

India's Number 1 Education App

#### **MATHS**

## **BOOKS - CENGAGE MATHS (HINGLISH)**

### **GRAPH OF INVERSE TRIGONOMETRIC FUNCTIONS**

#### Illustrations

**1.** Solve  $\sin^{-1} x \leq \cos^{-1} x$  graphically. Check the differentiability of f (x)

=min.  $\{\sin^{-1} x \le \cos^{-1} x\}$ . Also find the range of y = f(x)



**2.** Evlute  $\left[\lim t_{x\to 0} \frac{\tan^{-1}x}{x}\right]$ , where  $[\,\cdot\,]$  re[resemts the greatest integer function.



**3.** Find the values of a for whch  $\sin^{\cdot}(-1)x = |x-a|$  will have at least one solution.



**4.** Draw the graph of  $y = \sin^{-1} 2x$  and  $y = \sin^{-1} (x/2)$  and compare with  $y = \sin^{-1} x$ .



**5.** Draw the graphs of  $y=\sin^{-1}\{x\}$ , where  $\{\,\cdot\,\}$  resresent the fractional part function.



**6.** Draw the graph of  $y = \sin^{-1} x + \cos^{-1} x$ .



**7.** Draw the graph of 
$$y = \sec^{-1} x + \cos ec^{-1} x$$





**8.** Draw the graph of  $y = \cos^{-1}(x^2)$ .

$$y = \sin^{-1} x.$$

10. Draw the graph of 
$$f(x) = \lceil \tan^{-1} x \rceil$$
, where  $\lceil \cdot \rceil$  represents the greatest integer function.

**9.** Draw the graph of  $y=\sin^{-1}x^3$  and compare wire the graph of



**11.** Draw the graph of  $y=\sin^{-1}(\log_e x)$ . Also find the point of inflection.



**12.** Draw the graph of the function  $y=f(x)= an^{-1}igg(rac{1-x^2}{1+x^2}igg).$ 



**13.** Draw the graph of  $y=\sin(\sin^{-1}x)$  or  $y=\cos(\cos^{-1}x)$ 



**14.** Draw the graph of  $y = \tan(\tan^{-1} x)$  or  $y = \cot(\cot^{-1} x)$ 



**15.** Draw the graph of  $y = \sin^{-1}(\sin x)$ 



View Text Solution

**16.** Draw the graph of  $y = -\cos^{-1}(\cos x)$ .



**Watch Video Solution** 

**17.** Let  $f\colon [0,4\pi] o [0,\pi]$  be defined by  $f(x) = \cos^{-1}(\cos x)$ . The number of points  $x \in [0,4\pi]$  4satisfying the equation  $f(x) = \frac{10-x}{10}$ is



**Watch Video Solution** 

**18.** Draw the graph of  $y = \tan^{-1}(\tan x)$ 



**View Text Solution** 

**19.** Draw the graph of  $y = \cot^{-1}(\cot x)$ 



**20.** Draw in graph of  $y = \csc^{-1}(\csc x)$ .



**21.** Draw the graph of  $f(x) = \sec^{-1}(\sec x)$ 



**22.** Fide the area bounded by  $y=\sin^{-1}(\sin x)$  and the x-axis for  $x\in[0,100\pi].$ 



**23.** Find the sum of roots the equation  $\cos^{-1}(\cos x) = [x], [\cdot]$  denotes the greatest integer funtions.



**24.** Draw the graph of  $f(x)\sin^{-1}|\sin x|+\cos^{-1}(\cos x)$ . Find the range of the function. Find the points of non-differentiability. Also find the value of  $\int_0^{10\pi} \left[\sin^{-1}|\sin x|+\cos^{-1}(\cos x)\right] \mathrm{d}x$ 



**25.** Draw the graph of  $y=2x^2-1$  and heance the graph of f(x)  $=\cos^{-1}2x^2-1$ ).



**27.** Draw the graph of 
$$y=\sin^{-1}\!\left(rac{2x}{1+x^2}
ight)$$



# **28.** Draw the graph of $y = \cos^{-1} \left( \frac{1 + x^2}{1 + x^2} \right)$



29. Draw the graph 
$$y=\sin^{-1}\lvert\sin x
vert ext{ and } y=\left(\sin^{-1}\lvert\sin x
vert\right)^2, 0\leq x\leq 2\pi$$

of



- **1.** Draw the graph of  $y = \tan^{-1} x + \cot^{-1} x$

Watch Video Solution

- the number of real solution to the equation Find 2.  $3\cos^{-1}x - \pi x - \frac{\pi}{2} = 0$ 
  - Watch Video Solution

- **3.** Evalute  $\left[\lim_{x\to 0}\frac{\sin^{-1}x}{x}\right]=1$ , where  $[\cdot]$  represets the greatest interger function.
  - Watch Video Solution

**4.** Solve  $\tan^{-1} x > \cot^{-1} x$  graphically. Also find where f(x) = max.  $\lceil \tan^{-1} x, \cot^{-1} x \rceil$  is non-differentiable. Also find the range of y = f(x).

5. Match the colums.

| Column I                          | Column II           |
|-----------------------------------|---------------------|
| a) $\sin^{-1} x + x > 0$ , for    | (p) $x < 0$         |
| (b) $\cos^{-1} x - x \ge 0$ , for | (q) $x \in (0, 1]$  |
| (c) $\tan^{-1} x + x < 0$ for     | (r) $x \in [-1, 0]$ |
| d) $\cot^{-1} x + x > 0$ , for    | (s) $x > 0$         |



#### Watch Video Solution

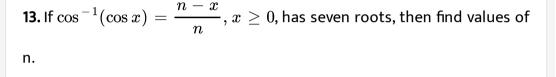
- **6.** Drew the graph of  $y=\cos^{-1}\sqrt{\log_{\lfloor x\rfloor}\left(\frac{|x|}{x}\right)}$  where  $\lfloor\cdot\rfloor$  represents the greastest integer function.
  - View Text Solution

- 7. Find the value of  $\int_0^{100\pi} \sin^{-1}(\sin x) dx.$ 
  - Watch Video Solution

**8.** Draw the graph of  $y=\sin^{-1}, \frac{1}{x}$ 



Watch Video Solution


- **9.** Draw the graph of  $y=\sin^{-1}ig(x^2ig)$ 
  - Watch Video Solution

10. Draw the graph of  $y=\cos^{-1}x^3$  and compare with the graph of  $y=\cos^{-1}x$ .



- **11.** Draw the graph of  $y=\cos^{-1}(2^x)$ .
  - Watch Video Solution







**14.** Draw the graph of  $f(x) = \left[\cot^{-1}x\right]$ , where  $[\,\cdot\,]$  represents the greatest integer funtion.



**15.** Draw the graph of  $y = \operatorname{cosec}(\operatorname{cosec}^{-1} x)$  or  $y = \operatorname{sec}(\operatorname{sec}^{-1} x)$ .



**16.** Draw the graph of  $f(x) = \cot^{-1} \left( \frac{2-|x|}{2+|x|} \right)$ .



Watch Video Solution

**17.** Draw the graph of  $y=\sin^{-1}\!\left(2x\sqrt{1-x^2}
ight)$ 



**View Text Solution** 

**18.** Draw the graph of  $y= an^{-1}igg(rac{3x-x^3}{1-3x^2}igg)$ .



**View Text Solution**