©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

HYPERBOLA

Examples

1. If the base of a triangle and the ratio of tangent of half of base angles are given, then identify the locus of the opposite vertex.

- Watch Video Solution

2. Prove that the locus of centre of the circle which toches two given disjoint circles externally is hyperbola.
3. The equation of one of the directrices of a hyperboda is $2 x+y=1$, the corresponding focus is $(1,2)$ and $e=\sqrt{3}$. Find the equation of the hyperbola and the coordinates of the center and the second focus.

- Watch Video Solution

4. The eccentricity of the conic represented by $2 x^{2}+5 x y+2 y^{2}+11 x-7 y-4=0$ is

- Watch Video Solution

5.

$\left|\sqrt{(x-\tan \theta)^{2}+(y-\sqrt{3} \tan \theta)^{2}}-\sqrt{(x-2 \tan \theta)^{2}+y^{2}}\right|=2, \theta \in[0, \pi]$ represents hyperbola, then find the value of θ.

- Watch Video Solution

6. Find the standard equation of hyperbola in each of the following cases:
(i) Distance between the foci of hyperbola is 16 and its eccentricity is $\sqrt{2}$.
(ii) Vertices of hyperbola are $(\pm 4,0)$ and foci of hyperbola are $(\pm 6,0)$.
(iii) Foci of hyperbola are $(0, \pm \sqrt{10})$ and it passes through the point $(2,3)$.
(iv) Distance of one of the vertices of hyperbola from the foci are 3 and 1.

D Watch Video Solution

7. If the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide, then find the value

- Watch Video Solution

8. If hyperbola $\frac{x^{2}}{b^{2}}-\frac{y^{2}}{a^{2}}=1$ passes through the focus of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then find the eccentricity of hyperbola.

- Watch Video Solution

9. Find the eccentricity of the hyperbola given by equations $x=\frac{e^{t}+e^{-1}}{2} a n d y=\frac{e^{t}-e^{-1}}{3}, t \in R$.

- Watch Video Solution

10. An ellipse and a hyperbola have their principal axes along the coordinate axes and have a common foci separated by distance $2 \sqrt{3}$. The difference of their focal semi-axes is equal to 4 . If the ratio of their eccentricities is $3 / 7$, find the equation of these curves.

- Watch Video Solution

11. If the latus rectum subtends a right angle at the center of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then find its eccentricity.

- Watch Video Solution

12. Find the equation of hyperbola in each of the following cases:
(i) Centre is $(1,0)$, one focus is $(6,0)$ and transverse axis 6
(ii) Centre is $(3,2)$, one focus is $(5,2)$ and one vertex is $(4,2)$
(iii) Centre is $(-3,2)$, one vertex is $(-3,4)$ and eccentricity is $5 / 2$
(iv) Foci are $(4,2),(8,2)$ and eccentricity is 2

- Watch Video Solution

13. Two rods are rotating about two fixed points in opposite directions. If they start from their position of coincidence and one rotates at the rate double that of the other, then find the locus of point of the intersection of the two rods.

- Watch Video Solution

14. Find the coordinates of the foci, the eocentricity, the latus rectum, and the equations of directrices for the hyperbola $9 x^{2}-16 y^{2}-72 x+96 y-144=0$

- Watch Video Solution

15. Find the coordinates of the foci and the center of the hyperbola

- Watch Video Solution

16. Each of the four inequalities given below defines a region in the $x y$ plane. One of these four regions does nothave the following property. For any two points $\left(x_{1}, y_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ in the region the piont $\left(\frac{x_{1}+x_{2}}{2} \cdot \frac{y_{1}+y_{2}}{2}\right)$ is also in the region. The inequality defining this region is

- Watch Video Solution

17. Find the locus of the midpoints of chords of hyperbola $3 x^{2}-2 y^{2}+4 x-6 y=0$ parallel to $\mathrm{y}=2 \mathrm{x}$.
18. If $P Q$ is a double ordinate of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that $O P Q$ is an equilateral triangle, O being the center of the hyperbola, then find the range of the eccentricity e of the hyperbola.

- Watch Video Solution

19. If $(a \sec \theta ; b \tan \theta)$ and $(a \sec \phi ; b \tan \phi)$ are the ends of the focal chord of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ then prove that $\tan \left(\frac{x}{a}\right) \tan \left(\frac{\phi}{2}\right)=\frac{1-e}{1+e}$

- Watch Video Solution

20. Find the point on the hyperbola $x^{2}-9 y^{2}=9$ where the line $5 x+12 y=9$ touches it.

- Watch Video Solution

21. Find the value of m for which $y=m x+6$ is a tangent to the hyperbola $\frac{x^{2}}{100}-\frac{y^{2}}{49}=1$

- Watch Video Solution

22. Find the equation of tangents to the curve $4 x^{2}-9 y^{2}=1$ which are parallel to $4 y=5 x+7$.

- Watch Video Solution

23. If it is possible to draw the tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ having slope 2 ,then find the range of eccentricity

- Watch Video Solution

24. Find the equation of tangents to hyperbola $x^{2}-y^{2}-4 x-2 y=0$ having slope 2.

25. Find the minimum value of $(2-a-4 \sec \theta)^{2}+(a-3 \tan \theta)^{2}, a \in R$.

- Watch Video Solution

26. Find the locus of the-mid points of the chords of the circle $x^{2}+y^{2}=16$, which are tangent to the hyperbola $9 x^{2}-16 y^{2}=144$

- Watch Video Solution

27. Find the equation of tangent to the conic
$x^{2}-y^{2}-8 x+2 y+11=0$ at $(2,1)$

- Watch Video Solution

28. A tangent to the hyperbola $x^{2}-2 y^{2}=4$ meets x-axis at P and y -aixs at Q. Lines $P R$ and $Q R$ are drawn such that OPRQ is a rectangle (where O is origin).Find the locus of R.

- Watch Video Solution

29. Find the equations of the tangents to the hyperbola $x^{2}=9 y^{2}=9$ that are drawn from (3, 2).

- Watch Video Solution

30. Find the equation of pair of tangents drawn from point $(4,3)$ to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$. Also, find the angle between the tangents.

- Watch Video Solution

31. Tangents drawn from the point (c, d) to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ make angles α and β with the x -axis. If $\tan \alpha \tan \beta=1$, then find the value of $c^{2}-d^{2}$.

- Watch Video Solution

32. On which curve does the perpendicular tangents drawn to the hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$ intersect?

- Watch Video Solution

33. Find the equation of hyperbola having foci $S(2,1)$ and $S^{\prime}(10,1)$ and a straingt line $x+y-9=0$ as its tangent. Also, find the equation of its director circle.

- Watch Video Solution

34. Find the eccentricity of the hyperbola with asymptotes $3 x+4 y=2$ and $4 x-3 y=2$.

- Watch Video Solution

35. Find the equation of the hyperbola which has $3 x-4 y+7=0$ and $4 x+3 y+1=0$ as its asymptotes and which passes through the origin.

- Watch Video Solution

36. Find the equation of the asymptotes of the hyperbola $3 x^{2}+10 x y+9 y^{2}+14 x+22 y+7=0$

- Watch Video Solution

37. If a hyperbola passing through the origin has $3 x-4 y-1=0$ and $4 x-3 y-6=0$ as its asymptotes, then find the equation of its
transvers and conjugate axes.

- Watch Video Solution

38. Show that the locus represented by
$x=\frac{1}{2} a\left(t+\frac{1}{t}\right), y=\frac{1}{2} a\left(t-\frac{1}{t}\right)$ is a rectangular hyperbola.

- Watch Video Solution

39. If two distinct tangents can be drawn from the point $(\alpha, \alpha+1)$ on different branches of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$, then find the values of α.

- Watch Video Solution

40. From a point $P(1,2)$, two tangents are drawn to a hyperbola H in which one tangent is drawn to each arm of the hyperbola. If the
equations of the asymptotes of hyperbola H are $\sqrt{3} x-y+5=0$ and $\sqrt{3} x+y-1=0$, then the eccentricity of H is 2 (b) $\frac{2}{\sqrt{3}}$ (c) $\sqrt{2}$ (d) $\sqrt{3}$

- Watch Video Solution

41. Find the equation of normal to the hyperbola $x^{2}-9 y^{2}=7$ at point $(4,1)$.

- Watch Video Solution

42. Find the equation of normal to the hyperbola $3 x^{2}-y^{2}=1$ having slope $\frac{1}{3}$.

- Watch Video Solution

43. If the normal at $P(\theta)$ on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{2 a^{2}}=1$ meets the transvers axis at G, then prove that $A G \dot{A}^{\prime} G=a^{2}\left(e^{4} \sec ^{2} \theta-1\right)$, where $\operatorname{Aand} A$ ' are the vertices of the hyperbola.

- Watch Video Solution

44. Normal are drawn to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at point θ_{1} andth η_{2} meeting the conjugate axis at $G_{1} a n d G_{2}$, respectively. If $\theta_{1}+\theta_{2}=\frac{\pi}{2}$, prove that $C G_{1} \dot{C} G_{2}=\frac{a^{2} e^{4}}{e^{2}-1}$, where C is the center of the hyperbola and e is the eccentricity.

- Watch Video Solution

45. Let $\mathrm{P}(6,3)$ be a point on the hyperbola parabola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ if the normal at the point intersects the x-axis at (9,0), then the eccentricity of the hyperbola is

- Watch Video Solution

46. Prove that any hyperbola and its conjugate hyperbola cannot have common normal.
47. A ray emanating from the point $(5,0)$ is meident on the hyperbola $9 x^{2}-16 y^{2}=144$ at the point P with abscissa 8 . Find the equation of the reflected ray after the first reflection if point P lies in the first quadrant.

- Watch Video Solution

48. Normal to a rectangular hyperbola at P meets the transverse axis at N . If foci of hyperbola are S and S^{\prime}, then find the value of $\frac{S N}{S P}$.

- Watch Video Solution

49. Consider hyperbola $x y=16$ to find the following:
(i) Coordinates of vertices
(ii) Length of transverse axis
(iii) Coordinates of foci
(iv) Length of latus rectum
(v) Equations of two directrices
(vi) Equation of tangent at point (2, 8)
(vii) Equation of normal at point $(2,8)$
(viii) Equation of chord of contact w.r.t. point $(2,3)$
(ix) Equation of chord which gets bisected at point $(5,6)$
(x) Equation of tangent having slope - 2
(xi) Equation of noraml having slope 2

- View Text Solution

50. A triangle has its vertices on a rectangular hyperbola. Prove that the orthocentre of the triangle also lies on the same hyperbola.

- Watch Video Solution

51. If A, B, and C are three points on the hyperbola $x y=c^{2}$ such that $A B$ subtends a right angle at C, then prove that $A B$ is parallel to the normal to the hyperbola at point C.
52. Prove that product of parameters of four concyclic points on the hyperbola $x y=c^{2}$ is 1 . Also, prove that the mean of these four concyclic points bisects the distance between the centres of the hyperbola and the circle.

- View Text Solution

53. A variable line $y=m x-1$ cuts the lines $x=2 y$ and $y=-2 x$ at points $A a n d B$. Prove that the locus of the centroid of triangle $O A B(O$ being the origin) is a hyperbola passing through the origin.

- Watch Video Solution

54. Let P be a point on the hyperbola $x^{2}-y^{2}=a^{2}$, where a is a parameter, such that P is nearest to the line $y=2 x$. Find the locus of P.
55. Show that the midpoints of focal chords of a hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ lie on another similar hyperbola.

- Watch Video Solution

56. From the center C of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, perpendicular $C N$ is drawn on any tangent to it at the point $P(a \sec \theta, b \tan \theta)$ in the first quadrant. Find the value of θ so that the area of $C P N$ is maximum.

- Watch Video Solution

57. Semi transverse axis of hyperbola is 5 . Tangent at point P and normal to this tangent meet conjugate axis at A and B , respectively. The circle on $A B$ as diameter passes through tow fixed points, the distance between which is 20 . Find the eccentricity of hyperbola.
58. The exhaustive set of values of α^{2} such that there exists a tangent to the ellipse $x^{2}+\alpha^{2} y^{2}=\alpha^{2}$ and the portion of the tangent intercepted by the hyperbola $\alpha^{2} x^{2}-y^{2}=1$ subtends a right angle at the center of the curves is:

- Watch Video Solution

59. Prove that the part of the tangent at any point of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ intercepted between the point of contact and the transvers axis is a harmonic mean between the lengths of the perpendiculars drawn from the foci on the normal at the same point.

- Watch Video Solution

60. If one of varying central conic (hyperbola) is fixed in magnitude and position, prove that the locus of the point of contact of a tangent drawn
to it from a fixed point on the other axis is a parabole.

- Watch Video Solution

61. If normal at P to a hyperbola of eccentricity 2 intersects its transverse and conjugate axes at Q and R, respectively, then prove that the locus of midpoint of $Q R$ is a hyperbola. Find the eccentricity of this hyperbola

- Watch Video Solution

62. If the normal at a pont P to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ meets the $\mathrm{x}-$ axis at G, show that the $S G=e S P$. S being the focus of the hyperbola.

- Watch Video Solution

63. $(\mathrm{x}-1)(\mathrm{y}-2)=5$ and $(x-1)^{2}+(y+2)^{2}=r^{2}$ intersect at four points A, B,
C, D and if centroid of $\triangle A B C$ lies on line $y=3 x-4$, then locus of D

Exercise 71

1. The equation $\sqrt{(x-4)^{2}+(y-2)^{2}}+\sqrt{(x+4)^{2}+(y-2)^{2}}=8$ represents a

- Watch Video Solution

2. $O A$ and $O B$ are fixed straight lines, P is any point and $P M$ and $P N$ are the perpendiculars from P on $O \operatorname{Aand} O B$, respectively. Find the locus of P if the quadrilateral $O M P N$ is of constant area.

- Watch Video Solution

3. The equation of the transvers axis of the hyperbola $(x-3)^{2}+(y=1)^{2}+(4 x+3 y)^{2} \quad$ is $\quad x+3 y=0 \quad$ (b) $\quad 4 x+3 y=9$
$3 x-4 y=13$ (d) $4 x+3 y=0$

- Watch Video Solution

Exercise 72

1. Write the length o the latus rectum of the hyperbola $16 x^{2}-9 y^{2}=144$.

- Watch Video Solution

2. If the latus rectum of a hyperbola forms an equilateral triangle with the vertex at the center of the hyperbola ,then find the eccentricity of the hyperbola.
3. The distance between two directrices of a rectangular hyperbola is 10 units. Find the distance between its foci.

- Watch Video Solution

4. An ellipse and a hyperbola are confocal (have the same focus) and the conjugate axis of the hyperbola is equal to the minor axis of the ellipse. If $e_{1} a^{a n d e} e_{2}$ are the eccentricities of the ellipse and the hyperbola, respectively, then prove that $\frac{1}{e 12}+\frac{1}{e 22}=2$.

- Watch Video Solution

5. If S ans S^{\prime} are the foci, C is the center, and P is point on the rectangular hyperbola, show that $S P \times S P=(C P)^{2}$

- Watch Video Solution

6. Find the equation of the hyperbola whose foci are $(8,3) \operatorname{and}(0,3)$ and eccentricity $=\frac{4}{3}$.

Watch Video Solution

7. Find all the aspects of hyperbola $16 x^{2}-3 y^{2}-32 x+12 y-44=0$.

- Watch Video Solution

8. Show that the locus represented by $x=\frac{1}{2} a\left(t+\frac{1}{t}\right), y=\frac{1}{2} a\left(t-\frac{1}{t}\right)$ is a rectangular hyperbola.

- Watch Video Solution

9. Two straight lines pass through the fixed points $(\pm a, 0)$ and have slopes whose products is $p>0$ Show that the locus of the points of intersection of the lines is a hyperbola.
10. If $A O B a n d C O D$ are two straight lines which bisect one another at right angles, show that the locus of a points P which moves so that $P A x P B=P C x P D$ is a hyperbola. Find its eccentricity.

- Watch Video Solution

11. Find the equation of the chord of the hyperbola $25 x^{2}-16 y^{2}=400$ which is bisected at the point $(5,3)$.

- Watch Video Solution

12. $P N$ is the ordinate of any point P on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and \forall^{\prime} is its transvers axis. If Q divides $A P$ in the ratio $a^{2}: b^{2}$, then prove that $N Q$ is perpendicular to $A^{\prime} P$.
13. The tangents from $(1,2 \sqrt{2})$ to the hyperbola $16 x^{2}-25 y^{2}=400$ include between them an angle equal to:

- Watch Video Solution

2. Tangents are drawn to the hyperbola $3 x^{2}-2 y^{2}=25$ from the point $\left(0, \frac{5}{2}\right)$. Find their equations.

- Watch Video Solution

3. A common tangent to $9 x^{2}-16 y^{2}=144$ and $x^{2}+y^{2}=9$, is

- Watch Video Solution

4. The locus a point $P(\alpha, \beta)$ moving under the condition that the line $y=\alpha x+\beta$ is a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is (A) a parabola (B) an ellipse (C) a hyperbola (D) a circle

- Watch Video Solution

5. A normal to the hyperbola, $4 x^{2}-9 y^{2}=36$ meets the co-ordinate axes x and y at A and B. respectively. If the parallelogram $O A B P$ (O being the origin) is formed, then the locus of P is :-

- Watch Video Solution

6. A point P moves such that the chord of contact of the pair of tangents from P on the parabola $y^{2}=4 a x$ touches the rectangular hyperbola $x^{2}-y^{2}=c^{2}$. Show that the locus of P is the ellipse $\frac{x^{2}}{c^{2}}+\frac{y^{2}}{(2 a)^{2}}=1$.

- Watch Video Solution

7. If a tangent to the parabola $y^{2}=4 a x$ intersects the $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at A and B, then the locus of the point of intersection of tangents at A and B to the ellipse is

- Watch Video Solution

8. If the chords of contact of tangents from two points $(-4,2)$ and $(2,1)$ to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ are at right angle, then find then find the eccentricity of the hyperbola.

- Watch Video Solution

9. Statement 1 : If from any point $P\left(x_{1}, y_{1}\right)$ on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$, tangents are drawn to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then the corresponding chord of contact lies on an other branch of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ Statement 2 : From any point outside the hyperbola, two tangents can be drawn to the hyperbola.
10. Let ' p ' be the perpendicular distance from the centre C of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ to the tangent drawn at a point R on the hyperbola. If $S \& S^{\prime}$ are the two foci of the hyperbola, then show that $\left(R S+R S^{\prime}\right)^{2}=4 a^{2}\left(1+\frac{b^{2}}{p^{2}}\right)$.

- Watch Video Solution

Exercise 74

1. Find the angle between the asymptotes of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$.

- Watch Video Solution

2. Find the asymptotes of the curve $x y-3 y-2 x=0$.
3. If asymptotes of hyperbola bisect the angles between the transverse axis and conjugate axis of hyperbola, then what is eccentricity of hyperbola?

- Watch Video Solution

4. The asymptote of the hyperbola $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ form with ans tangen to the hyperbola triangle whose area is $a^{2} \tan \lambda$ in magnitude then its eccentricity is: (a) $\sec \lambda$ (b) $\operatorname{cosec} \lambda$ (c) $\sec ^{2} \lambda$ (d) $\operatorname{cosec}{ }^{2} \lambda$

- Watch Video Solution

5. If the foci of a hyperbola lie on $y=x$ and one of the asymptotes is $y=2 x$, then the equation of the hyperbola, given that it passes through $(3, \quad 4), \quad$ is $\quad x^{2}-y^{2}-\frac{5}{2} x y+5=0 \quad 2 x^{2}-2 y^{2}+5 x y+5=0$ $2 x^{2}+2 y^{2}+5 x y+10=0$ none of these

Exercise 75

1. If any line perpendicular to the transverse axis cuts the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and the conjugate hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ at points $\operatorname{Pand} Q$, respectively, then prove that normal at PandQ meet on the x axis.

- Watch Video Solution

2. A normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ meets the axes at $\operatorname{Mand} N$ and lines $M P$ and $N P$ are drawn perpendicular to the axes meeting at P. Prove that the locus of P is the hyperbola $a^{2} x^{2}-b^{2} y^{2}=\left(a^{2}+b^{2}\right)$.

- Watch Video Solution

3. Prove that the locus of the point of intersection of the tangents at the ends of the normal chords of the hyperbola $x^{2}-y^{2}=a^{2}$ is $a^{2}\left(y^{2}-x^{2}\right)=4 x^{2} y^{2}$.

- Watch Video Solution

4. The value of m, for wnich the line $y=m x+25 \frac{\sqrt{3}}{3}$ is a normal to the conic $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$, IS

D Watch Video Solution

5. Normal is drawn at one of the extremities of the latus rectum of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ which meets the axes at points AandB. Then find the area of triangle $O A B(O$ being the origin $)$.

- Watch Video Solution

1. Find the asymptotes and axes of hyperbola having equation $x y-3 y-4 x+7=0$.

- Watch Video Solution

2. The chord $P Q$ of the rectangular hyperbola $x y=a^{2}$ meets the axis of x at $A ; C$ is the midpoint of $P Q$; and O is the origin. Then $A C O$ is equilateral (b) isosceles right-angled (d) right isosceles

- Watch Video Solution

3. If $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right), R\left(x_{3}, y_{3}\right)$ and $S\left(x_{4}, y_{4}\right)$ are four concyclic points on the rectangular hyperbola) and $x y=c^{2}$, then coordinates of the orthocentre ofthe triangle $P Q R$ is
4. If the sum of the slopes of the normal from a point P to the hyperbola $x y=c^{2}$ is equal to $\lambda\left(\lambda \in R^{+}\right)$, then the locus of point P is $x^{2}=\lambda c^{2}$
(b) $y^{2}=\lambda c^{2} x y=\lambda c^{2}$ (d) none of these

- Watch Video Solution

Exercise Single

1. If the distance between the foci and the distance between the two directricies of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ are in the ratio 3:2, then $b: a$ is $1: \sqrt{2}$ (b) $\sqrt{3}: \sqrt{2} 1: 2$ (d) $2: 1$
A. $1: \sqrt{2}$
B. $\sqrt{3}: \sqrt{2}$
C. 1:2
D. 2:1
2. The is a point P on the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{6}=1$ such that its distance from the right directrix is the average of its distance from the two foci.

Then the x-coordinate of P is
A. $-64 / 5$
B. $-32 / 9$
C. $-64 / 9$
D. none of these

Answer: A

D Watch Video Solution

3. The equation, $2 x^{2}+3 y^{2}-8 x-18 y+35=K$ represents
A. no locus if k gt 0
B. an ellipse if k It 0
C. a point if $\mathrm{k}=0$
D. a hyperbola if $\mathrm{kgt0}$

Answer: C

- Watch Video Solution

4. Let 'a' and 'b' be non-zero real numbers. Then, the equation $\left(a x^{2}+b y^{2}+c\right)\left(x^{2}-5 x y+6 y^{2}\right)$ represents:
A. four staright lines, when $\mathrm{c}=0$ and a, b are of the same sign
B. two straight lines and a circle, when $\mathrm{a}=\mathrm{b}$ and c is of sign opposite to that of a
C. two straight lines and a hyperbola, when a and b are of the same sign and c is of sign opposite to that of a
D. a circle and an ellipse, when a and b are of the same sign and c is of sign opposite to that of a

Answer: B

- Watch Video Solution

5. For the hyperbola $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1 ;\left(0<\alpha<\frac{\pi}{4}\right)$
A. Eccentricity
B. Abscissa of foci
C. Directrix
D. Vertex

Answer: B

D Watch Video Solution

6. Which of the following pairs may represent the eccentricities of two conjugate hyperbolas, for $\alpha \in(0, \pi / 2)$?
A. $\sin \theta, \cos \theta$
B. $\tan \theta, \cot \theta$
C. $\sec \theta, \operatorname{cosec} \theta$
D. $1+\sin \theta, 1+\cos \theta$

Answer: C

- Watch Video Solution

7. If a variable line has its intercepts on the coordinate axes eande', where $\frac{e}{2}$ ande $\frac{\frac{1}{\square}}{} 2$ are the eccentricities of a hyperbola and its conjugate hyperbola, then the line always touches the circle $x^{2}+y^{2}=r^{2}$, where $r=1$ (b) 2 (c) 3 (d) cannot be decided
A. 1
B. 2
C. 3
D. cannot be decided

Answer: C

- Watch Video Solution

8. A hyperbola, having the transverse axis of length $2 \sin \theta$, is confocal with the ellipse $3 x^{2}+4 y^{2}=12$. Then its equation is
A. $x^{2} \operatorname{cosec}^{2} \theta-y^{2} \sec ^{2} \theta=1$
B. $x^{2} \sec ^{2} \theta-y^{2} \operatorname{cosec}^{2} \theta=1$
C. $x^{2} \sin ^{2} \theta-y^{2} \cos ^{2} \theta=1$
D. $x^{2} \cos ^{2} \theta-y^{2} \cos ^{2} \theta=1$

Answer: A

9. If the distances of one focus of hyperbola from its directrices are 5 and 3 , then its eccentricity is
A. $\sqrt{2}$
B. 2
C. 4
D. 8

Answer: B

- Watch Video Solution

10. Let $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{A^{2}}-\frac{y^{2}}{B^{2}}=1 \quad$ be confocal ($a>A$ and $a>b$) having the foci at s_{1} and S_{2}, respectively. If P is their point of intersection, then $S_{1} P$ and $S_{2} P$ are the roots of quadratic equation
A. $x^{2}+2 a x+\left(a^{2}-A^{2}\right)=0$
B. $x^{2}+2 a x+\left(a^{2}-A^{2}\right)=0$
C. $x^{2}-2 A x+\left(a^{2}+A^{2}\right)=0$
D. $x^{2}-2 a x+\left(a^{2}-A^{2}\right)=0$

Answer: D

- Watch Video Solution

11. Two tangents are drawn from a point on hyperbola $x^{2}-y^{2}=5$ to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$. If they make angle α and β with x -axis, then
A. $\alpha-\beta= \pm \frac{\pi}{2}$
B. $\alpha+\beta=\frac{\pi}{2}$
C. $\alpha+\beta=\pi$
D. $\alpha+\beta=0$
12. Equation of the rectangular hyperbola whose focus is $(1,-1)$ and the corresponding directrix is $x-y+1=0$
A. $x^{2}-y^{2}=1$
B. $x y=1$
C. $2 x y-4 x+4 y+1=0$
D. $2 x y+4 x-4 y-1=0$

Answer: C

- Watch Video Solution

13. If two circles $(x+4)^{2}+y^{2}=1$ and $(x-4)^{2}+y^{2}=9$ are touched extermally by a circle, then locus of centre of variable circle is
A. $\frac{x^{2}}{15}-\frac{y^{2}}{1}=1$
B. $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$
C. $\frac{x^{2}}{1}-\frac{y^{2}}{15}=1$
D. $\frac{x^{2}}{12}-\frac{y^{2}}{4}=1$

Answer: C

- View Text Solution

14. If the vertex of a hyperbola bisects the distance between its center and the correspoinding focus, then the ratio of the square of its conjugate axis to the square of its transverse axis is 2 (b) 4 (c) 6 (d) 3
A. 2
B. 4
C. 6
D. 3

Answer: C

15. The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is : (1) $\frac{4}{3}$ (2) $\frac{4}{\sqrt{3}}$ (3) $\frac{2}{\sqrt{3}}$ (4) $\sqrt{3}$
A. $3 / 4$
B. $4 / \sqrt{3}$
C. $2 / \sqrt{3}$
D. none of these

Answer: C

- Watch Video Solution

16. Let $L L^{\prime}$ be the latus rectum through the focus of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and A^{\prime} be the farther vertex. If $A^{\prime} L L^{\prime}$ is equilateral, then
the eccentricity of the hyperbola is (axes are coordinate axes). $\sqrt{3}$
$\sqrt{3}+1\left(\frac{\sqrt{3}+1}{\sqrt{2}}\right)$ (d) $\frac{(\sqrt{3}+1)}{\sqrt{3}}$
A. $\sqrt{3}$
B. $\sqrt{3}+1$
C. $(\sqrt{3}+1) / \sqrt{2}$
D. $(\sqrt{3}+1) / \sqrt{3}$

Answer: D

- Watch Video Solution

17. The eccentricity of the conjugate hyperbola of the hyperbola $x^{2}-3 y^{2}=1$ is 2 (b) $2 \sqrt{3}$ (c) 4 (d) $\frac{4}{5}$
A. 2
B. $2 / \sqrt{3}$
C. 4
D. $4 / 5$

Answer: A

- Watch Video Solution

18. The locus of the point of intersection of the lines
$\sqrt{3} x-y-4 \sqrt{3} t=0 \& \sqrt{3} t x+t y-4 \sqrt{3}=0$ (where t is a parameter) is a hyperbola whose eccentricity is:
A. $\sqrt{3}$
B. 2
C. $2 / \sqrt{3}$
D. $4 / 3$

Answer: B

- Watch Video Solution

19. If the eccentricity of the hyperbola $x^{2}-y^{2}(\sec) \alpha=5$ is $\sqrt{3}$ times the eccentricity of the ellipse $x^{2}(\sec)^{2} \alpha+y^{2}=25$, then a value of α is : (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: B

- Watch Video Solution

20. The equation of the transvers and conjugate axes of a hyperbola are, respectively, $x+2 y-3=0$ and $2 x-y+4=0$, and their respective lengths are $\sqrt{2}$ and $2 \sqrt{3}$. The equation of the hyperbola is
A. $\frac{2}{5}(x+2 y-3)^{2}-\frac{3}{5}(2 x-y+4)^{2}=1$
B. $\frac{2}{5}(2 x-y+4)^{2}-\frac{3}{5}(x+2 y-3)^{2}=1$
C. $2(2 x-y+4)^{2}-3(x+2 y-3)^{2}=1$
D. $2(x+2 y-3)^{2}-3(2 x-y+4)^{2}=1$

Answer: B

- Watch Video Solution

21. Consider
a branch
of the
hypebola
$x^{2}-2 y^{2}-2 \sqrt{2} x-4 \sqrt{2} y-6=0$ with vertex at the point A. Let B be one of the end points of its latus rectum. If C is the focus of the hyperbola nearest to the point A, then the area of the triangle $A B C$ is (A)
$1-\sqrt{\frac{2}{3}}$ (B) $\sqrt{\frac{3}{2}}-1$ (C) $1+\sqrt{\frac{2}{3}}$ (D) $\sqrt{\frac{3}{2}}+1$
A. $1-\sqrt{2 / 3}$
B. $\sqrt{3 / 2}-1$
C. $1+\sqrt{2 / 3}$
D. $\sqrt{3 / 2}+1$

Answer: B

- Watch Video Solution

22. If two points $P \& Q$ on the hyperbola,$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ whose centre is C be such that CP is perpendicularal to $C Q$ and $a<b 1$,then prove that
$\frac{1}{C P^{2}}+\frac{1}{C Q^{2}}=\frac{1}{a^{2}}-\frac{1}{b^{2}}$.
A. $\frac{b^{2}-a^{2}}{2 a b}$
B. $\frac{1}{a^{2}}+\frac{1}{b^{2}}$
C. $\frac{2 a b}{b^{2}-a^{2}}$
D. $\frac{1}{a^{2}}-\frac{1}{b^{2}}$

Answer: D

- Watch Video Solution

23. The angle between the lines joining the origin to the points of intersection of the line $\sqrt{3} x+y=2$ and the curve $y^{2}-x^{2}=4$ is
A. $\tan ^{-1}(2 / \sqrt{3})$
B. $\pi / 6$
C. $\tan ^{-1}(\sqrt{3} / 2)$
D. $\pi / 2$

Answer: C

- Watch Video Solution

24. A variable chord of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1,(b>a)$, subtends a right angle at the center of the hyperbola if this chord touches. a fixed circle concentric with the hyperbola a fixed ellipse concentric with the hyperbola a fixed hyperbola concentric with the hyperbola a fixed parabola having vertex at $(0,0)$.
A. a fixed circle concentric with the hyperbola
B. a fixed ellipse concentric with the hyperbola
C. a fixed hyperbola concentric with the hyperbola
D. a fixed parabola having vertex at (0,0)

Answer: A

- Watch Video Solution

25. If the distance between two parallel tangents having slope m drawn to the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{49}=1$ is 2 , then the value of $2|m|$ is
A. $\pm 5 / 2$
B. $\pm 4 / 5$
C. $\pm 7 / 2$
D. none of these

Answer: A

26. If $a x+b y=1$ is tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then $a^{2}-b^{2}$ is equal to $\frac{1}{a^{2} e^{2}}$ (b) $a^{2} e^{2} b^{2} e^{2}$ (d) none of these
A. $1 / a^{2} e^{2}$
B. $a^{2} e^{2}$
C. $b^{2} e^{2}$ none of these
D. none of these

Answer: A

(D) Watch Video Solution

27. A tangent drawn to hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $P\left(\frac{\pi}{6}\right)$ froms a triangle of area $3 a^{2}$ square units, with the coordinate axes, then the square of its eccentricity is (A) 15 (B) 24 (C) 17 (D) 14
A. 15
B. 24
C. 17
D. 14

Answer: C

- Watch Video Solution

28. If values of a, for which the line $y=a x+2 \sqrt{5}$ touches the hyperbola $16 x^{2}-9 y^{2}=144$ are the roots of the equation $x^{2}-\left(a_{1}+b_{1}\right) x-4=0$, then the values of $a_{1}+b_{1}$ is
A. 2
B. 4
C. zero
D. none of these

Answer: C

- Watch Video Solution

29. The locus of a point whose chord of contact with respect to the circle $x^{2}+y^{2}=4$ is a tangent to the hyperbola $x y=1$ is a/an ellipse (b) circle hyperbola (d) parabola
A. ellipse
B. circle
C. hyperbola
D. parabola

Answer: C

30. The sides $A C a n d A B$ of a $A B C$ touch the conjugate hyperbola of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If the vertex A lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then the side $B C$ must touch parabola (b) circle hyperbola (d) ellipse
A. parabola
B. circle
C. hyperbola
D. ellipse

Answer: D

- Watch Video Solution

31. The number of possible tangents which can be drawn to the curve $4 x^{2}-9 y^{2}=36$, which are perpendicular to the straight line $5 x+2 y-10=0$, is zero (b) 1 (c) 2 (d) 4
A. zero
B. 1
C. 2
D. 4

Answer: A

- Watch Video Solution

32. The tangent at a point P on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ passes through the point $(0,-b)$ and the normal at P passes through the point $(2 a \sqrt{2}, 0)$. Then the eccentricity of the hyperbola is 2 (b) $\sqrt{2}$ (c) 3
(d) $\sqrt{3}$
A. 2
B. $\sqrt{2}$
C. 3
D. $\sqrt{3}$

Answer: B

D Watch Video Solution

33. Locus of the feet of the perpendiculars drawn from either foci on a variable tangent to the hyperbola $16 y^{2}-9 x^{2}=1$ is
A. $x^{2}+y^{2}=9$
B. $x^{2}+y^{2}=1 / 9$
C. $x^{2}+y^{2}=7 / 144$
D. $x^{2}+y^{2}=1 / 16$

Answer: D

- Watch Video Solution

34. P is a point on the hyperbola $\frac{x^{2}}{y^{2}}-\frac{y^{2}}{b^{2}}=1$, and N is the foot of the perpendicular from P on the transverse axis. The tantent to the hyperbola
at P meets the transverse axis at T . If O is the centre of the hyperbola, then OT.ON is equal to
A. e^{2}
B. a^{2}
C. b^{2}
D. b^{2} / a^{2}

Answer: B

- Watch Video Solution

35. The coordinates of a point on the hyperbola $\frac{x^{2}}{24}-\frac{y^{2}}{18}=1$ which s nearest to the line $3 x+2 y+1=0$ are $(6,3)(b)(-6,-3) 6,-3)$ (d) $(-6,3)$
A. $(6,3)$
B. $(-6,-3)$
C. $(-6,3)$
D. $(6,-3)$

Answer: C

- Watch Video Solution

36. The tangent at a point P on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ meets one of the directrix at F. If $P F$ subtends an angle θ at the corresponding focus, then $\theta=\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) $\frac{3 \pi}{4}$ (d) π
A. $\pi / 4$
B. $\pi / 2$
C. $3 \pi / 4$
D. π

Answer: B

37. The locus of a point, from where the tangents to the rectangular hyperbola $x^{2}-y^{2}=a^{2}$ contain an angle of 45^{0}, is $\left(x^{2}+y^{2}\right)^{2}+a^{2}\left(x^{2}-y^{2}\right)=4 a^{2} \quad 2\left(x^{2}+y^{2}\right)^{2}+4 a^{2}\left(x^{2}-y^{2}\right)=4 a^{2}$ $\left(x^{2}+y^{2}\right)^{2}+4 a^{2}\left(x^{2}-y^{2}\right)=4 a^{2}\left(x^{2}+y^{2}\right)+a^{2}\left(x^{2}-y^{2}\right)=a^{4}$
A. $\left(x^{2}+y^{2}\right)^{2}+a^{2}\left(x^{2}-y^{2}\right)=4 a^{2}$
B. $2\left(x^{2}+y^{2}\right)^{2}+4 a^{2}\left(x^{2}-y^{2}\right)=4 a^{2}$
C. $\left(x^{2}+y^{2}\right)^{2}+4 a^{2}\left(x^{2}-y^{2}\right)=4 a^{4}$
D. $\left(x^{2}+y^{2}\right)^{2}+a^{2}\left(x^{2}-y^{2}\right)=a^{4}$

Answer: C

- Watch Video Solution

38. If tangents $P Q a n d P R$ are drawn from a variable point P to thehyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1,(a>b)$, so that the fourth vertex S of parallelogram $P Q S R$ lies on the circumcircle of triangle $P Q R$, then the
locus of P is $x^{2}+y^{2}=b^{2}$ (b) $x^{2}+y^{2}=a^{2} x^{2}+y^{2}=a^{2}-b^{2}$ (d) none of these
A. $x^{2}+y^{2}=b^{2}$
B. $x^{2}+y^{2}=a^{2}$
C. $x^{2}+y^{2}=a^{2}-b^{2}$
D. none of these

Answer: C

- Watch Video Solution

39. The number of points on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=3$ from which mutually perpendicular tangents can be drawn to the circle $x^{2}+y^{2}=a^{2}$ is/are 0 (b) 2 (c) 3 (d) 4
A. 0
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

40. If a ray of light incident along the line $3 x+(5-4 \sqrt{2}) y=15$ gets reflected from the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$, then its reflected ray goes along the line. $x \sqrt{2}-y+5=0$ (b) $\sqrt{2} y-x+5=0 \sqrt{2} y-x-5=0$
(d) none of these
A. $x \sqrt{2}-y+5=0$
B. $\sqrt{2} y-x+5=0$
C. $\sqrt{2} y-x-5=0$
D. none of these

Answer: D

41. The chord of contact of a point P w.r.t a hyperbola and its auxiliary circle are at right angle. Then the point P lies on conjugate hyperbola one of the directrix one of the asymptotes (d) none of these
A. conjugate hyperbola
B. one of the directrix
C. asymptotes
D. none of these

Answer: C

- Watch Video Solution

42. The ellipse $4 x^{2}+9 y^{2}=36$ and the hyperbola $a^{2} x^{2}-y^{2}=4$ intersect at right angles. Then the equation of the circle through the points of intersection of two conics is $x^{2}+y^{2}=5$

$$
\begin{array}{ll}
\sqrt{5}\left(x^{2}+y^{2}\right)-3 x-4 y=0 & \sqrt{5}\left(x^{2}+y^{2}\right)+3 x+4 y=0 \\
x^{2}+y^{2}=25 &
\end{array}
$$

A. $x^{2}+y^{2}=5$
B. $\sqrt{5}\left(x^{2}+y^{2}\right)-3 x-4 y=0$
C. $\sqrt{5}\left(x^{2}+y^{2}\right)+3 x+4 y=0$
D. $x^{2}+y^{2}=25$

Answer: A

- Watch Video Solution

43. The locus of the point which is such that the chord of contact of tangents drawn from it to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ forms a triangle of constant area with the coordinate axes is a straight line (b) a hyperbola an ellipse (d) a circle
A. a straight line
B. a hyperbola
C. an ellipse
D. a circle

- Watch Video Solution

44. If $x=9$ is the chord of contact of the hyperbola $x^{2}-y^{2}=9$ then the equation of the corresponding pair of tangents is (A) $9 x^{2}-8 y^{2}+18 x-9=0$
(B) $9 x^{2}-8 y^{2}-18 x+9=0$
$9 x^{2}-8 y^{2}-18 x-9=0$ (D) $9 x^{\wedge} 2-8 y^{\wedge} 2+18 \mathrm{x}+9=0^{`}$
A. $9 x^{2}-8 y^{2}+18 x-9=0$
B. $9 x^{2}-8 y^{2}-18 x=0$
C. $9 x^{2}-8 y^{2}-9=0$
D. $9 x^{2}-8 y^{2}+18 x+9=0$

Answer: B

- Watch Video Solution

45. If the tangent at point $\mathrm{P}(\mathrm{h}, \mathrm{k})$ on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ cuts the circle $x^{2}+y^{2}=a^{2}$ at points $Q\left(x_{1}, y_{1}\right)$ and $R\left(x_{2}, y_{2}\right)$, then the vlaue of $\frac{1}{y_{1}}+\frac{1}{y_{2}}$ is
A. $\frac{1}{k}$
B. $\frac{2}{k}$
C. $\frac{a b}{k}$
D. $\frac{a+b}{k}$

Answer: B

D Watch Video Solution

46. Let $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec c \phi, b \tan \phi)$ (where $\theta+\phi=\frac{\pi}{2}$ be two points on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ If (h, k) is the point of intersection of the normals at P and Q then k is equal to (A) $\frac{a^{2}+b^{2}}{a}$
(B) $-\left(\frac{a^{2}+b^{2}}{a}\right)$
(C) $\frac{a^{2}+b^{2}}{b}$
(D) $-\left(\frac{a^{2}+b^{2}}{b}\right)$
A. $\frac{a^{2}+b^{2}}{a}$
B. $-\left(\frac{a^{2}+b^{2}}{a}\right)$
C. $\frac{a^{2}+b^{2}}{b}$
D. $-\left(\frac{a^{2}+b^{2}}{b}\right)$

Answer: D

- Watch Video Solution

47. A normal to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$ has equal intercepts on the positive x - and y -axis. If this normal touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then $a^{2}+b^{2}$ is equal to 5 (b) 25 (c) 16 (d) none of these
A. 5
B. 25
C. 16
D. none of these

- Watch Video Solution

48. Portion of asymptote of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ (between centre and the tangent at vertex) in the first quadrant is cut by the line $y+\lambda(x-a)=0 \quad$ (lambda is a parameter) then (A) $\lambda \in R$
$\lambda \in(0, \infty)$ (C) $\lambda \in(-\infty, 0)$ (D) $\lambda \in R-\{0\}$
A. $\lambda \in R$
B. $\lambda \in(0, \infty)$
C. $\lambda \in(-\infty, 0)$
D. none of these

Answer: B

49. If the angle between the asymptotes of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is 120° and the product of perpendiculars drawn from the foci upon its any tangent is 9 , then the locus of the point of intersection of perpendicular tangents of the hyperbola can be $x^{2}+y^{2}=6$ (b) $x^{2}+y^{2}=9$ $x^{2}+y^{2}=3$ (d) $x^{2}+y^{2}=18$
A. $x^{2}+y^{2}=6$
B. $x^{2}+y^{2}=9$
C. $x^{2}+y^{2}=3$
D. $x^{2}+y^{2}=18$

Answer: D

D Watch Video Solution

50. Let any double ordinate $P N P^{\prime}$ of the hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$ be produced on both sides to meet the asymptotes in $Q a n d Q^{\prime}$. Then $P Q \dot{P}^{\prime} Q$ is equal to 25 (b) 16 (c) 41 (d) none of these
A. 25
B. 16
C. 41
D. none of these

Answer: B

- Watch Video Solution

51. For hyperbola whose center is at $(1,2)$ and the asymptotes are parallel to lines $2 x+3 y=0$ and $x+2 y=1$, the equation of the hyperbola passing through $(2, \quad 4)$ is $(2 x+3 y-5)(x+2 y-8)=40$ $(2 x+3 y-8)(x+2 y-8)=40(2 x+3 y-8)(x+2 y-5)=30$ none of these
A. $(2 x+3 y-5)(x+2 y-8)=40$
B. $(2 x+3 y-8)(x+2 y-5)=40$
C. $(2 x+3 y-8)(x+2 y-5)=30$
D. none of these

Answer: B

- Watch Video Solution

52. The asymptotes of the hyperbola $\frac{x^{2}}{a_{1}^{2}}-\frac{y^{2}}{b_{1}^{2}}=1$ and $\frac{x^{2}}{a_{2}^{2}}-\frac{y^{2}}{b_{2}^{2}}=1$ are perpendicular to each other. Then,
A. $a_{1} / a_{2}=b_{1} / b_{2}$
B. $a_{1} a_{2}=b_{1} b_{2}$
C. $a_{1} a_{2}+b_{1} b_{2}=0$
D. $a_{1}-a_{2}=b_{1}-b_{2}$

Answer: C

D Watch Video Solution

53. If $S=0$ is the equation of the hyperbola $x^{2}+4 x y+3 y^{2}-4 x+2 y+1=0$, then the value of k for which $S+K=0$ represents its asymptotes is 20 (b) -16 (c) -22 (d) 18
A. 20
B. -16
C. -22
D. 18

Answer: C

- Watch Video Solution

54. If two distinct tangents can be drawn from the Point $(\alpha, 2)$ on different branches of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ then (1) $|\alpha|<\frac{3}{2}$ (2) $|\alpha|>\frac{2}{3}$ (3) $|\alpha|>3$ (4) $\alpha=1$
A. $|\alpha|<3 / 2$
B. $|\alpha|>2 / 3$
C. $|\alpha|>3$
D. none of these

Answer: A

- Watch Video Solution

55. A hyperbola passes through (2,3) and has asymptotes $3 x-4 y+5=0$ and $12 x+5 y-40=0$. Then, the equation of its transverse \quad axis \quad is $\quad 77 x-21 y-265=0 \quad 21 x-77 y+265=0$
$21 x-77 y-265=021 x+77 y-265=0$
A. $77 x-21 y-265=0$
B. $21 x-77 y+265=0$
C. $21 x-77 y-265=0$
D. $21 x+77 y-265=0$

Answer: B

- Watch Video Solution

56. From any point to the hyperbola $\wedge \frac{2}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, tangents are drawn to thehyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=2$ The area cut off bythe chord of contact on the regionbetween the asymptotes is equal to
A. $a / 2$
B. $a b$
C. $2 a b$
D. $4 a b$

Answer: D

- Watch Video Solution

57. The combined equation of the asymptotes of the hyperbola $2 x^{2}+5 x y+2 y^{2}+4 x+5 y=0$ is -
A. $2 x^{2}+5 x y+2 y^{2}+4 x+5 y+2=0$
B. $2 x^{2}+5 x y+2 y^{2}+4 x+5 y-2=0$
C. $2 x^{2}+5 x y+2 y^{2}=0$
D. none of these

Answer: A

- Watch Video Solution

58. The asymptotes of the hyperbola $x y=h x+k y$ are $x-k=0$ and $y-h=0 \quad x+h=0 \quad$ and $\quad y+k=0 \quad x-k=0 \quad$ and $\quad y+h=0$ $x+k=0$ and $y-h=0$
A. $x-k=0$ and $y-h=0$
B. $x+h=0$ and $y+k=0$
C. $x-k=0$ and $y+h=0$
D. $x+k=0$ and $y-h=0$

Answer: A

- Watch Video Solution

59. The center of a rectangular hyperbola lies on the line $y=2 x$. If one of the asymptotes is $x+y+c=0$, then the other asymptote is $6 x+3 y-4 c=0$ (b) $3 x+6 y-5 c=03 x-6 y-c=0$ (d) none of these
A. $6 x+3 y-4 c=0$
B. $3 x+6 y-5 c=0$
C. $3 x-6 y-c=0$
D. none of these
60. The equation of a rectangular hyperbola whose asymptotes are $x=3$ and $y=5$ and passing through $(7,8)$ is $x y-3 y+5 x+3=0$ $x y+3 y+4 x+3=0 x y-3 y+5 x-3=0 x y-3 y+5 x+3=0$
A. $x y-3 y+5 x+3=0$
B. $x y+3 y+4 x+3=0$
C. $x y-3 y+5 x-3=0$
D. $x y-3 y-5 x+3=0$

Answer: D

- Watch Video Solution

61. If tangents $O Q$ and $O R$ are dawn to variable circles having radius r and the center lying on the rectangular hyperbola $x y=1$, then the
locus of the circumcenter of triangle $O Q R$ is (O being the origin). $x y=4$ (b) $x y=\frac{1}{4} x y=1$ (d) none of these
A. $x y=4$
B. $x y=1 / 4$
C. $x y=1$
D. none of these

Answer: B

- Watch Video Solution

62. Four points are such that the line joining any two points is perpendicular to the line joining other two points. If three point out of these lie on a rectangular hyperbola, then the fourth point will lie on
A. the same hyperbola
B. the conjugate hyperbola
C. one of the directrix
D. one of the asymptotes

Answer: A

- View Text Solution

63. If S_{1} and S_{2} are the foci of the hyperbola whose length of the transverse axis is 4 and that of the conjugate axis is 6 , and $S_{3} a n d S_{4}$ are the foci of the conjugate hyperbola, then the area of quadrilateral $S_{1} S_{3} S_{2} S_{4}$ is 24 (b) 26 (c) 22 (d) none of these
A. 24
B. 26
C. 22
D. none of these

Answer: B

64. Suppose the circle having equation $x^{2}+y^{2}=3$ intersects the rectangular hyperbola $x y=1$ at points $A, B, C, a n d D$. The equation $x^{2}+y^{2}-3+\lambda(x y-1)=0, \lambda \in R, \quad$ represents. a pair of lines through the origin for $\lambda=-3$ an ellipse through $A, B, C, a n d D$ for $\lambda=-3$ a parabola through A, B, C, and D for $\lambda=-3$ a circle for any $\lambda \in R$
A. a pair of lines through the origin for $\lambda=-3$
B. an ellipse through $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D for $\lambda=-3$
C. a parabola through $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D for $\lambda=-3$
D. a circle for any $\lambda \in R$

Answer: A

- Watch Video Solution

65. The equation of the chord joining two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the rectangular hyperbola $x y=c^{2}$, is
A. $\frac{x}{x_{1}+x_{2}}+\frac{y}{y_{1}+y_{2}}=1$
B. $\frac{x}{x_{1}-x_{2}}+\frac{y}{y_{1}-y_{2}}=1$
C. $\frac{x}{y_{1}+y_{2}}+\frac{y}{x_{1}+x_{2}}=1$
D. $\frac{x}{y_{1}-y_{2}}+\frac{y}{x_{1}-x_{2}}=1$

Answer: A

- Watch Video Solution

66. The locus of the foot of the perpendicular from the center of the hyperbola $x y=1$ on a variable tangent is $\left(x^{2}-y^{2}\right)=4 x y$
$\left(x^{2}-y^{2}\right)=\frac{1}{9}\left(x^{2}-y^{2}\right)=\frac{7}{144}$ (d) $\left(x^{2}-y^{2}\right)=\frac{1}{16}$
A. $\left(x^{2}-y^{2}\right)^{2}=4 x y$
B. $\left(x^{2}+y^{2}\right)^{2}=2 x y$
C. $\left(x^{2}+y^{2}\right)=4 x y$
D. $\left(x^{2}+y^{2}\right)^{2}=4 x y$

Answer: D

D Watch Video Solution

67. The curve $x y=c(c>0)$ and the circle $x^{2}+y^{2}=1$ touch at two points, then distance between the points of contact is
A. 1
B. 2
C. $2 \sqrt{2}$
D. none of these

Answer: B

- Watch Video Solution

68. Let C be a curve which is the locus of the point of intersection of lines $x=2+m$ and $m y=4-m$. A circle $s \equiv(x-2)^{2}+(y+1)^{2}=25$
intersects the curve C at four points: $P, Q, R, a n d S$. If O is center of the curve C, then $O P^{2}+O P^{2}+O R^{2}+O S^{2}$ is 50 (b) 100 (c) 25 (d) $\frac{25}{2}$
A. 50
B. 100
C. 25
D. $25 / 5$

Answer: B

- Watch Video Solution

Exercise Multiple

1. If the circle $x^{2}+y^{2}=a^{2}$ intersects the hyperbola $x y=c^{2}$ at four points $\quad P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right), R\left(x_{3}, y_{3}\right), \quad$ and $\quad S\left(x_{4}, y_{4}\right), \quad$ then $x_{1}+x_{2}+x_{3}+x_{4}=0 \quad y_{1}+y_{2}+y_{3}+y_{4}=0 \quad x_{1} x_{2} x_{3} x_{4}=C^{4}$ $y_{1} y_{2} y_{3} y_{4}=C^{4}$
A. $x_{1}+x_{2}+x_{3}+x_{4}=0$
B. $y_{1}+y_{2}+y_{3}+y_{4}=0$
C. $x_{1} x_{2} x_{3} x_{4}=c^{4}$
D. $y_{1} y_{2} y_{3} y_{4}=c^{4}$

Answer: A::B::C::D

D Watch Video Solution

2. The equation $(x-\alpha)^{2}+(y-\beta)^{2}=k(l x+m y+n)^{2}$ represents
A. a parabola for $k<\left(l^{2}+m^{2}\right)^{-1}$
B. an ellipse for $0<k<\left(l^{2}+m^{2}\right)^{-1}$
C. a hyperbola for $k>\left(l^{2}+m^{2}\right)^{-1}$
D. a point circle for $k=0$

Answer: B::C::D

3. If $(5,12) \operatorname{and}(24,7)$ are the foci of a hyperbola passing through the origin, then $e=\frac{\sqrt{386}}{12}$ (b) $e=\frac{\sqrt{386}}{13} L R=\frac{121}{6}$ (d) $L R=\frac{121}{3}$
A. $e=\frac{\sqrt{386}}{12}$
B. $e=\frac{\sqrt{386}}{13}$
C. $L R=121 / 6$
D. $L R=121 / 3$

Answer: A:C

- Watch Video Solution

4. Show that the equation $9 x^{2}-16 y^{2}-18 x+32 y-151=0$ represents a hyperbola. Find the coordinates of the centre, lengths of the axes, eccentricity, latus-rectum, coordinates of foci and vertices, equations of the directrices of the hyperbola.
A. one of the directrix is $x=21 / 5$
B. the length of latus rectum is $9 / 2$
C. foci are $(6,1)$ and ($-4,1$)
D. the eccentricity is $5 / 4$

Answer: A::B::C::D

D Watch Video Solution

5. If a hyperbola passes through the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$. Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse and if the product of eccentricities of hyperbola and ellipse is 1 then the equation of hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1 \mathrm{~b}$. the equation of hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1 \mathrm{c}$. focus of hyperbola is $(5,0) \mathrm{d}$. focus of hyperbola is $(5 \sqrt{3}, 0)$
A. the equation of hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
B. the equation of the hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$
C. the vertex of the hyperbola is $(5,0)$
D. the vertex of the hyperbola is $(5 \sqrt{3}, 0)$

Answer: A:C

- Watch Video Solution

6. If the foci of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ coincide with the foci of $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ and the eccentricity of the hyperbola is 2 , then $a^{2}+b^{2}=16$ there is no director circle to the hyperbola the center of the director circle is $(0,0)$. the length of latus rectum of the hyperbola is 12
A. $a^{2}+b^{2}=16$
B. there is no director circle to the hyperbola
C. the centre of the director circle is $(0,0)$
D. the length of latus rectum of the hyperbola is 12
7. The differential equation $\frac{d y}{d x}=\frac{3 y}{2 x}$ represents a family of hyperbolas (except when it represents a pair of lines) with eccentricity. $\sqrt{\frac{3}{5}}$ (b) $\sqrt{\frac{5}{3}}$ $\sqrt{\frac{2}{5}}$ (d) $\sqrt{\frac{5}{2}}$
A. $\sqrt{3 / 5}$
B. $\sqrt{5 / 3}$
C. $\sqrt{2 / 5}$
D. $\sqrt{5 / 2}$

Answer: B::D

- Watch Video Solution

8. If p is a point on a hyperbola, then
A. the locus of excenter of the circle described opposite to $\angle P$ for $\Delta P S S^{\prime}(\mathrm{S}, \mathrm{S}$ " are foci) is tangent at vertex
B. the locus of the excenter of the circle described opposite to $\angle S^{\prime}$ is a hyperbola
C. the locus of the excenter of the circle described opposite to $\angle P$ for $\Delta R S S^{\prime}\left(\mathrm{S}, \mathrm{S}^{\prime}\right.$ are foci) is a hyperbola
D. the locus of the excenter of the circle described opposite to $\angle S^{\prime}$ is tangent at vertex.

Answer: A::B

D View Text Solution

9. If the ellipse $x^{2}+2 y^{2}=4$ and the hyperbola $\mathrm{S}=0$ have same end points of the latus rectum, then the eccentricity of the hyperbola can be
A. $\operatorname{cosec} \frac{\pi}{4}$
B. $\operatorname{cosec} \frac{\pi}{3}$
C. $2 \sin . \frac{\pi}{3}+\sin . \frac{\pi}{4}$
D. $\sqrt{2} \sin . \frac{\pi}{3}+\sin . \frac{\pi}{4}$

Answer: A::D

D Watch Video Solution

10. For which of the hyperbolas, can we have more than one pair of perpendicular tangents? $\quad \frac{x^{2}}{4}-\frac{y^{2}}{9}=1 \quad$ (b) $\quad \frac{x^{2}}{4}-\frac{y^{2}}{9}=-1$ $x^{2}-y^{2}=4$ (d) $x y=44$
A. $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$
B. $\frac{x^{2}}{4}-\frac{y^{2}}{9}=-1$
C. $x^{2}-y^{2}=4$
D. $x y=44$

Answer: B

11. The lines parallel to the normal to the curve $x y=1$ is/are

$$
\begin{array}{ll}
3 x+4 y+5=0 & \text { (b) } \quad 3 x-4 y+5=0 \quad 4 x+3 y+5=0 \tag{d}\\
3 y-4 x+5=0
\end{array}
$$

A. $3 x+4 y+5=0$
B. $3 x-4 y+5=0$
C. $4 x+3 y+5=0$
D. $3 y-4 x+5=0$

Answer: B::D

Watch Video Solution

12. From the point $(2,2)$ tangent are drawn to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$. Then the point of contact lies in the first quadrant (b) second quadrant third quadrant (d) fourth quadrant
A. first quadrant
B. second quadrant
C. third quadrant
D. forth quadrant

Answer: C::D

- Watch Video Solution

13. For hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, let n be the number of points on the plane through which perpendicular tangents are drawn.
A. If $\mathrm{n}=1$, then $e=\sqrt{2}$
B. If n gt 1 , then $0<e<\sqrt{2}$.
C. If $\mathrm{n}=0$, then $e>\sqrt{2}$.
D. none of these
14. Ifthe normal at P to the rectangular hyperbola $x^{2}-y^{2}=4$ meets the axes in G and g and C is the centre of the hyperbola, then
A. $P G=P C$
B. $P g=P C$
C. $P G=P g$
D. $G g=2 P C$

Answer: A::B::C::D

Watch Video Solution

15. Find the equation of tangent to the hyperbola $y=\frac{x+9}{x+5}$ which passes through $(0,0)$ origin

$$
\text { A. } x+25 y=0
$$

B. $x+y=0$
C. $5 x-y=0$
D. $x-25 y=0$

Answer: A: B

- Watch Video Solution

16. Tangents which are parrallel to the line $2 x+y+8=0$ are drawn to hyperbola $x^{2}-y^{2}=3$. The points of contact of these tangents is/are
A. $(2,1)$
B. $(2,-1)$
C. $(-2,-1)$
D. $(-2,1)$

Answer: B::D

17. Find the equations of the tangents to the hyperbola $x^{2}=9 y^{2}=9$ that are drawn from (3, 2).
A. equation of one of the tangents is $x=3$
B. equation of one of the tangents is $5 x-12 y+9=0$
C. the area of triangle that these tangents form with their chord of contact is 12 sq. untis
D. the area of triangle that these tangents form with their chord of contact is 8 sq. units

Answer: A::B::D

- Watch Video Solution

18. Circles are drawn on chords of the rectangular hyperbola $x y=4$ parallel to the line $y=x$ as diameters. All such circles pass through two fixed points whose coordinates are
A. $(2,2)$
B. $(2,-2)$
C. $(-2,2)$
D. $(-2,-2)$

Answer: A::D

D Watch Video Solution

Exercise Comprehension

1. Consider an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ Let a hyperbola is having its vertices at the extremities of minor axis of an ellipse and length of major axis of an ellipse is equal to the distance between the foci of hyperbola. Let e_{1} and e_{2} be the eccentricities of an ellipse and hyperbola respectively. Again let A be the area of the quadrilateral formed by joining all the foci and A , be the area of the quadrilateral formed by all the directrices. The relation between e_{1} and e_{2} is given by
A. $e_{1} e_{2}=1$
B. $e_{2}^{2}\left(1-e_{1}^{2}\right)=1$
C. $e_{1}^{2}\left(e_{1}^{2}-1\right)=1$
D. $e_{1} e_{2}\left(1-e_{1}^{2}\right)=1$

Answer: B

- Watch Video Solution

2. Consider an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ Let a hyperbola is having its vertices at the extremities of minor axis of an ellipse and length of major axis of an ellipse is equal to the distance between the foci of hyperbola. Let e_{1} and e_{2} be the eccentricities of an ellipse and hyperbola respectively. Again let A be the area of the quadrilateral formed by joining all the foci and A, be the area of the quadrilateral formed by all the directrices. The relation between e_{1} and e_{2} is given by

$$
\text { A. } \tan ^{-1}\left(\frac{1}{\sqrt{1-e_{1}^{2}}}\right)
$$

B. $\tan ^{-1}\left(\frac{e_{1}}{\sqrt{1-e_{1}^{2}}}\right)$
C. $\tan ^{-1}\left(\frac{1}{\sqrt{1-e_{2}^{2}}}\right)$
D. $\tan ^{-1} \sqrt{1=e_{1}^{2}}$

Answer: C

- Watch Video Solution

3. Consider the ellipse $E_{1}, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,(a>b)$. An ellipse E_{2} passes through the extremities of the major axis of E_{1} and has its foci at the ends of its minor axis.Consider the following property:Sum of focal distances of any point on an ellipse is equal to its major axis. Equation of E_{2} is
A. $2: 1$
B. 3: 2
C. $\sqrt{2}: 1$
D. 5:2

Answer: D

- Watch Video Solution

4. Consider the hyperbola $\frac{X^{2}}{9}-\frac{y^{2}}{a^{2}}=1$ and the circle $x^{2}+(y-3)=9$.

Also, the given hyperbola and the ellipse $\frac{x^{2}}{41}+\frac{y^{2}}{16}=1$ are orthogonal to each other.

Combined equation of pair of common tangents between the hyperbola and the circle is given be
A. $x^{2}-y^{2}=0$
B. $x^{2}-9=0$
C. $9 y^{2}-19 x^{2}=0$
D. No common tangent.

View Text Solution

5. Consider the hyperbola $\frac{X^{2}}{9}-\frac{y^{2}}{a^{2}}=1$ and the circle $x^{2}+(y-3)=9$.

Also, the given hyperbola and the ellipse $\frac{x^{2}}{41}+\frac{y^{2}}{16}=1$ are orthogonal to each other.

The number of points on the hyperbola and the circle from which tangents drawn to the circle and the hyperbola, respectively, are perpendicular to each other is
A. 0
B. 2
C. 4
D. 6

Answer: C

6. Consider the hyperbola $\frac{X^{2}}{9}-\frac{y^{2}}{a^{2}}=1$ and the circle $x^{2}+(y-3)=9$.

Also, the given hyperbola and the ellipse $\frac{x^{2}}{41}+\frac{y^{2}}{16}=1$ are orthogonal to each other.
A variable line cuts the circle at point A and B and it cuts the hyperbola at points C and D. The locus of midpoint of $A B$ such that tangents at points C and D always intersect each other at the directrix of the hyperbola, is
A. $x^{2}+y^{2} \pm 5 x-3 y=0$
B. $x^{2}+y^{2}+5 x \pm 3 y=0$
C. $x^{2}-y^{2} \pm 5 x-3 y=0$
D. $x^{2}-y^{2}+3 x \pm 3 y=0$

Answer: A

- View Text Solution

7. The locus of the foot of perpendicular from my focus of a hyperbola upon any tangent to the hyperbola is the auxiliary circle of the hyperbola. Consider the foci of a hyperbola as $(-3,-2)$ and $(5,6)$ and the foot of perpendicular from the focus $(5,6)$ upon a tangent to the hyperbola as $(2$, 5).

The conjugate axis of the hyperbola is
A. $4 \sqrt{11}$
B. $2 \sqrt{11}$
C. $4 \sqrt{22}$
D. $2 \sqrt{22}$

Answer: D

- View Text Solution

8. The locus of the foot of perpendicular from my focus of a hyperbola upon any tangent to the hyperbola is the auxiliary circle of the hyperbola.

Consider the foci of a hyperbola as $(-3,-2)$ and $(5,6)$ and the foot of perpendicular from the focus $(5,6)$ upon a tangent to the hyperbola as (2, 5).

The directrix of the hyperbola corresponding to the focus $(5,6)$ is
A. $2 x+2 y-1=0$
B. $2 x+2 y-11=0$
C. $2 x+2 y-7=0$
D. $2 x+2 y-9=0$

Answer: B

- View Text Solution

9. The locus of the foot of perpendicular from my focus of a hyperbola upon any tangent to the hyperbola is the auxiliary circle of the hyperbola.

Consider the foci of a hyperbola as $(-3,-2)$ and $(5,6)$ and the foot of perpendicular from the focus $(5,6)$ upon a tangent to the hyperbola as $(2$,

5).

The point of contact of the tangent with the hyperbola is
A. $(2 / 9,31 / 3)$
B. $(7 / 4,23 / 4)$
C. $(2 / 3,9)$
D. $(7 / 9,7)$

Answer: C

- View Text Solution

10. Let $P(x, y)$ is a variable point such that $\left|\sqrt{(x-1)^{2}+(y-2)^{2}}-\sqrt{(x-5)^{2}+(y-5)^{2}}\right|=3 \quad, \quad$ which represents hyperbola. The eccentricity e' of the corresponding conjugate hyperbola is
A. $5 / 3$
B. $4 / 3$
C. $5 / 4$
D. $3 / \sqrt{7}$

Answer: C

- Watch Video Solution

11. Let $P(x, y)$ is a variable point such that $\left|\sqrt{(x-1)^{2}+(y-2)^{2}}-\sqrt{(x-5)^{2}+(y-5)^{2}}\right|=3 \quad, \quad$ which represents hyperbola. The eccentricity e' of the corresponding conjugate hyperbola is (A) $\frac{5}{3}$ (B) $\frac{4}{3}$ (C) $\frac{5}{4}$ (D) $\frac{3}{\sqrt{7}}$
A. $(x-3)^{2}+\left(y-\frac{7}{2}\right)^{2}=\frac{55}{4}$
B. $(x-3)^{2}+\left(y-\frac{7}{2}\right)^{2}=\frac{25}{4}$
C. $(x-3)^{2}+\left(y-\frac{7}{2}\right)^{2}=\frac{7}{4}$
D. none of these

Answer: D

12. Let $P(x, y)$ is a variable point such that $\left|\sqrt{(x-1)^{2}+(y-2)^{2}}-\sqrt{(x-5)^{2}+(y-5)^{2}}\right|=3 \quad, \quad$ which represents hyperbola. The eccentricity e' of the corresponding conjugate hyperbola is (A) $\frac{5}{3}$ (B) $\frac{4}{3}$ (C) $\frac{5}{4}$ (D) $\frac{3}{\sqrt{7}}$
A. $\tan ^{-1}(4 / 3)$
B. $\tan ^{-1}(3 / 4)$
C. $\tan ^{-1}(5 / 3)$
D. $\tan ^{-1}(3 / 5)$

Answer: B

- Watch Video Solution

13. In a hyperbola, the portion of the tangent intercepted between the asymptotes is bisected at the point of contact.

Consider a hyperbola whose center is at the origin. A line $x+y=2$ touches this hyperbola at $\mathrm{P}(1,1)$ and intersects the asymptotes at A and B such that $A B=6 \sqrt{2}$ units.

The equation of the pair of asymptotes is
A. $5 x y+2 x^{2}+2 y^{2}=0$
B. $3 x^{2}+4 y^{2}+6 x y=0$
C. $2 x^{2}+2 y^{2}-5 x y=0$
D. none of these

Answer: A

- View Text Solution

14. In a hyperbola, the portion of the tangent intercepted between the asymptotes is bisected at the point of contact.

Consider a hyperbola whose center is at the origin. A line $x+y=2$ touches this hyperbola at $\mathrm{P}(1,1)$ and intersects the asymptotes at A and B
such that $A B=6 \sqrt{2}$ units.

The angle subtended by $A B$ at the center of the hyperbola is
A. $\sin ^{-1} \cdot \frac{4}{5}$
B. $\sin ^{-1} \cdot \frac{2}{5}$
C. $\sin ^{-1} \cdot \frac{3}{5}$
D. none of these

Answer: C

- View Text Solution

15. In a hyperbola, the portion of the tangent intercepted between the asymptotes is bisected at the point of contact.

Consider a hyperbola whose center is at the origin. A line $x+y=2$ touches this hyperbola at $P(1,1)$ and intersects the asymptotes at A and B such that $A B=6 \sqrt{2}$ units.

The equation of the tangent to the hyperbola at $(-1,7 / 2)$ is
A. $5 x+2 y=2$
B. $3 x+2 y=4$
C. $3 x+4 y=11$
D. none of these

Answer: B

- View Text Solution

16. A point P moves such that sum of the slopes of the normals drawn from it to the hyperbola $x y=16$ is equal to the sum of ordinates of feet of normals. The locus of P is a curve C
A. $x^{2}=4 y$
B. $x^{2}=16 y$
C. $x^{2}=12 y$
D. $y^{2}=8 x$

D Watch Video Solution

17. A point P moves such that the sum of the slopes of the normals drawn from it to the hyperbola $x y=16$ is equal to the sum of ordinates of feet of normals. The locus of P is a curve C .

If the tangent to the curve C cuts the corrdinate axes at A and B, then the locus of the middle point of $A B$ is
A. $x^{2}=4 y$
B. $x^{2}=2 y$
C. $x^{2}+2 y=0$
D. $x^{2}+4 y=0$

Answer: C

18. A point P moves such that the sum of the slopes of the normals drawn from it to the hyperbola $x y=16$ is equal to the sum of ordinates of feet of normals. The locus of P is a curve C .

The area of the equilateral triangle inscribed in the curve C having one vertex as the vertex of curve C is
A. $772 \sqrt{3}$ sq. units
B. $776 \sqrt{3}$ sq. units
C. $760 \sqrt{3}$ sq. units
D. $768 \sqrt{3}$ sq. units

Answer: D

- View Text Solution

19. The vertices of $\triangle A B C$ lie on a rectangular hyperbola such that the orthocenter of the triangle is $(3,2)$ and the asymptotes of the rectangular hyperbola are parallel to the coordinate axes. The two perpendicular
tangents of the hyperbola intersect at the point $(1,1)$.
The equation of the pair of asymptotes is
A. $x y-1=x-y$
B. $x y+1=x+y$
C. $2 x y=x+y$
D. none of these

Answer: B

- View Text Solution

20. The vertices of $\triangle A B C$ lie on a rectangular hyperbola such that the orthocenter of the triangle is $(3,2)$ and the asymptotes of the rectangular hyperbola are parallel to the coordinate axes. The two perpendicular tangents of the hyperbola intersect at the point $(1,1)$.

The equation of the rectangular hyperbola is

$$
\text { A. } x y=2 x+y-2
$$

B. $2 x y=x+2 y+5$
C. $x y=x+y+1$
D. none of these

Answer: C

- View Text Solution

21. The vertices of $\triangle A B C$ lie on a rectangular hyperbola such that the orthocenter of the triangle is $(3,2)$ and the asymptotes of the rectangular hyperbola are parallel to the coordinate axes. The two perpendicular tangents of the hyperbola intersect at the point $(1,1)$.

The number of real tangents that can be drawn from the point $(1,1)$ to the rectangular hyperbola is
A. 4
B. 0
C. 3

D. 2

Answer: D

- View Text Solution

Exercise Matrix

1. Let the foci of the hyperbola $\frac{X^{2}}{A^{2}}-\frac{y^{2}}{B^{2}}=1$ be the vertices of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the foci of the ellipse be the vertices of the hyperbola. Let the eccentricities of the ellipse and hyperbola be e_{E} and e_{H}, respectively. Then match the following lists.

- View Text Solution

2. Match the following lists:
3. $A(-2,0)$ and $B(2,0)$ are two fixed points and P is a point such that $P A-P B=2$. Let S be the circle $x^{2}+y^{2}=r^{2}$. Then match the following lists:

- View Text Solution

4. Match the following lists:

- View Text Solution

5. If the ellipse $x^{2}+k^{2} y^{2}=k^{2} a^{2}$ is confocal with the hyperbola $x^{2}-y^{2}=a^{2}$, then match the following lists and choose the correct code.

- View Text Solution

Exercise Numerical

1. The eccentricity of the hyperbola
$\left|\sqrt{(x-3)^{2}+(y-2)^{2}}-\sqrt{(x+1)^{2}+(y+1)^{2}}\right|=1$ is

- Watch Video Solution

2. If $y=m x+c$ is tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, having eccentricity 5 , then the least positive integral value of m is \qquad

- Watch Video Solution

3. Consider the graphs of $y=A x^{2}$ and $y^{2}+3=x^{2}+4 y$, where A is a positive constant and $x, y \in R$.Number of points in which the two graphs intersect, is
4.

$4(x-\sqrt{2})^{2}+\lambda(y-\sqrt{3})^{2}=45$ and $(x-\sqrt{2})^{2}-4(y-\sqrt{3})^{2}=5$ cut orthogonally, then integral value of λ is \qquad .

- Watch Video Solution

5. If the hyperbola $x^{2}-y^{2}=4$ is rotated by 45^{0} in the anticlockwise direction about its center keeping the axis intact, then the equation of the hyperbola is $x y=a^{2}$, where a^{2} is equal to \qquad

- Watch Video Solution

6. nd are inclined at avgicsTangents are drawn from the point (α, β) to the hyperbola $3 x^{2}-2 y^{2}=6$ and are inclined atv angle θ and ϕ to the $x-$ axis.If $\tan \theta \cdot \tan \phi=2$, prove that $\beta^{2}=2 \alpha^{2}-7$.
7. The area of triangle formed by the tangents from the point $(3,2)$ to the hyperbola $x^{2}-9 y^{2}=9$ and the chord of contact w.r.t. the point $(3,2)$ is \qquad

- Watch Video Solution

8. The values of ' m ' for which a line with slope m is common tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and parabola $y^{2}=4 a x$ can lie in interval:

- Watch Video Solution

9. If tangents drawn from the point $(a, 2)$ to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ are perpendicular, then the value of a^{2} is \qquad

- Watch Video Solution

10. If radii of director circles of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ are $2 r$ and r respectively, let e_{E} and e_{H} are the eccentricities of ellipse and hyperbola respectively, then

- Watch Video Solution

11. If L is the length of the latus rectum of the hyperbola for which $x=3 a n d y=2$ are the equations of asymptotes and which passes through the point $(4,6)$, then the value of $\frac{L}{\sqrt{2}}$ is \qquad

(Watch Video Solution

12. If the angle between the asymptotes of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ id $\frac{\pi}{3}$, then the eccentnricity of conjugate hyperbola is \qquad .

- Watch Video Solution

13. If the chord $x \cos \alpha+y \sin \alpha=p$ of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{18}=1$ subtends a right angle at the center, and the diameter of the circle, concentric with the hyperbola, to which the given chord is a tangent is d, then the value of $\frac{d}{4}$ is \qquad

- Watch Video Solution

Jee Main Previous Year

1. The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is :
A. $4 / \sqrt{3}$
B. $2 / \sqrt{3}$
C. $\sqrt{3}$
D. $4 / 3$

- Watch Video Solution

2. A hyperbola passes through the point $(\sqrt{2}, \sqrt{3})$ and has foci at $(\pm 2,0)$. Then the tangent to this hyperbola at P also passes through the point:
A. $(-\sqrt{2},-\sqrt{3})$
B. $(3 \sqrt{2}, 2 \sqrt{3})$
C. $(2 \sqrt{2}, 3 \sqrt{3})$
D. $(\sqrt{3}, \sqrt{2})$

Answer: C

3. Tangents are drawn to the hyperbola $4 x^{2}-y^{2}=36$ at the points P and Q. If these tangents intersect at the point $T(0,3)$ then the area (in sq units) of $\triangle P T Q$ is
A. $36 \sqrt{5}$
B. $45 \sqrt{5}$
C. $54 \sqrt{3}$
D. $60 \sqrt{3}$

Answer: B

- Watch Video Solution

Jee Advanced Previous Year

1. Let $\mathrm{P}(6,3)$ be a point on the hyperbola parabola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ lf the normal at the point intersects the x-axis at (9,0), then the eccentricity of the hyperbola is
A. $\sqrt{5 / 2}$
B. $\sqrt{3 / 2}$
C. $\sqrt{2}$
D. $\sqrt{3}$

Answer: B

- Watch Video Solution

2. An ellipse intersects the hyperbola $2 x^{2}-2 y=1$ orthogonally. The eccentricity of the ellipse is reciprocal to that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then (b) the foci of ellipse are $(\pm 1,0)$ (a) equation of ellipse is $x^{2}+2 y^{2}=2$ (d) the foci of ellipse are $(t 2,0)$ (c) equation of ellipse is $\left(x^{2} 2 y\right)$
A. the equation of the ellipse is $x^{2}+2 y^{2}=1$
B. the foci of the ellipse are $(\pm 1,0)$
C. the equation of the ellipse is $x^{2}+2 y^{2}=4$
D. the foci of the ellipse are $(\pm \sqrt{2}, 0)$

Answer: A::B

- Watch Video Solution

3. let the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be reciprocal to that of the ellipse $x^{2}+4 y^{2}=4$. if the hyperbola passes through a focus of the ellipse then: (a) the equation of the hyperbola is $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$ (b) a focus of the hyperbola is $(2,0)$ (c) the eccentricity of the hyperbola is $\sqrt{\frac{5}{3}}$ (d) the equation of the hyperbola is $x^{2}-3 y^{2}=3$
A. the equation of the hyperbola is $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$
B. a focus of the hyperbola is $(2,0)$
C. the eccentricity of the hyperbola is $\frac{2}{\sqrt{3}}$
D. the equation of the hyperbola is $x^{2}-3 y^{2}=3$

Answer: B::D

4. Tangents are drawn to the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ parallet to the sraight line $2 x-y=1$. The points of contact of the tangents on the
hyperbola are
(A) $\left(\frac{2}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(B) $\left(-\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

$$
\begin{equation*}
(3 \sqrt{3},-2 \sqrt{2}) \text { (D) }(-3 \sqrt{3}, 2 \sqrt{2}) \tag{C}
\end{equation*}
$$

A. $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
B. $\left(-\frac{9}{2 \sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
C. $(3 \sqrt{3},-2 \sqrt{2})$
D. $(3 \sqrt{3},-2 \sqrt{2})$

Answer: A::B

- Watch Video Solution

5. Consider the hyperbola $H: x^{2}-y^{2}=1$ and a circle S with centre $N\left(x_{2}, 0\right)$ Suppose that H and S touch each other at a point $\left(P\left(x_{1}, y_{1}\right)\right.$
with $x_{1}>1$ and $y_{1}>0$ The common tangent to H and S at P intersects the x -axis at point M . If $(1, \mathrm{~m})$ is the centroid of the triangle $\Delta P M N$ then the correct expression is (A) $\frac{d l}{d x_{1}}=1-\frac{1}{3 x_{1}^{2}}$ for $x_{1}>1$
$\left.\frac{d m}{d x_{1}}=\frac{x_{!}}{3\left(\sqrt{x}_{1}^{2}-1\right)}\right) f$ or $x_{1}>1 \quad$ (C) $\frac{d l}{d x_{1}}=1+\frac{1}{3 x_{1}^{2}} f$ or $x_{1}>1$
(D) $\frac{d m}{d y_{1}}=\frac{1}{3} f$ or $y_{1}>0$
A. $\frac{d l}{d x_{1}}=1-\frac{1}{3 x_{1}^{2}}$ for $x_{1}>1$
B. $\frac{d m}{d x_{1}}=\frac{x_{1}}{3 \sqrt{x_{1}^{2}}-1}$ for $x_{1}>1$
C. $\frac{d l}{d x_{1}}=1+\frac{1}{3 x_{1}^{2}}$ for $x_{1}>1$
D. $\frac{d m}{d y_{1}}=\frac{1}{3}$ for $x_{1}>0$

Answer: A::B::D

- Watch Video Solution

6. If $2 x-y+1=0$ is a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{16}=1$ then which of the following CANNOT be sides of a right angled triangle? $a, 4,2$
(b) $a, 4,12 a, 4,1$ (d) $2 a, 8,1$
A. $2 \mathrm{a}, 4,1$
B. $2 \mathrm{a}, 8,1$
C. a, 4, 1
D. $\mathrm{a}, 4,2$

Answer: B::C::D

- Watch Video Solution

7. The circle $x^{2}+y^{2}-8 x=0$ and hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ । intersect at the points A and B. Equation of a common tangent with positive slope to the circle as well as to the hyperbola is
A. $2 x-\sqrt{5} y-20=0$
B. $2 x-\sqrt{5} y+4=0$
C. $3 x-4 y+8=0$
D. $4 x-3 y+4=0$

Answer: B

- Watch Video Solution

8. The equation of the circle with $A B$ as its diameter is
A. $x^{2}+y^{2}-12 x+24=0$
B. $x^{2}+y^{2}+12 x+24=0$
C. $x^{2}+y^{2}+24 x-12=0$
D. $x^{2}+y^{2}-24 x-12=0$

Answer: A

9. Match the conic in List I with the statements/expressions in List II.

- View Text Solution

10. Lists I, II and III contains conics, equation of tangents to the conics and points of contact, respectively.

If the tangent to a suitable conic (List I) at $\left(\sqrt{3} \frac{1}{2}\right)$ is found to be $\sqrt{3} x+2 y=4$. then which of the following options is the only CORRECT combination?
A. (II) (iii) (R)
B. (IV) (iv) (S)
C. (IV) (iii) (S)
D. (II) (iv) (R)

Answer: D

View Text Solution

11. Lists I, II and III contains conics, equation of tangents to the conics and points of contact, respectively.

If a tangent to a suitable conic (List I) is fond to be $y=x+8$ and its point of contact is $(8,16)$, then which of the following options I sthe only CORRECT combination?
A. (II) (i) (P)
B. (III) (iO) (Q)
C. (II) (iv) (R)
D. (I) (ii) (Q)

Answer: A

12. Lists I, II and III contains conics, equation of tangents to the conics and points of contact, respectively.

For $a=\sqrt{2}$ if a tangent is drawn to a suitable conic (List I) at the point of contact $(-1,1)$, which of the following options is the only CORRECT combination for obtaining its equation?
A. (II) (ii) (Q)
B. (III) (i) (P)
C. (I) (i) (P)
D. (I) (ii) (Q)

Answer: D

D View Text Solution

13. Let $H: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, where a gt b gt 0 , be a hperbola in the xy-plane whose conjugate axis LM subtends and angle of 60° at one of its vertices
N. Let the area of the triangle LMN be $4 \sqrt{3}$.

The correct option is:
A. $P \rightarrow I V, Q \rightarrow I I, R \rightarrow I, S \rightarrow I I I$
B. $P \rightarrow I V, Q \rightarrow I I I, R \rightarrow I, S \rightarrow I I$
C. $P \rightarrow I V, Q \rightarrow I, R \rightarrow I I I, S \rightarrow I I$
D. $P \rightarrow I I I, Q \rightarrow I V, R \rightarrow I I, S \rightarrow I$

Answer: B

- View Text Solution

14. The line $2 x+y=1$ is tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If this line passes through the point of intersection of the nearest directrix and the x-axis, then the eccentricity of the hyperbola is

- Watch Video Solution

1. The locus of $P(x, y)$ such that
$\sqrt{x^{2}+y^{2}+8 y+16}-\sqrt{x^{2}+y^{2}-6 x+9}=5$, is
A. hyperbola
B. circle
C. finite line segment
D. infinite ray

Answer: D

- Watch Video Solution

2. The distance of the focus of $x^{2}-y^{2}=4$, from the directrix, which is nearer to it, is
A. $2 \sqrt{2}$
B. $\sqrt{2}$
C. $4 \sqrt{2}$
D. $8 \sqrt{2}$

Answer: B

- Watch Video Solution

3. If $\frac{x^{2}}{36}-\frac{y^{2}}{k^{2}}=1$ is a hyperbola, then which of the following points lie on hyperbola?
A. $(3,1)$
B. $(-3,1)$
C. $(5,2)$
D. $(10,4)$

Answer: D

4. The ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ and the hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$ have in common
A. centre and vertices only
B. centre, foci and vertices
C. centre, foci and directrices
D. centre only

Answer: A

- Watch Video Solution

5. The equation to the hyperbola having its eccentricity 2 and the distance between its foci is 8 is
A. $\frac{x^{2}}{12}-\frac{y^{2}}{4}=1$
B. $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$
C. $\frac{x^{2}}{8}-\frac{y^{2}}{2}=1$
D. $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$

Answer: B

- Watch Video Solution

6. If the centre, vertex and focus of a hyperbola be (0,0), (4,0) and (6,0) respectively, then the equation of the hyperbola is
A. $4 x^{2}-5 y^{2}=8$
B. $4 x^{2}-5 y^{2}=80$
C. $5 x^{2}-4 y^{2}=80$
D. $5 x^{2}-4 y^{2}=8$

Answer: C

7. The equation $\frac{x^{2}}{9-\lambda}+\frac{y^{2}}{4-\lambda}=1$ represents a hyperbola when $a<\lambda<b$ then $(b-a)=$
A. 3
B. 4
C. 5
D. 6

Answer: C

- Watch Video Solution

8. If e and $e^{,}$are the eccentricities of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$, then the point $\left(\frac{1}{e}, \frac{1}{e^{\prime}}\right)$ lies on the $\operatorname{circle}(\mathrm{A}) x^{2}+y^{2}=1$ (B) $x^{2}+y^{2}=2$ (C) $x^{2}+y^{2}=3$ (D) $x^{2}+y^{2}=4$
A. $x^{2}+y^{2}=1$
B. $x^{2}+y^{2}=2$
C. $x^{2}+y^{2}=3$
D. $x^{2}+y^{2}=4$

Answer: A

- Watch Video Solution

9. If P is any point common to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{25}=1$ and the circle having line segment joining its foci as diameter then sum of focal distances of point P is
A. $6 \sqrt{2}$
B. $2 \sqrt{66}$
C. 16
D. 8

Answer: B

10. The length of the transverse axis of the hyperbola $9 x^{2}-16 y^{2}-18 x-32 y-151=0$ is
A. 8
B. 2
C. 6
D. 2

Answer: A

- Watch Video Solution

11. A hyperbola has centre ' C ' and one focus at $P(6,8)$. If its two directrixes are $3 x+4 y+10=0$ and $3 x+4 y-10=0$ then $C P=$
A. 14
B. 8
C. 10
D. 6

Answer: C

- Watch Video Solution

12. If the foci of $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$ and $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{3}=1$ coincide, the value of a is
A. 3
B. 2
C. $\frac{1}{\sqrt{3}}$
D. $\sqrt{3}$

Answer: A

13. A rectangular hyperbola of latus rectum 4 units passes through $(0,0)$ and has $(2,0)$ as its one focus. The equation of locus of the other focus is
A. $x^{2}+y^{2}=36$
B. $x^{2}+y^{2}=4$
C. $x^{2}-y^{2}=4$
D. $x^{2}+y^{2}=9$

Answer: A

- View Text Solution

14. If the curves $x^{2}-y^{2}=4$ and $x y=\sqrt{5}$ intersect at points A and B , then the possible number of points (s) C on the curve $x^{2}-y^{2}=4$ such that triangle $A B C$ is equilateral is
A. 0
B. 1
C. 2
D. 4

Answer: A

- Watch Video Solution

15. The point $\left(3 \tan \left(\theta+60^{\circ}\right), 2 \tan \left(\theta+30^{\circ}\right)\right)$ lies on the conic, then its centre is (θ is the parameter)
A. $(-3 \sqrt{3}, 2 \sqrt{3})$
B. $(3 \sqrt{3},-2 \sqrt{3})$
C. $(-3 \sqrt{3},-2 \sqrt{3})$
D. $(0,0)$

Answer: A

16. The equation of a tangent to the hyperbola $3 x^{2}-y^{2}=3$, parallel to the line $y=2 x+4$ is
A. $y=2 x+3$
B. $y=2 x+1$
C. $y=2 x+4$
D. $y=2 x+2$

Answer: B

- Watch Video Solution

17. A tangent to the hyperbola $y=\frac{x+9}{x+5}$ passing through the origin is
A. $x+25 y=0$
B. $5 x+y=0$
C. $5 x-y=0$
D. $x-25 y=0$

D Watch Video Solution

18. The absolute value of slope of common tangents to parabola $y^{2}=8 x$ and hyperbola $3 x^{2}-y^{2}=3$ is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

19. For the hyperbola $x y=8$ any tangent of it at P meets co-ordinates at Q and R then area of triangle CQR where ' C ' is centre of the hyperbola is
A. 16 sq. units
B. 12 sq. units
C. 24 sq. units
D. 18 sq. units

Answer: A

- Watch Video Solution

20. The tangents and normal at a point on $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ cut the y-axis A and B. Then the circle on $A B$ as diameter passes through
A. one of the vertex of the hyperbola
B. one of the foot of directrix on x-axis of the hyperbola
C. foci of the hyperbola
D. none of these

Answer: C

21. If $4 x^{2}+p y^{2}=45$ and $x^{2}-4 y^{2}=5$ cut orthogonally, then the value of p is
A. $1 / 9$
B. $1 / 3$
C. 3
D. 9

Answer: D

Watch Video Solution

22. A tangent drawn to hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=$ 1at $P\left(\frac{\pi}{6}\right)$ forms a triangle of area $3 a^{2}$ square units, with coordinate axes, then the squae of its eccentricity is equal to
A. 15
B. 16
C. 17
D. 18

Answer: C

- Watch Video Solution

23. If m is the slope of a tangent to the hyperbola $\frac{x^{2}}{a^{2}-b^{2}}-\frac{y^{2}}{a^{3}-b^{3}}=1$ where $a>b>1$ when
A. $(a+b) m^{2}+a b \geq(a+b)^{2}$
B. $(a+b)^{2} m+a b \geq(a+b)$
C. $a b m^{2}+(a+b) \geq(a+b)^{2}$
D. $(a+b) m^{2}+a^{2} b^{2} \geq(a+b)^{2}$
24. Two tangents to the hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{9}=1$, having slopes 2 and m where $(m \neq 2)$ cuts the axes at four concyclic points then the slope m is/are
A. $-\frac{1}{2}$
B. -2
C. $\frac{1}{2}$
D. 2

Answer: C

- View Text Solution

25. The equation of that chord of hyperbola $25 x^{2}-16 y=400$, whose mid point is $(5,3)$ is
A. $115 x-117 y=17$
B. $125 x-48 y=481$
C. $127 x+33 y=341$
D. $15 x-121 y=105$

Answer: B

- Watch Video Solution

26. If a chord joining $P(a \sec \theta, a \tan \theta), Q(a \sec \alpha, a \tan \alpha)$ on the hyperbola $x^{2}-y^{2}=a^{2}$ is the normal at P , then $\tan \alpha=$
A. $\tan \theta\left(4 \sec ^{2} \theta+1\right)$
B. $\tan \theta\left(4 \sec ^{2} \theta-1\right)$
C. $\tan \theta\left(2 \sec ^{2} \theta-1\right)$
D. $\tan \theta\left(1-2 \sec ^{2} \theta\right)$
27. The number of normal (s) of a rectangular hyperbola which can touch its conjugate is equal to
A. 0
B. 2
C. 4
D. 8

Answer: C

- View Text Solution

28. If the normal at a point P to the hyperbola meets the transverse axis at G , and the value of $\mathrm{SG} / \mathrm{SP}$ is 6 , then the eccentricity of the hyperbola is (where S is focus of the hyperbola)
A. 2
B. 4
C. 6
D. 8

Answer: C

- View Text Solution

29. If the normal at $P(a \sec \theta, b \tan \theta)$ to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ meets the transverse axis in G then minimum length of PG is
A. $\frac{b^{2}}{a}$
B. $\left|\frac{a}{b}(a+b)\right|$
C. $\left|\frac{a}{b}(a-b)\right|$
D. $\left|\frac{a}{b}(a-b)\right|$
30. If normal to hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ drawn at an extremity of its latus-rectum has slope equal to the slope of line which meets hyperbola only once, then the eccentricity of hyperbola is
A. $e=\sqrt{\frac{1+\sqrt{5}}{2}}$
B. $e=\sqrt{\frac{\sqrt{5}+3}{2}}$
C. $e=\sqrt{\frac{2}{\sqrt{5}-1}}$
D. None of these

Answer: A

- Watch Video Solution

31. At the point of intersection of the rectangular hyperbola $x y=c^{2}$ and the parabola $y^{2}=4 a x$ tangents to the rectangular hyperbola and the
parabola make angles θ and ϕ, respectively with x-axis, then
A. $\theta=\tan ^{-1}(-2 \tan \phi)$
B. $\theta=\frac{1}{2} \tan ^{-1}(-\tan \phi)$
C. $\phi=\tan ^{-1}(-2 \tan \theta)$
D. $\phi=\frac{1}{2} \tan ^{-1}(-\tan \theta)$

Answer: A

- Watch Video Solution

32. The number of points from where a pair of perpendiculartangents can be drawn to the hyperbola, $x^{2} \sec ^{2} \alpha-y^{2} \operatorname{cosec} 2=1, \alpha \in\left(0, \frac{\pi}{4}\right)$, is
(A) 0 (B) 1 (C) 2 (D) infinite
A. 0
B. 1
C. 2
D. infinite

Answer: D

- Watch Video Solution

33. If e is the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and θ is the angle between the asymptotes, then $\cos \frac{\theta}{2}$ is equal to
A. $\frac{1-e}{e}$
B. $\frac{2}{e}-e$
C. $\frac{1}{e}$
D. $\frac{2}{e}$

Answer: C

- Watch Video Solution

34. The equation of a hyperbola whose asymptotes are $3 x \pm 5 y=0$ and vertices are $(\pm 5,0)$ is
A. $9 x^{2}-25 y^{2}=225$
B. $25 x^{2}-9 y^{2}=225$
C. $5 x^{2}-3 y^{2}=225$
D. $3 x^{2}-5 y^{2}=25$

Answer: A

- Watch Video Solution

35. The tangent at P on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ meets one of the asymptote in Q . Then the locus of the mid-point of PQ is
A. $3\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)=4$
B. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=2$
C. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{1}{2}$
D. $4\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)=3$

Answer: D

- View Text Solution

36. Locus of perpendicular from center upon normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is
A. $\left(x^{2}-+y^{2}\right)^{2}\left(\frac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}\right)=\left(a^{2}-b^{2}\right)^{2}$
B. $\left(x^{2}+y^{2}\right)^{2}\left(\frac{a^{2}}{x^{2}}-\frac{b^{2}}{y^{2}}\right)=\left(a^{2}+b^{2}\right)^{2}$
C. $\left(x^{2}+y^{2}\right)^{2}\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)=\left(a^{2}+b^{2}\right)^{2}$
D. None of these

Answer: B

37. Let the transverse axis ofa varying hyperbola be fixed with length of transverse axis being 2 a . Then the locus of the point of contact of any tangent drawn to it from a fixed point on conjugate axis is
A. a parabola
B. a circle
C. an ellipse
D. a hyperbola

Answer: A

- View Text Solution

38. The locus of the foot of the perpendicular from the centre of the hyperbola $x y=c^{2}$ on a variable tangent is (A) $\left(x^{2}-y^{2}\right)=4 c^{2} x y$

$$
\begin{equation*}
\left(x^{2}+y^{2}\right)^{2}=2 c^{2} x y \text { (C) }\left(x^{2}+y^{2}\right)=4 c^{2} x y \text { (D) }\left(x^{2}+y^{2}\right)^{2}=4 c^{2} x y \tag{B}
\end{equation*}
$$

A. $\left(x^{2}-y^{2}\right)^{2}=4 c^{2} x y$
B. $\left(x^{2}+y^{2}\right)^{2}=2 c^{2} x y$
C. $\left(x^{2}-y^{2}\right)^{2}=2 c^{2} x y$
D. $\left(x^{2}+y^{2}\right)^{2}=4 c^{2} x y$

Answer: D

- Watch Video Solution

Multiple Correct Answers Type

1. If $P(\alpha, \beta)$, the point of intersection of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}\left(1-e^{2}\right)=1 \quad$ and \quad hyperbola $\quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}\left(E^{2}-1\right)=\frac{1}{4}}$ is equidistant from the foci of the curvesall lying in the right of y-axis then
A. $2 \alpha=a(2 e+E)$
B. $a-e \alpha=E \alpha-\alpha / 2$
C. $E=\frac{\sqrt{e^{2}+24}-3 e}{2}$
D. $E=\frac{\sqrt{e^{2}+12}-3 e}{2}$

- Watch Video Solution

2. A hyperbola having the transverse axis of length $\frac{1}{2}$ unit is confocal with the ellipse $3 x^{2}+4 y^{2}=12$, then
A. Equation of the hyperbola is $\frac{x^{2}}{15}-\frac{y^{2}}{1}=\frac{1}{16}$
B. Eccentricity of the hyperbola is 4
C. Distance between the directries of the hyperbola is $\frac{1}{8}$ units
D. Length of latus rectum of the hyperbola is $\frac{15}{2}$ units

Answer: B::C::D

- Watch Video Solution

3. In $X-Y$ plane, the path defined by the equation

$$
\frac{1}{x^{m}}+\frac{1}{y^{m}}+\frac{k}{(x+y)^{n}}=0 \text {, is }
$$

A. a parabola if $m=\frac{1}{2}, k=-1, n=0$
B. a hyperbola if $m=1, k=-1, n=0$
C. a pair of lines if $m=k=n=1$
D. a pair of lines if $m=k=-1, n=1$

Answer: A::B::C::D

- View Text Solution

4. A point moves such that the sum of the squares of its distances from the two sides of length 'a' of a rectangle is twice the sum of the squares of its distances from the other two sides of length b. The locus of the point can be:
A. a circle
B. an ellipse
C. a hyperbola
D. a pair of lines

Answer: C::D

- Watch Video Solution

5. The equation of a hyperbola with co-ordinate axes as principal axes, and the distances of one of its vertices from the foci are 3 and 1 can be
A. $3 x^{2}-y^{2}=3$
B. $x^{2}-3 y^{2}+3=0$
C. $x^{2}-3 y^{2}-3=0$
D. none of these

Answer: A::B

- Watch Video Solution

6. Three points A, B and C taken on rectangular hyperbola $x y=4$ where $B(-2,-2)$ and $C(6,2 / 3)$. The normal at A is parallel to BC , then
A. circumcentre of $\triangle A B C$ is $(2,-2 / 3)$
B. equation of circumcir
$3 x^{2}+3 y^{2}-12 x+4 y-40=0$
C. orthocenter of $\triangle A B C$ is $\left(\frac{2}{\sqrt{3}}, 2 \sqrt{3}\right)$
D. none of these

Answer: A::B::C

- View Text Solution

7. A tangent is drawn at any point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If this tangent is intersected by the tangents at the vertices at points P and Q, then which of the following is/are true
A. $\mathrm{S}, \mathrm{S}, \mathrm{P}$ and Q are concyclic
B. $P Q$ is diameter of the circle
C. S,S', P and Q forms rhombus
D. PQ is diagonal of acute angle of the rhombus formed by $\mathrm{S}, \mathrm{S}^{\prime}, \mathrm{P}$ and Q

Answer: A: B

- View Text Solution

8. If two tangents can be drawn the different branches of hyperbola $\frac{x^{2}}{1}-\frac{y^{2}}{4}=1$ from $\left(\alpha, \alpha^{2}\right)$, then
A. $\alpha \in(-2,0)$
B. $\alpha \in(0,2)$
C. $\alpha \in(-\infty,-2)$
D. $\alpha \in(2, \infty)$

Answer: C::D

- Watch Video Solution

9. The director circle of a hyperbola is $x^{2}+y^{2}-4 y=0$. One end of the major axis is $(2,0)$ then a focus is
A. $(\sqrt{3}, 2-\sqrt{3})$
B. $(-\sqrt{3}, 2+\sqrt{3})$
C. $(\sqrt{6}, 2-\sqrt{6})$
D. $(-\sqrt{6}, 2+\sqrt{6})$

Answer: C::D

- Watch Video Solution

10. The points on the ellipse $\frac{x^{2}}{2}+\frac{y^{2}}{10}=1$ from which perpendicular tangents can be drawn to the hyperbola $\frac{x^{2}}{5}-\frac{y^{2}}{1}=1$ is/are
A. $\left(\sqrt{\frac{3}{2}}, \sqrt{\frac{5}{2}}\right)$
B. $\left(\sqrt{\frac{3}{2}},-\sqrt{\frac{5}{2}}\right)$
c. $\left(-\sqrt{\frac{3}{2}}, \sqrt{\frac{5}{2}}\right)$
D. $\left(\sqrt{\frac{5}{2}}, \sqrt{\frac{3}{2}}\right)$

Answer: A::B::C

- View Text Solution

Comprehension Type

1. Consider a hyperbola $x y=4$ and a line $y=2 x=4$. O is the centre of hyperbola. Tangent at any point P of hyperbola intersect the coordinate axes at A and B .

Locus of circumcentre of triangle OAB is
A. an ellipse with eccentricity $\frac{1}{\sqrt{2}}$
B. an ellipse with eccentricity $\frac{1}{\sqrt{3}}$
C. a hyperbola with eccnetricity $\sqrt{2}$
D. a circle

Answer: C

D View Text Solution

2. Consider a hyperbola $x y=4$ and a line $y=2 x=4$. O is the centre of hyperbola. Tangent at any point P of hyperbola intersect the coordinate axes at A and B .

Shortest distance between the line and hyperbola is
A. $\frac{8 \sqrt{2}}{\sqrt{5}}$
B. $\frac{4(\sqrt{2}-1)}{\sqrt{5}}$
C. $\frac{2 \sqrt{2}}{\sqrt{5}}$
D. $\frac{4(\sqrt{2}-1)}{\sqrt{5}}$

Answer: B

3. Consider a hyperbola $x y=4$ and a line $y=2 x=4$. O is the centre of hyperbola. Tangent at any point P of hyperbola intersect the coordinate axes at A and B.

Let the given line intersects the x-axis at R. if a line through R. intersect the hyperbolas at S and T , then minimum value of $R S \times R T$ is
A. 2
B. 4
C. 6
D. 8

Answer: D

- View Text Solution

4. Consider a hyperbola: $\frac{(x-7)^{2}}{a}-\frac{(y+3)^{2}}{b^{2}}=1$. The line $3 x-2 y-25=0$, which is not a tangent, intersect the hyperbola at $H\left(\frac{11}{3},-7\right)$ only. A variable point $P\left(\alpha+7, \alpha^{2}-4\right) \forall \alpha \in R$ exists in
the plane of the given hyperbola.
The eccentricity of the hyperbola is
A. $\sqrt{\frac{7}{5}}$
B. $\sqrt{2}$
C. $\frac{\sqrt{13}}{2}$
D. $\frac{3}{2}$

Answer: C

- View Text Solution

5. Consider a hyperbola: $\frac{(x-7)^{2}}{a}-\frac{(y+3)^{2}}{b^{2}}=1$. The line $3 x-2 y-25=0$, which is not a tangent, intersect the hyperbola at $H\left(\frac{11}{3},-7\right)$ only. A variable point $P\left(\alpha+7, \alpha^{2}-4\right) \forall \alpha \in R$ exists in the plane of the given hyperbola.

Which of the following are not the values of α for which two tangents can be drawn one to each branch of the given hyperbola is
A. $(2, \infty)$
B. $(-\infty,-2)$
C. $\left(-\frac{1}{2}, \frac{1}{2}\right)$
D. None of these

Answer: D

- View Text Solution

