© 'doubtnut

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

GRAPHS OF ELEMENTARY FUNCTIONS

Illustrations

1. The graph of $(y-x)$ against $(y+x)$ is shown below.

Which one of the following shows the graph of y against x ?
(a)

(b)

(c)

(d)

- Watch Video Solution

2. Draw the graph of $f(x)=\frac{x^{3}-x}{x^{2}-1}$.

Watch Video Solution

3. Graph of $y=f(x)$ and $y=g(x)$ is given in the following figure. If $h(x)=f(g(x))$, then find the value of $h^{\prime}(2)$.

- View Text Solution

4. Let $f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}$ for all real x and y . If $\mathrm{f}^{\prime}(0)$ exists and equals-1 and $f(0)=1$, find $f(2)$

- Watch Video Solution

5. Sketch the regions satisfying the following inequalities:
(a) $x>2$
(b) $|y| \geq 1$

- Watch Video Solution

6. Shade the regions where points satisfy $|x-y|<1$.

- Watch Video Solution

7. Plot the region satisfying $|x|+|y| \leq 2$ and $|x|+|y|>2$.

- View Text Solution

8. If $x<2$, then find the values of x^{2} graphically.

- Watch Video Solution

9. If $x<-1$, then find the vallues of x^{2} graphically.

- Watch Video Solution

10. Draw the graph of $f(x)=\left\{\begin{array}{l}x^{3}, x^{2}<1 \\ x, x^{2} \leq 1\end{array}\right.$

D Watch Video Solution

11. If $x>2$, then find the values of $1 / x$ graphically.

D Watch Video Solution

12. If $x<-1$, then find the values of $1 / x$ graphically.

- Watch Video Solution

13. When $x>-2$, find the values of $1 / x$.
14. When $x<3$, find the values of $1 / x$.

- Watch Video Solution

15. Draw the graph of $\frac{1}{x}+\frac{1}{y}=1$.

- Watch Video Solution

16. Draw the graph of $y=\frac{1}{x^{2}}$.

- Watch Video Solution

17. Draw the graphs of following quadratic functions.
(i) $y=x^{2}+x+1$
(ii) $y=x^{2}-2 x-3$
(iii) $y=2+x-x^{2}$
(iv) $y=x-1-x^{2}$
18. The following figure shows the graph of $f(x)=a x^{2}+b x+c$, find the sign of a, b and c.

19. Let $f(x)=2 x(2-x), 0 \leq x \leq 2$. Then find the number of solutions of $f(f(f(x)))=\frac{x}{2}$.

Watch Video Solution

20. $f: R \rightarrow R$ is defined as $f(x)=\left\{\begin{array}{ll}x^{2}+k x+3, & \text { for } x \geq 0 \\ 2 k x+3, & \text { for } x<0\end{array}\right.$. If $f(x)$ is injective, then find the values of k.

- Watch Video Solution

21. If $f(x)=x^{3}+4 x^{2}+\lambda x+1$ is a monotonically decreasing function of x in the largest possible interval $\left(-2,-\frac{2}{3}\right)$. Then $\lambda=4$ (b) $\lambda=2$ $\lambda=-1$ (d) λ has no real value

- Watch Video Solution

22. For what real values of a do the roots of the equation $x^{2}-2 x-\left(a^{2}-1\right)=0$ lie between the roots of the equation $x^{2}-2(a+1) x+a(a-1)=0$.

- Watch Video Solution

23. Find the value of a for which $a x^{2}+(a-3) x+1<0$ for at least one positive real x.

- Watch Video Solution

24. Consider the inequality, $9^{x}-a .3^{x}-a+3 \leq 0$, where ' a ' is a real parameter.
(a) Find the value of ' a ' for which the inequality has at least one negative solution.
(b) Find the values of ' a ' for which the inequality has at least one positive solution.
(c) Find the vlaues of ' a ' for which the inequality has at least one real solution.

- View Text Solution

25. Let a, b, c be real. If $a x^{2}+b x+c=0$ has two real roots $\alpha a n d \beta$, where $\alpha\langle-1$ and $\beta\rangle 1$, then show that $1+\frac{c}{a}+\left|\frac{b}{a}\right|<0$

- Watch Video Solution

26. If $b>a$, then the equation $(x-a)(x-b)-1=0$ has
(a) Both roots in (a, b)
(b) Both roots in $(-\infty, a)$
(c) Both roots in $(b,+\infty)$
(d) One root in $(-\infty, a)$ and the other in $(b,+\infty)$

- View Text Solution

27. When $x>-2$, find the values of $|x|$ graphically.
28. When $x<3$, find the values of $|x|$ graphically.

- Watch Video Solution

29. If $2 \leq|x| \leq 5$, then find the values of x from the graph of $y=|x|$.

(Watch Video Solution

30. Draw the graph of $f(x)=\frac{|x-1|}{x-1}$.

- Watch Video Solution

31. Draw the graph of $x+|y|=2 y$ and check the differentiability.

- Watch Video Solution

32. Draw the graph of $f(x)=(x+2)|x-1|$.

- Watch Video Solution

33. Draw the graph of the function $f(x)=x-\left|x-x^{2}\right|,-1 \leq x \leq 1$ and find the points of non-differentiability.

- Watch Video Solution

34. Solve : $x^{2}-|x+2|+x>0$

- Watch Video Solution

35. Draw the graph of $f(x)=|2 x-1|+|2 x-3|$. Find the range of the function.
36. Draw the graph of $f(x)=|x|-|2 x-3|$. Find the range of the function.

- Watch Video Solution

37. Let $f(x)=x+2|x+1|+2|x-1|$. Find the values of k if $f(x)=k$
(i) has exactly one real solution,
(ii) has two negative solutions,
(iii) has two solutions of opposite sign.

- Watch Video Solution

38.

$$
f(x)=|a x-b|+c|x| \forall x \in(-\infty, \infty)
$$

where
$a>0, b>0, c>0$. Find the condition if $f(x)$ attains the minimum value only at one point.

- Watch Video Solution

39. The tangent to the curve $y=e^{x}$ drawn at the point $\left(c, e^{c}\right)$ intersects the line joining $\left(c-1, e^{c-1}\right)$ and $\left(c+1, e^{c+1}\right)$ (a) on the left of $n=c$ (b) on the right of $n=c$ (c) at no points (d) at all points
A. On the left of $x=c$
B. On the right of $x=c$
C. At no point
D. At all points

Answer:

- Watch Video Solution

40. If a continuous function f defined on the real line R assume positive and negative values in R , then the equation $f(x)=0$ has a root in R . For example, if it is known that a continuous function f on R is positive at some point and its minimum value is negative, then the equation $f(x)=0$ has a root in R . Consider $f(x)=k e^{x}-x$, for all real x where k
is a real constant.

The line $y=x$ meets $y=k e^{x}$ for $k \leq 0$ at
A. No point
B. One point
C. Two points
D. More than two points

Answer:

- Watch Video Solution

41. If a continuous function f defined on the real line R assume positive and negative values in R , then the equation $f(x)=0$ has a root in R . For example, if it is known that a continuous function f on R is positive at some point and its minimum value is negative, then the equation $f(x)=0$ has a root in R . Consider $f(x)=k e^{x}-x$, for all real x where k is a real constant.

The line $y=x$ meets $y=k e^{x}$ for $k \leq 0$ at
A. $\frac{1}{e}$
B. 1
C. e
D. $\log _{e} 2$

Answer:

- Watch Video Solution

42. If a continuous function f defined on the real line R assume positive and negative values in R , then the equation $f(x)=0$ has a root in R . For example, if it is known that a continuous function f on R is positive at some point and its minimum value is negative, then the equation $f(x)=0$ has a root in R . Consider $f(x)=k e^{x}-x$, for all real x where k is a real constant.

The line $y=x$ meets $y=k e^{x}$ for $k \leq 0$ at
A. $\left(0, \frac{1}{e}\right)$
B. $\left(\frac{1}{e}, 1\right)$
C. $\left(\frac{1}{e}, \infty\right)$
D. $(0,1)$

Answer:

- Watch Video Solution

43. Find the number of solution of $2 x^{2}+3^{x}+4^{x}-5^{x}=0$

- Watch Video Solution

44. Draw the graph of $y=\log _{x} \sqrt{x}$

- Watch Video Solution

45. Find the number of roots of the equation $x \log _{e} x=1$.
46. If the graphs of the functions $y=\log _{e} x$ and $y=a x$ intersect at exactly two points,then find the value of a.

- Watch Video Solution

47. draw the graph of $f(x)=x+[x]$, [.] denotes greatest integer function.

- Watch Video Solution

48. Draw the graph of the function $f(x)=\left|\left(x+\frac{1}{2}\right)[x]\right|,-2 \leq x \leq 2$, where [\cdot] denotes the greatest integer function. Find the points of discontinuity and non-differentiability.

- View Text Solution

49. Draw the graph of $f(x)=\left[x^{2}\right], x \in[0,2)$, where $[\cdot]$ denotes the greatest integer function.

Watch Video Solution

50. Draw the graph of $f(x)=[\sqrt{x}], x \in[0,16)$, where $[\cdot]$ denotes the greatest ineger function.

- Watch Video Solution

51. Draw the graph of $y=[x]+\sqrt{x-[x]}$, where $[\cdot]$ denotes the greatest ineger function.

- View Text Solution

52. Draw the graph of $f(x)=\left[\log _{e} x\right], e^{-2}<x<10$, where [.] represents the greatest integer function.
53. Solve $x^{2}-4-[x]=0$ (where [] denotes the greatest integer function).

- Watch Video Solution

54. Sketch the region of relation $[x]+[y]=5, x, y \geq 0$, where $[\cdot]$ denots the greatest integer function.

- View Text Solution

55. Draw the graph of $f(x)=\{2 x\}$, where $\{\cdot\}$ represents the fractional part function.

- Watch Video Solution

56. Find the domain of $f(x)=\sqrt{|x|-\{x\}}$ (where $\{\cdot\}$ denots the fractional part of x .

- Watch Video Solution

57. Solve : $x^{2}=\{x\}$, where $\{x\}$ represents the fractional part function.

- Watch Video Solution

58. Draw the graph of $y^{2}=\{x\}$, where $\{\cdot\}$ represents the fractional part function.

- Watch Video Solution

59. Draw the graph of $y=\frac{1}{\{x\}}$, where $\{\cdot\}$ denotes the fractional part function.
60. Solve : $4\{x\}=x+[x]$ (where $[\cdot]$ denotes the greatest integer function and $\{\cdot\}$ denotes the fractional part function.

- Watch Video Solution

61. Given the graph of the function $y=f(x)$, draw the graph of $y=\operatorname{sgn}(x)$.

62. Draw the graph of $f(x)=\operatorname{sgn}\left(x^{3}-x\right)$.

- Watch Video Solution

63. Draw the graph of $f(x)=\operatorname{sgn}\left(\log _{e} x\right)$.

- Watch Video Solution

64. Let a function $f(x)$ be defined in $[-2,2]$ as
$f(x)=\left\{\begin{array}{ll}\{x\}, & -2 \leq x<-1 \\ |\operatorname{sgn} x|, & -1 \leq x \leq 1 \\ \{-x\}, & 1<x \leq 2\end{array}\right.$ where $\{x\}$ and $\operatorname{sgn} x$ denote
fractional part and signum functions, respectively. Then find the area bounded by the graph of $f(x)$ an the x -axis.

- Watch Video Solution

65. Let $f: R \rightarrow R$ be defined as $f(x)=e^{\operatorname{sgn} x}+e^{x^{2}}$. Then find the range of the function, and also indentify the type of the function : one-one or many-one.

- Watch Video Solution

66. Draw the graph of the function $f(x)=\max \cdot\left\{x, x^{2}\right\}$ and write its equivalent definition.

- Watch Video Solution

67. Let $f: R \rightarrow R$ be a function defined by $f(x)=\max .\left\{x, x^{3}\right\}$. The set of all points where $f(x)$ is NOT differenctiable is
(a) $\{-1,1\}$
(b) $\{-1,0\}$
(c) $\{0,1\}$
(d) $\{-1,0,1\}$
68. Find the equivalent definition of
$f(x)=\max ^{2},(-x)^{2}, 2 x(1-x) w h r e 0 \leq x \leq 1$

- Watch Video Solution

69. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be respectively given by $f(x)=|x|+1$ and $g(x)=x^{2}+1 . \quad$ Define $\quad h: R \rightarrow R \quad$ by $h(x)=\{\max \{f(x), g(x)\}, \quad$ if $\quad x \leq 0$ and $\min \{f(x), g(x)\}, \quad$ if $\quad x>$
.The number of points at which $h(x)$ is not differentiable is

- Watch Video Solution

70. Sketch the region of the points satisfying $\max .\{|x|,|y|\} \leq 4$.

- Watch Video Solution

$A=\left\{(x, y) \mid x^{2}+y^{2} \leq 100\right\}$ and $B=\{(x, y) \mid \sin (x+y)>0\} \quad$ in the plane. Then find the area of the region $A \cup B$.

- View Text Solution

72. Draw the graphs of the following parabolas:
(i) $x=y^{2}-2 y-3$
(ii) $x=6+y-y^{2}$

- Watch Video Solution

73. Find the number of roots of the equation $e^{x}=\sqrt{-x}$

- Watch Video Solution

74. Let $g(x)=\sqrt{x-2 k}, \forall 2 k \leq x<2(k+1)$, where $k \in$ integer. Check whether $g(x)$ is periodic or not.

- Watch Video Solution

75. Plot the region in the first quadrant in which points are nearer to the origin than to the line $x=3$.

- Watch Video Solution

76. Draw the graph of $y=\sqrt{x^{2}-1}$

- Watch Video Solution

77. Draw the graph of $y=-\sqrt{6-3 x^{2}}$

- Watch Video Solution

78. The eccentricity of the ellipse $9 x^{2}+25 y^{2}-18 x-100 y-116=0$ is $25 / 16$ b. $4 / 5$ c. $16 / 25$ d. $5 / 4$

- Watch Video Solution

79. Find the area enclosed by the curves $y=\sqrt{x}$ and $x=-\sqrt{y}$ and the circle $x^{2}+y^{2}=2$ above the x-axis.

- Watch Video Solution

80. Consider a square with vertices at $(1,1),(-1,1),(-1,-1), \operatorname{and}(1,-1)$. Set S be the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region S and find its area.

- Watch Video Solution

1. Draw the graph of $y=\frac{1}{(1 / x)}$.

Watch Video Solution

> 2. $\begin{array}{lll}\text { (a) } & \text { Draw } & \text { the }\end{array}$ graph $f(x)= \begin{cases}1, & |x| \geq 1 \\ \frac{1}{n^{2}}, & \frac{1}{n}<|x|<\frac{1}{n-1}, n=2,3, \ldots \\ 0, & x=0\end{cases}$
(b) Sketch the region $y \leq-1$.
(c) Sketch the region $|x|<3$.

- View Text Solution

3. Sketch the regions which points satisfy $|x+y| \geq 2$.

- Watch Video Solution

4. Sketch the region satisfying $|x|<|y|$.
5. For a point P in the plane, let $d_{1}(P) a n d d_{2}(P)$ be the distances of the point P from the lines $x-y=0 a n d x+y=0$ respectively. The area of the region R consisting of all points P lying in the first quadrant of the plane and satisfying $2 \leq d_{1}(P)+d_{2}(P) \leq 4$, is

- Watch Video Solution

6. Draw the graph of $y=\frac{x-1}{x-2}$.

- Watch Video Solution

7. The following figure shows the graph of $f(x)=a x^{2}+b x+c$, then find the sign of values of a, b and c.

- Watch Video Solution

8. The entire graph of the equation $y=x^{2}+k x-x+9$ in strictly above the $x-a \xi s$ if and only if $k<7$ (b) ${ }^{-}-5-5^{`}(\mathrm{~d})$ none of these
A. $k<7$
B. $-5<k<7$
C. $k>-5$
D. None of these

Answer:

D Watch Video Solution

9. If $x^{2}+2 a x+a<0 \forall x \in[1,2]$, the find the values of a.

- Watch Video Solution

10. Draw the graph of $f(x)=x|x|$.

- Watch Video Solution

11. Draw the graph of the function: Solve $\left|\frac{x^{2}}{x-1}\right| \leq 1$ using the graphical method.
12. Draw the graph of $y=\left|x^{2}-2 x\right|-x$.

- Watch Video Solution

13. Draw the graph of $y= \begin{cases}2^{x}, & x^{2}-2 x \leq 0 \\ 1+3.5 x-x^{2} & x^{2}-2 x>0\end{cases}$

- Watch Video Solution

14. Draw the graph of $f(x)=|x-1|+|2 x-3|$. Find the range of the function.

- Watch Video Solution

15. Draw the graph of $y=|x-1|+3|x-2|-5|x-4|$ and find the values of λ for which the equation $f(x)=\lambda$ has roots of opposite sign.
16. Find the set of real value(s) of a for which the equation $|2 x+3|+2 x-3 \mid=a x+6$ has more than two solutions.

- Watch Video Solution

17. Draw the graph of $y=2^{\frac{(|x|+x)}{x}}$.

- View Text Solution

18. Draw the graph of $y=x^{\frac{1}{\log _{e} x}}$.

- Watch Video Solution

19. Find the number of solutions to the question $x+\log _{e} x=0$.

- Watch Video Solution

20. draw the graph of $f(x)=x+[x]$, [.] denotes greatest integer function.

- Watch Video Solution

21. Given $f(x)$ is a periodic function with period 2 and it is defined as

$$
f(x)= \begin{cases}{\left[\cos \frac{\pi x}{2}\right]+1,} & 0<x<1 \\ 2-x, & 1 \leq x<2\end{cases}
$$

Here [\cdot] represents the greatest integer $\leq x$. If $f(0)=1$, then draw the graph of the function for $x \in[-2,2]$.

- View Text Solution

22. Draw the region of relation $[x][y]=6, x, y \geq 0$. Here $[\cdot]$ denotes the greatest integer function.

- View Text Solution

23. Draw the graph of $y=\{x\}^{2}$, where [•] represents the fractional part function.

- Watch Video Solution

24. Let $f(x)=\frac{[x]+1}{\{x\}+1}$ for $f:\left[0, \frac{5}{2}\right) \rightarrow\left(\frac{1}{2}, 3\right]$, where $[\cdot]$ represents the greatest integer function and $\{\cdot\}$ represents the fractional part of x. Draw the graph of $y=f(x)$. Prove that $y=f(x)$ is bijective. Also find the range of the function.

- Watch Video Solution

25. Draw the graph of $y=2^{\{x\}}$, where $\{\cdot\}$ represents the fractional part function.

- Watch Video Solution

26. Find tha area of the region containing the points (x, y) satisfying $4 \leq x^{2}+y^{2} \leq 2(|x|+|y|)$.

- View Text Solution

27. Draw the graph of $y=-\sqrt{x^{2}+2}$

- Watch Video Solution

28. Draw the graph of $y=|x|^{1 / 2}$ from $-1 \leq x \leq 1$.

- Watch Video Solution

29. Draw the graph of $f(x)=\operatorname{sgn}\left(\log _{0.5} x\right)$.

- Watch Video Solution

30. Graph of $y=f(x)$ is given as shown in the following figure. Draw the graph of $y=\operatorname{sgn}(f(x))$.

Watch Video Solution

31. Draw the graph of the function $y=f(x)=\lim _{n \rightarrow \infty} \frac{x^{2 n}-1}{x^{2 n}+1}$. Is this function same as the function $g(x)=\operatorname{sgn}\left(x^{2}-1\right)$.

- Watch Video Solution

32. An even periodic function $f: R \rightarrow R$ with period 4 is such that
$f(x)=\left\{\begin{array}{ll}\max .\left(|x|, x^{2}\right), & 0 \leq x<1 \\ x, & 1 \leq x \leq 2\end{array}\right.$. Then draw the graph of $y=f(x)$ for $x \in R$

- Watch Video Solution

33. The function $f(x)=\max \cdot\{(1-x),(1+x), 2\}, x \in(-\infty, \infty)$ is
A. Continuous at all points
B. Differentiable at all points
C. Differentiable at all points except at $x=1$ and $x=-1$
D. Continuous at all points except at $x=1$ and $x=-1$, where it is discontinuous

Answer:

- Watch Video Solution

34. Check the differentiability if $f(x)=\min \cdot\left\{1, x^{2}, x^{3}\right\}$.

- Watch Video Solution

