

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

EQUATION OF PLANE AND ITS APPLICATIONS -I

1. Equation of the passing through the origin and perpendicular to the planes x + 2y + z = 1, 3x - 4y + z = 5 is

A. x+2y-5z=0

 $\mathsf{B}.\,x-2y-3z=0$

 $\mathsf{C}.\,x - 2y + 5z = 0$

D. 3x + y - 5z = 0

Answer: D

2. A vector \overrightarrow{n} is inclined to x-axis at 45° , to y-axis at 60° and at an angle to z-axis. If \overrightarrow{n} is a normal to the plane passing through the point $(\sqrt{2}, -1, 1)$, then the equation of plane is

A.
$$3\sqrt{2}x-4y-3z=7$$

$$\mathsf{B.}\,4\sqrt{2}x + 7y + z = 2$$

C.
$$\sqrt{2}x + y + z = 2$$

D.
$$\sqrt{2}x - y - z = 2$$

Answer: C

Watch Video Solution

3. If the perpendicular distance of a point A, other than the origin from the plane x + y + z = p is equal to the distance of the plane from the origin, then the coordinates of p are (A) (p, 2p, 0) (B) (0, 2p, -p) (C) (2p, p, -p) (D) (2p, -p, 2p)A. (p, 2p, 0)B. (0, 2p, -p)C. (2p, p, -p)D. (2p, -p, 2p)

Answer: C

Watch Video Solution

4. Show that the disease of the point of intersection of the line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ and the plane (x - y + z = 5) from the point (-1, -5, -10) is 13 units.

A. 10

B. 8

C. 21

Answer: D

5.	The	value	of	k	for	which	the	planes		
kx +	4y + z =	= 0, 4x +	ky + 2z	z = 0r	nd2x + 2	2y + z = 0	intersec	t in a		
straighat line is (A) 1 (B) 2 (C) 3 (D) 4										

A. 2

B. 4

C. 6

D. 8

Answer: C

Watch Video Solution

6. Let $P = -(1, 7, \sqrt{2})$ be a point and line L is $2\sqrt{2}(x-1) = y-2, z = 0$. If PQ is the distance of plane $\sqrt{2}x + y - z = 1$ from point P measured along a line inclined at an angle of 45° with the line L and is minimum then the value of PQ is

A. 3 B. 4

C. 6

D. 8

Answer: A

View Text Solution

7. Angle between the two planes of which one plane is 4x + y + 2z = 0

and another plane containing the lines
$$\frac{x-3}{2} = \frac{y-2}{3} = \frac{z-1}{\lambda}, \frac{x-2}{3} = \frac{y-3}{2} = \frac{z-2}{3}$$
A. $\frac{\pi}{3}$

B.
$$\frac{\pi}{2}$$

C. $\frac{\pi}{6}$
D. $\frac{2\pi}{3}$

Answer: B

Watch Video Solution

8. The distance of the point (1, -2, 3) from the plane x - y + z - 5 = 0, measured parallel to the line $\frac{x}{2} = \frac{y}{3} = \frac{z - 1}{-6}$ is equal to

A. 1 unit

B. 2 unit

C. 3 units

D. none of these

Answer: A

9. The angle between the pair of planes represented by equation $2x^2 - 2y^2 + 4z^2 + 6xz + 2yz + 3xy = 0$ is

A. $\cos^{-1}\left(\frac{1}{3}\right)$ B. $\cos^{-1}\left(\frac{4}{21}\right)$ C. $\cos^{-1}\left(\frac{4}{9}\right)$ D. $\cos^{-1}(7\sqrt{84})$

Answer: C

Watch Video Solution

10. The Cartesian equation of the plane

$$\overrightarrow{r}=(1+\lambda-\mu)\hat{i}+(2-\lambda)\hat{j}+(3-2\lambda+2\mu)\hat{k}$$
 is

A. 2x + y = 5

B. 2x - y = 5C. 2x + z = 5D. 2x - z = 5

Answer: C

Watch Video Solution

11. The locus represented by xy + yz = 0 is a pair of

A. perpendicular lines

B. parallel lines

C. parallel lines

D. perpendicular planes

Answer: D

Watch Video Solution

12. Equation of line passing through A(1,0,3), intersecting the line $\left(\frac{x}{2}=\frac{y-1}{3}=\frac{z-2}{1}\right)$ and parallel to the plane x+y+z=2 is

A.
$$\frac{3x-1}{2} = \frac{2y-3}{3} = \frac{2z-5}{-1}$$

B. $\frac{x-1}{2} = \frac{y-0}{3} = \frac{z-3}{-1}$
C. $\frac{x-(2/3)}{1} = \frac{y-(3/2)}{0} = \frac{z+(1/2)}{3}$
D. $\frac{3x-1}{2} = \frac{2y-3}{-3} = \frac{6z-13}{5}$

Answer: D

Watch Video Solution

13. If $P(\alpha, \beta, \lambda)$ is a vertex of an equilateral triangle PQR where vertex Q and R are (-1, 0, 1) and (1, 0, -1) respectively, then P can lie on the plane

A.
$$x + y + z + 6 = 0$$

B.
$$2x + 4y + 3z + 20 = 0$$

C.
$$x - y + z + 12 = 0$$

D.
$$x+y+z+3\sqrt{2}=0$$

Answer: D

14. The variable plane $(2\lambda+1)x+(3-\lambda)y+z=4$ always passes through the line

A.
$$\frac{x}{0} = \frac{y}{0} = \frac{z-4}{1}$$

B. $\frac{x}{1} = \frac{y}{2} = \frac{z-4}{-3}$
C. $\frac{x}{1} = \frac{y}{1} = \frac{z-4}{-7}$
D. $\frac{x}{1} = \frac{y}{2} = \frac{z-4}{-7}$

Answer: D

Watch Video Solution

15. Let $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{b} = -\hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{c} = \hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{d} = \hat{i} + \hat{j} - \hat{k}$. Then, the line of intersection of planes one determined by \overrightarrow{a} , \overrightarrow{b} and other determined by \overrightarrow{c} , \overrightarrow{d} is perpendicular to

A. x-axis

B. y-axis

C. z-axis

D. none of these

Answer: B::C::D

View Text Solution

16. Consider the equation

$$egin{aligned} E_1\colon \overrightarrow{r}\, imes\, \left(2\hat{i}\,-\,\hat{j}\,+\,3\hat{k}
ight)&=3\hat{i}\,+\,\hat{k}\ E_2\colon \overrightarrow{r}\, imes\, \left(\hat{i}\,+\,2\hat{j}\,-\,3\hat{k}
ight)&=2\hat{i}\,-\,\hat{j}, ext{hten} \end{aligned}$$

and

A. E_1 represents a line

C. E_2 represents a line

D. E_2 represents two parallel planes

Answer: B::C::D

View Text Solution

17. the equation of a plane is 2x - y - 3z = 5 and A(1, 1, 1), B(2, 1, -3), C(1, -2, -2) and D(-3)are four points. Which of the following line segments are intersects by the plane? (A) AD (B) AB (C) AC (D) BC

A. AD

B. AB

C. AC

D. BC

Answer: B::C::D

18. Let P denotes the plane consisting of all points thata are equidistant from the points A(-4,2,1) and B(2,-4,3) and Q be the plane, x-y+cz=1 where $c\in R.$

The planar P is parallel to plane Q

A. for no value of c

B. if c=3

C. if c = 1/3

D. if c=1

Answer: C

View Text Solution

19. Let P denotes the plane consisting of all points that are equidistant from the points A(-4,2,1) and B(2,-4,3) and Q be the plane, x-y+cz=1 where $c\in R.$

If the angle between the planes P and Q is 45° then the product of all possible values of c is

A. - 17

 $\mathsf{B.}-2$

C. 17

D. 24/27

Answer: B

View Text Solution

20. A line L_1 with direction ratios -3, 2, 4 passes through the point A(7,6,2) and a line L_2 with directions ratios 2,1,3 passes through the point B(5,3,4). A line L_3 with direction ratios 2, -2, -1 intersects L_1 and L_3

at	С	and	D,	resectively.
----	---	-----	----	--------------

The lenth CD is equal to

A. 4 B. 6 C. 9

D. 11

Answer: C

View Text Solution

21. A line L_1 with direction ratios -3, 2, 4 passes through the point A(7,6,2) and a line L_2 with directions ratios 2,1,3 passes through the point B(5,3,4). A line L_3 with direction ratios 2, -2, -1 intersects L_1 and L_3 at C and D, resectively. The equation of the plane parallel to line L_1 and containing line L_2 is equal to

A.
$$x + 3y + 4z = 30$$

B. x + 2y + z = 15

C. 2x - y + z = 11

D. 2x + 17y - 7z = 33

Answer: D

View Text Solution

22. A line L_1 with direction ratios -3, 2, 4 passes through the point A(7,6,2) and a line L_2 with directions ratios 2,1,3 passes through the point B(5,3,4). A line L_3 with direction ratios 2, -2, -1 intersects L_1 and L_3 at C and D, resectively.

The volume of parallelopiped formed by $\overrightarrow{AB}, \overrightarrow{AC}$ and \overrightarrow{AD} is equal to

- A. 140
- B. 138
- C. 134

D. 130

Answer: B

View Text Solution