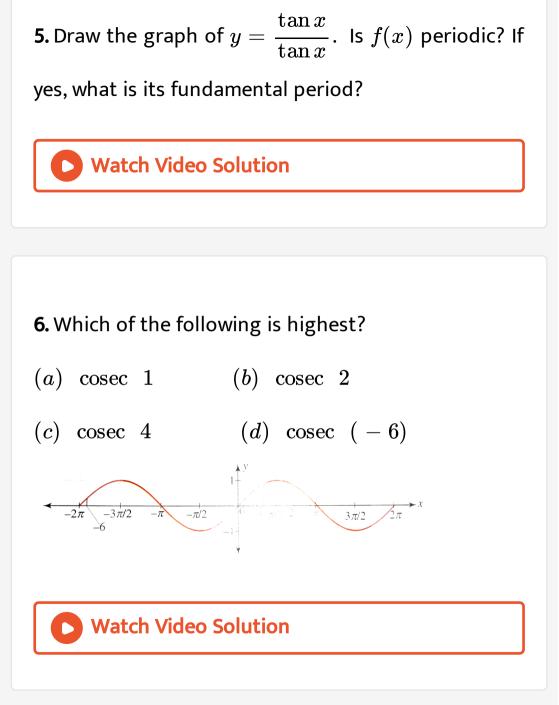


MATHS


BOOKS - CENGAGE MATHS (HINGLISH)

GRAPHS OF TRIGONOMETRIC FUNCTIONS

Illustrations

1. Plot $y=\sin x$ and $y=\sin 2x$.

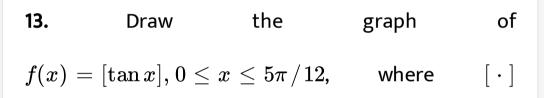
2. Plot
$$y = \sin x$$
 and $y = \frac{\sin x}{2}$
Watch Video Solution
3. Draw the graph of $y = \tan(3x)$.
Watch Video Solution
4. Draw the graph of $y = \sec^2 x - \tan^2 x$. Is $f(x)$
periodic? If yes, what is its fundamental period?
Watch Video Solution

7. Draw the graph of the function
$$y = f(x) = \lim_{n \to \infty} \cos^{2n} x$$
 and find its period.
Watch Video Solution

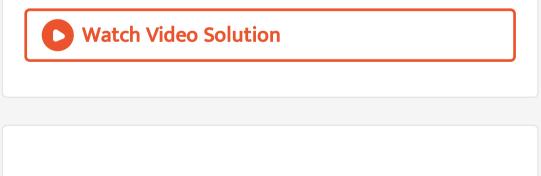
8. Find the number of solution to the equation $x^2 an x = 1, x \in [0, 2\pi].$

9. Solve $an x > \cot x, ext{ where } x \in [0, 2\pi].$


10. Let $f(x) = x \sin \pi x$, x > 0. Then for all natural numbers n, f'(x) vanishes at A unique point in the interval $\left(n, \ n + \frac{1}{2}\right)$ a unique point in the interval $\left(n + \frac{1}{2}, \ n + 1\right)$ a unique point in the interval $(n, \ n + 1)$ two points in the interval $(n, \ n + 1)$


Watch Video Solution

11. If
$$0 < \alpha < \frac{\pi}{3}$$
, then prove that $\alpha(\sec \alpha) < \frac{2\pi}{3}$.

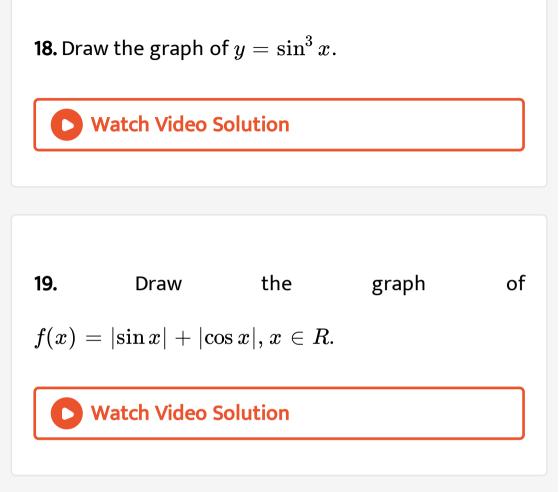

12. Draw the graph of $y=[\sin x], x\in [0,2\pi], ext{ where }$

 $[\cdot]$ represents the greatest integer function.

represents the greatest integer function.

14. Draw the graph of $f(x) = e^{\sin x}$.

15. Draw the graph of $y = \sin 2^x$.


Watch Video Solution

16. Draw the graph of $y = (\sin 2x) \sqrt{1 + an^2 x}$, find

its domain and range.

Watch Video Solution

17. Draw the graph $y = \sin^2 x$.

20. Draw the graph of $f(x) = \sqrt{\sin x}$.

21. Draw the graph of $y = rac{\cos\left(|x| + rac{\pi}{2}
ight)}{\sin x}$. Is the

function periodic ?

Watch Video Solution

22. Draw the graph of $f(x) = \cos \pi[x]$, where $[\cdot]$

represents the greatest integer function. Find the period of the function.

23. Draw the graph of $f(x) = \sec x + \csc x, x \in (0, 2\pi) - \{\pi/2, \pi, 3\pi/2\}$ Also find the values of 'a' for which the equation $\sec x + \csc x = a$ has two distinct root and four distinct roots.

24. Draw the graph of
$$f(x) = rac{\sin x}{\sqrt{1 + \tan^2 x}} - rac{\cos x}{\sqrt{1 + \cot^2 x}}$$
. Then find

the range of f(x).

View Text Solution

25. Find the area bounded by the following curve :

(i) $f(x)=\sin x, g(x)=\sin^2 x, 0\leq x\leq 2\pi$

(ii) $f(x)=\sin x, g(x)=\sin^4 x, 0\leq x\leq 2\pi$

View Text Solution

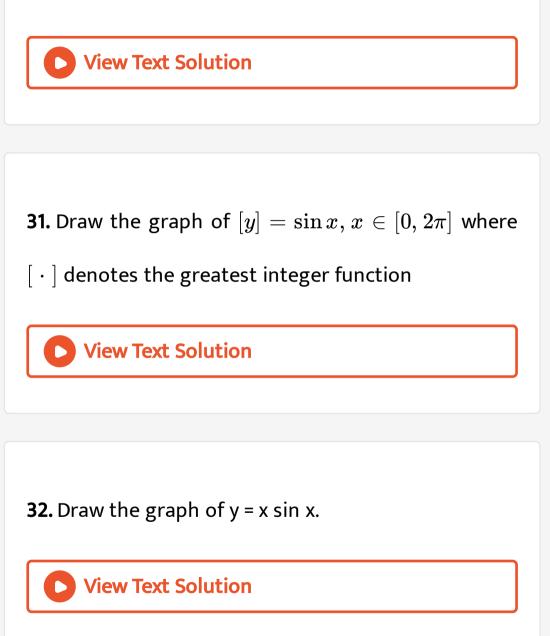
26. Write the equivalent (piecewise) definition of $f(x) = sgn(\sin x).$

> Watch Video Solution

27. Draw the graph of $f(x) = \{\sin x\}$, where $\{\cdot\}$

represents the fractional part function.

28. Draw a graph of $f(x) = \sin\{x\}$, where $\{x\}$

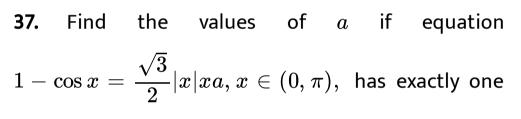

represents the greatest integer function.

29.	Draw	the	graph	of
$f(x) \hspace{0.2cm} ext{maximum} \hspace{0.2cm} \{2\sin x, 1-\cos x\}, x \in (0,\pi).$				
Also	find	the	range	of
$g(x) \hspace{.1in} \min \hspace{.1in} \{2\sin x, 1-\cos x\}, x \in (0,\pi)$				

View Text Solution

30. Draw the graph of $y = \log_e(\sin x)$.

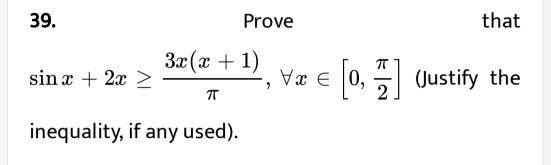
33. Draw the graph of $y = e^x \sin 2\pi x$.


equal to x. If $f(x) = [x \sin \pi x]$, then f(x) is

Watch Video Solution

35. Evaluate :
$$\left[\lim_{x \to 0} \frac{\sin x}{x}\right]$$
, where $[\cdot]$ represents

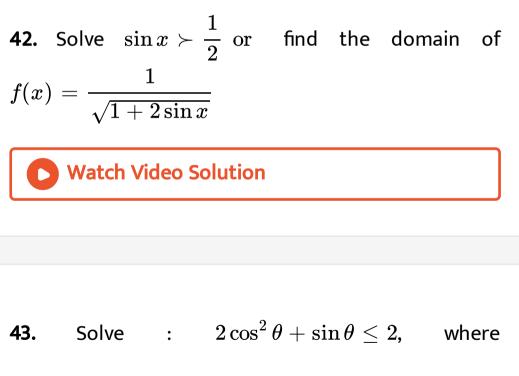
the greatest integer function.


36. Discuss maxima/minima of
$$f(x) = rac{x}{1+x \tan x}, x \in \left(0, rac{\pi}{2}
ight)$$
View Text Solution

solution.

38. Find the number of solution to the equation $\sin x = x^2 + 2x + 1.$

Watch Video Solution


View Text Solution

40. Find the ratio of the areas of two regions of the curve $C_1 \equiv 4x^2 + \pi^2 y^2 = 4\pi^2$ divided by the curve $C_2 \equiv y = -\left(sgn\left(x - \frac{\pi}{2}\right)\right)\cos x$ (where sgn (x) = signum (x)).

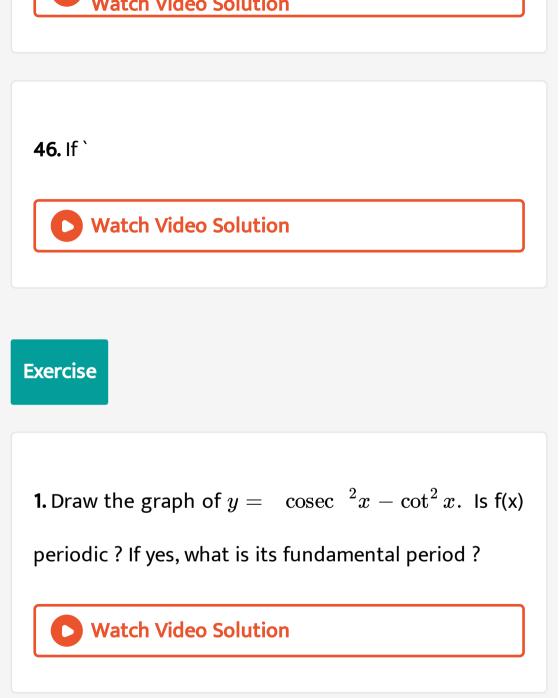
View Text Solution

41. Solve $\tan x < 2$.

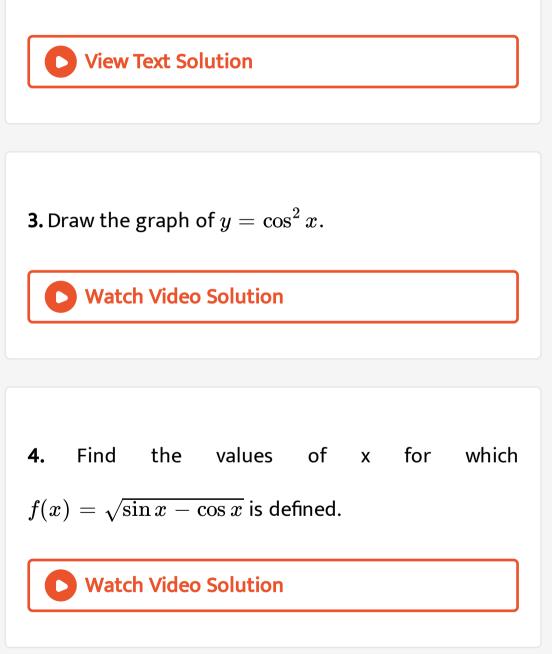
Watch Video Solution

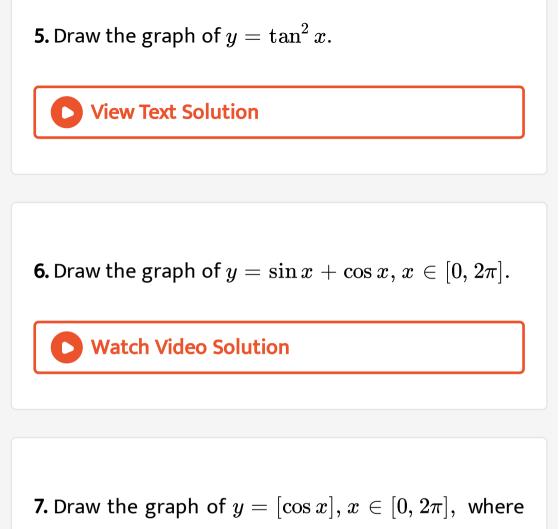
 $\pi/2 \leq heta \leq 3\pi/2.$

44. Solve `sintheta+sqrt(3)costhetageq1,-pi

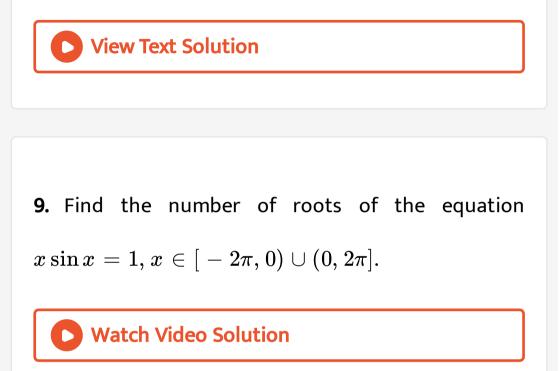

Watch Video Solution

Draw the graph of the function and find the following


(a) Range of the function


(b) Point of inflection

(c) Point of local minima



 $[\cdot]$ represents the greatest integer function.

8. Draw the graph of $y = \sin \pi \sqrt{x}$.

10. Evaluate :
$$\left[\lim_{x \to 0} \frac{\tan x}{x}\right]$$
, where $\left[\cdot\right]$ represents

the greatest integer function.

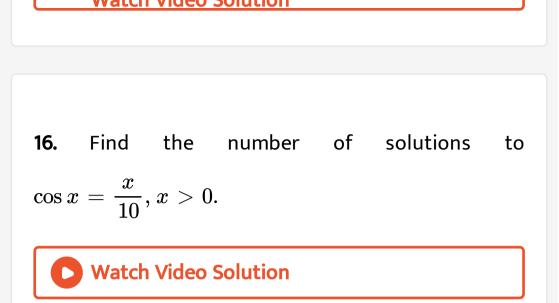
11. For $f(x) = \sin x - x^2 + 1$, check weather the function is increasing, decreasing or has a point of extremum ?

Watch Video Solution

12. Draw the graph of the function $f(x) = max \sin x$, $\cos 2x$, $x \in [0, 2\pi]$. Write the equivalent definition of f(x) and find the range of the function.

13. Draw the graph of $[y]=\cos x, x\in [0,2\pi], ext{ where }$

 $[\cdot]$ denotes the greatest integer function.


14. The total number of solution of $\sin\{x\} = \cos\{x\}$

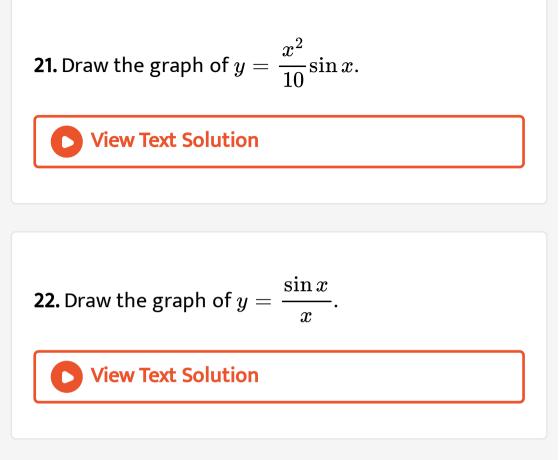
(where {.} denotes the fractional part) in $[0,2\pi]$ is equal to

Watch Video Solution

15. Draw the graph of $f(x) = |\tan x| + |\cot x|$.

17. The number of solutions of $\tan x - mx = 0, m > 1, \text{ in } \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \text{ is 1 (b) 2 (c)}$ 3 (d) m

18. Find the number of solutions to $\log_e |\sin x| = -x^2 + 2x$ in $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$.


View Text Solution

19. Solve
$$:\cos x \le -\frac{1}{2}.$$

Watch Video Solution

20. Prove that the least positive value of x, satisfying

$$an x = x+1, ext{ lies in the interval } \left(rac{\pi}{4}, rac{\pi}{2}
ight)$$

