}$ such that $a A+b B+c D+\sqrt{\left(a^{2}+b^{2}+c^{2}\right)\left(A^{2}+B^{2}+C^{2}\right)}=0$, then value of $\frac{a B}{b A}+\frac{b C}{c B}+\frac{c A}{a C}$ is
A. 3
B. 4
C. 5
D. 6

Answer: A
(View Text Solution

