©゙doubtnut

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

EQUATION OF PLANE AND ITS APPLICATIONS -

II

Dpp 34

1. Let $A(0,6,6), \mathrm{B}(6,6,0)$ and $\mathrm{C}(6,0,6)$ are three points and point D is moving on the line $x+z-3=0=y$. If G is centroid of $\Delta A B C$, then minimum value of GD is

$$
\text { A. } \sqrt{\frac{47}{2}}
$$

B. $\sqrt{\frac{37}{2}}$
C. $\sqrt{\frac{57}{2}}$
D. $\sqrt{\frac{23}{2}}$

Answer: C

- View Text Solution

2. Equation of line of projection of the line $3 x-y+2 z-1=0=x+2 y-z=2$ on the plane $3 x+2 y+z=0$ is

$$
\text { A. } \frac{x+1}{11}=\frac{y-1}{-9}=\frac{z-1}{-15}
$$

$$
\text { B. } 3 x-8 y+7 z+4=0=3 x+2 y+z
$$

C. $\frac{x+12}{11}=\frac{y+8}{-9}=\frac{z+14}{15}$
D. $\frac{x+12}{11}=\frac{y+8}{-9}=\frac{z+14}{-15}$

Answer: B

- View Text Solution

3. The orthocenter of triangle whose vertices are $A(a, 0,0), B(0, b, 0)$ and $C(0,0, c)$ is $\left(\frac{k}{a}, \frac{k}{b}, \frac{k}{c}\right)$ then k is equal to
A. $\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)^{-1}$
B. $\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{-1}$
C. $\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)$
D. $\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$

Answer: A

- View Text Solution

4. The shortest distance between the lines
$2 x+y+z-1=0=3 x+y+2 z-2$ and $x=y=z$,
is
A. $\frac{1}{\sqrt{2}}$ units
B. $\sqrt{2}$ units
C. $\frac{3}{\sqrt{2}}$ units
D. $\frac{\sqrt{3}}{2}$ units

Answer: A

- View Text Solution

5. If plane $2 x+3 y+6 z+k=0$ is tangent to the sphere $x^{2}+y^{2}+z^{2}+2 x-2 y+2 z-6=0$, then a value of k is
A. 26
B. 16
C. -26
D. none of these
6. The shortest distance from $(1,1,1)$ to the line of intersection of the pair of planes
$x y+y z+z x+y^{2}=0$ is
A. $\sqrt{\frac{8}{3}}$
B. $\frac{2}{\sqrt{3}}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{2}{3}$

Answer: A
7. A variable plane makes intercepts on x, y and z axes and it makes a tetrahedron of volume 64 cu . Units. The locus of foot of perpendicular from origin on the plane is
A. $\left(x^{2}+y^{2}+z^{2}\right)^{2}=384 x y z$
B. $x y z=681$
C. $(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^{2}=16$
D. $x y z(x+y+z)=81$

Answer: A

D View Text Solution

8. If the projection of the line $\frac{x}{2}=\frac{y-1}{2}=\frac{z-1}{1}$ on a plane P is $\frac{x}{1}=\frac{y-1}{1}=\frac{z-1}{-1}$. Then the distance of
plane P from origin is
A. $\sqrt{3}$
B. $\sqrt{\frac{3}{2}}$
C. $\sqrt{6}$
D. $\frac{2}{\sqrt{3}}$

Answer: B

- View Text Solution

9. Image of sphere $x^{2}+y^{2}+z^{2}=9$ in plane $2 x+3 y+4 z-29=0$ is
A. $x^{2}+y^{2}+z^{2}-8 x-12 y-16 z+107=0$
B. $x^{2}+y^{2}+z^{2}+8 x-12 y-16 z+107=0$
C. $x^{2}+y^{2}+z^{2}-8 x+12 y-16 z+107=0$
D. $x^{2}+y^{2}+z^{2}-8 x-12 y+16 z+107=0$

Answer: A

- View Text Solution

10. The locus of a point which moves in such a way that its diameter from the plane $x+y+z=0$ is
A. $x^{2}+y^{2}+z^{2}--5 x-3 y-3 z=0$
B. $x^{2}+y^{2}+z^{2}-5 x+3 y+3 z=0$
C. $x^{2}+y^{2}+z^{2}+5 x y+3 y z+z x=0$
D. $x^{2}+y^{2}+z^{2}+5 x y+3 y z+3 z x=0$

Answer: C

- View Text Solution

11. A plane cutting the axes in P, Q, R passes through $(\alpha, \beta, \beta-\lambda, \lambda-\alpha)$. If O is origin, then locus of center of sphere OPQR is
A. $\alpha x+\beta y+\lambda z=4$
B. $(\alpha-\beta) x+(\beta-\lambda) y+(y-\alpha) z=0$
C. $(\alpha-\beta) y z+(\beta-y) z x+(\lambda-\alpha) x y=2 x y z$
D. $\left(\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{1}{\lambda^{2}}\right)\left(x^{2+y^{2}+z^{2}}\right)=x y z$

Answer: C

- View Text Solution

12. A line is drawn from the point $P(1,1,1)$ and perpendicular to a line with direction ratios, $(1,1,1)$ to intersect the plane $x+2 y+3 z=4$ at Q . The locus of point Q is

$$
\begin{aligned}
& \text { A. } \frac{x}{1}=\frac{y-5}{-2}=\frac{z-+2}{1} \\
& \text { B. } \frac{x}{-2}=\frac{y-5}{1}=\frac{z+2}{1} \\
& \text { C. } x=y=z
\end{aligned}
$$

D. none of these
13. Let a plane pass through origin and be parallel to the line $\frac{x-1}{2}=\frac{y_{3}}{-1}=\frac{z+1}{-2}$ is such that distance between the plane and the line is $\frac{5}{3}$. Then equation of the plane is/are

$$
\begin{aligned}
& \text { A. } x-2 y+2 z=0 \\
& \text { B. } x-2 y-2 z=0 \\
& \text { C. } 2 x+2 y+z=0 \\
& \text { D. } x+y+z=0
\end{aligned}
$$

Answer: A:C

14. The planes $a x+4 y+z=0,2 y+3 z-1=0$ and $3 x-b z+2=0$ will
A. meet at a point if $a b \neq 15$.
B. meet on a line if $a b=15, a=3$
C. have no common point if $a b=15, a \neq 3$.
D. have no common point if $a b=15, a \neq 5$

Answer: A::B::C

D View Text Solution

15. If the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ intersects the the line $3 \beta^{2}+3(1-2 \alpha) y+z=3-\frac{1}{2}\left\{6 \alpha^{2} x+3(1-2 \beta) y+2 z\right\}$
then point $(\alpha, \beta, 1)$ lies on the plane
A. $2 x-y+z=4$
B. $x+y-z=0$
C. $x-2 y=0$
D. $2 x-y=0$

Answer: A:B::C

- View Text Solution

16. Let $A=(1,1,-1), B=(0,2,1)$ be two given points. Also, let $\mathrm{P}: x+y+z=0$ be a plane.

If A^{\prime} and B^{\prime} are the feet of perpendicular from A and B , respectively, on the plane ' P ' then $A^{\prime} B^{\prime}$ equals
A. $\frac{\sqrt{14}}{3}$
B. $\sqrt{\frac{5}{3}}$
C. $\sqrt{3}$
D. $\sqrt{\frac{2}{3}}$

Answer: A

D View Text Solution

17. The equation of the line perpendicular to $\overrightarrow{A B}$ and lying completely in the plane ' P ' is
A. $\frac{x-\frac{2}{3}}{1}=\frac{y-\frac{1}{2}}{-3}=\frac{z+2}{2}$
B. $\frac{x-3}{2}=\frac{y-1}{-6}=\frac{z+2}{2}$
C. $x=y=z$
D. $x-3=y-1=z=2$

Answer: A

- View Text Solution

18. Let $P_{1}: x+y+2 z-3=0$ and $x-2 y+z=4$ be two planes. Also, let $A(1,3,4)$ and $B(3,2,7)$ be two points in space.

The equation of plane which passes through line of intersection of P_{1} and $P_{2}=x-2 y+z=4$ be two planes. Also, let $A(1,3,4)$ and $B(3,2,7)$ be two points in space.

The equation of plane which passes through line of
intersection of P_{1} and P_{2} and upon which length of projection of the line segment $A B$ is the greatest, is
A. $2 x+3 y+z+4=0$
B. $3 x-3 y+4 z-11=0$
C. $x+3 y+z+2=0$
D. $3 y+z+1=0$

Answer: D

- View Text Solution

19. The equation of plane which passes through line of intersection of P_{1} and P_{2} upon which length of projection of the line segment $A B$ is the least, is
A. $x+3 y+z+2=0$
B. $3 y+z+1=0$
C. $2 x-y+3 z-7=0$
D. $3 x-3 y+4 z-11=0$

Answer: C

- View Text Solution

