

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

INTRODUCTION TO VECTORS

Examples

1. The vector
$$\overrightarrow{a} + \overrightarrow{b}$$
 bisects the angle between the vectors \widehat{a} and \widehat{b} if
(A) $|\overrightarrow{a}| + |\overrightarrow{b}| = 0$ (B) angle between \overrightarrow{a} and \overrightarrow{b} is zero (C)
 $|\overrightarrow{a}| = |\overrightarrow{b}| = 0$ (D) none of these

Watch Video Solution

2. if $\overrightarrow{A}o + \overrightarrow{O}B = \overrightarrow{B}O + \overrightarrow{O}C$, than prove that B is the midpoint of AC.

3. ABCDE is pentagon, prove that $\overrightarrow{A}B + \overrightarrow{B}C + \overrightarrow{C}D + \overrightarrow{D}E + \overrightarrow{E}A = \overrightarrow{0}$ $\overrightarrow{A}B + \overrightarrow{A}E + \overrightarrow{B}C + \overrightarrow{D}C + \overrightarrow{E}D + \overrightarrow{A}C = 3\overrightarrow{A}C$

4. Prove that the resultant of two forces acting at point O and represented by \overrightarrow{OB} and \overrightarrow{OC} is given by $2\overrightarrow{OD}$, where D is the midpoint of BC.

Watch Video Solution

5. Prove that the sum of three vectors determined by the medians of a

triangle directed from the vertices is zero.

6. ABC is a triangle and P any point on BC. if $\overrightarrow{P}Q$ is the sum of $\overrightarrow{A}P + \overrightarrow{P}B$ + $\overrightarrow{P}C$, show that ABPQ is a parallelogram and Q, therefore, is a fixed point.

Watch Video Solution

7. Two forces $\overrightarrow{A}B$ and $\overrightarrow{A}D$ are acting at vertex A of a quadrilateral ABCD and two forces $\overrightarrow{C}B$ and $\overrightarrow{C}D$ at C prove that their resultant is given by 4 $\overrightarrow{E}F$, where E and F are the midpoints of AC and BD, respectively.

S Watch Video Solution

8. If $O(\overrightarrow{0})$ is the circumcentre and O' the orthocentre of a triangle ABC, then prove that i. $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OO'}$ ii. $\overrightarrow{O'A} + \overrightarrow{O'B} + \overrightarrow{O'C} = 2\overrightarrow{O'O}$

iii.
$$AO^{'} + O^{'}\dot{B} + O^{'}\dot{C} = 2A\dot{O} = A\dot{P}$$

where AP is the diameter through A of the circumcircle.

9. A unit vector of modulus 2 is equally inclined to x - and y -axes angle at

an angle $\pi\,/\,3$. Find the length of projection of the vector on the z -axis.

Watch Video Solution

10. If the projections of vector \overrightarrow{a} on x -, y - and z -axes are 2, 1 and 2 units ,respectively, find the angle at which vector \overrightarrow{a} is inclined to the z -axis.

Watch Video Solution

11. Find a vector of magnitude 8 units in the direction of the vector $\Bigl(5\hat{i}-\hat{j}+2\hat{k}\Bigr).$

12. सदिश \overline{PQ} , के अनुदिश मात्रक सदिश ज्ञात कीजिए जहाँ बिंदु P और Q क्रमश: (1,2,3) और

(4,5,6) है!

Watch Video Solution

13. If
$$\overrightarrow{a} = \left(-\hat{i} + \hat{j} - \hat{k}\right)$$
 and $\overrightarrow{b} = \left(2\hat{i} - 2\hat{j} + 2\hat{k}\right)$ then find the unit vector in the direction of $\left(\overrightarrow{a} + \overrightarrow{b}\right)$.

Watch Video Solution

14. Show that the points A, B and C having position vectors $(3\hat{i} - 4\hat{j} - 4\hat{k}), (2\hat{i} - \hat{j} + \hat{k})$ and $(\hat{i} - 3\hat{j} - 5\hat{k})$ respectively, from the

vertices of a right-angled triangle.

15. If $2\overrightarrow{A}C = 3\overrightarrow{C}B$, then prove that $2\overrightarrow{O}A = 3\overrightarrow{C}B$ then prove that $2\overrightarrow{O}A + 3\overrightarrow{O}B = 5\overrightarrow{O}C$ where O is the origin.

16. Prove that points $\hat{i}+2\hat{j}-3\hat{k}, 2\hat{i}-\hat{j}+\hat{k}$ and $2\hat{i}+5\hat{j}-\hat{k}$ form a

triangle in space.

Watch Video Solution

17. Find the position vector of a point R which divides the line joining the point $P(\hat{i}+2\hat{j}-\hat{k})$ and $Q(-\hat{i}+\hat{j}+\hat{k})$ in the ratio 2:1, (i)

internally and (ii) externally.

18. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}$ are the position vectors of points A, B, C and D, respectively referred to the same origin O such that no three of these points are collinear and $\overrightarrow{a} + \overrightarrow{c} = \overrightarrow{b} + \overrightarrow{d}$, then prove that quadrilateral ABCD is a parallelogram.

Watch Video Solution

19. Find the point of intersection of AB and A(6,-7,0),B(16,-19,-4,) , C(0,3,-6)

and D(2,-5,10).

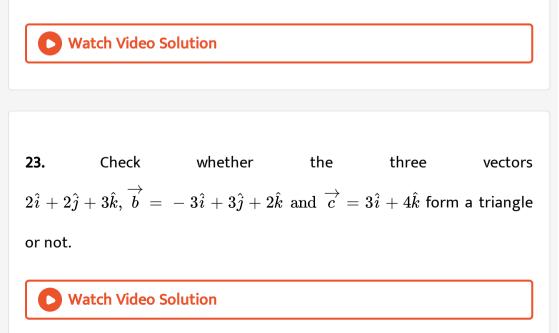
Watch Video Solution

20. Find the angle of vector $\overrightarrow{a} = 6\hat{i} + 2\hat{j} - 3\hat{k}$ with x-axis.

21. i. Show that the lines joining the vertices of a tetrahedron to the centroids of opposite faces are concurrent.

ii. Show that the joins of the midpoints of the opposite edges of a tetrahedron intersect and bisect each other.

22. The midpoint of two opposite sides of a quadrilateral and the midpoint of the diagonals are the vertices of a parallelogram. Prove that using vectors.



24. Find the resultant of vectors $\vec{a} = \hat{i} - \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 4\hat{k}$. Find the unit vector in the direction of the resultant vector.

Watch Video Solution

25. If in parallelogram ABCD, diagonal vectors are $\overrightarrow{AC} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\overrightarrow{BD} = -6\hat{i} + 7\hat{j} - 2\hat{k}$, then find the adjacent side vectors \overrightarrow{AB} and \overrightarrow{AD} .

Watch Video Solution

26. If two sides of a triangle are $\hat{i} + 2\hat{j}$ and $\hat{i} + \hat{k}$, then find the length of

the third side.

27. Three coinitial vectors of magnitudes a, 2a and 3a meet at a point and their directions are along the diagonals if three adjacent faces if a cube. Determined their resultant R. Also prove that the sum of the three vectors determinate by the diagonals of three adjacent faces of a cube passing through the same corner, the vectors being directed from the corner, is twice the vector determined by the diagonal of the cube.

Watch Video Solution

28. The axes of coordinates are rotated about the z-axis though an angle of $\pi/4$ in the anticlockwise direction and the components of a vector are $2\sqrt{2}$, $3\sqrt{2}$, 4. Prove that the components of the same vector in the original system are -1,5,4.

Watch Video Solution

29. If the resultant of two forces is equal in magnitude to one of the components and perpendicular to it direction, find the other components

using the vector method.

Watch Video Solution

30. A man travelling towards east at 8km/h finds that the wind seems to blow directly from the north On doubling the speed, he finds that it appears to come from the north-east. Find the velocity of the wind.

Watch Video Solution

31. OABCDE is a regular hexagon of side 2 units in the XY-plane in the first quadrant. O being the origin and OA taken along the x-axis. A point P is taken on a line parallel to the z-axis through the centre of the hexagon at a distance of 3 unit from O in the positive Z direction. Then find vector AP.

32. If $\overrightarrow{a} = 7\hat{i} - 4\hat{j} - 4\hat{k}$ and $\overrightarrow{b} = -2\hat{i} - \hat{j} + 2\hat{k}$, determine vector \overrightarrow{c} along the internal bisector of the angle between vectors \overrightarrow{a} and \overrightarrow{b} such that $\left|\overrightarrow{c}\right| = 5\sqrt{6}$.

Watch Video Solution

33. Find a unit vector \overrightarrow{c} if $-\hat{i} + \hat{j} - \hat{k}$ bisects the angle between vectors \overrightarrow{c} and $3\hat{i} + 4\hat{j}$.

Watch Video Solution

34. The vectors $2\hat{i} + 3\hat{j}, 5\hat{i} + 6\hat{j}$ and $8\hat{j} + \lambda\hat{j}$ have their initial points at

(1, 1). The value of λ so that the vectors terminate on one straight line, is

35. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three non-zero vectors, no two of which are collinear, $\overrightarrow{a} + 2\overrightarrow{b}$ is collinear with \overrightarrow{c} and $\overrightarrow{b} + 3\overrightarrow{c}$ is collinear with \overrightarrow{a} , then find the value of $\left|\overrightarrow{a} + 2\overrightarrow{b} + 6\overrightarrow{c}\right|$.

Watch Video Solution

36. i. Prove that the points $\overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}, 2\overrightarrow{a} + 3\overrightarrow{b} - 4\overrightarrow{c}$ and $-7\overrightarrow{b} + 10\overrightarrow{c}$ are collinear, where $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are non-coplanar.

ii. Prove that the points A(1,2,3), B(3,4,7) and C(-3, -2, -5)

are collinear. Find the ratio in which point C divides AB.

Watch Video Solution

37. Check whether the given three vectors are coplnar or non- coplanar :

$$-2\hat{i}-2\hat{j}+4\hat{k},\ -2\hat{i}+4\hat{j}-2\hat{k},4\hat{i}-2\hat{j}-2\hat{k}.$$

38. Prove that the four points
$$6\hat{i} - 7\hat{j}, 16\hat{i} - 19\hat{j} - 4\hat{k}, 3\hat{j} - 6\hat{k}$$
 and $2\hat{i} + 5\hat{j} + 10\hat{k}$ form a

tetrahedron in spacel.

Watch Video Solution

39. If \overrightarrow{a} and \overrightarrow{b} are two non-collinear vectors, show that points $l_1 \overrightarrow{a} + m_1 \overrightarrow{b}, l_2 \overrightarrow{a} + m_2 \overrightarrow{b}$ and $l_3 \overrightarrow{a} + m_3 \overrightarrow{b}$ are collinear if $|l_1 l_2 l_3 m_1 m_2 m_3 111| = 0.$

Watch Video Solution

40. The vectors \overrightarrow{a} and \overrightarrow{b} are non collinear. Find for what value of x the vectors $\overrightarrow{c} = (x-2)\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{d} = (2x+1)\overrightarrow{a} - \overrightarrow{b}$ are collinear.?

41. The median AD of the triangle ABC is bisected at E and BE meets AC at

F. Find AF:FC.

42. Prove that the necessary and sufficient condition for any four points in three-dimensional space to be coplanar is that there exists a liner relation connecting their position vectors such that the algebraic sum of the coefficients (not all zero) in it is zero.

43. i. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are non-coplanar vectors, prove that vectors $3\overrightarrow{a} - 7\overrightarrow{b} - 4\overrightarrow{c}$, $3\overrightarrow{a} - 2\overrightarrow{b} + \overrightarrow{c}$ and $\overrightarrow{a} + \overrightarrow{b} + 2\overrightarrow{c}$ are coplanar. ii. If the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + 2\hat{h} - 3\hat{k}$ and $3\hat{i} + a\hat{j} + 5\hat{k}$ are coplanar, the prove that a = 4.

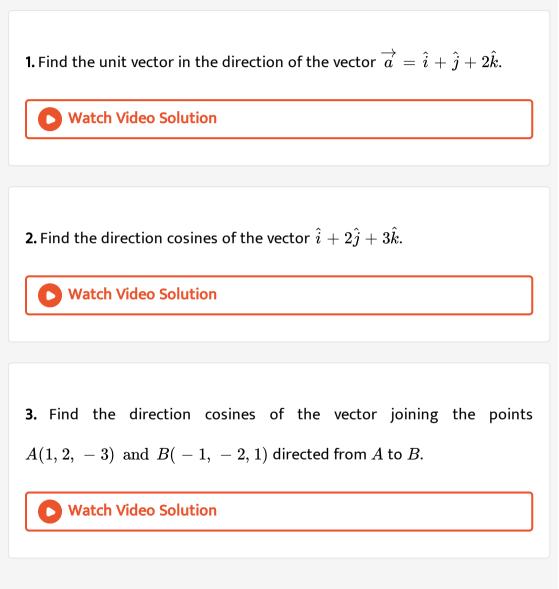
44. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are non-coplanar vectors, prove that the four points $2\overrightarrow{a} + 3\overrightarrow{b} - \overrightarrow{c}$, $\overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}$, $3\overrightarrow{a} + 4\overrightarrow{b} - 2\overrightarrow{c}$ and $\overrightarrow{a} - 6\overrightarrow{b} + 6\overrightarrow{c}$ are coplanar.

45. Let P be an interior point of a triangle ABC and AP, BP, CP meet the sides BC, CA, AB in D, E, F, respectively. Show that $\frac{AP}{PD} = \frac{AF}{FB} + \frac{AE}{EC}$.

View Text Solution

46. Points
$$A(\overrightarrow{a}), B(\overrightarrow{b}), C(\overrightarrow{c})$$
 and $D(\overrightarrow{d})$ are related as $x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} + w\overrightarrow{d} = 0$ and $x + y + z + w = 0$, where x, y, z and w are scalars (sum of any two of x, y, z and w is not zero).
Prove that if A, B, C and D are concyclic, then $|xy||\overrightarrow{a} - \overrightarrow{b}|^2 = |wz||\overrightarrow{c} - \overrightarrow{d}|^2$.

View Text Solution



4. The position vectors of P and Q are $5\hat{i} + 4\hat{j} + a\hat{k}$ and $-\hat{i} + 2\hat{j} - 2\hat{k}$, respectively. If the distance between them is 7, then find the value of a.

Watch Video Solution

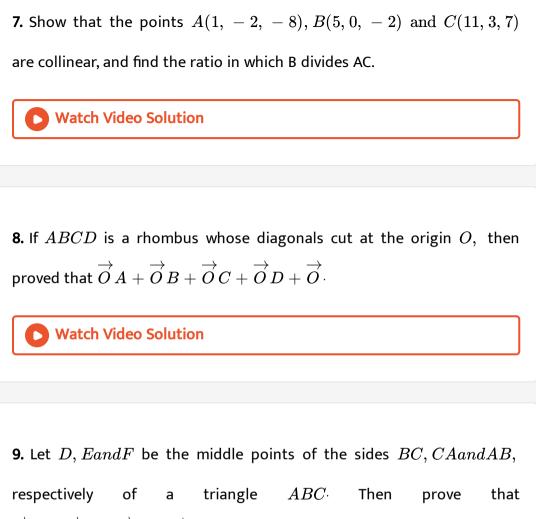
5. Given three points are A(-3, -2, 0), B(3, -3, 1) and C(5, 0, 2). Then find a vector having the same direction as that of $\overrightarrow{A}B$ and magnitude equal to $\left|\overrightarrow{A}C\right|$.

Watch Video Solution

6. Find a vector of magnitude 5 units, and parallel to the resultant of the

vectors

$$\overrightarrow{a} = 2\hat{i} + 3\hat{j} - \hat{k} \, ext{ and } \, \overrightarrow{b} = \hat{i} - 2\hat{j} + \hat{k}.$$



 $\overrightarrow{A}D + \overrightarrow{B}E + \overrightarrow{C}F = \overrightarrow{0}$.

Watch Video Solution

10. Let ABCD be a p[arallelogram whose diagonals intersect at P and let O be the origin. Then prove that $\overrightarrow{O}A + \overrightarrow{O}B + \overrightarrow{O}C + \overrightarrow{O}D = 4\overrightarrow{O}P$.

11. If ABCD is quadrilateral and EandF are the mid-points of ACandBD respectively, prove that $\overrightarrow{A}B + \overrightarrow{A}D + \overrightarrow{C}B + \overrightarrow{C}D = 4\overrightarrow{E}F$.

Watch Video Solution

12. If
$$\overrightarrow{A}O + \overrightarrow{O}B = \overrightarrow{B}O + \overrightarrow{O}C$$
 , then $A, BnadC$ are (where O is the

origin) a. coplanar b. collinear c. non-collinear d. none of these

Watch Video Solution

13. If the sides of an angle are given by vectors $\vec{a} = \hat{i} - 2\hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + 2\hat{k}$, then find the internal bisector of the angle.

14. ABCD is a parallelogram. If LandM are the mid-points of BCandDC respectively, then express $\overrightarrow{A}Land\overrightarrow{A}M$ in terms of $\overrightarrow{A}Band\overrightarrow{A}D$. Also, prove that $\overrightarrow{A}L + \overrightarrow{A}M = \frac{3}{2}\overrightarrow{A}C$.

15. ABCD is a quadrilateral and E and the point intersection of the lines joining the middle points of opposite side. Show that the resultant of $\overrightarrow{O}A, \overrightarrow{O}B, \overrightarrow{O}Cand\overrightarrow{O}D$ is equal to $4 \overrightarrow{O}E$, where O is any point.

Watch Video Solution

16. What is the unit vector parallel to $\vec{a} = 3\hat{i} + 4\hat{j} - 2\hat{k}$? What vector should be added to \vec{a} so that the resultant is the unit vector \hat{i} ?

17. The position vectors of points A and B w.r.t. the origin are $\vec{a} = \hat{i} + 3\hat{j} - 2\hat{k}$ and $\vec{b} = 3\hat{i} + \hat{j} - 2\hat{k}$, respectively. Determine vector \overrightarrow{OP} which bisects angle AOB, where P is a point on AB.

Watch Video Solution

18. If $\overrightarrow{r}_1, \overrightarrow{r}_2, \overrightarrow{r}_3$ are the position vectors off thee collinear points and scalar *pandq* exist such that $\overrightarrow{r}_3 = p\overrightarrow{r}_1 + q\overrightarrow{r}_2$, then show that p+q=1.

Watch Video Solution

19. If \overrightarrow{a} and \overrightarrow{b} are two vectors of magnitude 1 inclined at 120° , then find the angle between \overrightarrow{b} and $\overrightarrow{b} - \overrightarrow{a}$.

20. Find the vector of magnitude 3, bisecting the angle between the vectors $\vec{a} = 2\hat{i} + \hat{j} - \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$.

Watch Video Solution

Exercise 12

1. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} are four vectors in three-dimensional space with the same initial point and such that $3\overrightarrow{a} + 2\overrightarrow{b} + \overrightarrow{c} - 2\overrightarrow{d} = 0$, show that terminals A, B, CandD of these vectors are coplanar. Find the point at which ACandBD meet. Find the ratio in which P divides ACandBD.

2. Show that the vectors

$$2\overrightarrow{a} - \overrightarrow{b} + 3\overrightarrow{c}, \overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{c}$$
 and $\overrightarrow{a} + \overrightarrow{b} - 3\overrightarrow{c}$ are non-coplanar
vectors (where $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are non-coplanar vectors).

3. Examine the following vectors for linear independence :

i.
$$\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}, 2\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}, -\overrightarrow{i} - 2\overrightarrow{j} + 2\overrightarrow{k}$$

ii. $3\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}, 2\overrightarrow{i} - \overrightarrow{j} + 7\overrightarrow{k}, 7\overrightarrow{i} - \overrightarrow{j} + 13\overrightarrow{k}$

Watch Video Solution

4. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are non-collinear vectors and
 $\overrightarrow{A} = (p+4q)\overrightarrow{a} + (2p+q+1)\overrightarrow{b}$ and $\overrightarrow{B} = (-2p+q+2)\overrightarrow{a} + (2p-3q)$, and if $3\overrightarrow{A} = 2\overrightarrow{B}$, then determine p and q .

Watch Video Solution

5. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are any three non-coplanar vectors, then prove that points

$$\begin{array}{c} l_{1}\overrightarrow{a}+m_{1}\overrightarrow{b}+n_{1}\overrightarrow{c}, l_{2}\overrightarrow{a}+m_{2}\overrightarrow{b}+n_{2}\overrightarrow{c}, l_{3}\overrightarrow{a}+m_{3}\overrightarrow{b}+n_{3}\overrightarrow{c}, l_{4}\overrightarrow{a}+m_{4} \\ \\ \text{are coplanar if} \begin{vmatrix} l_{1} & l_{2} & l_{3} & l_{4} \\ m_{1} & m_{2} & m_{3} & m_{4} \\ n_{1} & n_{2} & n_{3} & n_{4} \\ 1 & 1 & 1 & 1 \end{vmatrix} = 0 \end{array}$$

Watch Video Solution

6. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three non-zero, non-coplanar vectors, then find the linear relation between the following four vectors : $\overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}, 2\overrightarrow{a} - 3\overrightarrow{b} + 4\overrightarrow{c}, 3\overrightarrow{a} - 4\overrightarrow{b} + 5\overrightarrow{c}, 7\overrightarrow{a} - 11\overrightarrow{b} + 15\overrightarrow{c}$

Watch Video Solution

7. Let a, b, c be distinct non-negative numbers and the vectors $a\hat{i} + a\hat{j} + c\hat{k}, \hat{i} + \hat{k}, c\hat{i} + c\hat{j} + b\hat{k}$ lie in a plane, and then prove that the quadratic equation $ax^2 + 2cx + b = 0$ has equal roots.

1. The position vectors of the vertices A, B and C of triangle are $\hat{i} + \hat{j}, \hat{j} + \hat{k}$ and $\hat{i} + \hat{k}$, respectively. Find the unit vectors \hat{r} lying in the plane of ABC and perpendicular to IA, where I is the incentre of the triangle.

2. A ship is sailing towards the north at a speed of 1.25 m/s. The current is taking it towards the east at the rate of 1 m/s and a sailor is climbing a vertical pole on the ship at the rate of 0.5 m/s. Find the velocity of the sailor in space.

3. Given four points $P_1, P_2, P_3 and P_4$ on the coordinate plane with origin

$$O$$
 which satisfy the condition $\left(\overrightarrow{O}P \right)_{n-1} \left(\overrightarrow{+}OP \right)_{n-1} = rac{3}{2} \overrightarrow{O}P_n$. i. If

ii. iii. iv. P_v .1*vi. vii. andviii.* $P_i x.2x$. ξ . ξ *i.* xiii. lie on the curve xvii. then xiv. xv. xy = 1, xvi.prove that xviii. ξx . \times . $P_x xi. 3xxii$. $\times iii$. $\times iv$. xxv. does not lie on the curve. xxvi. If $xxvii. \ imes viii. \ imes ix. \ P_x xx. 1xxxi. \ imes \xi i. \ , xxxiii. \ P_x xxiv. 2xxxv. \ imes xvi. \ a$ xlii. lie the circle on $xliii. xliv. xlv. x^{xlvi.2xlvii}. xlviii. + xlix. y^{l.2li}. lii. = 1, liii.$ liv. then

prove that $lv. lvi. lvii. P_lviii.4 lix. lx. l\xi$. Ixii. also lies on this circle.

Watch Video Solution

4. *ABCD* is a tetrahedron and *O* is any point. If the lines joining *O* to the vrticfes meet the opposite faces at *P*, *Q*, *RandS*, prove that $\frac{OP}{AP} + \frac{OQ}{BQ} + \frac{OR}{CR} + \frac{OS}{DS} = 1.$

5. A pyramid with vertex at point P has a regular hexagonal base ABCDEF. Position vectors of points A and B are \hat{i} and $\hat{i} + 2\hat{j}$, respectively. The centre of the base has the position vector $\hat{i} + \hat{j} + \sqrt{3}\hat{k}$.

Altitude drawn from P on the base meets the diagonal AD at point G. Find all possible vectors of G. It is given that the volume of the pyramid is $6\sqrt{3}$ cubic units and AP is 5 units.

6. A straight line L cuts the lines AB, ACandAD of a parallelogram ABCD at points $B_1, C_1 and D_1$, respectively. If

 $\begin{pmatrix} \overrightarrow{A} B \\ 1 \end{pmatrix}_1, \lambda_1 \overset{\longrightarrow}{A} B, \\ \begin{pmatrix} \overrightarrow{A} D \\ 1 \end{pmatrix}_1 = \lambda_2 \overset{\longrightarrow}{A} Dand \\ \begin{pmatrix} \overrightarrow{A} C \\ 1 \end{pmatrix}_1 = \lambda_3 \overset{\longrightarrow}{A} C, \text{ then prove that } \frac{1}{\lambda_3} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}.$

Watch Video Solution

7. The position vectors of the points P and Q are $5\hat{i} + 7\hat{j} - 2\hat{k}$ and $-3\hat{i} + 3\hat{j} + 6\hat{k}$, respectively. Vector

 $\overrightarrow{A} = 3\hat{i} - \hat{j} + \hat{k}$ passes through point P and vector $\overrightarrow{B} = -3\hat{i} + 2\hat{j} + 4\hat{k}$ passes through point Q. A third vector $2\hat{i} + 7\hat{j} - 5\hat{k}$ intersects vectors A and B. Find the position vectors of points of intersection.

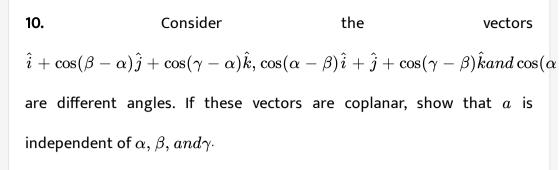
8. Show that
$$x_1\hat{i} + y_1\hat{j} + z_1\hat{k}, x_2\hat{i} + y_2\hat{j} + z_2\hat{k}$$
 and $x_3\hat{i} + y_3\hat{j} + z_3\hat{k}$

are non-coplnar if $|x_1|>|y_1|+|z_1|$,

 $|y_2|>|x_2|+|z_2| \,\, {
m and} \,\, |z_3|>|x_3|+|y_3|.$

Watch Video Solution

9. If \overrightarrow{A} and \overrightarrow{B} are two vectors and k any scalar quantity greater than zero, then prove that $\left|\overrightarrow{A} + \overrightarrow{B}\right|^2 \leq (1+k)\left|\overrightarrow{A}\right|^2 + \left(1 + \frac{1}{k}\right)\left|\overrightarrow{B}\right|^2$



Watch Video Solution

11. In a triangle PQR, SandT are points on QRandPR, respectively, such that QS = 3SRandPT = 4TR. Let M be the point of intersection of PSandQT. Determine the ratio QM:MT using the vector method .

Watch Video Solution

12. A boat moves in still water with a velocity which is k times less than the river flow velocity. Find the angle to the stream direction at which the boat should be rowed to minimize drifting. **13.** If D, EandF are three points on the sides BC, CAandAB, respectively, of a triangle ABC such that the $\frac{BD}{CD}$, $\frac{CE}{AE}$, $\frac{AF}{BF} = -1$

Watch Video Solution

14. In a quadrilateral PQRS, $\overrightarrow{P}Q = \overrightarrow{a}$, $\overrightarrow{Q}R$, \overrightarrow{b} , $\overrightarrow{S}P = \overrightarrow{a} - \overrightarrow{b}$, M is the midpoint of $\overrightarrow{Q}RandX$ is a point on SM such that $SX = \frac{4}{5}SM$. Prove that P, XandR are collinear.

Watch Video Solution

Exercise Single

1. Four non zero vectors will always be a. linearly dependent b. linearly independent c. either a or b d. none of these

A. linearly dependent

B. linearly independent

C. either a or b

D. none of these

Answer: A

Watch Video Solution

2. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three unit vectors such that $3\overrightarrow{a} + 4\overrightarrow{b} + 5\overrightarrow{c} = \overrightarrow{0}$. Then which of the following statements is true? (A) \overrightarrow{a} is parallel to vecb (B)vecaisperpendic<u>a</u> $r \rightarrow \overrightarrow{b}$ (C) \overrightarrow{a} is neither paralel nor perpendicular to \overrightarrow{b} (D) $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are copalanar A. \overrightarrow{a} is parallel to \overrightarrow{b} B. \overrightarrow{a} is perpendicular to \overrightarrow{b}

C. \overrightarrow{a} is neither parallel nor perpendicular to \overrightarrow{b}

D. none of these

Answer: D

3. Let ABC be a triangle the position vectors of whose vertices are respectively $\hat{i} + 2\hat{j} + 4\hat{k}$, $-2\hat{i} + 2\hat{j} + \hat{k}$ and $2\hat{i} + 4\hat{j} - 3\hat{k}$. Then the $\triangle ABC$ is (A) isosceles (B) equilateral (C) righat angled (D) none of these

A. isosceles

B. equilateral

C. right angled

D. none of these

Answer: C

Watch Video Solution

4. If
$$\left| \overrightarrow{a} + \overrightarrow{b} \right| < \left| \overrightarrow{a} - \overrightarrow{b} \right|$$
, then the angle between \overrightarrow{a} and \overrightarrow{b} can lie in

the interval

A.
$$(-\pi/2, \pi/2)$$

B. $(0, \pi)$
C. $(\pi/2, 3\pi/2)$
D. $(0, 2\pi)$

Answer: C

Watch Video Solution

5. A point O is the centre of a circle circunscribed about a triangle ABC. Then, $\overrightarrow{O}A\sin 2A + \overrightarrow{bO}B\sin 2B + \overrightarrow{O}C\sin 2C$ is equal to

A.
$$\left(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}\right)\sin 2A$$

B. $3\overrightarrow{OG}$, where G is the centroid of triangle ABC

 $\mathsf{C}.\stackrel{\longrightarrow}{0}$

D. none of these

Answer: C

6. If G is the centroid of a triangle ABC, prove that $\overrightarrow{G}A + \overrightarrow{G}B + \overrightarrow{G}C = \overrightarrow{0}$.

A. $\overrightarrow{0}$ B. $3\overrightarrow{GA}$ C. $3\overrightarrow{GB}$

D. $3\overrightarrow{GC}$

Answer: A

Watch Video Solution

7. If \overrightarrow{a} is a non zero vecrtor iof modulus \overrightarrow{a} and m is a non zero scalar such that ma is a unit vector, write the value of m.

A. $m=~\pm 1$

B.
$$a=|m|$$

C. $a=1/|m|$
D. $a=rac{1}{m}$

Answer: C

Watch Video Solution

8. ABCD a parallelogram, and A_1 and B_1 are the midpoints of sides BC and CD, respectively. If $\overrightarrow{aA_1} + \overrightarrow{AB_1} = \lambda \overrightarrow{AC}$, then λ is equal to `

A. $\frac{1}{2}$

B. 1

C.
$$\frac{3}{2}$$

 $\mathsf{D.}\,2$

Answer: C

9. The position vectors of the points P and Q with respect to the origin O are $\vec{a} = \hat{i} + 3\hat{j} - 2\hat{k}$ and $\vec{b} = 3\hat{i} - \hat{j} - 2\hat{k}$, respectively. If M is a point on PQ, such that OM is the bisector of POQ, then \overrightarrow{OM} is

$$egin{aligned} \mathsf{A}.\,2\Big(\hat{i}-\hat{j}+\hat{k}\Big) \ \mathsf{B}.\,2\hat{i}+\hat{j}-2\hat{k} \ \mathsf{C}.\,2\Big(-\hat{i}+\hat{j}-\hat{k}\Big) \ \mathsf{D}.\,2\Big(\hat{i}+\hat{j}+\hat{k}\Big) \end{aligned}$$

Answer: B

Watch Video Solution

10. ABCD is a quadrilateral. E is the point of intersection of the line joining the midpoints of the opposite sides. If O is any point and $\overrightarrow{O}A + \overrightarrow{O}B + \overrightarrow{O}C + \overrightarrow{O}D = x\overrightarrow{O}E$, then x is equal to a. 3 b. 9 c. 7 d. 4

Answer: D

D. 4

Watch Video Solution

11. The vector $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are sides of a triangle ABC. The length of the median through A is (A) $\sqrt{18}$ (B) $\sqrt{72}$ (C) $\sqrt{33}$ (D) $\sqrt{288}$

A. $\sqrt{14}$

B. $\sqrt{18}$

C. $\sqrt{29}$

D. 5

Answer: B

12. A, B, C and D have position vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} , repectively, such that $\overrightarrow{a} - \overrightarrow{b} = 2\left(\overrightarrow{d} - \overrightarrow{c}\right)$. Then

A. AB and CD bisect each other

B. BD and AC bisect each other

C. AB and CD trisect each other

D. BD and AC trisect each other

Answer: D

13. If \overrightarrow{a} and \overrightarrow{b} are two unit vectors and θ is the angle between them, then the unit vector along the angular bisector of \overrightarrow{a} and \overrightarrow{b} will be given by

A.
$$\frac{\overrightarrow{a} - \overrightarrow{b}}{2\cos(\theta/2)}$$

B.
$$\frac{\overrightarrow{a} + \overrightarrow{b}}{2\cos(\theta/2)}$$

C.
$$\frac{\overrightarrow{a} - \overrightarrow{b}}{\cos(\theta/2)}$$

D. none of these

Answer: B

14. let us define , the length of a vector as |a|+|b|+|c|. this definition coincides with the usual definition of the length of a vector $a\hat{i}+b\hat{j}+c\hat{k}$ if

A. a = b = c = 0

B. any two of a, b and c are zero

C. any one of a, b and c is zero

D.
$$a + b + c = 0$$

Answer: B

> Watch Video Solution

15. Given three vectors $\overrightarrow{a} = \hat{i} - 3\hat{j}, \overrightarrow{b} = 2\hat{i} - t\hat{j}$ and $\overrightarrow{c} = -2\hat{i} + 21\hat{j}$ such that $\overrightarrow{\alpha} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$. Then the resolution of te vector $\overrightarrow{\alpha}$ into components with respect to \overrightarrow{a} and \overrightarrow{b} is given by (A) $3\overrightarrow{a} - 2\overrightarrow{b}$ (B) $2\overrightarrow{a} - 3\overrightarrow{b}$ (C) $3\overrightarrow{b} - 2\overrightarrow{a}$ (D) none of these

A.
$$3\overrightarrow{a} - 2\overrightarrow{b}$$

B. $3\overrightarrow{b} - 2\overrightarrow{a}$
C. $2\overrightarrow{a} - 3\overrightarrow{b}$
D. $\overrightarrow{a} - 2\overrightarrow{b}$

Answer: C

16. If $\overrightarrow{\alpha} + \overrightarrow{\beta} + \overrightarrow{\gamma} = a \overrightarrow{\delta} and \overrightarrow{\beta} + \overrightarrow{\gamma} + \overrightarrow{\delta} = b \overrightarrow{\alpha}, \overrightarrow{\alpha} and \overrightarrow{\delta}$ are noncolliner, then $\overrightarrow{\alpha} + \overrightarrow{\beta} + \overrightarrow{\gamma} + \overrightarrow{\delta}$ equals a. $a \overrightarrow{\alpha}$ b. $b \overrightarrow{\delta}$ c. 0 d. $(a + b) \overrightarrow{\gamma}$

A. $a \overrightarrow{\alpha}$ B. $b \overrightarrow{\delta}$ C. 0 D. $(a + b) \overrightarrow{\gamma}$

Answer: C

Watch Video Solution

17. In triangle ABC, $\angle A = 30^{\circ}$, H is the orthocenter and D is the midpoint of BC. Segment HD is produced to T such that HD = DT. The length AT is equal to a. 2BC b. 3BC c. $\frac{4}{2}BC$ d. none of these

B. 3 BC

C.
$$\frac{4}{3}BC$$

D. none of these

Answer: A

Watch Video Solution

18. Let vecr_1, vecr_2,.....vecr_nbetheposition of $p \oint sP_1, P_2, \dots, P_n$ respectively relative \rightarrow an or $ig \in O$. Show fif the \implies requasion a_1vecr_1+a_2vecr_2+..+a_nvecr_n=vec0

 $holds, then a similar equation will also holdg \infty dwi < hrespect o any other any other and the second state of the second st$

a_1+a_2+.....+a_n=0`

A.
$$a_1+a_2+\ldots+a_n=n$$

B.
$$a_1 + a_2 + \ldots + a_n = 1$$

$$\mathsf{C}.\,a_1+a_2+\ldots+a_n=0$$

D. $a_1 = a_2 = a_3 = \ldots = a_n = 0$

Answer: C

19. Given three non-zero, non-coplanar vectors
$$\overrightarrow{a}, \overrightarrow{b}$$
 and \overrightarrow{c} .
 $\overrightarrow{r}_1 = \overrightarrow{pa} + \overrightarrow{qb} + \overrightarrow{c}$ and $\overrightarrow{r}_2 = \overrightarrow{a} + \overrightarrow{pb} + \overrightarrow{qc}$. If the vectors
 $\overrightarrow{r}_1 + 2\overrightarrow{r}_2$ and $2\overrightarrow{r}_1 + \overrightarrow{r}_2$ are collinear, then (p, q) is
A. $(0, 0)$
B. $(1, -1)$
C. $(-1, 1)$
D. $(1, 1)$

Answer: D

Watch Video Solution

20. If the vectors \overrightarrow{a} and \overrightarrow{b} are linearly independent and satisfying $(\sqrt{3}\tan\theta - 1)\overrightarrow{a} + (\sqrt{3}\sec\theta - 2)\overrightarrow{b} = \overrightarrow{0}$, then the most general values of θ are:

A.
$$n\pi - rac{\pi}{6}, n \in Z$$

B. $2n\pi \pm rac{11\pi}{6}, n \in Z$
C. $n\pi \pm rac{\pi}{6}, n \in Z$
D. $2n\pi + rac{11\pi}{6}, n \in Z$

Answer: D

Watch Video Solution

21. In a trapezium ABCD the vector $\overrightarrow{BC} = \lambda \overrightarrow{AD}$. If $\overrightarrow{p} = \overrightarrow{AC} + \overrightarrow{BD}$ is coillinear with \overrightarrow{AD} such that $\overrightarrow{p} = \mu \overrightarrow{AD}$, then

A.
$$\mu=lpha+2$$

B. $\mu + \alpha = 1$

C. $lpha=\mu+1$

D. $\mu = \alpha + 1$

Answer: D

Watch Video Solution

22. Vectors
$$\overrightarrow{a} = \hat{i} + 2\hat{j} + 3\hat{k}$$
, $\overrightarrow{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j} + 4\hat{k}$

are so placed that the end point of one vector is the starting point of the

next vector. Then the vectors are

A. not coplanar

B. coplanar but cannot form a triangle

C. coplanar and form a triangle

D. coplanar and can form a right-angled triangle

Answer: B

23. Vectors $\overrightarrow{a} = -4\hat{i} + 3\hat{k}$; $\overrightarrow{b} = 14\hat{i} + 2\hat{j} - 5\hat{k}$ are laid off from one point. Vector \hat{d} , which is being laid of from the same point dividing the angle between vectors \overrightarrow{a} and \overrightarrow{b} in equal halves and having the magnitude $\sqrt{6}$, is a. $\hat{i} + \hat{j} + 2\hat{k}$ b. $\hat{i} - \hat{j} + 2\hat{k}$ c. $\hat{i} + \hat{j} - 2\hat{k}$ d. $2\hat{i} - \hat{j} - 2\hat{k}$

A. $\hat{i}+\hat{j}+2\hat{k}$ B. $\hat{i}-\hat{j}+2\hat{k}$ C. $\hat{i}+\hat{j}-2\hat{k}$ D. $2\hat{i}-\hat{j}-2\hat{k}$

Answer: A

Watch Video Solution

24. If $\hat{i} - 3\hat{j} + 5\hat{k}$ bisects the angle between \hat{a} and $-\hat{i} + 2\hat{j} + 2\hat{k}$, where \hat{a} is a unit vector, then

$$\begin{aligned} \mathsf{A}.\, \widehat{a} &= \frac{1}{150} \Big(41 \hat{i} + 88 \hat{j} - 40 \hat{k} \Big) \\ \mathsf{B}.\, \widehat{a} &= \frac{1}{105} \Big(41 \hat{i} + 88 \hat{j} + 40 \hat{k} \Big) \\ \mathsf{C}.\, \widehat{a} &= \frac{1}{105} \Big(-41 \hat{i} + 88 \hat{j} - 40 \hat{k} \Big) \\ \mathsf{D}.\, \widehat{a} &= \frac{1}{105} \Big(41 \hat{i} - 88 \hat{j} - 40 \hat{k} \Big) \end{aligned}$$

Answer: D

Watch Video Solution

25. If $4\hat{i} + 7\hat{j} + 8\hat{k}$, $2\hat{i} + 3\hat{j} + 4\hat{k}$ and $2\hat{i} + 5\hat{j} + 7\hat{k}$ are the position vectors of the vertices A, B and C, respectively, of triangle ABC, then the position vector of the point where the bisector of angle A meets BC is

A.
$$rac{2}{3}\Big(-6\hat{i}-8\hat{j}-6\hat{k}\Big)$$

B. $rac{2}{3}\Big(6\hat{i}+8\hat{j}+6\hat{k}\Big)$
C. $rac{1}{3}\Big(6\hat{i}+13\hat{j}+18\hat{k}\Big)$
D. $rac{1}{3}\Big(5\hat{j}+12\hat{k}\Big)$

Answer: C

Watch Video Solution

26. If \overrightarrow{b} is a vector whose initial point divides the join of $5\hat{i}and5\hat{j}$ in the ratio k:1 and whose terminal point is the origin and $\left|\overrightarrow{b}\right| \leq \sqrt{37}$, thenk lies in the interval a. [-6, -1/6] b. $(-\infty, -6] \cup [-1/6, \infty)$ c. [0, 6] d. none of these

A.
$$[\,-6,\ -1/16]$$

B. $(\,-\infty,\ -6]\cup[\,-1/6,\infty)$
C. $[0,6]$

D. none of these

Answer: B

Watch Video Solution

27. The value of the λ so that P, Q, R, S on the sides OA, OB, OC and AB of a regular tetrahedron are coplanar. When $\frac{OP}{OA} = \frac{1}{3}$; $\frac{OQ}{OB} = \frac{1}{2}$ and $\frac{OS}{AB} = \lambda$ is (A) $\lambda = \frac{1}{2}$ (B) $\lambda = -1$ (C) $\lambda = 0$ (D) $\lambda = 2$ A. $\lambda = \frac{1}{2}$ B. $\lambda = -1$ C. $\lambda = 0$

D. for no value of λ

Answer: B

Watch Video Solution

28. 'I' is the incentre of triangle ABC whose corresponding sides are a, b, c, rspectively. $\overrightarrow{aI}A + \overrightarrow{bI}B + \overrightarrow{cI}C$ is always equal to $a. \overrightarrow{0} b.$ $(a + b + c)\overrightarrow{B}Cc.(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})\overrightarrow{A}Cd.(a + b + c)\overrightarrow{A}B$ $\overrightarrow{A}\overrightarrow{0}$

B.
$$(a + b + c)\overrightarrow{BC}$$

C. $\left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right)\overrightarrow{AC}$
D. $(a + b + c)\overrightarrow{AB}$

Answer: A

Watch Video Solution

29. Let $x^2 + 3y^2 = 3$ be the equation of an ellipse in the x - y plane. AandB are two points whose position vectors are $-\sqrt{3}\hat{i}and - \sqrt{3}\hat{i} + 2\hat{k}$. Then the position vector of a point P on the ellipse such that $\angle APB = \pi/4$ is a. $\pm \hat{j}$ b. $\pm (\hat{i} + \hat{j})$ c. $\pm \hat{i}$ d. none of these

A. $\pm \hat{j}$ B. $\pm \left(\hat{i} + \hat{j}
ight)$ C. $\pm \hat{i}$

D. none of these

Answer: A

30. Locus of the point P, for which \overrightarrow{OP} represents a vector with direction cosine $\cos \alpha = \frac{1}{2}$ (where O is the origin) is

A. a circle parallel to the y-z plane with centre on the x-axis

B.a conic concentric with the positive x-axis having vertex at the

origin and slant height equal to the magnitude of the vector

C. a ray emanating from the origin and making an angle of 60° with

the x-axis

D. a dise parallel to the y-z plane with centre on the x-axis and radius equal to $\left|\overrightarrow{OP}\right|\sin 60^{\circ}$.

Answer: B

31. If \overrightarrow{x} and \overrightarrow{y} are two non-collinear vectors and ABC is a triangle with side lengths a,b and c satisfying (20a-15b) \overrightarrow{x} + (15b-12c) \overrightarrow{y} + (12c-20a) $\overrightarrow{x} \times \overrightarrow{y}$ is:

A. an acute-angled triangle

B. an obtuse-angled triangle

C. a right-angled triangle

D. an isosceles triangle

Answer: C

32. A uni-modular tangent vector on the curve

$$x = t^2 + 2, y = 4t - 5, z = 2t^2 - 6t = 2$$
 is a. $\frac{1}{3}(2\hat{i} + 2\hat{j} + \hat{k})$ b.
 $\frac{1}{3}(\hat{i} - \hat{j} - \hat{k})$ c. $\frac{1}{6}(2\hat{i} + \hat{j} + \hat{k})$ d. $\frac{2}{3}(\hat{i} + \hat{j} + \hat{k})$
A. $\frac{1}{3}(2\hat{i} + 2\hat{j} + \hat{k})$

B.
$$rac{1}{3}ig(\hat{i}-\hat{j}-\hat{k}ig)$$

C. $rac{1}{6}ig(2\hat{i}+\hat{j}+\hat{k}ig)$
D. $rac{2}{3}ig(\hat{i}+\hat{j}+\hat{k}ig)$

Answer: A

Watch Video Solution

33. If \overrightarrow{x} and \overrightarrow{y} are two non-collinear vectors and a, b and c represent the sides of a ΔABC satisfying $(a-b)\overrightarrow{x} + (b-c)\overrightarrow{y} + (c-a)(\overrightarrow{\times} x\overrightarrow{y}) = 0$, then ΔABC is (where $\overrightarrow{x} \times \overrightarrow{y}$ is perpendicular to the plane of \overrightarrow{x} and \overrightarrow{y})

A. an acute-angled triangle

B. an obtuse-angled triangle

C. a right-angled triangle

D. a scalene triangle

Answer: A

34. \overrightarrow{A} is a vector with direction cosines $\cos \alpha$, $\cos \beta$ and $\cos \gamma$. Assuming the y - z plane as a mirror, the directin cosines of the reflected image of \overrightarrow{A} in the plane are a. $\cos \alpha$, $\cos \beta$, $\cos \gamma$ b. $\cos \alpha$, $-\cos \beta$, $\cos \gamma$ c. $-\cos \alpha$, $\cos \beta$, $\cos \gamma$ d. $-\cos \alpha$, $-\cos \beta$, $-\cos \gamma$

A. $\cos \alpha$, $\cos \beta$, $\cos \gamma$

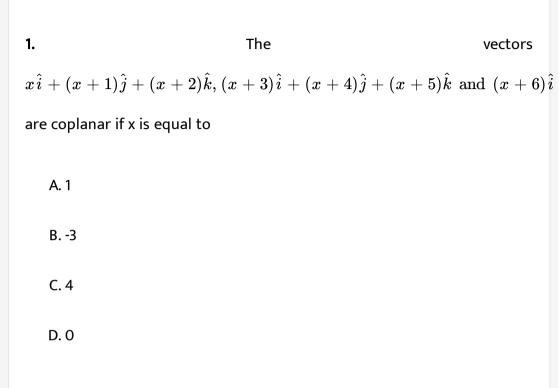
B. $\cos \alpha$, $-\cos \beta$, $\cos \gamma$

 $\mathsf{C}.-\coslpha,\coseta,\cos\gamma$

 $\mathsf{D.}-\coslpha,\ -\coseta,\ -\cos\gamma$

Answer: C

Watch Video Solution



Answer: A::B::C::D

Watch Video Solution

2. The sides of a parallelogram are $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$. The unit vector parallel to one of the diagonals is

A.
$$rac{1}{7} \Big(3 \hat{i} + 6 \hat{j} - 2 \hat{k} \Big)$$

$$\begin{array}{l} \mathsf{B.} \ \frac{1}{7} \Big(3 \hat{i} - 6 \hat{j} - 2 \hat{k} \Big) \\ \mathsf{C.} \ \frac{1}{\sqrt{69}} \Big(\hat{i} + 2 \hat{j} + 8 \hat{k} \Big) \\ \mathsf{D.} \ \frac{1}{\sqrt{69}} \Big(- \hat{i} - 2 \hat{j} + 8 \hat{k} \Big) \end{array}$$

Answer: A::D

Watch Video Solution

3. The vector \overrightarrow{a} has the components 2p and 1 w.r.t. a rectangular Cartesian system. This system is rotated through a certain angel about the origin in the counterclockwise sense. If, with respect to a new system, \overrightarrow{a} has components (p+1)and1, then p is equal to a. -4 b. -1/3 c. 1 d.

 $\mathbf{2}$

A. -1

B. - 1/3

C. 1

 $\mathsf{D}.2$

Answer: B::C

4. If points
$$\hat{i}+\hat{j},\,\hat{i}-\hat{j}\,\, ext{and}\,\,p\hat{i}+q\hat{j}+r\hat{k}$$
 are collinear, then

A. p = 1

 $\mathsf{B.}\,r=0$

 $\mathsf{C}.\,q\in R$

D. q
eq 1

Answer: A::B::D

5. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non coplanar vectors and λ is a real number, then the vectors $\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$, $\lambda\overrightarrow{b} + 4$ and $(2\lambda - 1)\overrightarrow{c}$ are non coplanar for

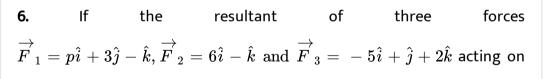
A. $\mu \in R$

B.
$$\lambda=rac{1}{2}$$

 $\mathsf{C}.\,\lambda=0$

D. no value of λ

Answer: A::B::C



a particle has a magnitude equal to 5 units, then the value of p is

A. - 6

 $\mathsf{B.}-4$

C. 2

D. 4

Answer: B::C

7. If the vectors $\hat{i} - \hat{j}$, $\hat{j} + \hat{k}$ and \overrightarrow{a} form a triangle then \overrightarrow{a} may be (A) $-\hat{i} - \hat{k}$ (B) $\hat{i} - 2\hat{j} - \hat{k}$ (C) $2\hat{i} + \hat{j} + \hat{j}k$ (D) hati+hatk` A. $-\hat{i} - \hat{k}$ B. $\hat{i} - 2\hat{j} - \hat{k}$ C. $2\hat{i} + \hat{j} + \hat{k}$ D. $\hat{i} + \hat{k}$

Answer: A::B::D

8. The vector $\hat{i} + x\hat{j} + 3\hat{k}$ is rotated through an angle heta and doubled in

magnitude, then it becomes $4\hat{i}+(4x-2)\hat{j}+2\hat{k}$. Then values of x are

(A)
$$-\frac{2}{3}$$
 (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) 2
A. 1
B. $-2/3$
C. 2
D. $4/3$

Answer: B::C

Watch Video Solution

9. $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are three coplanar unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$. If three vectors $\overrightarrow{p}, \overrightarrow{q}$ and \overrightarrow{r} are parallel to $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} , respectively, and have integral but different magnitudes, then among the following options, $\left|\overrightarrow{p} + \overrightarrow{q} + \overrightarrow{r}\right|$ can take a value equal to

A. 1

B. 0

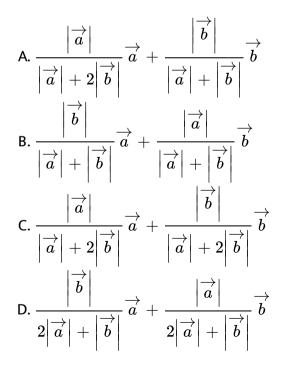
C. $\sqrt{3}$

 $\mathsf{D.}\,2$

Answer: C::D

Watch Video Solution

10. If non-zero vectors \overrightarrow{a} and \overrightarrow{b} are equally inclined to coplanar vector \overrightarrow{c} , then \overrightarrow{c} can be



Answer: B::D

11. If A(-4, 0, 3)andB(14, 2, -5), then which one of the following points lie on the bisector of the angle between $\overrightarrow{O}Aand\overrightarrow{O}B(O$ is the origin of reference)? a. (2, 2, 4) b. (2, 11, 5) c. (-3, -3, -6) d. (1, 1, 2)

- A. (2, 2, 4)
- B.(2, 11, 5)
- C. (-3, -3, -6)
- D.(1, 1, 2)

Answer: A::C::D

Watch Video Solution

12. In a four-dimensional space where unit vectors along the axes are $\hat{i}, \hat{j}, \hat{k}and\hat{l}, and \overrightarrow{a}_1, \overrightarrow{a}_2, \overrightarrow{a}_3, \overrightarrow{a}_4$ are four non-zero vectors such that no vector can be expressed as a linear combination of others and $(\lambda - 1)(\overrightarrow{a}_1 - \overrightarrow{a}_2) + \mu(\overrightarrow{a}_2 + \overrightarrow{a}_3) + \gamma(\overrightarrow{a}_3 + \overrightarrow{a}_4 - 2\overrightarrow{a}_2) + \overrightarrow{a}_3 + \delta\overrightarrow{a}_4$ then a. $\lambda = 1$ b. $\mu = -2/3$ c. $\gamma = 2/3$ d. $\delta = 1/3$

A. $\lambda=1$

B. $\mu=-2/3$

C. $\gamma=2/3$

D. $\delta=1/3$

Answer: A::B::D

13. Let ABC be a triangle, the position vectors of whose vertices are respectively

 $7\hat{j} + 10\hat{k}, \ - \ \hat{i} + 6\hat{j} + 6\hat{k} \ \ ext{and} \ \ - 4\hat{i} + 9\hat{j} + 6\hat{k}. \ \ ext{Then}, \ \ \Delta ABC$ is

A. isosceles

B. equilateral

C. right angled

D. none of these

Answer: A::C

Watch Video Solution

Exercise Reasoning Questions

1. Each question has four choices a, b, c, and d, out of which only one is correct. Each question contains STATEMENT 1 and STATEMENT 2. a. Both the statements are TRUE and statement 2 is the correct explanation for Statement 1. b. Both the statements are TRUE but Statement 2 is NOT the correct explanation for Statement 1. c. Statement 1 is TRUE and Statement 2 is FALSE. d. Statement 1 is FALSE and Statement 2 is TRUE. A vector has components p and 1 with respect to a rectangular Cartesian system. The

axes are rotted through an angel α about the origin the anticlockwise sense. Statement 1: IF the vector has component p + 2 and 1 with respect to the new system, then p = -1. Statement 2: Magnitude of the origin vector and the new vector remains the same.

- A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
- B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

- C. Statement 1 is true and Statement 2 is false.
- D. Statement 1 is false and Statement 2 is true.

Answer: A

Watch Video Solution

2. Statement 1: if three points P, QandR have position vectors $\overrightarrow{a}, \overrightarrow{b}, and \overrightarrow{c}$, respectively, and $2\overrightarrow{a} + 3\overrightarrow{b} - 5\overrightarrow{c} = 0$, then the points

- P, Q, and R must be collinear. Statement 2: If for three points $A, B, and C, \overrightarrow{A}B = \lambda \overrightarrow{A}C$, then points A, B, and C must be collinear.
 - A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
 - B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

C. Statement 1 is true and Statement 2 is false.

D. Statement 1 is false and Statement 2 is true.

Answer: A

Watch Video Solution

3. Statement 1: If \overrightarrow{u} and \overrightarrow{v} are unit vectors inclined at an angle α and \overrightarrow{x} is a unit vector bisecting the angle between them, then $\overrightarrow{x} = \left(\overrightarrow{u} + \overrightarrow{v}\right) / (2\sin(\alpha/2))$. Statement 2: If Delta*ABC* is an isosceles

triangle with AB = AC = 1, then the vector representing the bisector of angel A is given by $\overrightarrow{A}D = \left(\overrightarrow{A}B + \overrightarrow{A}C\right)/2$.

A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

C. Statement 1 is true and Statement 2 is false.

D. Statement 1 is false and Statement 2 is true.

Answer: D

Watch Video Solution

4. Statement 1: If $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ are the direction cosines of any line segment, then $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$. Statement 2: If $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ are the direction cosines of any line segment, then $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.

A. Both the statements are true, and Statement 2 is the correct

explanation for Statement 1.

B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

- C. Statement 1 is true and Statement 2 is false.
- D. Statement 1 is false and Statement 2 is true.

Answer: B

Watch Video Solution

5. Statement 1: The direction cosines of one of the angular bisectors of two intersecting line having direction cosines as $l_1, m_1, n_1 and l_2, m_2, n_2$ are proportional to $l_1 + l_2, m_1 + m_2, n_1 + n_2$. Statement 2: The angle between the two intersection lines having direction cosines as $l_1, m_1, n_1 and l_2, m_2, n_2$ is given by $\cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2$. A. Both the statements are true, and Statement 2 is the correct

explanation for Statement 1.

B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

- C. Statement 1 is true and Statement 2 is false.
- D. Statement 1 is false and Statement 2 is true.

Answer: B

Watch Video Solution

6. Statement 1: In DeltaABC, $\overrightarrow{A}B + \overrightarrow{A}B + \overrightarrow{C}A = 0$ Statement 2: If $\overrightarrow{O}A = \overrightarrow{a}$, $\overrightarrow{O}B = \overrightarrow{b}$, $then\overrightarrow{A}B = \overrightarrow{a} + \overrightarrow{b}$

A. Both the statements are true, and Statement 2 is the correct

explanation for Statement 1.

B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

C. Statement 1 is true and Statement 2 is false.

D. Statement 1 is false and Statement 2 is true.

Answer: C

Watch Video Solution

7. Statement 1:
$$\overrightarrow{a} = 3\overrightarrow{i} + p\overrightarrow{j} + 3\overrightarrow{k}$$
 and $\overrightarrow{b} = 2\overrightarrow{i} + 3\overrightarrow{j} + q\overrightarrow{k}$ are
parallel vectors if $p = 9/2$ and $q = 2$.
Statement 2 : If
 $\overrightarrow{a} = a_1\overrightarrow{i} + a_2\overrightarrow{j} + a_3\overrightarrow{k}$ and $\overrightarrow{b} = b_1\overrightarrow{i} + b_2\overrightarrow{j} + b_3\overrightarrow{k}$ are parallel,
then $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$.

A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

C. Statement 1 is true and Statement 2 is false.

D. Statement 1 is false and Statement 2 is true.

Answer: A

Watch Video Solution

8. Statement 1 : If
$$\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{a} - \overrightarrow{b} \right|$$
, then \overrightarrow{a} and \overrightarrow{b} are

perpendicular to each other.

Statement 2 : If the diagonals of a parallelogram are equal in magnitude, then the parallelogram is a rectangle.

- A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
- B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

C. Statement 1 is true and Statement 2 is false.

D. Statement 1 is false and Statement 2 is true.

Answer: A

Watch Video Solution

9. Statement 1 : Let $A(\overrightarrow{a}), B(\overrightarrow{b})$ and $C(\overrightarrow{c})$ be three points such that $\overrightarrow{a} = 2\hat{i} + \hat{k}, veb = 3\hat{i} - \hat{j} + 3\hat{k}$ and $\overrightarrow{c} = -\hat{i} + 7\hat{j} - 5\hat{k}$. Then OABC is tetrahedron. Statement 2 : Let $A(\overrightarrow{a}), B(\overrightarrow{b})$ and $C(\overrightarrow{c})$ be three points such that vectors $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are non-coplanar. Then OABC is a tetrahedron,

where O is the origin.

A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

C. Statement 1 is true and Statement 2 is false.

D. Statement 1 is false and Statement 2 is true.

Answer: A

Watch Video Solution

10. Statement 1: Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} and \overrightarrow{d}$ be the position vectors of four points A, B, CandD and $3\overrightarrow{a} - 2\overrightarrow{b} + 5\overrightarrow{c} - 6\overrightarrow{d} = 0$. Then points A, B, C, andD are coplanar. Statement 2: Three non-zero, linearly dependent coinitial vector $\left(\overrightarrow{P}Q, \overrightarrow{P}Rand\overrightarrow{P}S\right)$ are coplanar. Then $\overrightarrow{P}Q = \lambda \overrightarrow{P}R + \mu \overrightarrow{P}S$, where $\lambda and \mu$ are scalars.

A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

- B. Both the statements are true, but Statement 2 is not the correct explanation for Statement 1.
- C. Statement 1 is true and Statement 2 is false.

D. Statement 1 is false and Statement 2 is true.

Answer: A

> Watch Video Solution

11. Statement 1 : If $\left|\overrightarrow{a}\right| = 3$, $\left|\overrightarrow{b}\right| = 4$ and $\left|\overrightarrow{a} + \overrightarrow{b}\right| = 5$, then $\left|\overrightarrow{a} - \overrightarrow{b}\right| = 5$.

Statement 2 : The length of the diagonals of a rectangle is the same.

- A. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.
- B. Both the statements are true, but Statement 2 is not the correct

explanation for Statement 1.

- C. Statement 1 is true and Statement 2 is false.
- D. Statement 1 is false and Statement 2 is true.

Answer: A

Exercise Comprehension

1. ABCD is a parallelogram. L is a point on BC which divides BC in the ratio 1:2. AL intersects BD at P.M is a point on DC which divides DC in the ratio 1:2 and AM intersects BD in Q.

Point P divides AL in the ratio

A.1:2

B.1:3

C.3:1

D. 2:1

Answer: C

2. ABCD is a parallelogram. L is a point on BC which divides BC in the ratio
1: 2. AL intersects BD at P.M is a point on DC which divides DC in the ratio
1: 2 and AM intersects BD in Q.

Point Q divides DB in the ratio

A. 1:2

B.1:3

C.3:1

 $\mathsf{D}.\,2\!:\!1$

Answer: B

Watch Video Solution

3. ABCD is a parallelogram. L is a point on BC which divides BC in the ratio

 $1\!:\!2$ AL intersects BD at P.M is a point on DC which divides DC in the ratio

 $1\!:\!2$ and AM intersects BD in Q.

PQ:DB is equal to

A. 2/3

B. 1/3

C.1/2

D. 3/4

Answer: C

Watch Video Solution

4. If ABCDEF is a regular hexagon then $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}$ equals :

A. 2 \overrightarrow{AB}

B. 3 \overrightarrow{AB}

C. 4 \overrightarrow{AB}

D. none of these

Answer: C

5. Consider the ragular hexagon ABCDEF with centre at O (origin).

Five forces \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{AE} , \overrightarrow{AF} act at the vertex A of a regular hexagon ABCDEF. Then their resultant is

A. \overrightarrow{AO} B. \overrightarrow{AO} C. \overrightarrow{AO}

D. $\overrightarrow{6AO}$

Answer: D

View Text Solution

6. Let A, B, C, D, E represent vertices of a regular pentagon ABCDE. Given the position vector of these vertices be $\overrightarrow{a}, \overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b}, \lambda \overrightarrow{a}$ and $\lambda \overrightarrow{b}$, respectively.

The ratio $\frac{AD}{BC}$ is equal to

A.
$$1 - \cos \frac{3\pi}{5} : \cos \frac{3\pi}{5}$$

B. $1 + 2\cos \frac{2\pi}{5} : \cos \frac{\pi}{5}$
C. $1 + 2\cos \frac{\pi}{5} : 2\cos \frac{\pi}{5}$

D. None of these

Answer: C

View Text Solution

7. Let A, B, C, D, E represent vertices of a regular pentagon ABCDE. Given the position vector of these vertices be $\overrightarrow{a}, \overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b}, \lambda \overrightarrow{a}$ and $\lambda \overrightarrow{b}$, respectively.

AD divides EC in the ratio

A. $\cos \frac{2\pi}{5}$: 1 B. $\cos \frac{3\pi}{5}$: 1 C. 1: $2\cos \frac{\pi}{5}$

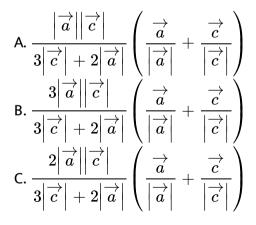
D.1:2

Answer: C

Watch Video Solution

8. In a parallelogram OABC, vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are, respectively, tehe position vectors of vertices A, B, C with reference to O as origin. A point E is taken on the side BC which divides it in the ratio 2:1. Also, the line segment AE intersects the line bisecting the angle $\angle AOC$ internally at point P. If CP when extended meets AB in point F, then

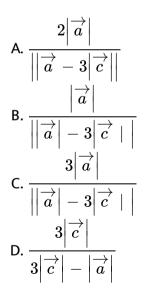
The position vector of point P is



D. None of these

Answer: B

9. In a parallelogram OABC, vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are, respectively, tehe position vectors of vertices A, B, C with reference to O as origin. A point E is taken on the side BC which divides it in the ratio 2:1. Also, the line segment AE intersects the line bisecting the angle $\angle AOC$ internally at point P. If CP when extended meets AB in point F, then The ratio in which F divides AB is



Answer: D

View Text Solution

1. Let OABCD be a pentagon in which the sides OA and CB are parallel and							
the	sides	OD	and	AB	are	parallel.	Also
OA: CB = 2:1 and OD: AB = 1:3.							
The ratio $\frac{OX}{XC}$ is							
A. 3	/4						
B.1,	/ 3						
C. 2	/5						
D. 1	/2						
Answer	: C						

View Text Solution

2. Let OABCD be a pentagon in which the sides OA and CB are parallel and the sides OD and parallel. Also AB are OA: CB = 2:1 and OD: AB = 1:3. The ratio $\frac{AX}{XD}$ is A. 5/2**B**. 6 C.7/3D. 4 Answer: B

View Text Solution

Matrix Match Type

1. Refer to the following diagram :

Column II Column I \overrightarrow{a} Collinear vectors p. a. \overrightarrow{b} Coinitial vectors b. q. \overrightarrow{c} Equal vectors \boldsymbol{r}_{\cdot} c. \overrightarrow{d} d. Unlike vectors (same initial point) s.

View Text Solution

2. \overrightarrow{a} and \overrightarrow{b} form the consecutive sides of a regular hexagon ABCDEF.

View Text Solution

3. 🔛

View Text Solution

1. Let ABC be a triangle whose centroid is G, orhtocentre is H and circumcentre is the origin 'O'. If D is any point in the plane of the triangle such that no three of O, A, C and D are collinear satisfying the relation $\overrightarrow{AD} + \overrightarrow{BD} + \overrightarrow{CH} + 3\overrightarrow{HG} = \lambda \overrightarrow{HD}$, then what is the value of the scalar ' λ '?

View Text Solution

2. If the resultant of three forces $\overrightarrow{F}_1 = p\hat{i} + 3\hat{j} - \hat{k}, \overrightarrow{F}_2 = -5\hat{i} + \hat{j} + 2\hat{k}$ and $\overrightarrow{F}_3 = 6\hat{i} - \hat{k}$ acting on a particle has a magnitude equal to 5 units, then what is difference in the values of p?

3. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be unit vector such that $\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c} = 0$. If the area of triangle formed by vectors \overrightarrow{a} and \overrightarrow{b} is A, then what is the value of $4A^2$?

4. Find the least positive integral value of x form which the angle between

vectors $\overrightarrow{a} = x\hat{i} - 3\hat{j} - \hat{k} \, ext{ and } \, \overrightarrow{b} = 2x\hat{i} + x\hat{j} - \hat{k}$ is acute.

View Text Solution

5. Vectors along the adjacent sides of parallelogram are $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} + \hat{k}$. Find the length of the longer

diagonal of the parallelogram.

6. If vectors $\overrightarrow{a} = \hat{i} + 2\hat{j} - \hat{k}, \ \overrightarrow{b} = 2\hat{i} - \hat{j} + \hat{k} \text{ and } \overrightarrow{c} = \lambda\hat{i} + \hat{j} + 2\hat{k}$

are coplanar, then find the value of $(\lambda-4).$

Jee Previous Year

 Find the all the values of lamda such that (x,y,z)!=(0,0,0) and x(hati+hatj+3hatk)+y(3hati-

3hatj+hatk)+z(-4hati+5hatj)=lamda(xhati+yhatj+zhatk)`

Watch Video Solution

2. A vector a has components a_1, a_2, a_3 in a right handed rectangular cartesian coordinate system OXYZ the coordinate axis is rotated about z axis through an angle $\frac{\pi}{2}$. The components of a in the new system

3. The position vectors of the point A, B, C and D are $3\hat{i} - 2\hat{j} - \hat{k}, 2\hat{i} + 3\hat{j} - 4\hat{k}, -\hat{i} + \hat{j} + 2\hat{k}$ and $4\hat{i} + 5\hat{j} + \lambda\hat{k}$,

respectively. If the points A, B, C and D lie on a plane, find the value of λ .

4. Let OACB be a parallelogram with O at the origin and OC a diagonal. Let D be the midpoint of OA using vector methods prove that BDandCO intersect in the same ratio. Determine this ratio.

5. In a triangle ABC, DandE are points on BCandAC, respectivley, such that BD = 2DCandAE = 3EC. Let P be the point of intersection of ADandBE. Find BP/PE using the vector method.

6. Prove, by vector method or otherwise, that the point of intersection of the diagonals of a trapezium lies on the line passing through the midpoint of the parallel sides (you may assume that the trapezium is not a parallelogram).

Watch Video Solution

7. Show, by vector methods, that the angularbisectors of a triangle are concurrent and find an expression for the position vector of the point of concurrency in terms of the position vectors of the vertices.

 $A(t) = f_1(t) \overrightarrow{i} + f_2(t) \overrightarrow{j}$ and $\overrightarrow{B}(t) = g_1(t) \overrightarrow{i} + g_2(t) \overrightarrow{j}$, $t \in [0, 1]$ where f_1 , are continuous functions. If $\overrightarrow{A}(t)$ and $\overrightarrow{B}(t)$ are non zero for all $t \in [0, 1]$ and $\overrightarrow{A}(0) = 2 \overrightarrow{i} + 3 \overrightarrow{j}$, $\overrightarrow{A}(1) = 6 \overrightarrow{i} = 2 \overrightarrow{j}$, $\overrightarrow{B}(0) = 3 \overrightarrow{i} + 2 \overrightarrow{j}$ as prove that $\overrightarrow{A}(t)$ and $\overrightarrow{B}(t)$ are parallel for some $t \in (0, 1)$

Let

9. In a $\triangle OAB$, E is the mid point of OB and D is the point on AB such that AD: DB = 2:1 If OD and AE intersect at P then determine the ratio of OP: PD using vector methods

Watch Video Solution

$$\begin{array}{c|c} \mathbf{10.\, If} \begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0 \text{ and the vectors} \\ \overrightarrow{A} = \begin{pmatrix} 1, a, a^2 \end{pmatrix}, \ \overrightarrow{B} = \begin{pmatrix} 1, b, b^2 \end{pmatrix}, \ \overrightarrow{C} \begin{pmatrix} 1, c, c^2 \end{pmatrix} \end{array}$$

are non-coplanar then the product abc =

11. If the vectors

$$a\hat{i} + \hat{j} + \hat{k}, \hat{i} + b\hat{j} + \hat{k}, \hat{i} + \hat{j} + c\hat{k}(a \neq 1, b \neq 1, c \neq 1)$$
 are coplanat
then the value of $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}$ is (A) 0 (B) 1 (C) -1 (D) 2

12. The points with position vectors $\vec{a} + \vec{b}$, $\vec{a} - \vec{b}$ and $\vec{a} + k\vec{b}$ are

collinear for all real values of k.

Watch Video Solution

13. The points with position vectors $60\hat{i} + 3\hat{j}, 40\hat{i} - 8\hat{j}, 40\hat{i} - 8\hat{j}, a\hat{i} - 52\hat{j}$ are collinear iff (A) a = -40 (B) a = 40 (C) a = 20 (D) none of these A. a = -40B. a = 40C. a = 20

D. none of these

Answer: A

14. Let a, b and c be distinct non-negative numbers. If vectos $a\hat{i} + a\hat{j} + c\hat{k}, \hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ are coplanar, then c is

A. the arithmetic mean of a and b

B. the geometric mean of a and b

C. the harmonic mean of a and b

D. equal to zero

Answer: B

15. Let

$$\overrightarrow{a} = \overrightarrow{i} - \overrightarrow{k}, \overrightarrow{b} = x\overrightarrow{i} + \overrightarrow{j} + (1-x)\overrightarrow{k}$$
 and $\overrightarrow{c} = y\overrightarrow{i} + x\overrightarrow{j} + (1+x)$
. Then $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are non-coplanar for

A. some values of x

B. some values of y

C. no values of x and y

D. for all values of x and y

Answer: D

Watch Video Solution

16. Let α, β, γ be distinct real numbers. The points with position vectors

$$lpha \hat{i} + eta \hat{j} + \gamma \hat{k}, eta \hat{i} + \gamma \hat{j} + lpha \hat{k}, \gamma \hat{i} + lpha \hat{j} + eta \hat{k}$$

A. are collinear

B. form an equilateral triangle

C. form a scalene triangle

D. form a right-angled triangle

Answer: B

17. The number of distinct values of λ , for which the vectors $-\lambda^2 \hat{i} + \hat{j} + \hat{k}, \hat{i} - \lambda^2 \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} - \lambda^2 \hat{k}$ are coplanar, is

A. zero

B. one

C. two

D. three

Answer: C

Watch Video Solution

18. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\overrightarrow{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\overrightarrow{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$
are linearly dependent vectors and $\left|\overrightarrow{c}\right| = \sqrt{3}$ then

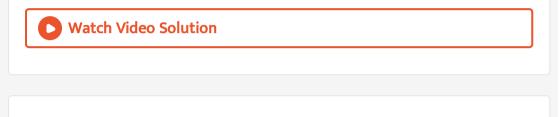
A.
$$lpha=1, eta=-1$$

B. $lpha=1, eta=\pm 1$

$$\mathsf{C}.\,\alpha=\,-\,1,\beta=\,\pm\,1$$

D.
$$\alpha = \pm 1, \beta = 1$$

Answer: D



19. Consider the set of eight vector $V = \left\{a\hat{i} + b\hat{j} + c\hat{k}; a, bc \in \{-1, 1\}
ight\}$. Three non-coplanar vectors can

be chosen from V is 2^p ways. Then p is_____.

Watch Video Solution

20. Suppose that \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r} are three non-coplanar vectors in \mathbb{R}^3 . Let the components of a vectors \overrightarrow{s} along \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r} be 4, 3 and 5, respectively. If the components of this vector \overrightarrow{s} along $\left(-\overrightarrow{p}+\overrightarrow{q}+\overrightarrow{r}\right), \left(\overrightarrow{p}-\overrightarrow{q}+\overrightarrow{r}\right)$ and $\left(-\overrightarrow{p}-\overrightarrow{q}+\overrightarrow{r}\right)$ are x, y and z, respectively, then the value of 2x + y + z is

