©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

EQUATION OF PLANE AND ITS APPLICATIONS -I

Dpp 33

1. Equation of the passing through the origin and perpendicular to the planes $x+2 y+z=1,3 x-4 y+z=5$ is
A. $x+2 y-5 z=0$
B. $x-2 y-3 z=0$
C. $x-2 y+5 z=0$
D. $3 x+y-5 z=0$

Watch Video Solution

2. A vector \vec{n} is inclined to x-axis at 45°, to y-axis at 60° and at an angle to z-axis. If \vec{n} is a normal to the plane passing through the point $(\sqrt{2},-1,1)$, then the equation of plane is
A. $3 \sqrt{2} x-4 y-3 z=7$
B. $4 \sqrt{2} x+7 y+z=2$
C. $\sqrt{2} x+y+z=2$
D. $\sqrt{2} x-y-z=2$

Answer: C

- Watch Video Solution

3. If the perpendicular distance of a point A, other than the origin from the plane $x+y+z=p$ is equal to the distance of the plane from the
origin, then the coordinates of p are (A) $(p, 2 p, 0)$
(B) $(0,2 p,-p)$
$(2 p, p,-p)$ (D) $(2 p,-p, 2 p)$
A. $(p, 2 p, 0)$
B. $(0,2 p,-p)$
C. $(2 p, p,-p)$
D. $(2 p,-p, 2 p)$

Answer: C

- Watch Video Solution

4. Show that the disease of the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $(x-y+z=5)$ from the point ($-1,-5,-10$) is 13 units.
A. 10
B. 8
C. 21
D. 13

Answer: D

- Watch Video Solution

5. The value of k for which the planes
$k x+4 y+z=0,4 x+k y+2 z=0 n d 2 x+2 y+z=0$ intersect in a
straighat line is (A) 1 (B) 2 (C) 3 (D) 4
A. 2
B. 4
C. 6
D. 8

Answer: C

- Watch Video Solution

6. Let $P=-(1,7, \sqrt{2})$ be a point and line L is $2 \sqrt{2}(x-1)=y-2, z=0$. If PQ is the distance of plane $\sqrt{2} x+y-z=1$ from point P measured along a line inclined at an angle of 45° with the line L and is minimum then the value of $P Q$ is
A. 3
B. 4
C. 6
D. 8

Answer: A

- View Text Solution

7. Angle between the two planes of which one plane is $4 x+y+2 z=0$
and another plane containing the lines
$\frac{x-3}{2}=\frac{y-2}{3}=\frac{z-1}{\lambda}, \frac{x-2}{3}=\frac{y-3}{2}=\frac{z-2}{3}$
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{6}$
D. $\frac{2 \pi}{3}$

Answer: B

- Watch Video Solution

8. The distance of the point $(1,-2,3)$ from the plane $x-y+z-5=0$, measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z-1}{-6}$ is equal to
A. 1 unit
B. 2 unit
C. 3 units
D. none of these
9. The angle between the pair of planes represented by equation $2 x^{2}-2 y^{2}+4 z^{2}+6 x z+2 y z+3 x y=0$ is
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(\frac{4}{21}\right)$
C. $\cos ^{-1}\left(\frac{4}{9}\right)$
D. $\cos ^{-1}(7 \sqrt{84})$

Answer: C

- Watch Video Solution

10. The Cartesian equation of the plane

$$
\vec{r}=(1+\lambda-\mu) \hat{i}+(2-\lambda) \hat{j}+(3-2 \lambda+2 \mu) \hat{k} \text { is }
$$

A. $2 x+y=5$
B. $2 x-y=5$
C. $2 x+z=5$
D. $2 x-z=5$

Answer: C

- Watch Video Solution

11. The locus represented by $x y+y z=0$ is a pair of
A. perpendicular lines
B. parallel lines
C. parallel lines
D. perpendicular planes

Answer: D

12. Equation of line passing through $A(1,0,3)$, intersecting the line $\left(\frac{x}{2}=\frac{y-1}{3}=\frac{z-2}{1}\right)$ and parallel to the plane $x+y+z=2$ is
A. $\frac{3 x-1}{2}=\frac{2 y-3}{3}=\frac{2 z-5}{-1}$
B. $\frac{x-1}{2}=\frac{y-0}{3}=\frac{z-3}{-1}$
C. $\frac{x-(2 / 3)}{1}=\frac{y-(3 / 2)}{0}=\frac{z+(1 / 2)}{3}$
D. $\frac{3 x-1}{2}=\frac{2 y-3}{-3}=\frac{6 z-13}{5}$

Answer: D

- Watch Video Solution

13. If $P(\alpha, \beta, \lambda)$ is a vertex of an equilateral triangle PQR where vertex Q and R are $(-1,0,1)$ and $(1,0,-1)$ respectively, then P can lie on the plane
A. $x+y+z+6=0$
B. $2 x+4 y+3 z+20=0$
C. $x-y+z+12=0$
D. $x+y+z+3 \sqrt{2}=0$

Answer: D

- View Text Solution

14. The variable plane $(2 \lambda+1) x+(3-\lambda) y+z=4$ always passes through the line
A. $\frac{x}{0}=\frac{y}{0}=\frac{z-4}{1}$
B. $\frac{x}{1}=\frac{y}{2}=\frac{z-4}{-3}$
C. $\frac{x}{1}=\frac{y}{1}=\frac{z-4}{-7}$
D. $\frac{x}{1}=\frac{y}{2}=\frac{z-4}{-7}$

Answer: D

- Watch Video Solution

15. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=-\hat{i}+\hat{j}+\hat{k}, \vec{c}=\hat{i}-\hat{j}+\hat{k} \quad$ and $\vec{d}=\hat{i}+\hat{j}-\hat{k}$. Then, the line of intersection of planes one determined by \vec{a}, \vec{b} and other determined by \vec{c}, \vec{d} is perpendicular to
A. x-axis
B. y-axis
C. z-axis
D. none of these

Answer: B::C::D

- View Text Solution

16. Consider the equation
$E_{1}: \vec{r} \times(2 \hat{i}-\hat{j}+3 \hat{k})=3 \hat{i}+\hat{k}$
$E_{2}: \vec{r} \times(\hat{i}+2 \hat{j}-3 \hat{k})=2 \hat{i}-\hat{j}$, hten
A. E_{1} represents a line
B. E_{1} represents two parallel lines
C. E_{2} represents a line
D. E_{2} represents two parallel planes

Answer: B::C::D

- View Text Solution

17. the equationof a plane
$2 x-y-3 z=5$ and $A(1,1,1), B(2,1,-3), C(1,-2,-2)$ and $D(-$ are four points. Which of the following line segments are intersects by the plane? (A) $A D$ (B) $A B$ (C) $A C(D) B C$
A. AD
B. $A B$
C. AC
D. $B C$

- Watch Video Solution

18. Let P denotes the plane consisting of all points thata are equidistant from the points $A(-4,2,1)$ and $B(2,-4,3)$ and Q be the plane, $x-y+c z=1$ where $c \in R$.

The planar P is parallel to plane Q
A. for no value of c
B. if $c=3$
C. if $c=1 / 3$
D. if $c=1$

Answer: C

- View Text Solution

19. Let P denotes the plane consisting of all points that are equidistant from the points $A(-4,2,1)$ and $B(2,-4,3)$ and Q be the plane, $x-y+c z=1$ where $c \in R$.

If the angle between the planes P and Q is 45° then the product of all possible values of c is
A. -17
B. -2
C. 17
D. $24 / 27$

Answer: B

- View Text Solution

20. A line L_{1} with direction ratios $-3,2,4$ passes through the point $\mathrm{A}(7,6,2)$ and a line L_{2} with directions ratios $2,1,3$ passes through the point B(5,3,4). A line L_{3} with direction ratios $2,-2,-1$ intersects L_{1} and L_{3}
at C and D, resectively.
The lenth CD is equal to
A. 4
B. 6
C. 9
D. 11

Answer: C

- View Text Solution

21. A line L_{1} with direction ratios $-3,2,4$ passes through the point $\mathrm{A}(7,6,2)$ and a line L_{2} with directions ratios $2,1,3$ passes through the point $\mathrm{B}(5,3,4)$. A line L_{3} with direction ratios $2,-2,-1$ intersects L_{1} and L_{3} at C and D , resectively. The equation of the plane parallel to line L_{1} and containing line L_{2} is equal to

$$
\text { A. } x+3 y+4 z=30
$$

B. $x+2 y+z=15$
C. $2 x-y+z=11$
D. $2 x+17 y-7 z=33$

Answer: D

- View Text Solution

22. A line L_{1} with direction ratios $-3,2,4$ passes through the point $\mathrm{A}(7,6,2)$ and a line L_{2} with directions ratios $2,1,3$ passes through the point $\mathrm{B}(5,3,4)$. A line L_{3} with direction ratios $2,-2,-1$ intersects L_{1} and L_{3} at C and D, resectively.

The volume of parallelopiped formed by $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A D}$ is equal to
A. 140
B. 138
C. 134
D. 130

Answer: B

View Text Solution

