©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

GETTING STARTED WITH GRAPHS

Illustrations

1. Does the following graph represent a function or a relation?

2. Does the graph below represent a function or a relation? `(\#\#CEN_GRA_C01_S01_002_Q01.png" width="80\%">

- View Text Solution

3. Does the following graph pass the vertical or horizontal line test?

- View Text Solution

4. In how many points graph of $y=x^{3}-3 x 2+5 x-3$ interest the x axis?
5. Following is the graph of $y=f(x)$.
$\left(\# \# C E N_{G} R A_{C} 01_{S} 01_{005}-Q 01 . p n g\right.$ width $=80 \%>F \in d t h e \sqrt[s]{o f t h e e q \imath}$ $f(x)=0, f(x)=4$ and $f(x)=10^{\circ}$.

D View Text Solution

6. Which of the following pairs of graphs intersect?
(i) $y=x^{2}-x$ and $y=1$
(ii) $y=x^{2}-2 x+3$ and $y=\sin x$
(iii) $y=x^{2}-x+1$ and $y=x-4$

- View Text Solution

7. The graph of $y=f(x)$ is shown, find the number of solution of $f(f(x))=2$.
`(\#\#CEN_GRA_C01_S01_007_Q01.png" width="80\%">
8. Does the fraph of the function $f(x)=x^{2}-3$ have y -axis symmetry?

- Watch Video Solution

9. Does the graph of the function $f(x)=1 / x^{3}$ have origin symmetry?

- Watch Video Solution

10. Which of the following functions has (have) y-symmetry or origin symmetry?
(i) $f(x)=x^{2} \sin x$

$$
\text { (ii) } f(x)=\log \left(x+\sqrt{1+x^{2}}\right)
$$

(iii)
$f(x)=\frac{e^{x}+e^{-x}}{2}$

$$
(i v) f(x)= \begin{cases}0, & \text { If } \mathrm{x} \text { is rational } \\ 1, & \text { If } \mathrm{x} \text { is irrational }\end{cases}
$$

- Watch Video Solution

11. Let $f: R \rightarrow R$ be a continuous onto function satisfying $f(x)+f(-x)=0, \forall x \in R$. If $f(-3)=2$ and $f(5)=4$ in $[-5,5]$, then what is the minimum number of roots of the equation $f(x)=0$?

- View Text Solution

12. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be two one-one and onto functions such that they are mirror images of each other about the line $y=a$. If $h(x)=f(x)+g(x)$, then $h(x)$ is (A) one-one onto (B) one-one into (D) many-one into (C) many-one onto

- Watch Video Solution

13. Check weather the following function/functions is/are periodic or not?

Find the period in case the function is periodic.
` (\#\#CEN_GRA_C01_S01_013_Q01.png" width="80\%">
14.
$f(x)=\{(x-2 n, \quad 2 n \leq x<2 n+1),($
periodic? If yes, what is its period?

- Watch Video Solution

15. The graph of $y=f(x)$ is as shown in the following figure.

Find the following values:
(i) $\lim _{x \rightarrow 4} f(x)$
(ii) $\lim _{x \rightarrow-3} f(x)$
(iii) $\lim _{x \rightarrow 0^{+}} f(x)$
(iv) $\underset{x \rightarrow 0^{-}}{f(x)}$
$(v) \lim _{x \rightarrow 0} f(x) \quad(v i) f(-2)$
(vii) $\lim _{x \rightarrow 2^{-}} f(x) \quad$ (viii) $\lim _{x \rightarrow-2^{-}} f(x)$
(ix) $\lim _{x \rightarrow 0} f(x+1)$
$(x) f(0)$
(xi) $\lim _{x \rightarrow 0^{+}} f(x-2)$
(xii) $\lim _{x \rightarrow 1^{-}} f(x-4)$

- View Text Solution

16. The graph of $y=f(x)$ is as shown in the following figure.
` (\#\#CEN_GRA_C01_S01_016_Q01.png" width="80\%">
Identify the points of discontinuity and give the reason for the same.

- View Text Solution

17. The graph of $f(x)$ is given. State with reasons the number at which the function is non-differentiable.

- View Text Solution

18. For each of the following graphs, comment whether $f(x)$ is increasing or decreasing or neither increasing nor decreasing at $\mathrm{x}=\mathrm{a}$.
` (\#\#CEN_GRA_C01_S01_018_Q01.png" width="80\%">

- View Text Solution

19. The graph of a function is shown in the following figure.

Determine the intervals on which the function is concave up and the
intervals on which it is concave down. Find the x - coordinates of any inflection points.

- View Text Solution

20. For the function g whose graph is given. Arrange the following numbers in increasing order and explain your reasoning.
$g(0), g^{\prime}(-2), g^{\prime}(0), g^{\prime}(2), g^{\prime}(4)$

- View Text Solution

21. The diagram shows the graph of the derivative of a functin $f(x)$ for $0 \leq x \leq 4$ with $\mathrm{f}(0)=0$. Which of the following could be correct statements for $\mathrm{y}=\mathrm{f}(\mathrm{x})$?
$\left(\# \# C E N_{G} R A_{C} 01_{S} 01_{021}-Q 01 . p n g\right.$ width $=80 \%>(a) \tan \geq n t l \in e \rightarrow$ $\sec ^{\wedge}(-1)$ sqrt 5 with the x - axis.
(b) f is increasing in $(0,3)$.
(c) $x=1$ is both an inflection point and the point of local extremum.
(d) Number of critical point on $y=f(x)$ is two.

- View Text Solution

22. In the following graph, state the absolute and local maximum and minimum values of the function.
`(\#\#CEN_GRA_C01_S01_022_Q01.png" width="80\%">

- View Text Solution

23. The graph of the derivative $f^{\prime}(x)$ is given in the following figure.
(b) Find the values of x for which f has local maximum or minimum.
(c) Find the intervals in which f is concave upward or downward.
(d) Find the point of inflection.
`(\#\#CEN_GRA_C01_S01_023_Q01.png" width="80\%">

D View Text Solution

24. The graph of the second derivation $f^{\prime \prime}(x)$ is given in the following figure. State the x - coordinate of the point of inflection of f . Given reasons for your answer.
`(\#\#CEN_GRA_C01_S01_024_Q01.png" width="80\%">

- View Text Solution

25. The figure shows the graphs of $\mathrm{f}, \mathrm{f}^{\prime}$ and $\mathrm{f}^{\prime \prime}$. Identify each curve and explain your choices.
`(\#\#CEN_GRA_C01_S01_025_Q01.png" width="80\%">

- View Text Solution

26. Following is the graph of $y=f^{\prime}(x)$, given that $f(c)=0$. Analyse the graph and answer the following questions.
(a) How many times the graph of $y=f(x)$ will intersect the x - axis?
(b) Discuss the type of roots of the equation $\mathrm{f}(\mathrm{x})=0, a \leq x \leq b$.
(c) How many points of inflection the graph of $y=f(x), a \leq x \leq b$, has?
(d) Find the points of local maxima/minima of $y=f(x), a<x b$.
(e) How many roots equation $f^{\prime \prime}(x)=0$ has?

- View Text Solution

27. Find the asymptote of the function $y=\frac{2 x^{2}+3 x+1}{x}$ if any.

- Watch Video Solution

28. Find the horizontal, vertical and oblique asymptotes of each of the curves.
(a) $y=\frac{x}{x+4}$
(b) $y=\frac{x^{2}+4}{x^{2}-1}$
(c) $y=\frac{x^{3}}{x^{2}+3 x-10}$
(d) $y=\frac{x^{3}+1}{x^{3}+x}$
(e) $y=\frac{x}{\sqrt[4]{x^{4}+1}}$
(f) $y=\frac{x-9}{\sqrt{4 x^{2}+3 x+2}}$
(g) $y=\frac{1}{2^{x}-1}$
(h) $y=\frac{1}{\log _{e} x}$
(i) $y=\frac{1}{2^{x}-1}$

- View Text Solution

1. Does the following graph pass the vertical or horizontal line test ?

2. Consider the graph of $y=f(x)$ as shown in the following figure.

(i) Find the sum of the roots of the equation $f(x)=0$.
(ii) Find the product of the roots of the equation $f(x)=4$.
(iii) Find the absolute value of the difference of the roots of the equation $f(x)=x+2$.
3. Which of the following functions has (have) y-symmetry or origin symmetry?
(i) $f(x)=x^{2} \sin x$
(ii) $f(x)=\log \left(\frac{1-x}{1+x}\right)$
(iii) $f(x)=\frac{x}{e^{x}-1}+\frac{x}{2}+1$

- Watch Video Solution

4. The graph of functions are given in the following fingure. Discuss the symmetry.
(a)

(b)

- View Text Solution

5. Check weather the following function/functions is/are periodic or not?

Find the period in case the function is periodic.
(1)

(b)

(c)

D View Text Solution

6. Suppose that f is even, periodic function with period 2 , and that $f(x)=x$ for all x in the interval $[0,1]$. Then draw the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})$.

- Watch Video Solution

7. The graph of $y=f(x)$ is as shown in the following figure.

Find the following values
(i) $f(-3)$
(ii) $f(-2)$
(iii)f(0)
(iv) $f(2)$
$(v) f(3)$
(vi) $\lim _{x \rightarrow-3} f(x)$
(vii) $\lim _{x \rightarrow 0} f(x)$
(viii) $\lim _{x \rightarrow 2} f(x)$
(ix) $\lim _{x \rightarrow 3} f(x)$
$(x) \lim _{x \rightarrow 2^{-}} f(x)$
$x \rightarrow 2^{-}$
(छ) $\lim _{x \rightarrow-2^{+}} f(x)$
(xii) $\lim _{x \rightarrow 0^{-}} f(x)$
(x iii) $\lim _{x \rightarrow 0^{+}} f(x)$

- View Text Solution

8. The graph of f is shown. State, with reason, the numbers at which f is not differentiable.

- View Text Solution

9. The graph of f is given.

State the equations of all the asymptotes.

D View Text Solution
10. (a) Can the graph of the function intersect the horizontal asymptote?
(b) Can the graph of the function intersect the vertical asymptote?

- Watch Video Solution

11. The graph of $y=f(x)$ is given with six labelled points. Anser the following questions.
(a) At which point $\mathrm{f}^{\prime}(\mathrm{x})$ has the greatest value?
(b) At which point $f(x)$ and $f^{\prime}(x)$ both are zero?
(c) At how many point $\mathrm{f}^{\prime}(\mathrm{x})$ is negative ?
(d) Which is the point of infection?

- View Text Solution

12. Graph of functions are given in the following figure. Check the functions for absolute extremum.
(b)

(c)

- View Text Solution

13. In the following graph, state the absolute and the local maximum and minimum values of the function.
14. The graph of the derivative $f^{\prime}(x)$ is given in the following figure.
(a) Find the interval in which f is increasing or decreasing.
(b) Find the values of x for which f has local maximum or minimum.
(c) Find the intervals in which f is concave upward or downward.
(c) Find the point of inflection.

- View Text Solution

15. The graph of $y=f^{\prime}(x)$ is shown. Find the point of local maxima, local minima and the point of inflection of $f(x)$.
16. The figure shows the graphs of f, f^{\prime} and $f^{\prime \prime}$. Indentify each curve and explain your choices.

- View Text Solution

17. Match the graph of $y=f(x)$ in Column I with the corresponding graph of $y=f^{\prime}(x)$ in Column II.

Column II
(a)

(p)

(q)

(c)

(r)

(d)

(s)

View Text Solution
18. Following is the graph of $y=f^{\prime}(x)$ and $f(0)=0$.

(a) What type of function $y=f^{\prime}(x)$ is ? Odd or even?
(b) What type of function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is ? Odd or even?
(c) What is the value of $\int_{-a}^{a} f(x) d x$?
(d) Has $\mathrm{y}=\mathrm{f}(\mathrm{x})$ point of inflection?
(e) What is the nature of $\mathrm{y}=\mathrm{f}(\mathrm{x})$? Monotonic or non-monotonic?

- View Text Solution

