©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

ELLIPSE

Single Correct Answer Type

> 1. The second \quad degree
> $x^{2}+4 y^{2}-2 x-4 y+2=0$ represents
A. a parabola
B. a pair of straight line
C. an ellipse
D. a hyperbola

Answer: C

- Watch Video Solution

2. In the standard ellipse, the lines joining the ends of the minor axis to one focus are at right angles.

The distance between the focus and the nearer vertex is $\sqrt{10}-\sqrt{5}$. The equation of the ellipse
A. $\frac{x^{2}}{36}+\frac{y^{2}}{18}=1$
B. $\frac{x^{2}}{40}+\frac{y^{2}}{20}=1$
C. $\frac{x^{2}}{20}+\frac{y^{2}}{10}=1$
D. $\frac{x^{2}}{10}+\frac{y^{2}}{5}=1$

Answer: D

- Watch Video Solution

3. The foci of an ellipse are $(-2,4)$ and (2,1). The point $\left(1, \frac{23}{6}\right)$ is an extremity of the minor axis.

What is the value of the eccentricity?
A. $\frac{9}{13}$
B. $\frac{3}{\sqrt{13}}$
C. $\frac{2}{\sqrt{13}}$
D. $\frac{4}{13}$

Answer: B

- Watch Video Solution

4. Let $Q=(3, \sqrt{5}), R=(7,3 \sqrt{5})$. A point P in the XY-plane varies in such a way that perimeter of
$\triangle P Q R$ is 16 . Then the maximum area of $\triangle P Q R$ is
A. 6
B. 12
C. 18
D. 9

Answer: B

- Watch Video Solution

5. The eccentricity of the ellipse

$$
(x-3)^{2}+(y-4)^{2}=\frac{y^{2}}{9}
$$

$$
\text { A. } \frac{\sqrt{3}}{2}
$$

B. $\frac{1}{3}$
C. $\frac{1}{3 \sqrt{2}}$
D. $\frac{1}{\sqrt{3}}$

Answer: B

- Watch Video Solution

6. Area bounded by the circle which is concentric with the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ and which passes through $\left(4,-\frac{9}{5}\right)$, the vertical chord common to
both circle and ellipse on the positive side of x-axis
A. $\frac{481}{25} \tan ^{-1}\left(\frac{9}{20}\right)-\frac{36}{5}$
B. $2 \tan ^{-1}\left(\frac{9}{20}\right)$
C. $\frac{481}{25} \tan ^{-1}\left(\frac{9}{20}\right)$
D. none of these

Answer: A

D Watch Video Solution

7. If A and B are foci of ellipse $(x-2 y+3)^{2}+(8 x+4 y+4)^{2}=20$ andP is any point on it, then $P A+P B=$
A. 2
B. 4
C. $\sqrt{2}$
D. $2 \sqrt{2}$

Answer: B

- Watch Video Solution

8. The distance between directrix of the ellipse
$(4 x-8)^{2}+16 y^{2}=(x+\sqrt{3} y+10)^{2}$ is
A. 12
B. 16
C. 20
D. 24

Answer: B

- Watch Video Solution

9. A chord is drawn passing through $P(2,2)$ on the
ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ such that it intersects the
ellipse at A and B . Then maximum value of $P A . P B$
is
A. $\frac{61}{4}$
B. $\frac{59}{4}$
C. $\frac{71}{4}$
D. $\frac{63}{4}$

Answer: B

- Watch Video Solution

10. If (x, y) lies on the ellipse $x^{2}+2 y^{3}=2$, then
maximum value of $x^{2}+y^{2}+\sqrt{2} x y-1$ is
A. $\frac{\sqrt{5}+1}{2}$
B. $\frac{\sqrt{5}-1}{2}$
C. $\frac{\sqrt{5}+1}{4}$
D. $\frac{\sqrt{5}-1}{4}$

Answer: A

D Watch Video Solution

11. If the eccentric angles of two points P and Q on the ellipse $\frac{x^{2}}{28}+\frac{y^{2}}{7}=1$ whose centre is C differ by a right angle then the area of $\Delta C P Q$ is
A. 5
B. 6
C. 7
D. 8

Answer: C

- Watch Video Solution

12. P and Q are points on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ whose center is C. The eccentric angles of P and Q differ by a right angle. If $\angle P C Q$ minimum, the eccentric angle of P can be (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{12}$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{12}$

Answer: B

- Watch Video Solution

13. If eccentric angle of a point lying in the first quadrant on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ be θ and the line joining the centre to that point makes an
angle ϕ with the x-axis, then $\theta-\phi$ will be maximum when θ is equal to
A. $\tan ^{-1} \sqrt{\frac{a}{b}}$
B. $\tan ^{-1} \sqrt{\frac{b}{a}}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: A

- Watch Video Solution

14. Let P and Q be points of the ellipse $16 x^{2}+25 y^{2}=400$ so that $P Q=96 / 25$ and P and Q lie above major axis. Circle drawn with PQ as diameter touch major axis at positive focus, then the value of slope m of $P Q$ is
A. -1
B. $1 / 2$
C. 2
D. $1 / 3$

Answer: A
15. If the reflection of the ellipse $\frac{(x-4)^{2}}{16}+\frac{(y-3)^{2}}{9}=1$ in the mirror line $x-y-2=0 \quad$ is
$k_{1} x^{2}+k_{2} y^{2}-160 x-36 y+292=0$, then $\frac{k_{1}+k_{2}}{5}$ is equal to
A. 4
B. 5
C. 6
D. 7

Answer: B

- Watch Video Solution

16. A point P moves on $x-y$ plane such that $P S+P S^{\prime}=4$ where $S(K, 0)$ and $S^{\prime}(-K, 0)$,
then which of the following is not true about the locus of P?
A. ellipse if $K \in(-2,2)$
B. pair of coincidence lines if $K= \pm 2$
C. empty if $K \in(-\infty,-2) \cup(2, \infty)$
D. none of these

- View Text Solution

17. The ratio of the area enclosed by the locus of the midpoint of PS and area of the ellipse is (P-be any point on the ellipse and S, its focus)
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{5}$
D. $\frac{1}{4}$

- Watch Video Solution

18. Find the set of those value(s) of α for which $\left(7-\frac{5 \alpha}{4}, \alpha\right)$ lies inside the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
A. 0
B. 1
C. 2
D. 3
19. The coordinates of the vertices $B a n d C$ of a triangle $A B C$ are $(2,0)$ and $(8,0)$, respectively. Vertex A is moving in such a way that $4 \frac{\tan B}{2} \frac{\tan C}{2}=1$. Then find the locus of A
A. $\frac{(x-5)^{2}}{25}+\frac{y^{2}}{16}=1$
B. $\frac{(x-5)^{2}}{16}+\frac{y^{2}}{25}=1$
C. $\frac{(x-5)^{2}}{25}+\frac{y^{2}}{9}=1$
D. $\frac{(x-5)^{2}}{9}+\frac{y^{2}}{25}=1$

Answer: A

- Watch Video Solution

20. $P Q$ and $Q R$ are two focal chords of an ellipse and the eccentric angles of $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are $2 \alpha, 2 \beta, 2 \gamma$, respectively then $\tan \beta \gamma$ is equal to
A. $\cot \alpha$
B. $\cot ^{2} \alpha$
C. $2 \cot \alpha$
D. None of these

Answer: B

- Watch Video Solution

21. the value of λ for which the line $2 x-\frac{8}{3} \lambda y=-3$ is a normal to the conic $x^{2}+\frac{y^{2}}{4}=1$ is:
A. $\frac{3}{8}$
B. $\frac{1}{2}$
C. $-\frac{\sqrt{3}}{2}$
D. $\frac{\sqrt{3}}{2}$

Answer: D

- Watch Video Solution

22. If the length of the major axis intercepted between the tangent and normal at a point $P(a \cos \theta, b \sin \theta)$ on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is equal to the length of semi-major axis, then eccentricity of the ellipse is

$$
\begin{aligned}
& \text { A. } \frac{\cos \theta}{\sqrt{1-\cos \theta}} \\
& \text { B. } \frac{\sqrt{1-\cos \theta}}{\cos \theta} \\
& \text { C. } \frac{\sqrt{1-\cos \theta}}{\sin \theta}
\end{aligned}
$$

$$
\text { D. } \frac{\sin \theta}{\sqrt{1-\sin \theta}}
$$

Answer: B

- Watch Video Solution

23. How many tangents to the circle $x^{2}+y^{2}=3$ are normal tothe ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$?
A. 3
B. 2
C. 1
D. 0

- Watch Video Solution

24. An ellipse passes through the point $(2,3)$ and its axes along the coordinate axes, $3 x+2 y-1=0$ is a tangent to the ellipse, then the equation of the ellipse is
A. $\frac{x^{2}}{4}+4 y^{2}=1$
B. $\frac{x^{2}}{8}+\frac{y^{2}}{1}=1$
C. $4 x^{2}+\frac{y^{2}}{4}=1$
D. No such ellipse exists

Answer: D

- Watch Video Solution

25. If $x \cos \alpha+y \sin \alpha=4$ is tangent to $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$, then the value of α is
A. $\tan ^{-1}(3 / \sqrt{7})$
B. $\tan ^{-1}(7 / 3)$
C. $\tan ^{-1}(\sqrt{3} / 7)$
D. $\tan ^{-1}(3 / 7)$
26. If the normal at any point P of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ meets the coordinate axes at M and N respectively, then $|P M|:|P N|$ equals
A. $4: 3$
B. 16:9
C. 9:16
D. 3: 4

Answer: C
27. If the normal at any point P on the ellipse cuts
the major and minor axes in G and g respectively and C be the centre of the ellipse, then

$$
\begin{aligned}
& \text { A. } a^{2}(C G)^{2}+b^{2}(C g)^{2}=\left(a^{2}-b^{2}\right)^{2} \\
& \text { B. } a^{2}(C G)^{2}-b^{2}(C g)^{2}=\left(a^{2}-b^{2}\right)^{2} \\
& \text { C. } a^{2}(C G)^{2}-b^{2}(C g)^{2}=\left(a^{2}+b^{2}\right)^{2} \\
& \text { D. None of these }
\end{aligned}
$$

Answer: A
28. The area of the parallelogram formed by the tangents at the points whose eccentric angles are $\theta, \theta+\frac{\pi}{2}, \theta+\pi, \theta+\frac{3 \pi}{2} \quad$ on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
A. ab
B. 4 ab
C. 3 ab
D. $2 a b$

Answer: D

29. The straight line $\frac{x}{4}+\frac{y}{3}=1$ intersects the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ at two points A and B , there is a point P on this ellipse such that the area of
$\triangle P A B$ is equal to $6(\sqrt{2}-1)$. Then the number of such points (P) is/are
A. 0
B. 1
C. 2
D. 3
30. The tangent at any point on the ellipse $16 x^{2}+25 y^{2}=400$ meets the tangents at the ends of the major axis at T_{1} and T_{2}. The circle on $T_{1} T_{2}$ as diameter passes through
A. $(3,0)$
B. $(0,0)$
C. $(0,3)$
D. $(4,0)$
31.

The
minimum
value
of
$\left\{(r+5-4|\cos \theta|)^{2}+(r-3|\sin \theta|)^{2}\right\} \forall r, \theta \in R$
is
A. 0
B. 2
C. 3
D. None of these

Answer: A
32. Let S_{1} and S_{2} denote the circles
$x^{2}+y^{2}+10 x-24 y-87=0$
$x^{2}+y^{2}-10 x-24 y+153=0$ respectively. The
value of a for which the line $y=a x$ contains the
centre of a circle which touches S_{2} externally and
S_{1} internally is
A. $\pm \frac{3}{10}$
B. $\pm \frac{1}{5}$
C. $\pm \frac{\sqrt{13}}{10}$
D. $\pm \frac{10}{13}$

Answer: C

- View Text Solution

33. If ω is one of the angles between the normals to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point whose eccentric angles are θ and $\frac{\pi}{2}+\theta$, then prove that $\frac{2 \cot \omega}{\sin 2 \theta}=\frac{e^{2}}{\sqrt{1-e^{2}}}$

$$
\begin{aligned}
& \text { A. } \frac{e^{2}}{\sqrt{1-e^{2}}} \\
& \text { B. } \frac{e^{2}}{\sqrt{1+e^{2}}} \\
& \text { C. } \frac{e^{2}}{1-e^{2}}
\end{aligned}
$$

D. $\frac{e^{2}}{1+e^{2}}$

Answer: A

- Watch Video Solution

34. From any point on the line
$(t+2)(x+y)=1, t \neq-2$, tangents are drawn to the ellipse $4 x^{2}+16 y^{2}=1$. It is given that chord of contact passes through a fixed point.

Then the number of integral values of ' t ' for which the fixed point always lies inside the ellipse is
B. 1
C. 2
D. 3

Answer: C

D Watch Video Solution

35. At a point P on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ tangents $P Q$ is drawn. If the point Q be at a distance $\frac{1}{p}$ from the point P, where ' p ' is distance of the tangent from the origin, then the locus of the point Q is
A. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1+\frac{1}{a^{2} b^{2}}$
B. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1-\frac{1}{a^{2} b^{2}}$
C. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{a^{2} b^{2}}$
D. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{1}{a^{2} b^{2}}$

Answer: A

D View Text Solution

36. From a point P perpendicular tangents $P Q$ and PR are drawn to ellipse $x^{2}+4 y^{2}=4$, then locus of circumcentre of triangle $P Q R$ is

> A. $x^{2}+y^{2}=\frac{16}{5}\left(x^{2}+4 y^{2}\right)^{2}$
> B. $x^{2}+y^{2}=\frac{5}{16}\left(x^{2}+4 y^{2}\right)^{2}$
> C. $x^{2}+4 y^{2}=\frac{16}{5}\left(x^{2}+y^{2}\right)^{2}$
> D. $x^{2}+4 y^{2}=\frac{16}{5}\left(x^{2}+y^{2}\right)^{2}$

Answer: B

- Watch Video Solution

37. If the normal at any point P on ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meets the auxiliary circle at Q and R
such that $\angle Q O R=90^{\circ}$ where O is centre of ellipse, then
A. $a^{4}+2 b^{3} \geq 3 a^{2} b^{2}$
B. $a^{4}+2 b^{4} \geq 5 a^{2} b^{2}+2 a^{3} b$
C. $a^{4}+2 b^{4} \geq 3 a^{2} b^{2}+a b$
D. None of these

Answer: B

D View Text Solution

38. Tangents are drawn from any point on the circle
$x^{2}+y^{2}=41$ to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ then the angle between the two tangents is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

39. If radius of the director circle of the ellipse $\frac{(3 x+4 y-2)^{2}}{100}+\frac{(4 x-3 y+5)^{2}}{625}=1$ is
A. 6
B. $\sqrt{34}$
C. $\sqrt{29}$
D. $\sqrt{26}$

Answer: C

- Watch Video Solution

40. If the curve $x^{2}+3 y^{2}=9$ subtends an obtuse angle at the point $(2 \alpha, \alpha)$ then a possible value of α^{2} is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

41. An ellipse has the points
$(1,-1)$ and $(2,-1)$ as its foci and $x+y=5$ as one of its tangent then the value of $a^{2}+b^{2}$ where a, b are the lenghta of semi major and minor axes of ellipse respectively is :
A. $\frac{41}{2}$
B. 10
C. 19
D. $\frac{81}{4}$

Answer: D

- Watch Video Solution

42. An ellipse has foci at $F_{1}(9,20)$ and $F_{2}(49,55)$
in the $x y$-plane and is tangent to the x-axis. Find the length of its major axis.
A. 85
B. 75
C. 65
D. 55

Answer: A

- Watch Video Solution

43. The maximum distance of the centre of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ from the chord of contact of mutually perpendicular tangents of the ellipse is
A. $\frac{144}{5}$
B. $\frac{9}{5}$
C. $\frac{16}{5}$
D. $\frac{8}{5}$

Answer: C

- Watch Video Solution

44. P_{1} and P_{2} are the lengths of the perpendicular
from the foci on the tangent of the ellipse and P_{3}
and P_{4} are perpendiculars from extermities of major axis and P from the centre of the ellipse on
the same tangent, then $\frac{P_{1} P_{2}-P^{2}}{P_{3} P_{4}-P^{2}}$ equals (where e is the eccentricity of the ellipse)
A. e
B. \sqrt{e}
C. e^{2}
D. none of these

Answer: C

- Watch Video Solution

45. From the focus $(-5,0)$ of the ellipse $\frac{x^{2}}{45}+\frac{y^{2}}{20}=1$, a ray of light is sent which makes angle $\cos ^{-1}\left(\frac{-1}{\sqrt{5}}\right)$ with the positive direction of X -axis upon reacting the ellipse the ray is reflected from it. Slope of the reflected ray is
A. $-\frac{3}{2}$
B. $-\frac{7}{3}$
C. $-\frac{5}{4}$
D. $-\frac{2}{11}$
46. Let $5 x-3 y=8 \sqrt{2}$ be normal at $P\left(\frac{5}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$
to an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$. If m, m^{\prime} are feet of perpendiculars from foci s, s ' respectively. or tangents at p , then point of intersection of $s m^{\prime}$ and $s^{\prime} m$ is
A. $\left(\frac{5}{2}, 0\right)$
B. $\left(0, \frac{5}{2}\right)$
C. $\left(\frac{41}{10 \sqrt{2}}, \frac{3}{2 \sqrt{2}}\right)$
D. $\left(\frac{3}{2 \sqrt{2}}, \frac{41}{10 \sqrt{2}}\right)$

Answer: C

- Watch Video Solution

47. If the normals at α, β, γ and δ on an ellipse are concurrent then the value of $(\sigma \cos \alpha)(\sigma \sec \alpha)$ ।
A. 2
B. 4
C. 6
D. none of these

- Watch Video Solution

48. Prove that the chords of contact of pairs of perpendicular tangents to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ touch another fixed ellipse.
A. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{\left(2 a^{2}+b^{2}\right)}$
B. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{2}{\left(a^{2}-b^{2}\right)}$
C. $\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}=\frac{1}{\left(a^{2}+b^{2}\right)}$
D. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{2}{\left(3 a^{2}-b^{2}\right)}$

Answer: C

- Watch Video Solution

49. Consider an ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ with centre c and a point P on it with eccentric angle $\frac{\pi}{4}$. Nomal drawn at P intersects the major and minor axes in
A and B respectively. N_{1} and N_{2} are the feet of the perpendiculars from the foci S_{1} and S_{2} respectively on the tangent at P and N is the foot of the perpendicular from the centre of the ellipse on the normal at P. Tangent at P intersects the axis of x at T.
$\begin{array}{llll}P & Q & R & S\end{array}$
A. $\begin{array}{llll}2 & 3 & 4 & 1\end{array}$
$P \quad Q \quad R \quad S$
B.
$\begin{array}{llll}3 & 1 & 4 & 2\end{array}$
C. $\begin{array}{llll}P & Q & R & S\end{array}$
$\begin{array}{llll}2 & 4 & 1 & 3\end{array}$
D. $\begin{array}{llll}P & Q & R & S\end{array}$
$\begin{array}{llll}4 & 1 & 2 & 3\end{array}$

Answer: C

- Watch Video Solution

Multiple Correct Answers Type

1. In triangle $A B C, a=4$ and $b=c=2 \sqrt{2}$. A point P moves within the triangle such that the
square of its distance from $B C$ is half the area of rectangle contained by its distance from the other two sides. If D be the centre of locus of P, then
A. locus of P is an ellipse with eccentricity $\sqrt{\frac{2}{3}}$
B. locus of P is a hyperbola with eccentricity
$\sqrt{\frac{3}{2}}$
C. area of the quadr5ilateral $A B C D=\frac{16}{3}$ sq.
units
D. area of the quadrilateral $A B C D=\frac{32}{3}$ sq. units

- Watch Video Solution

2. Extremities of the latera recta of the ellipses $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$ having a given major axis 2 a lies on
A. $x^{2}=a(a-y)$
B. $x^{2}=a(a+y)$
C. $y^{2}=a(a+x)$
D. $y^{2}=a(a-x)$

Answer: A::B
3. Identify correct statement(s) about conic $\sqrt{(x-5)^{2}+(y-7)^{2}}+\sqrt{(x+1)^{2}+(y+1)^{2}}=12$
A. centre of conic is $(2,3)$
B. conic is hyperbola with foci $(5,7)$ and

$$
(-1,-1)
$$

C. conic is ellipse with major axis

$$
4 x-3 y+1=0
$$

D. eccentricity of conic is $\frac{5}{7}$
4. P and Q are two points on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ whose eccentric angles are differ by 90°, then
A. Locus of point of intersection of tangents at

P and Q is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$
B. Locus of mid-point (P, Q) is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{2}$
C. Product of slopes of OP and OQ ehere O is
the centre is $\frac{-b^{2}}{a^{2}}$
D. Max. area of $\triangle O P Q$ is $\frac{1}{2} a b$

Answer: A::B::C::D

- Watch Video Solution

5. For the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$
A. The foci of each ellipse always lie within the other ellipse
B. Their auxiliary circles are the same
C. Their director circles are the same
D. The ellipses encloses the same area
6. $A B$ and $C D$ are two equal and parallel chords of
the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Tangents to the ellipse at A and B intersect at P and tangents at C and D at
Q. The line $P Q$
A. passes through the origin
B. is bisected at the origin
C. cannot pass through the origin
D. is not bisected at the origin

Question Bank

1. Let P be ány point on ellipse $3 x^{2}+4 y^{2}=12$ and S, S^{1} are its foci then the locus of the centroid of triangle $P S S^{1}$ is a conic C whose length of latus rectum is
2. A triangle is formed by the points
$A(0,0), B(3,0)$ and $C(3,4) . A$ and C are foci of ellipse and B lies on the ellipse. If arca of ellipse is
$\frac{7 \pi}{2} \sqrt{P}(P \in N)$, then the value of P is

D View Text Solution

3. An ellipse with focii $(1,4)$ and (α, β) touches x axis at $(5,0)$. Then value of $(\alpha-\beta)$ is
4. The minimum value of the segment of a tangent
to the ellipse $\frac{x^{2}}{12321}+\frac{y^{2}}{1234321}=1$ intercepted by thè coordinate axes is

D View Text Solution

5. The area of the triangle formed by a tangent to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ and the co-ordinate axes is always greater than or equal to

- View Text Solution

6. Let $P Q$ is a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meeting the positive $x \& y$ axis at points $P \& Q$ respectively. Point R divides $P Q$ internally in the ratio $2: 1$. -If locus of R is $\frac{a^{2}}{x^{2}}+\frac{4 b^{2}}{y^{2}}=\lambda$, then λ is equal to

- View Text Solution

7. If a tangent of slope m at a point of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through $(2 a, 0)$ and if e denotes the eccentricity of ellipse, then $3 m^{2}+e^{2}$ is
8. If the eccentricity of the ellipse $\frac{x^{2}}{a^{2}}+2+\frac{y^{2}}{a^{2}}+5=1$ be $\frac{1}{\sqrt{3}}$, then length of latus rectum of ellipse is

- View Text Solution

9.

Area
of
the
ellipse
$(2 x+3 y-5)^{2}+4(-3 x+2 y+1)^{2}=52$
equal to
10. Let P be a point in the first quadrant lying on the ellipse $\frac{x^{2}}{8}+\frac{y^{2}}{18}=1$. Let $A B$ be the tangent at P to the ellipse meeting the x-axis at A and y axis at B. If O is the origin, then the minimum, possible area of $\triangle O A B$ is (in square units)

- View Text Solution

11. If maximum distance of any point on the curve
$5 x^{2}+4 y^{2}+x y-2=0$ from its centre be L and
$L=\frac{a}{\sqrt{b}-\sqrt{2}}$, then (b-a) is
12. A tangent.is drawn to the curve, $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ at the point P meeting the co-ordinate axis in T and t. If $O Y$ is the perpendicular from the origin on the tangent then find the value of the product $(T t)(P Y)$

- View Text Solution

13. The maximum and minimum distance of point

$(3,-1)$	from
$x^{2}+4 y^{2}-4 x+8 y-8=0$	is M and m

14. If the circle $x^{2}+y^{2}-2 x-4 y+k=0$ and director circle of ellipse $\frac{x^{2}}{4}+y^{2}=1$ intersects orthogonally then k equals

D View Text Solution

15. Least value of modulus of slope of a line for which the line may touch the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{l}\left(a^{3}+a^{2}+a\right)^{2}=1$ is (a is non-zero real number)
16. A normal to the hyperbola $x^{2}-4 y^{2}=4$ has equal intercepts on positive x and y axes. If this normal touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then $3\left(a^{2}+b^{2}\right)$-is equal to

- View Text Solution

17. Let any double ordinate $P N P$ of the hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$ be produced both sides to meet the asymptotes in Q and Q, then $P Q \cdot P^{1} Q$ is equal to
18. Let $A B$ is the latus rectum of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that triangle $O A B$ is equilateral where ${ }^{\wedge} 4 O$ is origin and under this condition eccentricity of the hyperbola is given as $1+\sqrt{p}$ $\frac{\sqrt{p}}{2 \sqrt{q}}$ (where p, q are numbers) then $p-q$ is

- View Text Solution

19. If e and e_{1} are the eccentricities of the hyperbolas $x y=5$ and $x^{2}-y^{2}=18$, then $e^{2}+e_{1}^{2}$

- View Text Solution

20. Let the focus of conic
$\frac{(y+x)^{2}}{16}-\frac{(y-x)^{2}}{8}=1$ is at (a, b) then
$\frac{a^{2}+b^{2}}{4}$ is

- View Text Solution

21. Let $H: y(3 y+4 x)=-4$ is a hyperbola and $y=m x+c$ is its conjugate axis. Length of latus
rectum of H is L, eccentricity e.and $\left(x_{1}, y_{1}\right)$ is one. vertex with $y_{1}>0$, then $4 e^{2}$ is equal to

- View Text Solution

22. A tangent to the circle $x^{2}+y^{2}=4$ intersects the hyperbola $x^{2}-2 y^{2}=2$ at P and Q. If locus of mid-point of $P Q$ is. $\left(x^{2}-2 y^{2}\right)^{2}=\lambda\left(x^{2}+4 y^{2}\right)$, then λ equals
23. If equation of common tangent to parabola
$y^{2}-8 x=0$ and hyperbola $y^{2}-3 x^{2}+3=0$ is $2 x+\frac{c y}{\sqrt{2}}+1=0(c \in R)$ then absolute value of ${ }^{\prime}$ c^{\prime}

- View Text Solution

24. If the set of values of λ for which two distinct tangents are drawn from a point $(2, \lambda)$ to the
curve $x=4 \sqrt{1+\frac{y^{2}}{9}}$ is a_{1}, a_{2} then $\left|a_{1}-a_{2}\right|$ is equal to
25. A normal to the hyperbola $\frac{x^{2}}{6}-\frac{y^{2}}{2}$ has equal intercepts on positive x and y-axis. If this normal touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then find the value of $a^{2}+\frac{b^{2}}{4}$.

D View Text Solution

26. If $\frac{(3 x-4 y-1)^{2}}{100}-\frac{(4 x+3 y-1)^{2}}{225}=1$, then length of latusrectum of hyperbola is
27. The eccentricity of the conic section represented by $(x+y)^{2}-4=x^{2}+y^{2}$ is

- View Text Solution

28. The maximum distance between the tangents
drawn to the hyperbola $9 x^{2}-16 y^{2}=144$ at $P(\theta)$
and $Q(\pi-\theta)$ is

D View Text Solution

