©゙doubtnut

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

MATRICES

Examples

1. If e^{A} is defined as $e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\ldots=\frac{1}{2}\left[\begin{array}{ll}f(x) & g(x) \\ g(x) & f(x)\end{array}\right]$, where
$A=\left[\begin{array}{ll}x & x \\ x & x\end{array}\right], 0<x<1$ and I is identity matrix, then find the functions $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$.

- Watch Video Solution

2. Prove that matrix $\left[\begin{array}{cc}\frac{b^{2}-a^{2}}{a^{2}+b^{2}} & \frac{-2 a b}{a^{2}+b^{2}} \\ \frac{-2 a b}{a^{2}+b^{2}} & \frac{a^{2}-b^{2}}{a^{2}+b^{2}}\end{array}\right]$ is orthogonal.

- Watch Video Solution

3. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, where $\mathbf{a}, \mathrm{b}, \mathrm{c}$ and d are real numbers, then prove that $A^{2}-(a+d) A+(a d-b c) I=O$. Hence or therwise, prove that if $A^{3}=O$ then $A^{2}=O$

Watch Video Solution

4. Statement 1: If $A=\left(\left[a_{i j}\right]\right)_{n \times n}$ is such that $(a)_{i j}=a_{j i}, \forall i, j a n d A^{2}=O$, then matrix A null matrix. Statement 2: $|A|=0$.
5. Find the possible square roots of the two-rowed unit matrix I.

- Watch Video Solution

6. Prove the orthogonal matrices of order two are of the form $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ or $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$

- Watch Video Solution

7. Let $A=\left[\begin{array}{cc}\tan \frac{\pi}{3} & \sec \frac{2 \pi}{3} \\ \cot \left(2013 \frac{\pi}{3}\right) & \cos (2012 \pi)\end{array}\right]$ and P be a 2×2 matrix such that $P P^{T}=I$, where 1 is an identity matrix of order 2. If $Q=P A P^{T}$ and $R=\left[r_{\mathrm{ij}}\right]_{2 \times 2}=P^{T} Q^{8} P$, then find r_{11}.
8. Consider, $A=\left[\begin{array}{ccc}a & 2 & 1 \\ 0 & b & 0 \\ 0 & -3 & c\end{array}\right]$, where a, b and c are the roots of the equation $x^{3}-3 x^{2}+2 x-1=0$. If matric B is such that $A B=B A, A+B-2 I \neq O$ and $A^{2}-B^{2}=4 I-4 B$, then find the value of det. (B)

- Watch Video Solution

9. If A and B are square matrices of order 3 such that det. $(A)=-2$ and det. $(B)=1$, then det. $\left(A^{-1} \operatorname{adj} B^{-1} . \operatorname{adj}\left(2 A^{-1}\right)\right.$ is equal to

- Watch Video Solution

10. If a matrix has 28 elements, what are the possible orders it can have ?

- Watch Video Solution

11. Construct a 2×2 matrix, where
(i) $a_{\mathrm{ij}}=\frac{(i-2 j)^{2}}{2}$ (ii) $a_{\mathrm{ij}}=|-2 i+3 j|$

(Watch Video Solution

12. What is the maximum number of different elements required to form a symmetric matrix of order 12 ?

Watch Video Solution

13. If a square matix a of order three is defined $A=\left[a_{\mathrm{ij}}\right]$ where $a_{\mathrm{ij}}=\operatorname{sgn}(i-j)$, then prove that A is skew-symmetric matrix.

- Watch Video Solution

14. For what values of x and y are the following matrices equal ?
$A=\left[\begin{array}{cc}2 x+1 & 3 y \\ 0 & y^{2}-5 y\end{array}\right], B=\left[\begin{array}{cc}x+3 & y^{2}+2 \\ 0 & -6\end{array}\right]$

- Watch Video Solution

15. For $\alpha, \beta, \gamma \in R$, let
$A=\left[\begin{array}{ccc}\alpha^{2} & 6 & 8 \\ 3 & \beta^{2} & 9 \\ 4 & 5 & \gamma^{2}\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 \alpha & 3 & 5 \\ 2 & 2 \beta & 6 \\ 1 & 4 & 2 \gamma-3\end{array}\right]$

- Watch Video Solution

16. Find the values of x for which matrix $\left[\begin{array}{ccc}3 & -1+x & 2 \\ 3 & -1 & x+2 \\ x+3 & -1 & 2\end{array}\right]$ is singular.

- Watch Video Solution

17. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$ and $B=\left[\begin{array}{cc}-3 & -2 \\ 1 & -5 \\ 4 & 3\end{array}\right]$, then find $D=\left[\begin{array}{cc}p & q \\ r & s \\ t & u\end{array}\right]$ such that $A+B-D=O$.

- Watch Video Solution

18. $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$ and $A+A^{T}=I$, find the value of α.

- Watch Video Solution

19. Let A be a square matrix. Then prove that (i) $A+A^{T}$ is a symmetric matrix,(ii) $A-A^{T}$ is a skew-symmetric matrix and(iii) \forall^{T} and $A^{T} A$ are symmetric matrices.

- Watch Video Solution

20. If $A=[2-131]$ and $B=[1472]$, find $3 A-2 B$

Watch Video Solution

21. Find non-zero values of x satisfying the matrix equation: $x[2 x 23 x]+2[85 x 44 x]=2\left[x^{2}+824106 x\right]$

- Watch Video Solution

22. Let $A+2 B=\left[\begin{array}{ccc}1 & 2 & 0 \\ 6 & -1 & 3 \\ -5 & 3 & 1\end{array}\right]$ and $2 A-B=\left[\begin{array}{ccc}2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2\end{array}\right]$, then find $\operatorname{tr}(A)-\operatorname{tr}(B)$.

- Watch Video Solution

23. If $\left[\begin{array}{cc}\lambda^{2}-2 \lambda+1 & \lambda-2 \\ 1-\lambda^{2}+3 \lambda & 1-\lambda^{2}\end{array}\right]=A \lambda^{2}+B \lambda+C$, where A, B and C are matrices then find matrices B and C .
24. Prove that every square matrix can be uniquely expressed as the sum of a symmetric matrix and a skew-symmetric matrix.

- Watch Video Solution

25. Matrix A ha $s m$ rows and $n+5$ columns; matrix B has m rows and $11-n$ columns. If both $A B$ and $B A$ exist, then (A) $A B$ and $B A$ are square matrix (B) $A B$ and $B A$ are of order 8×8 and 3×13, respectively (C) $A B=B A(D)$ None of these

- Watch Video Solution

26. If $A=\left[\begin{array}{ccc}2 & 3 & -1 \\ 1 & 4 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 3 \\ 4 & 5 \\ 2 & 1\end{array}\right]$ then $A B$ and $B A$ are defined and equal.
27. Find the value of x and y that satisfy the equations $\left[\begin{array}{cc}3 & -2 \\ 3 & 0 \\ 2 & 4\end{array}\right]\left[\begin{array}{ll}y & y \\ x & x\end{array}\right]=\left[\begin{array}{cc}3 & 3 \\ 3 y & 3 y \\ 10 & 10\end{array}\right]$

- Watch Video Solution

28. Find the values of x, y, z if the matrix $A=[02 y z x y-z x-y z]$ satisfy the equation $A^{T} A=I_{3}$.

- Watch Video Solution

29. If $A=[\cos \theta \sin \theta-\sin \theta \cos \theta]$, then prove that
$A^{n}=[\cos n \theta \sin n \theta-\sin n \theta \cos n \theta], n \in N$.

- Watch Video Solution

30. If $A=\left(\begin{array}{ll}p & q \\ 0 & 1\end{array}\right)$, then show that $A^{8}=\left(\begin{array}{cc}p^{8} & q\left(\frac{p^{8}-1}{p-1}\right. \\ 0 & 1\end{array}\right)$

- Watch Video Solution

31. Let $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]$ be a matrix. If $A^{10}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then prove that $a+d$ is divisible by 13 .

- Watch Video Solution

32. Show that the solution of the equation $\left[\begin{array}{ll}x & y \\ z & t\end{array}\right]^{2}=O$ is $\left[\begin{array}{ll}x & y \\ z & t\end{array}\right]=\left[\begin{array}{cc} \pm \sqrt{\alpha \beta} & -\beta \\ \alpha & \pm \sqrt{\alpha \beta}\end{array}\right]$ where α, β are arbitrary.

- Watch Video Solution

33. Let a be square matrix. Then prove that $A A^{T}$ and $A^{T} A$ are symmetric matrices.

- Watch Video Solution

34. If A, B are square materices of same order and B is a skewsymmetric matrix, show that $A^{T} B A$ is skew-symmetric.

- Watch Video Solution

35. If a and B are square matrices of same order such that $A B+B A=O$, then prove that $A^{3}-B^{3}=(A+B)\left(A^{2}-A B-B^{2}\right)$.

- Watch Video Solution

36. Let $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]$.If $A^{6}=k A-205 I$ then then numerical quantity of
$k-40$ should be

(D) Watch Video Solution

37. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ be (not necessarily square) real matrices such that $A^{T}=B C D: B^{T}=C D A ; C^{T}=D A B$ and $D^{T}=A B C$. For the matrix $S=A B C D$, consider the two statements. I. $S^{3}=S$ II. $S^{2}=S^{4}$ (A) II is true but not I (B) I is true but not II (C) both I and II are true (D) both I and II are false

- Watch Video Solution

38. If A and B are square matrices of the same order such that $A B=B A$, then proveby induction that $A B^{n}=B^{n} A$. Further, prove that $(A B)^{n}=A^{n} B^{n}$ for all $n \in N$.
39. If $A=[-110-2]$, then prove that $A^{2}+3 A+2 I=O$ Hence, find BandC matrices of order 2 with integer elements, if $A=B^{3}+C^{3}$

- Watch Video Solution

40. If $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$ then find $\operatorname{tr}\left(A^{2012}\right)$.

D Watch Video Solution

41. If A is a nonsingular matrix satisfying $A B-B A=A$, then prove that det.
$(B+I)=\operatorname{det},(B-I)$.

- Watch Video Solution

42. If det, $(A-B) \neq 0, A^{4}=B^{4}, C^{3} A=C^{3} B$ and $B^{3} A=A^{3} B$, then find the value of det. $\left(A^{3}+B^{3}+C^{3}\right)$.
43. Given a matrix $A=[a b c b c a c a b]$, wherea, b, c are real positive numbers $a b c=1 a n d A^{T} A=I$, then find the value of $a^{3}+b^{3}+c^{3}$

- Watch Video Solution

44. If M is a 3×3 matrix, where $\operatorname{det} M=1$ and $M M^{T}=1$, whereI is an identity matrix, prove theat $\operatorname{det}(M-I)=0$.

- Watch Video Solution

45. Consider point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ in first quadrant. Its reflection about x -axis is $Q\left(x_{1}, y_{1}\right)$. So, $x_{1}=x$ and $y(1)=-y$.

This may be written as : $\left\{\begin{array}{l}x_{1}=1 . x+0 . y \\ y_{1}=0 . x+(-1) y\end{array}\right.$
This system of equations can be put in the matrix as :
$\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
Here, matrix $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ is the matrix of reflection about x-axis. Then find the matrix of
(i) reflection about y-axis
(ii) reflection about the line $y=x$
(iii) reflection about origin
(iv) reflection about line $y=(\tan \theta) x$

- View Text Solution

46. If $A=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ then A is ${ }^{\prime} 1$) an idempotent matrix 2) nilpotent matrix 3) involutary 4) orthogonal matrix

- Watch Video Solution

47. If $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]$ then find $A^{14}+3 A-2 I$

- Watch Video Solution

48. The matrix $A=[-5-8035012-]$ is a. idempotent matrix b. involutory matrix c. nilpotent matrix d. none of these

- Watch Video Solution

49. If $a b c=p$ and $A=\left[\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right]$, prove that A is orthogonal if and only if $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the roots of the equation $x^{3} \pm x^{2}-p=0$.

- Watch Video Solution

50. Let A be an orthogonal matrix, and B is a matrix such that $A B=B A$, then show that $A B^{T}=B^{T} A$.

Watch Video Solution

51. Find the adjoint of the matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 1 & -3 \\ -1 & 2 & 3\end{array}\right]$.

- Watch Video Solution

52. If $S=\left[\begin{array}{cc}\frac{\sqrt{3}-1}{2 \sqrt{2}} & \frac{\sqrt{3}+1}{2 \sqrt{2}} \\ -\left(\frac{\sqrt{3}+1}{2 \sqrt{2}}\right) & \frac{\sqrt{3}-1}{2 \sqrt{2}}\end{array}\right], A=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]$ and $P=S($ adj.A $) S^{T}$, then find matrix $S^{T} P^{10} S$.

- Watch Video Solution

53. If A is a square matrix such that $A(\operatorname{adj} A)=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]$, then
$=\frac{|\operatorname{adj}(\operatorname{adj} A)|}{2|\operatorname{adj} A|}$ is equal to

- Watch Video Solution

54. Let A be a square matrix of order 3 such that
adj. (adj. (adj. A)) $=\left[\begin{array}{ccc}16 & 0 & -24 \\ 0 & 4 & 0 \\ 0 & 12 & 4\end{array}\right]$. Then find
(i) $|A|$ (ii) adj. A

- Watch Video Solution

55. Let $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$ and $10 B=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3\end{array}\right]$. If B is the inverse of A, then α is :
56. Matrices a and B satisfy $A B=B^{-1}$, where $B=\left[\begin{array}{cc}2 & -1 \\ 2 & 0\end{array}\right]$. Find
(i) without finding B^{-1}, the value of K for which
$K A-2 B^{-1}+I=O$.
(ii) without finding A^{-1}, the matrix X satifying $A^{-1} X A=B$.

Watch Video Solution

57. Given the matrices a and B as $A=\left[\begin{array}{ll}1 & -1 \\ 4 & -1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & -1 \\ 2 & -2\end{array}\right]$. The two matrices X and Y are such that $X A=B$ and $A Y=B$, then find the matrix $3(X+Y)$

- Watch Video Solution

58. If M is the matrix $\left[\begin{array}{cc}1 & -3 \\ -1 & 1\end{array}\right]$ then find matrix $\sum_{r=0}^{\infty}\left(\frac{-1}{3}\right)^{r} M^{r+1}$
59. Let p be a non singular matrix, and $I+P+p^{2}+\ldots+p^{n}=0$, then find p^{-1}.

- Watch Video Solution

60. If A and B are square matrices of same order such that $A B=O$ and $B \neq O$, then prove that $|A|=0$.

- Watch Video Solution

61. If A is a symmetric matrix, B is a skew-symmetric matrix, $A+B$ is nonsingular and $C=(A+B)^{-1}(A-B)$, then prove that
(i) $C^{T}(A+B) C=A+B$ (ii) $C^{T}(A-B) C=A-B$
(iii) $C^{T} A C=A$
62. If the matrices, A, B and $(A+B)$ are non-singular, then prove that $\left[A(A+B)^{-1} B\right]^{-1}=B^{-1}+A^{-1}$.

- Watch Video Solution

63. If matrix a satisfies the equation $A^{2}=A^{-1}$, then prove that $A^{2^{n}}=A^{2^{(n-1)}}, n \in N$.

- Watch Video Solution

64. If a and B are non-singular symmetric matrices such that $A B=B A$, then prove that $A^{-1} B^{-1}$ is symmetric matrix.

- Watch Video Solution

65. If A is a matrix of order n such that $A^{T} A=I$ and X is any matric such that $X=(A+I)^{-1}(A-I)$, then show that X is skew symmetric matrix.
66. Show that two matrices
$A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}3 & 0 & 1 \\ 0 & 3 & 1\end{array}\right]$ are row equivalent.

- Watch Video Solution

67. Using elementary transformations, find the inverse of the matrix : (20-1510013)

- Watch Video Solution

68. Let a be a 3×3 matric such that

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 3 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \text {, then find } A^{-1}
$$

- Watch Video Solution

69. Solve the following system of equations, using matrix method. $x+2 y+z=7, x+3 z=11,2 x-3 y=1$

- Watch Video Solution

70. Using matrix method, show that following system of equation is inconsistent: $2 x+3 y-z+4=0 x-y+2 z-7=0 x+4 y-3 z+5=0$

- Watch Video Solution

71. $A=\left[\begin{array}{lll}a & 1 & 0 \\ 1 & b & d \\ 1 & b & c\end{array}\right], B=\left[\begin{array}{lll}a & 1 & 1 \\ 0 & d & c \\ f & g & h\end{array}\right], U=\left[\begin{array}{l}f \\ g \\ h\end{array}\right], V=\left[\begin{array}{c}a^{2} \\ 0 \\ 0\end{array}\right]$ If there is a vector matrix X , such that $A X=U$ has infinitely many solutions, then prove that $B X=V$ cannot have a unique solution. If $a f d \neq 0$. Then,prove that $B X=V$ has no solution.

- Watch Video Solution

72. Find the characteristic roots of the two-rowed orthogonal matrix $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ and verify that they are of unit modulus.

- Watch Video Solution

73. Show that if $\lambda_{1}, \lambda_{2}, \ldots$. , lamnda n are n eigenvalues of a square matrix a of order n, then the eigenvalues of the matric A^{2} are $\lambda_{1}^{2}, \lambda_{2}^{2}, \ldots, \lambda_{n}^{2}$.

(Watch Video Solution

74. If A is nonsingular, prove that the eigenvalues of A^{-1} are the reciprocals of the eigenvalue of A.

D Watch Video Solution

75. If one of the eigenvalues of a square matrix a order 3×3 is zero, then prove that $\operatorname{det} A=0$.
76. Construct a 3×4 matrix, whose elements are given by:(i) $a_{i j}=\frac{1}{2}|-3 i+j|$
(ii) $a_{i j}=2 i-j$

Watch Video Solution

2. Find the value of a if $[a-b 2 a+c 2 a-b 3 c+d]=[-15013]$

- Watch Video Solution

3. Find the number of all possible matrices of order 3×3 with each entry 0 or 1 . How many of these are symmetric ?

- Watch Video Solution

4. Find the value of x for which the matrix $A=\left[\begin{array}{ccc}2 / x & -1 & 2 \\ 1 & x & 2 x^{2} \\ 1 & 1 / x & 2\end{array}\right]$ is singular.

Watch Video Solution

5. If matric A is skew-symmetric matric of odd order, then show that tr. $A=$ det. A.

- Watch Video Solution

Exercise 132

1. Solve for x and $y, x\left[\begin{array}{l}2 \\ 1\end{array}\right]+y\left[\begin{array}{l}3 \\ 5\end{array}\right]+\left[\begin{array}{l}-8 \\ -11\end{array}\right]=0$.
2. If $A=\left[\begin{array}{ll}1 & 5 \\ 7 & 12\end{array}\right]$ and $B=\left[\begin{array}{ll}9 & 1 \\ 7 & 8\end{array}\right]$ then find a matrix C such that $3 A+5 B+2 C$ is a null matrix.

- Watch Video Solution

3. Solve the following equations for X and Y :
$2 X-Y=\left[\begin{array}{ccc}3 & -3 & 0 \\ 3 & 3 & 2\end{array}\right], 2 Y+X=\left[\begin{array}{ccc}4 & 1 & 5 \\ -1 & 4 & -4\end{array}\right]$

- Watch Video Solution

4. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 2 \\ 2 & 2 & 3\end{array}\right] B=\left[\begin{array}{ccc}1 & 2 & 2 \\ -2 & -1 & -2 \\ 2 & 2 & 3\end{array}\right]$ and $C=\left[\begin{array}{ccc}-1 & -2 & -2 \\ 2 & 1 & 2 \\ 2 & 2 & 3\end{array}\right]$ then find
the value of tr. $\left(A+B^{T}+3 C\right)$.

- Watch Video Solution

5. If $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -1\end{array}\right]$, then find all the possible values of λ such that the matrix $(A-\lambda I)$ is singular.

- Watch Video Solution

6. If matrix $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4\end{array}\right]=B+C$, where B is symmetric matrix and C is skew-symmetric matrix, then find matrices B and C.

- Watch Video Solution

Exercise 133

1. Consider the matrices
$A=\left[\begin{array}{ccc}4 & 6 & -1 \\ 3 & 0 & 2 \\ 1 & -2 & 5\end{array}\right], B=\left[\begin{array}{cc}2 & 4 \\ 0 & 1 \\ -1 & 2\end{array}\right], C=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$

Out of the given matrix products, which one is not defined?
A. $(A B)^{T} C$
B. $C^{T} C(A B)^{T}$
C. $C^{T} A B$
D. $A^{T} A B B^{T} C$

Answer: B

- Watch Video Solution

2. Let $A=B B^{T}+C C^{T}$, where $B=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right], C=\left[\begin{array}{c}\sin \theta \\ -\cos \theta\end{array}\right], \theta \in R$. Then prove that a is unit matrix.

- Watch Video Solution

3. The matrix $R(t)$ is defined by $R(t)=\left[\begin{array}{cc}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right]$. Show that $R(s) R(t)=R(s+t)$.

- Watch Video Solution

4. if $A=\left[\begin{array}{ll}i & 0 \\ 0 & i\end{array}\right]$ where $i=\sqrt{-1}$ and $x \varepsilon N$ then $A^{4 x}$ equals to:

- Watch Video Solution

5. If $A=\left[\begin{array}{cc}3 & -4 \\ 1 & -1\end{array}\right]$ prove that $A^{k}=\left[\begin{array}{cc}1+2 k & -4 k \\ k & 1-2 k\end{array}\right]$ where k is any positive integer.

- Watch Video Solution

6. If $A=\left[\begin{array}{cc}1 & 2 \\ 3 & -5\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ and X is a matrix such that $A=B X$, then $x=$

- Watch Video Solution

7. for what values of x :
$\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 2 \\ x\end{array}\right]=0 ?$

- Watch Video Solution

8. Find the matrix X so that $X[123456]=[-7-8-9246]$

- Watch Video Solution

9. IfA $=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then $\operatorname{Lim} x>\infty \frac{1}{n} A^{n}$ is

(D) Watch Video Solution

10. $A=\left[\begin{array}{ccc}3 & a & -1 \\ 2 & 5 & c \\ b & 8 & 2\end{array}\right]$ is symmetric and $B=\left[\begin{array}{ccc}d & 3 & a \\ b-a & e & -2 b-c \\ -2 & 6 & -f\end{array}\right]$ is skewsymmetric, then find $A B$.

- Watch Video Solution

Exercise 134

1. If A and B are matrices of the same order, then $A B^{T}-B^{T} A$ is a (a) skewsymmetric matrix (b) null matrix (c) unit matrix (d) symmetric matrix

- Watch Video Solution

2. If A and B are square matrices such that $A B=B A$ then prove that $A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)$.

(D) Watch Video Solution

3. If A is a square matrix such that $A^{2}=I$, then
$(A-I)^{3}+(A+I)^{3}-7 A$ is equal to

- Watch Video Solution

4. If B, C are square matrices of order nand if $A=B+C, B C=C B, C^{2}=O$, then without using mathematical induction, show that for any positive integer $p, A^{p-1}=B^{p}[B+(p+1) C]$.

- Watch Video Solution

5. Let A be any 3×2 matrix. Then prove that det. $\left(A A^{T}\right)=0$.

- Watch Video Solution

6. Let A be a matrix of order 3 , such that $A^{T} A=I$. Then find the value of $\operatorname{det}\left(A^{2}-I\right)$.

- Watch Video Solution

7. A and B are different matrices of order n satisfying $A^{3}=B^{3}$ and $A^{2} B=B^{2} A$. If det. $(A-B) \neq 0$, then find the value of det. $\left(A^{2}+B^{2}\right)$.

- Watch Video Solution

8. IfD $=\operatorname{diag}\left[d_{1}, d_{2}, d_{n}\right]$, then prove that $f(D)=\operatorname{diag}\left[f\left(d_{1}\right), f\left(d_{2}\right), f\left(d_{n}\right)\right]$, where $f(x)$ is a polynomial with scalar coefficient.

- Watch Video Solution

9. Point $P(x, y)$ is rotated by an angle θ in anticlockwise direction. The new
position of point P is $Q\left(x_{1}, y_{1}\right)$. If $\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]=A\left[\begin{array}{l}x \\ y\end{array}\right]$, then find matrix A .

- Watch Video Solution

10. How many different diagonal matrices of order n can be formed which are idempotent ?

- Watch Video Solution

11. How many different diagonal matrices of order n can be formed which are involuntary?
A. 2^{n}
B. $2^{n}-1$
C. 2^{n-1}
D. n

Answer: A

D Watch Video Solution

12. If A and B are n-rowed unitary matrices, then $A B$ and $B A$ are also unitary matrices.

- Watch Video Solution

Exercise 135

1. By the method of matrix inversion, solve the system.
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 5 & 7 \\ 2 & 1 & -1\end{array}\right]\left[\begin{array}{ll}x_{1} & y_{1} \\ x_{2} & y_{2} \\ x_{3} & y_{3}\end{array}\right]=\left[\begin{array}{cc}9 & 2 \\ 52 & 15 \\ 0 & -1\end{array}\right]$
2. Let $A=\left[\begin{array}{ccc}2 & 0 & 7 \\ 0 & 1 & 0 \\ 1 & -2 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}-x & 14 x & 7 x \\ 0 & 1 & 0 \\ x & -4 x & -2 x\end{array}\right]$ are two matrices such
that

$$
\begin{aligned}
& \text { that } \quad A B=(A B)^{-1} \quad \text { and } \\
& \operatorname{Tr}\left((A B)+(A B)^{2}+(A B)^{3}+(A B)^{4}+(A B)^{5}+(A B)^{6}\right)=
\end{aligned}
$$

Watch Video Solution

3. Find A^{-1} if $A=\left|\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right|$ and show that $A^{-1}=\frac{A^{2}-3 I}{2}$

- Watch Video Solution

4. For the matrix $A=[3175]$, find x and y so that $A^{2}+x I=y A$

- Watch Video Solution

5. If $A^{3}=O$, then prove that $(I-A)^{-1}=I+A+A^{2}$.

- Watch Video Solution

6. If $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right], B=\left[\begin{array}{cc}\cos 2 \beta & \sin 2 \beta \\ \sin 2 \beta & -\cos 2 \beta\end{array}\right]$ where $0<\beta<\frac{\pi}{2}$ then prove that $B A B=A^{-1}$ Also find the least positive value of α for which $B A^{4} B=A^{-1}$

- Watch Video Solution

7. If $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 2 & 3 \\ 1 & -1 & 3\end{array}\right], C=\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1\end{array}\right], D=\left[\begin{array}{c}10 \\ 13 \\ 9\end{array}\right]$, and $C B=D$. Solve the equation $A X=B$.

- Watch Video Solution

8. If A is a 2×2 matrix such that $A^{2}-4 A+3 I=O$, then prove that $(A+3 I)^{-1}=\frac{7}{24} I-\frac{1}{24} A$.

- Watch Video Solution

9. For two unimobular complex numbers z_{1} and z_{2}, find $\left[\begin{array}{ll}\bar{z}_{1} & -z_{2} \\ \bar{z}_{2} & z_{1}\end{array}\right]^{-1}\left[\begin{array}{ll}z_{1} & z_{2} \\ -\bar{z}_{2} & \bar{z}_{1}\end{array}\right]^{-1}$

- Watch Video Solution

10. Prove that inverse of a skew-symmetric matrix (if it exists) is skewsymmetric.

- Watch Video Solution

11. If square matrix a is orthogonal, then prove that its inverse is also orthogonal.

Watch Video Solution

12. If A is a skew symmetric matrix, then $B=(I-A)(I+A)^{-1}$ is (where I is an identity matrix of same order as of A)

- Watch Video Solution

13. Prove that $(\operatorname{adj} . A)^{-1}=\left(\operatorname{adj} . A^{-1}\right)$.

- Watch Video Solution

14. Using elementary transformation, find the inverse of the matrix
$A=\left[\begin{array}{cc}a & b \\ c & \left(\frac{1+b c}{a}\right)\end{array}\right]$.
15. Show that the two matrices $\mathrm{A}, P^{-1} A P$ have the same characteristic roots.

- Watch Video Solution

16. Show that the characteristics roots of an idempotent matris are either 0 or 1

- Watch Video Solution

17. If α is a characteristic root of a nonsin-gular matrix, then prove that $|A| \alpha \mid$ is a characteristic root of adj A.

- Watch Video Solution

1. If A is symmetric as well as skew-symmetric matrix, then A is
A. diagonal matrix
B. null matrix
C. triangular materix
D. none of these

Answer: B

- Watch Video Solution

2. Elements of a matrix A of order 10×10 are defined as $a_{i j}=\omega^{i+j}$ (where omega is cube root unity), then $\operatorname{tr}(\mathrm{A})$ of matrix is
A. 0
B. 1
C. 3
D. none of these

Answer: D

- Watch Video Solution

3. If $A_{1}, A_{2}, A_{2 n-1}$ aren skew-symmetric matrices of same order, then n
$B=\sum_{r=1}(2 r-1)\left(A^{2 r-1}\right)^{2 r-1}$ will be symmetric skew-symmetric neither symmetric nor skew-symmetric data not adequate
A. symmetric
B. skew-symmetric
C. neither symmetric nor skew-symmetric
D. data not adequate

Answer: B

4. The equation $[1 x y]\left[\begin{array}{ccc}1 & 3 & 1 \\ 0 & 2 & -1 \\ 0 & 2 & -1\end{array}\right]\left[\begin{array}{l}1 \\ x \\ y\end{array}\right]=[0]$ has
(i) (ii)
A.
(p) (r)
(i) (ii)
B.
(q) (p)
(i) (ii)
C. $(\mathrm{p})(\mathrm{q})$
(i) (ii)
D. $(r)(p)$

Answer: C

- Watch Video Solution

5. Let AandB be two 2×2 matrices. Consider the statements $A B=O A+O$ or $B=O A B=I_{2} A=B^{-1}(A+B)^{2}=A^{2}+2 A B+B^{2}$ (i) and
(ii) are false, (iii) is true (ii) and (iii) are false, (i) is true (i) is false (ii) and,
(iii) are true (i) and (iii) are false, (ii) is true
A. (i) and (ii) are false, (iii) is true
B. (ii) and (iii) are false, (i) is true
C. (i) is false, (ii) and (iii) are true
D. (i) and (iii) are false, (ii) is true

Answer: D

- Watch Video Solution

6. The number of diagonal matrix, A or ordern which $A^{3}=A$ is
A. 1
B. 0
C. 2^{n}
D. 3^{n}

Answer: D

7. A is a 2×2 matrix such that $A[1-1]=[-12] \operatorname{and}^{2}[1-1]=[10]$ The sum of the elements of A is -1 b. 0 c .2 d .5
A. -1
B. 0
C. 2
D. 5

Answer: D

- Watch Video Solution

8. If $\left[\begin{array}{cc}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]\left[\begin{array}{cc}\cos ^{2} \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin ^{2} \phi\end{array}\right]=O$ 'then value of ' θ - ϕ equals,
A. $2 n \pi, \in Z$
B. $n \frac{\pi}{2}, n \in Z$
C. $(2 n+1) \frac{\pi}{2}, n \in Z$
D. $n \pi, n \in Z$

Answer: C

D Watch Video Solution

9. If $A=[a b 0 a]$ is nth root of I_{2}, then choose the correct statements: If n is odd, $a=1, b=0$ If n is odd, $a=-1, b=0$ If n is even, $a=1, b=0$ If n is

A. i, ii, iii
B. ii, iii, iv
C. i, ii, iii, iv
D. i, iii, iv

Answer: D

10. If $[\alpha \beta \gamma-\alpha]$ is to be square root of two-rowed unit matrix, then α, β and γ should satisfy the relation. $1-\alpha^{2}+\beta \gamma=0$ b. $\alpha^{2}+\beta \gamma=0$ c. $1+\alpha^{2}+\beta \gamma=0$ d. $1-\alpha^{2}-\beta \gamma=0$
A. $1-\alpha^{2}+\beta \gamma=0$
B. $\alpha^{2}+\beta \gamma-1=0$
C. $1+\alpha^{2}+\beta \gamma=0$
D. $1-\alpha^{2}-\beta \gamma=0$

Answer: B

- Watch Video Solution

11. If $A=[i-i-i i] a n d B=[1-1-11]$, then A^{8} equals $4 B$ b. $128 B$ c. $-128 B \mathrm{~d}$. -64B
B. 128 B
C. -128 B
D. -64 B

Answer: B

- Watch Video Solution

12. If $\left[\begin{array}{cc}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right] A=\left[\begin{array}{ccc}-1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15\end{array}\right]$, then sum of all the elements of
matrix A is
A. 0
B. 1
C. 2
D. -3
13. For each real $x,-1<x<1$. Let $A(x)$ be the matrix $(1-x)^{-1}\left[\begin{array}{cc}1 & -x \\ -x & 1\end{array}\right]$ and $z=\frac{x+y}{1+x y}$. Then
A. $A(z)=A(x) A(y)$
B. $A(z)=A(x)-A(y)$
C. $A(z)=A(x)+A(y)$
D. $A(z)=A(x)[A(y)]^{-1}$

Answer: A

Watch Video Solution

14. Let $A=[0-\tan (\alpha / 2) \tan (\alpha / 2) 0]$ and I be the identity matrix of order 2 . Show that $I+A=(I-A)[\cos \alpha-\sin \alpha \sin \alpha \cos \alpha]$.
A. $-I+A$
B. $I-A$
C. $-I-A$
D. none of these

Answer: B

- Watch Video Solution

15. The number of solutions of the matrix equation $X^{2}=$ [1123] is a. more than2 b. 2 c. 0 d. 1
A. more then 2
B. 2
C. 0
D. 1
16. If $A=[a b c d]$ (where $b c \neq 0$) satisfies the equations $x^{2}+k=0$, then $a+d=0 \mathrm{~b} . K=-|A| \mathrm{c} . \mathrm{k}=|A| \mathrm{d}$. none of these
A. $a+d=0$
B. $k=-|A|$
C. $k=|A|$
D. none of these

Answer: C

- Watch Video Solution

17.

$$
A=\left[\begin{array}{ll}
2 & 1 \\
4 & 1
\end{array}\right] ; B=\left[\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right] \quad \& \quad c=\left[\begin{array}{cc}
3 & -4 \\
-2 & 3
\end{array}\right],
$$

$\operatorname{tr}(A)+\operatorname{tr}\left[\frac{A B C}{2}\right]+\operatorname{tr}\left[\frac{A(B C)^{2}}{4}\right]+\operatorname{tr}\left[\frac{A(B C)^{2}}{8}\right]+\ldots . . \infty$ is:
A. 6
B. 9
C. 12
D. none of these

Answer: A

- Watch Video Solution

18. If $\left[\begin{array}{rr}\cos \frac{2 \pi}{7} & -\sin \frac{2 \pi}{7} \\ \sin \frac{2 \pi}{7} & \cos \frac{2 \pi}{7}\end{array}\right]^{k}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then the least positive integral value
of k, is
A. 3
B. 6
C. 7
D. 14

Answer: C

- Watch Video Solution

19. If A and B are square matrices of order n, then prove that AandB will commute iff $A-\lambda I a n d B-\lambda I$ commute for every scalar λ
A. $A B=B A$
B. $A B+B A=O$
C. $A=-B$
D. none of these

Answer: A

- Watch Video Solution

20. Matrix A such that $A^{2}=2 A-I$, whereI is the identity matrix, the for $n \geq 2$. A^{n} is equal to $2^{n-1} A-(n-1) l$ b. $2^{n-1} A-I$ c. $n A-(n-1) l$ d. $n A-I$
A. $2^{n-1} A-(n-1) I$
B. $2^{n-1} A-I$
C. $n A-(n-1) I$
D. $n A-I$

Answer: C

- Watch Video Solution

21. Let $A=\left[\begin{array}{ll}0 & \alpha \\ 0 & 0\end{array}\right]$ and $\left(A+I^{50}-50 A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right.$. Then the value of $a+b+c+d$ is
A. 2
B. 1
C. 4
D. none of these
22. If Z is an idempotent matrix, then $(I+Z)^{n}$
A. $I+2^{n} Z$
B. $I+\left(2^{n}-1\right) Z$
C. I $-\left(2^{n}-1\right) Z$
D. none of these

Answer: B

(D) Watch Video Solution

23. if AandB are squares matrices such that $A^{2006}=\operatorname{Oand} A B=A+B$, thendet (B) equals 0 b. 1 c. -1 d. none of these
A. 0
B. 1
C. -1
D. none of these

Answer: A

- Watch Video Solution

24. If matrix A is given by $A=\left[\begin{array}{cc}6 & 11 \\ 2 & 4\end{array}\right]$ then determinant of $A^{2005}-6 A^{2004}$ is
A. 2^{2006}
B. $(-11) 2^{2005}$
C. $-2^{2005} .7$
D. $(-9) 2^{2004}$

Answer: B

25. If A is a non-diagonal involutory matrix, then
A. $A-I=O$
B. $A+I=O$
C. A-I is nonzero singular
D. none of these

Answer: C

- Watch Video Solution

26. If A and B are two nonzero square matrices of the same order such that the product $A B=O$, then
A. both A and B must be singular
B. exactly one of them must be singular
C. both of them are nonsingular
D. none of these

D Watch Video Solution

27. If A and B are symmetric matrices of the same order and $X=A B+B A$ and $Y=A B-B A$, then $(X Y)^{T}$ is equal to : (A) $X Y$ (B) $Y X$ (C)
$-Y X$ (D) non of these
A. $X Y$
B. $Y X$
C. $-Y X$
D. none of these

Answer: C

Watch Video Solution

28. If $A, B, A+I, A+B$ are idempotent matrices, then $A B$ is equal to
A. $B A$
B. $-B A$
C. I
D. O

Answer: B

D Watch Video Solution

29. If $A=\left[\begin{array}{ll}0 & x \\ y & 0\end{array}\right]$ and $A^{3}+A=O$ then sum of possible values of $x y$ is
A. 0
B. -1
C. 1
D. 2

Answer: B

30. Which of the following is an orthogonal matrix ?
A. $\left[\begin{array}{ccc}6 / 7 & 2 / 7 & -3 / 7 \\ 2 / 7 & 3 / 7 & 6 / 7 \\ 3 / 7 & -6 / 7 & 2 / 7\end{array}\right]$
B. $\left[\begin{array}{ccc}6 / 7 & 2 / 7 & 3 / 7 \\ 2 / 7 & -3 / 7 & 6 / 7 \\ 3 / 7 & 6 / 7 & -2 / 7\end{array}\right]$
C. $\left[\begin{array}{ccc}-6 / 7 & -2 / 7 & -3 / 7 \\ 2 / 7 & 3 / 7 & 6 / 7 \\ -3 / 7 & 6 / 7 & 2 / 7\end{array}\right]$
D. $\left[\begin{array}{ccc}6 / 7 & -2 / 7 & 3 / 7 \\ 2 / 7 & 2 / 7 & -3 / 7 \\ -6 / 7 & 2 / 7 & 3 / 7\end{array}\right]$

Answer: A

- Watch Video Solution

31. Let A and B be two square matrices of the same size such that $A B^{T}+B A^{T}=O$. If A is a skew-symmetric matrix then BA is
A. a symmetric matrix
B. a skew-symmetric matrix
C. an orthogonal matrix
D. an invertible matrix

Answer: B

- Watch Video Solution

32. In which of the following type of matrix inverse does not exist always?
a. idempotent b. orthogonal c. involuntary d . none of these
A. idempotent
B. orthogonal
C. involuntary
D. none of these

Answer: A

- Watch Video Solution

33. Let A be an nth-order square matrix and B be its adjoint, then $\left|A B+K I_{n}\right|$ is (where K is a scalar quantity) $(|A|+K)^{n-2}$ b. $(|A|+) K^{n}$ $(|A|+K)^{n-1} \mathrm{~d}$. none of these
A. $(|A|+K)^{n-2}$
B. $(|A|+K)^{n}$
C. $(|A|+K)^{n-1}$
D. none of these

Answer: B

34. If $A=\left[\begin{array}{lll}a & b & c \\ x & y & x \\ p & q & r\end{array}\right], B=\left[\begin{array}{ccc}q & -b & y \\ -p & a & -x \\ r & -c & z\end{array}\right]$ and If A is invertible, then which
of the following is not true?
A. $|A|=|B|$
B. $|A|=-|B|$
C. $|\operatorname{adj} \mathrm{A}|=|\operatorname{adj} \mathrm{B}|$
D. A is invertible if and only if B is invertible

Answer: A

- Watch Video Solution

35. If $A(\alpha, \beta)=\left[\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & e^{\beta}\end{array}\right]$, then $A(\alpha, \beta)^{-1}$ is equal to
A. $A(-\alpha,-\beta)$
B. $A(-\alpha, \beta)$
C. $A(\alpha,-\beta)$
D. $A(\alpha, \beta)$

Answer: A

- Watch Video Solution

36. If $A=\left[\begin{array}{cc}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right]$ and $a^{2}+b^{2}+c^{2}+d^{2}=1$, then A^{-1} is equal to
A. $\left[\begin{array}{ll}a-i b & -c-i d \\ c-i d & a+i b\end{array}\right]$
B. $\left[\begin{array}{cc}a+i b & -c+i d \\ -c+i d & a-i b\end{array}\right]$
C. $\left[\begin{array}{cc}a-i b & -c-i d \\ -c-i d & a+i b\end{array}\right]$
D. none of these

Answer: A

37. Id $[1 / 250 \times 1 / 25]=[50-a 5]^{-2}$, then the value of x is $a / 125 \mathrm{~b} .2 a / 125 \mathrm{c}$. $2 a / 25 \mathrm{~d}$. none of these
A. $a / 125$
B. $2 a / 125$
C. $2 a / 25$
D. none of these

Answer: B

38. If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ and $f(x)=\frac{1+x}{1-x}$, then $f(A)$ is
A. $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
B. $\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$
C. $\left[\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right]$
D. none of these

Answer: C

- Watch Video Solution

39. There are two possible values of A in the solution of the matrix equation
$\left[\begin{array}{cc}2 A+1 & -5 \\ -4 & A\end{array}\right]^{-1}\left[\begin{array}{cc}A-5 & B \\ 2 A-2 & C\end{array}\right]=\left[\begin{array}{cc}14 & D \\ E & F\end{array}\right]$
where A, B, C, D, E and F are real numbers. The absolute value of the difference of these two solutions, is
A. $\frac{8}{3}$
B. $\frac{19}{3}$
C. $\frac{1}{3}$
D. $\frac{11}{3}$
40. If A and B are two square matrices such that $B=-A^{-1} B A$, then
$(A+B)^{2}$ is equal to
A. $A^{2}+B^{2}$
B. O
C. $A^{2}+2 A B+B^{2}$
D. $A+B$

Answer: A

- Watch Video Solution

41. If $A=[1 \tan x-\tan x 1]$, show that $A^{T} A^{-1}=[\cos 2 x-\sin 2 x \sin 2 x \cos 2 x]$
A. $\left[\begin{array}{ll}-\cos 2 x & \sin 2 x \\ -\sin 2 x & \cos 2 x\end{array}\right]$
B. $\left[\begin{array}{ll}\cos 2 x & -\sin 2 x \\ \sin 2 x & \cos 2 x\end{array}\right]$
C. $\left[\begin{array}{ll}\cos 2 x & \cos 2 x \\ \cos 2 x & \sin 2 x\end{array}\right]$
D. none of these

Answer: B

- Watch Video Solution

42. If A is order 3 square matrix such that $|A|=2$, then $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))|$ is
A. 512
B. 256
C. 64
D. none of these

Answer: B

43. If $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1\end{array}\right]$ and $A^{-1}=\left[\begin{array}{ccc}1 / 2 & -1 / 2 & 1 / 2 \\ -4 & 3 & c \\ 5 / 2 & -3 / 2 & 1 / 2\end{array}\right]$, then the values of a
and c are equal to
A. 1, 1
B. 1, -1
C. 1, 2
D. $-1,1$

Answer: B

44. If nth-order square matrix A is a orthogonal, then $|\operatorname{adj}(\operatorname{adj} \mathrm{A})|$ is
A. always -1 if n is even
B. always 1 if n is odd
C. always 1
D. none of these

Answer: B

- Watch Video Solution

45. Let $a a n d b$ be two real numbers such that $a>1, b>1$. If $A=(a 00 b)$, then $(\lim)_{n \infty} A^{-n}$ is a. unit matrix b. null matrix $c .2 l d$. none of these
A. unit matrix
B. null matrix
C. $2 I$
D. none of these

Answer: B

- Watch Video Solution

46. If $A=\left[a_{\mathrm{ij}}\right]_{4 \times 4}$, such that $a_{\mathrm{ij}}=\left\{\begin{array}{ll}2, & \text { when } i=j \\ 0, & \text { when } i \neq j\end{array}\right.$ then $\left\{\frac{\operatorname{det}(\operatorname{adj}(\operatorname{adj} A))}{7}\right\}$ is (where $\{\cdot\}$ represents fractional part function)
A. $1 / 7$
B. $2 / 7$
C. 3/7
D. none of these

Answer: A

- Watch Video Solution

47. A is an involuntary matrix given by $A=[01-14-343-34]$, then the inverse of $A / 2$ will be $2 A$ b. $\frac{A^{-1}}{2}$ c. $\frac{A}{2}$ d. A^{2}
A. $2 A$
B. $\frac{A^{-1}}{2}$
C. $\frac{A}{2}$
D. A^{2}

Answer: A

- Watch Video Solution

48. If A is a nonsingular matrix such that $A A^{T}=A^{T} A$ and $B=A^{-1} A^{T}$, then matrix B is
A. involuntary
B. orthogonal
C. idempotent
D. none of these

Answer: B

49. If P is an orthogonal matrix and $Q=P A P^{T} a n d x=P^{T} A$ b. I c. $A^{1000} \mathrm{~d}$. none of these
A. A
B. I
C. A^{1000}
D. none of these

Answer: B

- Watch Video Solution

50. If $A a n d B$ are two non-singular matrices of the same order such that $B^{r}=I$, for some positive integer $r>1$, thenA $A^{-1} B^{r-1} A=A^{-1} B^{-1} A=I \mathrm{~b} .2 I$ c. O d. -I
A. I
B. $2 I$
C. O
D. $-I$

Answer: C

- Watch Video Solution

51. If adj $B=A,|P|=|Q|=1$, thenadj $\left(Q^{-1} B P^{-1}\right)$ is `
A. $P Q$
B. QAP
C. $P A Q$
D. $P A^{-1} Q$

Answer: C

52. If A is non-singular and $(A-2 I)(A-4 I)=O$, then $\frac{1}{6} A+\frac{4}{3} A^{-1}$ is equal to OI b. $2 I$ c. $6 I$ d. I
A. O
B. I
C. $2 I$
D. $6 I$

Answer: B

D Watch Video Solution

53. Let $f(x)=\frac{1+x}{1-x}$. If A is matrix for which $A^{3}=O$, $\operatorname{thenf}(A)$ is $I+A+A^{2} \mathrm{~b}$. $I+2 A+2 A^{2}$ c. $I-A-A^{2}$ d. none of these
A. $I+A+A^{2}$
B. $I+2 A+2 A^{2}$
C. $I-A-A^{2}$
D. none of these

Answer: B

- Watch Video Solution

54. if $\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then $A=$?
A. $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
B. $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
C. $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
D. $-\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$

Answer: A

- Watch Video Solution

55. If $A^{2}-A+I=0$, then the inverse of A is: (A) $A+I$ (B) A (C) $A-I$ (D) $I-A$
A. A^{-2}
B. $A+I$
C. I-A
D. $A-I$

Answer: C

- Watch Video Solution

56. If $F(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$ and $G(y)=\left[\begin{array}{ccc}\cos y & 0 & \sin y \\ 0 & 1 & 0 \\ -\sin y & 0 & \cos y\end{array}\right]$, then
$[F(x) G(y)]^{-1}$ is equal to
A. $F(-x) G(-y)$
B. $G(-y) F(-x)$
C. $F\left(x^{-1}\right) G\left(y^{-1}\right)$
D. $G\left(y^{-1}\right) F\left(x^{-1}\right)$

Answer: B

- Watch Video Solution

57. If AandB are square matrices of the same order and A is non-singular, then for a positive integer $n,\left(A^{-1} B A\right)^{n}$ is equal to $A^{-n} B^{n} A^{n}$ b. $A^{n} B^{n} A^{-n} c$. $A^{-1} B^{n} A$ d. $n\left(A^{-1} B^{A}\right)$
A. $A^{-n} B^{n} A^{n}$
B. $A^{n} B^{n} A^{-n}$
C. $A^{-1} B^{n} A$
D. $n\left(A^{-1} B A\right)$

Answer: C

58. If $k \in R_{o}$ thendet $\left\{\operatorname{adj}\left(k I_{n}\right)\right\}$ is equal to K^{n-1} b. $K^{n(n-1)}$ c. K^{n} d. k
A. k^{n-1}
B. $k^{n(n-1)}$
C. k^{n}
D. k

Answer: B

- Watch Video Solution

59. Given that matrix $A\left[\begin{array}{lll}x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z\end{array}\right]$. If $x y z=60$ and $8 x+4 y+3 z=20$, then
$A(\operatorname{adj} A)$ is equal to
A. $\left[\begin{array}{ccc}64 & 0 & 0 \\ 0 & 64 & 0 \\ 0 & 0 & 64\end{array}\right]$
B. $\left[\begin{array}{ccc}88 & 0 & 0 \\ 0 & 88 & 0 \\ 0 & 0 & 88\end{array}\right]$
c. $\left[\begin{array}{ccc}68 & 0 & 0 \\ 0 & 68 & 0 \\ 0 & 0 & 68\end{array}\right]$
D. $\left[\begin{array}{ccc}34 & 0 & 0 \\ 0 & 34 & 0 \\ 0 & 0 & 34\end{array}\right]$

Answer: C

Watch Video Solution

60. Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 0 & 5 \\ 0 & 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{c}0 \\ -3 \\ 1\end{array}\right]$. Which of the following is true ?
A. $A X=B$ has a unique solution
B. $A X=B$ has exactly three solutions
C. $A X=B$ has infinitelt many solutions
D. $A X=B$ is inconsistent

Answer: A

- Watch Video Solution

61. If A is a square matrix of order less than 4 such that $\left|A-A^{T}\right| \neq 0$ and $B=\operatorname{adj} .(A)$, then $\operatorname{adj} .\left(B^{2} A^{-1} B^{-1} A\right)$ is
A. A
B. B
C. $|A| A$
D. $|B| B$

Answer: A

- Watch Video Solution

62. Let A be a square matrix of order 3 such that det. $(A)=\frac{1}{3}$, then the value of det. $\left(\operatorname{adj} . A^{-1}\right)$ is
A. $1 / 9$
B. $1 / 3$
C. 3
D. 9

Answer: D

- Watch Video Solution

63. If A and B are two non-singular matrices of order 3 such that $A A^{T}=2 I$ and $A^{-1}=A^{T}-A$. Adj. $\left(2 B^{-1}\right)$, then det. (B) is equal to
A. 4
B. $4 \sqrt{2}$
C. 16
D. $16 \sqrt{2}$

Answer: D

- Watch Video Solution

64. If A is a square matric of order 5 and $2 A^{-1}=A^{T}$, then the remainder when |adj. (adj. (adj. A))| is divided by 7 is
A. 2
B. 3
C. 4
D. 5

Answer: A

65. Let $P=\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & 1 & 1\end{array}\right]$. If the product PQ has inverse $R=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & 0 & 2\end{array}\right]$ then Q^{-1} equals
A. $\left[\begin{array}{ccc}3 & 2 & 9 \\ -1 & 1 & 1 \\ 0 & 1 & 8\end{array}\right]$
B. $\left[\begin{array}{ccc}5 & 2 & 9 \\ -1 & 1 & 1 \\ 0 & 1 & 7\end{array}\right]$
C. $\left[\begin{array}{ccc}2 & -1 & 0 \\ 10 & 6 & 3 \\ 8 & 6 & 4\end{array}\right]$
D. none of these

Answer: C

1. If A is unimidular, then which of the following is unimodular?
A. $-A$
B. A^{-1}
C. $\operatorname{adj} \mathrm{A}$
D. ωA, where ω is cube root of unity

Answer: B::C

- Watch Video Solution

2. Let $A=a_{\mathrm{ij}}$ be a matrix of order 3, where $a_{\mathrm{ij}}=\{(x$, if $i=j, x \in R),,(1$, , if $|i-j|=1$, , then which of the following $),(0$, , o hold (s) good :
A. for $x=2, A$ is a diagonal matrix
B. A is a symmetric matrix
C. for $x=2, \operatorname{det} A$ has the value equal to 6
D. Let $f(x)=\operatorname{det} A$, then the function $f(x)$ has both the maxima and minima

Answer: B::D

- Watch Video Solution

3. If $A=\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right], B=\left[\begin{array}{cc}a & 1 \\ b & -1\end{array}\right]$ and $(A+B)^{2}=A^{2}+B^{2}+2 A B$, then
A. $a=-1$
B. $a=1$
C. $b=2$
D. $b=-2$

Answer: A::D

4. If $A B=A$ and $B A=B m$ then which of the following is/are true?
A. A is idempotent
B. B is idempotent
C. A^{T} is idempotent
D. none of these

Answer: A::B::C

D Watch Video Solution

5. If $A(\theta)=\left[\begin{array}{cc}\sin \theta & i \cos \theta \\ i \cos \theta & \sin \theta\end{array}\right]$, then which of the following is not true?
A. $A(\theta)^{-t}=A(\pi-\theta)$
B. $A(\theta)+A(\pi+\theta)$ is a null matrix
C. $A(\theta)$ is invertible for all $\theta \in R$
D. $A(\theta)^{-1}=A(-\theta)$

D Watch Video Solution

6. Let A and B be two nonsingular square matrices, A^{T} and B^{T} are the tranpose matrices of A and B , respectively, then which of the following are coorect?
A. $B^{T} A B$ is symmetric matrix if A is symmetric
B. $B^{T} A B$ is symmetric matrix if B is symmetric
C. $B^{T} A B$ is skew-symmetric matrix for every matrix A
D. $B^{T} A B$ is skew-symmetric matrix if A is skew-symmetric

Answer: A: D

- Watch Video Solution

7. If B is an idempotent matrix, and $A=I-B$, then
A. $A^{2}=A$
B. $A^{2}=I$
C. $A B=O$
D. $B A=O$

Answer: A::C::D

- Watch Video Solution

8.

$A_{1}=[0001001001001000], A_{2}=[000 i 00-i 00 i 00-i 000]$, then $A_{i} A_{k}+A_{k} A_{i}$ is equal to $2 l$ if $i=k b . O$ if $i \neq k c 2 l$ if $i \neq k \mathrm{~d} . O$ always
A. $2 I$ if $i=k$
B. O if $i \neq k$
C. 2 I if $i \neq k$
D. O always

D Watch Video Solution

9. Suppose a_{1}, a_{2}, \ldots. Are real numbers, with $a_{1} \neq 0$. If $a_{1}, a_{2}, a_{3}, \ldots$ Are in A.P., then
A. $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{5} & a_{6} & a_{7}\end{array}\right]$ is singular (where $i=\sqrt{-1}$)
B. the
system
of
equations
$a_{1} x+a_{2} y+a_{3} z=0, a_{4} x+a_{5} y+a_{6} z=0, a_{7} x+a_{8} y+a_{9} z=0$
has
infinite number of solutions
C. $B\left[\begin{array}{ll}a_{1} & i a_{2} \\ i a_{2} & a_{1}\end{array}\right]$ is nonsingular
D. none of these
10. If α, β, γ are three real numbers and
$A=\left[\begin{array}{ccc}1 & \cos (\alpha-\beta) & \cos (\alpha-\gamma) \\ \cos (\beta-\alpha) & 1 & \cos (\beta-\gamma) \\ \cos (\gamma-\alpha) & \cos (\gamma-\beta) & 1\end{array}\right]$
then which of following is/are true ?
A. A is singular
B. A is symmetric
C. A is orthogonal
D. A is not invertible

Answer: A::B::D

- Watch Video Solution

11. If D_{1} and D_{2} are two 3×3 diagonal matrices, then which of the following is/are true?
A. $D_{1} D_{2}$ is a diagonal matrix
B. $D_{1} D_{2}=D_{2} D_{1}$
C. $D_{1}^{2}+D_{2}^{2}$ is a diagonal matrix
D. none of these

Answer:

- Watch Video Solution

12. Let A be the 2×2 matrix given by $A=\left[a_{\mathrm{ij}}\right]$ where $a_{\mathrm{ij}} \in\{0,1,2,3,4\}$ such theta $a_{11}+a_{12}+a_{21}+a_{22}=4$ then which of the following statement(s) is/are true ?
A. Number of matrices A such that the trace of A equal to 4 , is 5
B. Number of matrices A, such that A is invertible is 18
C. Absolute difference between maximum value and minimum value of
D. Number of matrices A such that A is either symmetric (or) skew symmetric and $\operatorname{det}(A)$ is divisible by 2 , is 5 .

Answer:

- Watch Video Solution

13. If $S=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ and $A=\left[\begin{array}{lll}b+c & c-a & b-a \\ c-b & c+b & a-b \\ b-c & a-c & a+b\end{array}\right]$
$(a, b, c \neq 0)$, then $S A S^{-1}$ is
A. symmetric matrix
B. diagonal matrix
C. invertible matrix
D. singular matrix

Answer:

14. P is a non-singular matrix and A, B are two matrices such that $B=P^{-1} A P$. The true statements among the following are
A. A is invertible iff B is invertib,e
B. $B^{n}=P^{-1} A^{n} P \forall n \in N$
C. $\forall \lambda \in R, B-\lambda I=P^{-1}(A-\lambda I) P$
D. A and B are both singular matrices

Answer:

- Watch Video Solution

15. Let $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$. Then
A. $A^{2}-4 A-5 I_{3}=O$
B. $A^{-1}=\frac{1}{5}\left(A-4 I_{3}\right)$
C. A^{3} is not invertible
D. A^{2} is invertible

Answer:

- Watch Video Solution

16. If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, then
A. $A^{3}-A^{2}=A-I$
B. det. $\left(A^{100}-I\right)=0$
C. $A^{200}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 100 & 1 & 0 \\ 100 & 0 & 1\end{array}\right]$
D. $A^{100}=\left[\begin{array}{ccc}1 & 1 & 0 \\ 50 & 1 & 0 \\ 50 & 0 & 1\end{array}\right]$

(D) Watch Video Solution

17. If Ais symmetric and B is skew-symmetric matrix, then which of the following is/are CORRECT ?
A. $A B A^{T}$ is skew-symmetric matrix
B. $A B^{T}+B A^{T}$ is symmetric matrix
C. $(A+B)(A-B)$ is skew-symmetric
D. $(A+I)(B-I)$ is symmetric

Answer:

- Watch Video Solution

18. If $A=\left(\left(a_{i j}\right)\right)_{n \times n}$ and f is a function, we define $f(A)=\left(\left(f\left(a_{i j}\right)\right)\right)_{n \times n^{\prime}}$ Let $A=(\pi / 2-\theta \theta-\theta \pi / 2-\theta)$. Then $\sin A$ is invertible $\mathrm{b} \cdot \sin A=\cos A \mathrm{c} . \sin A$ is orthogonal d. $\sin (2 A)=2 A \sin A \cos A$
A. $\sin A$ is invertible
B. $\sin A=\cos A$
C. $\sin A$ is orthogonal
D. $\sin (2 A)=2 \sin A \cos A$

Answer:

- Watch Video Solution

19. If a is matrix such that $A^{2}+A+2 I=O$, then which of the following is/are true?
A. A is nonsingular
B. A is symmetric
C. A cannot be skew-symmetric
D. $A^{-1}=-\frac{1}{2}(A+I)$

Answer:

20. If $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, then $\operatorname{adj}(\operatorname{adj} A)$ is
A. $\operatorname{adj}(\operatorname{adj} A)=A$
B. $|\operatorname{adj}(\operatorname{adj} A)|=1$
C. $|\operatorname{adjA}|=1$
D. none of these

Answer: B

Watch Video Solution
21. If $\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$, then
A. $a=\cos 2 \theta$
B. $a=1$
C. $b=\sin 2 \theta$
D. $b=-1$

Answer:

- Watch Video Solution

22. If $A^{-1}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -1 / 3\end{array}\right]$, then
A. $|A|=-1$
B. $\operatorname{adj} A=\left[\begin{array}{ccc}-1 & 1 & -2 \\ 0 & -3 & -1 \\ 0 & 0 & 1 / 3\end{array}\right]$
C. $A=\left[\begin{array}{ccc}1 & 1 / 3 & 7 \\ 0 & 1 / 3 & 1 \\ 0 & 0 & -3\end{array}\right]$
D. $A=\left[\begin{array}{ccc}1 & -1 / 3 & -7 \\ 0 & -3 & 0 \\ 0 & 0 & 1\end{array}\right]$

Answer:

- Watch Video Solution

23. If A is an invertible matrix, tehn $(\operatorname{adjA})^{-1}$ is equal to $\operatorname{adj} A^{-1} \mathrm{~b} . \frac{A}{\operatorname{det} A} \mathrm{c}$. A d. $(\operatorname{det} A) A$
A. adj. $\left(A^{-1}\right)$
B. $\frac{A}{\operatorname{det} . A}$
C. A
D. (det. A) A

Answer:

24. If A and B are two invertible matrices of the same order, then adj (AB) is equal to
A. $\operatorname{adj}(B) \operatorname{adj}(A)$
B. $|B||A| B^{-1} A^{-1}$
C. $|B| A \mid A A^{-1} B^{-1}$
D. $|A||B|(A B)^{-1}$

Answer:

- Watch Video Solution

25. If A, B, and C are three square matrices of the same order, then
$A B=A C \Rightarrow B=C$. Then
A. $|A| \neq 0$
B. A is invertible
C. A may be orthogonal
D. A is symmetric

Answer:

- Watch Video Solution

26. If A and B are two non singular matrices and both are symmetric and commute each other, then
A. $A^{-1} B$
B. $A B^{-1}$
C. $A^{-1} B^{-1}$
D. none of these

Answer:
27. If A and B are square matrices of order 3 such that $A^{3}=8 B^{3}=8 I$ and det. $(A B-A-2 B+2 I) \neq 0$, then identify the correct statement(s), where I is idensity matrix of order 3 .
A. $A^{2}+2 A+4 I=O$
B. $A^{2}+2 A+4 I \neq O$
C. $B^{2}+B+I=O$
D. $B^{2}+B+I \neq O$

Answer:

- Watch Video Solution

28. Let A, B be two matrices different from identify matrix such that $A B=B A$ and $A^{n}-B^{n}$ is invertible for some positive integer n. If $A^{n}-B^{n}=A^{n+1}-B^{n+1}=A^{n+1}-B^{n+2}$, then
A. I - A is non-singular
B. $I-B$ is non-singular
C. $I-A$ is singular
D. $I-B$ is singular

Answer:

- Watch Video Solution

29. Let A and B be square matrices of the same order such that $A^{2}=I$ and $B^{2}=I$, then which of the following is CORRECT ?
A. IF A and B are inverse to each other, then $A=B$.
B. If $A B=B A$, then there exists matrix $C=\frac{A B+B A}{2}$ such that $C^{2}=C$.
C. If $A B=B A$, then there exists matrix $D=A B-B A$ such that $D^{n}=O$
for some $n \in N$.
D. If $A B=B A$ then $(A+B)^{5}=16(A+B)$.
30. Let B is an invertible square matrix and B is the adjoint of matrix A such that $A B=B^{T}$. Then
A. A is an identity matrix
B. B is symmetric matrix
C. A is a skew-symmetric matrix
D. B is skew symmetic matrix

Answer: A

- Watch Video Solution

31. First row of a matrix A is $[1,3,2]$. If
$\operatorname{adj} A=\left[\begin{array}{ccc}-2 & 4 & \alpha \\ -1 & 2 & 1 \\ 3 \alpha & -5 & -2\end{array}\right]$, then maximum value of $\operatorname{det}(A)$ is
32. Let A be a square matrix of order 3 satisfies the relation $A^{3}-6 A^{2}+7 A-8 I=O$ and $B=A-2 I$. Also, det. $A=8$, then
A. det. $\left(\right.$ adj. $\left(I-2 A^{-1}\right)=\frac{25}{16}$
B. $\operatorname{adj} .\left(\left(\frac{B}{2}\right)^{-1}\right)=\frac{B}{10}$
C. det. $\left(\operatorname{adj} .\left(I-2 A^{-1}\right)\right)=\frac{75}{32}$
D. $\operatorname{adj} .\left(\left(\frac{B}{2}\right)^{-1}\right)=\frac{2 B}{5}$

Answer:

- Watch Video Solution

33. Which of the following matericeshave eigen values as 1 and -1 ?
A. $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
B. $\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
D. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Answer:

- Watch Video Solution

Exercise Comprehension

1. Let a be a matrix of order 2×2 such that $A^{2}=O$.
$A^{2}-(a+d) A+(a d-b c) I$ is equal to
A. I
B. O
C. $-I$
D. none of these

Answer: B

- Watch Video Solution

2. Let a be a matrix of order 2×2 such that $A^{2}=O$.
$\operatorname{tr}(\mathrm{A})$ is equal to
A. 1
B. 0
C. -1
D. none of these

Answer: B

- Watch Video Solution

3. Let a be a matrix of order 2×2 such that $A^{2}=O$.
$(I+A)^{100}=$
A. 100 A
B. $100(I+A)$
C. $100 I+A$
D. $I+100 A$

Answer: D

- Watch Video Solution

4. If A and B are two square matrices of order 3×3 which satify $A B=A$ and $B A=B$, then

Which of the following is true?
A. If matrix A is singular, then matrix B is nonsingular.
B. If matrix A is nonsingular, then materix B is singular.
C. If matrix A is singular, then matrix B is also singular.
D. Cannot say anything.

Answer: C

- Watch Video Solution

5. if A and B are two matrices of order 3×3 so that $A B=A$ and $B A=B$ then $(A+B)^{7}=$
A. $7(A+B)$
B. $7 . I_{3 \times 3}$
C. $64(A+B)$
D. $128 I$

Answer: C

- Watch Video Solution

6. If A and B are two square matrices of order 3×3 which satisfy $A B=A$ and $B A=B$, then
$(A+I)^{5}$ is equal to (where I is identity matric)
A. $I+60 I$
B. $I+16 A$
C. $I+31 A$
D. none of these

Answer: C

- Watch Video Solution

7. Consider an arbitarary 3×3 non-singular matrix $A\left[a_{\mathrm{ij}}\right]$. A maxtrix $B=\left[b_{\mathrm{ij}}\right]$ is formed such that b_{ij} is the sum of all the elements except a_{ij} in the ith row of A. Answer the following questions:

If there exists a matrix X with constant elemts such that $A X=B$, then X is
A. skew-symmetric
B. null matrix
C. diagonal matrix
D. none of these

Answer: D

- Watch Video Solution

8. Let $A=\left[a_{\mathrm{ij}}\right]$ be 3×3 matrix and $B=\left[b_{\mathrm{ij}}\right]$ be 3×3 matrix such that b_{ij} is the sum of the elements of $i^{\text {th }}$ row of A except a_{ij}. If $\operatorname{det},(A)=19$, then the value of det. (B) is \qquad .
A. $|A|$
B. $|A| / 2$
C. $2|A|$
D. none of these

Answer: C

9. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ satisfies $A^{n}=A^{n-1}+A^{2}-I$ for $n \geq 3$. And trace of a
square matrix X is equal to the sum of elements in its proncipal diagonal.
Further consider a matrix $U 3 \times 3$ with its column as U_{1}, U_{2}, U_{3} such that
$A^{50} U_{1}=\left[\begin{array}{c}1 \\ 25 \\ 25\end{array}\right], A^{50} U_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], A^{50} U_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
Then answer the following question :
The values of $\left|A^{50}\right|$ equals
A. 0
B. 1
C. -1
D. 25

Answer: B
10. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ satisfies $A^{n}=A^{n-1}+A^{2}-I$ for $n \geq 3$. And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix $U 3 \times 3$ with its column as U_{1}, U_{2}, U_{3} such that
$A^{50} \mathrm{U}_{1}=\left[\begin{array}{c}1 \\ 25 \\ 25\end{array}\right], A^{50} \mathrm{U}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], A^{50} \mathrm{U}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
Then answer the following question :
Trace of A^{50} equals
A. 0
B. 1
C. 2
D. 3

Answer: D

11. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ satisfies $A^{n}=A^{n-2}+A^{2}-I$ for $n \geq 3$. And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix $U 3 \times 3$ with its column as U_{1}, U_{2}, U_{3} such that
$A^{50} U_{1}=\left[\begin{array}{c}1 \\ 25 \\ 25\end{array}\right], A^{50} U_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], A^{50} U_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
Then answer the following question :
The value of $|\mathrm{U}|$ equals
A. 0
B. 1
C. 2
D. -1

Answer: B

12. Let for $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right]$, there be three row matrices R_{1}, R_{2} and R_{3}, satifying the relations, $R_{1} A=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right], R_{2} A=\left[\begin{array}{lll}2 & 3 & 0\end{array}\right]$ and $R_{3} A=\left[\begin{array}{lll}2 & 3 & 1\end{array}\right]$. If B is square matrix of order 3 with rows R_{1}, R_{2} and R_{3} in order, then

The value of det. $\left(2 A^{100} B^{3}-A^{99} B^{4}\right)$ is
A. -2
B. -1
C. 2
D. 3

Answer: D

- Watch Video Solution

13. Let for $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right]$, there be three row matrices R_{1}, R_{2} and R_{3}, satifying the relations, $R_{1} A=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right], R_{2} A=\left[\begin{array}{lll}2 & 3 & 0\end{array}\right]$ and $R_{3} A=\left[\begin{array}{lll}2 & 3 & 1\end{array}\right]$. If B is square matrix of order 3 with rows R_{1}, R_{2} and R_{3} in order, then

The value of det. $\left(2 A^{100} B^{3}-A^{99} B^{4}\right)$ is
A. -27
B. -9
C. -3
D. 9

Answer: A

- Watch Video Solution

14. A and B are square matrices such that det. $(A)=1, B B^{T}=I$, det $(B)>0$, and $A(a d j . A+\operatorname{adj} . B)=B$. The value of $\operatorname{det}(A+B)$ is
A. -2
B. -1
C. 0
D. 1

Answer: D

- Watch Video Solution

15. A and B are square matrices such that det. $(A)=1, B B^{T}=I$, det $(B)>0$, and $A(\operatorname{adj} . A+\operatorname{adj} . B)=B$.
$A B^{-1}=$
A. $B^{-1} A$
B. $A B^{-1}$
C. $A^{T} B^{-1}$
D. $B^{T} A^{-1}$

Answer: A

- Watch Video Solution

16. Let A be an $m \times n$ matrix. If there exists a matrix L of type $n \times m$ such that $L A=I_{n}$, then L is called left inverse of A. Similarly, if there exists a matrix R of type $n \times m$ such that $A R=I_{m}$, then R is called right inverse of
A.

For example, to find right inverse of matrix
$A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 2 & 3\end{array}\right]$, we take $R=\left[\begin{array}{lll}x & y & x \\ u & v & w\end{array}\right]$
and solve $A R=I_{3}$, i.e.,
$\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 2 & 3\end{array}\right]\left[\begin{array}{lll}x & y & z \\ u & v & w\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
\begin{array}{llll}
\Rightarrow & x-u=1 & y-v=0 & z-w=0 \\
& x+u=0 & y+v=1 & z+w=0 \\
& 2 x+3 u=0 & 2 y+3 v=0 & 2 z+3 w=1
\end{array}
$$

As this system of equations is inconsistent, we say there is no right inverse for matrix A.

Which of the following matrices is NOT left inverse of matrix $\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 2 & 3\end{array}\right]$?
A. $\left[\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$
B. $\left[\begin{array}{ccc}2 & -7 & 3 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$
C. $\left[\begin{array}{ccc}-\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$
D. $\left[\begin{array}{ccc}0 & 3 & -1 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$
17. Let A be an $m \times n$ matrix. If there exists a matrix L of type $n \times m$ such that $L A=I_{n}$, then L is called left inverse of A. Similarly, if there exists a matrix R of type $n \times m$ such that $A R=I_{m}$, then R is called right inverse of
A.

For example, to find right inverse of matrix
$A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 2 & 3\end{array}\right]$, we take $R=\left[\begin{array}{lll}x & y & x \\ u & v & w\end{array}\right]$
and solve $A R=I_{3}$, i.e.,

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & -1 \\
1 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{lll}
x & y & z \\
u & v & w
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& \Rightarrow \quad x-u=1
\end{aligned} \quad y-v=0 \quad z-w=0, ~ 子 \begin{array}{lll}
& x-u+v=1 & z+w=0 \\
& x+u=0 & y+v=1
\end{array}
$$

As this system of equations is inconsistent, we say there is no right inverse for matrix A.

The number of right inverses for the matrix $\left[\begin{array}{lll}1 & -1 & 2 \\ 2 & -1 & 1\end{array}\right]$ is
A. 0
B. 1
C. 2
D. infinite

Answer: D

- Watch Video Solution

18. Let A be an $m \times n$ matrix. If there exists a matrix L of type $n \times m$ such that $L A=I_{n}$, then L is called left inverse of A . Similarly, if there exists a matrix R of type $n \times m$ such that $A R=I_{m}$, then R is called right inverse of
A.

For example, to find right inverse of matrix
$A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 2 & 3\end{array}\right]$, we take $R=\left[\begin{array}{lll}x & y & x \\ u & v & w\end{array}\right]$
and solve $A R=I_{3}$, i.e.,

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & -1 \\
1 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{lll}
x & y & z \\
u & v & w
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& \Rightarrow \begin{array}{cc}
x-u=1 & y-v=0
\end{array} z-w=0 \\
& x+u=0 \quad y+v=1 \quad z+w=0 \\
& 2 x+3 u=0 \quad 2 y+3 v=0 \quad 2 z+3 w=1
\end{aligned}
$$

As this system of equations is inconsistent, we say there is no right inverse for matrix A.

For which of the following matrices, the number of left inverses is greater than the number of right inverses ?
A. $\left[\begin{array}{ccc}1 & 2 & 4 \\ -3 & 2 & 1\end{array}\right]$
B. $\left[\begin{array}{lll}3 & 2 & 1 \\ 3 & 2 & 1\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 4 \\ 2 & -3 \\ 2 & -3\end{array}\right]$
D. $\left[\begin{array}{ll}3 & 3 \\ 1 & 1 \\ 4 & 4\end{array}\right]$

Answer: C

1. Match the following lists :

List I	List II
a. $(I-A)^{n}$ is if A is idempotent	p. $2^{n-1}(I-A)$
b. $(I-A)^{n}$ is if A is involuntary	q. $I-n A$
c. $(I-A)^{n}$ is if A is nilpotent of index 2	r. A
d. If A is orthogonal, then $\left(A^{T}\right)^{-1}$	s. $I-A$

O
 Watch Video Solution

2. Match the following lists :

| List I | List II |
| :--- | :--- | :--- |
| a. If A is an idempotent matrix and I is an
 identity matrix of the same order, then the
 value of n, such that $(A+I)^{n}=I+127$ is | p. 9 |
| b. If $(I-A)^{-1}=I+A+A^{2}+\cdots+A^{7}$, then
 $A^{n}=O$, where n is | q. 10 |
| c. If A is matrix such that $a_{i j}=(i+j)(i-j)$,
 then A is singular if order of matrix is | r. 7 |
| d. If a nonsingular matrix A is symmetric,
 show that A^{-1} is also symmetric, then
 order of A can be | s. 8 |

- Watch Video Solution

3. Match the following lists :

List I $(A, B, C$ are matrices $)$	List II
a. If $\|A\|=2$, then $\left\|2 A^{-1}\right\|=($ where A is of order 3)	p. 1
b. If $\|A\|=1 / 8$, then $\|\operatorname{adj}(\operatorname{adj}(2 A))\|=($ where A is of order 3$)$	q. 4
c. If $(A+B)^{2}=A^{2}+B^{2}$, and $\|A\|=2$, then $\|B\|=($ where A and B are of odd order)	r. 24
d. $\left\|A_{2 \times 2}\right\|=2,\left\|B_{3 \times 3}\right\|=3$ and $\left\|C_{4 \times 4}\right\|=4$, then $\|A B C\|$ is equal to	s. 0
\begin{tabular}{l}	
\end{tabular} | |

4. Consider a matrix $A=\left[a_{\mathrm{ij}}\right]$ of order 3×3 such that $a_{\mathrm{ij}}=(k)^{i+j}$ where $k \in I$.

Match List I with List II and select the correct answer using the codes given below the lists.

List I	List II
a. A is singular if	p. $k \in\{0\}$
b. A is null matrix if	q. $k \in \phi$
c. A is skew-symmetric which is not	
null matrix if	r. $k \in I$
d. $A^{2}=3 . A$ if	s. $k \in\{-1,0,1\}$

$\begin{array}{llll}a & b & c & d\end{array}$
A.
r p s q
$a \quad b \quad c \quad d$
B.
$s p q r$
$a \quad b \quad c \quad d$
C.
$r p$ q
a bll
D.
q prs

Answer: C

5. Match the following lists :

$\begin{array}{llll}a & b & c & d\end{array}$
A.
$s \quad r \quad q \quad p$
$a \quad b \quad c \quad d$
B.
s $p \quad q \quad r$
$a \quad b \quad c \quad d$
C.
$q \quad p s r$
$a \quad b \quad c \quad d$
D.
$s \quad q \quad r \quad p$

(D) Watch Video Solution

Exercise Numerical

1. $A=[0130]$ and $A^{8}+A^{6}+A^{2}+I V=[011]($ whereIis the 2×2 identity matrix), then the product of all elements of matrix V is \qquad .

- Watch Video Solution

2. If $[a b c 1-a]$ is an idempotent matrix and $f(x)=x{ }_{-}^{2}=b c=1 / 4$, then the value of $1 / f(a)$ is \qquad .

- Watch Video Solution

3. Let x be the solution set of equation
$A^{X}=I$, whereA $+[01-14-343-34]$ andI is the corresponding unit matrix and $x \subseteq N$, then the minimum value of $\sum\left(\cos ^{x} \theta+\sin ^{x} \theta\right), \theta \in R$
4. $A=[1 \tan x-\tan x 1] \operatorname{and} f(x)$ is defined as $f(x)=\operatorname{det} A^{T} A^{-1}$ en the value of $(f(f(f(f f(x))))$ is $(n \geq 2)$ \qquad .

- Watch Video Solution

5. The equation $\left[\begin{array}{lll}1 & 2 & 2 \\ 1 & 3 & 4 \\ 3 & 4 & k\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ has a solution for (x, y, z) besides $(0,0$,

0). Then the value of k is \qquad .

- Watch Video Solution

6. If A is an idempotent matrix satisfying, $(I-0.4 A)^{-1}=I-\alpha A$, whereI is the unit matrix of the name order as that of A, then th value of $|9 \alpha|$ is equal to \qquad .
$A=\left[3 x^{2} 16 x\right], B=[a b c]$, and $C=\left[(x+2)^{2} 5 x^{2} 2 x 5 x^{2} 2 x(x+2)^{2} 2 x(x+2)^{2} 5 x^{2}\right]$
be three given matrices, where a, b, candx $\in R$ Given that $f(x)=a x^{2}+b x+c$, then the value of $f(I)$ is \qquad .

(D) Watch Video Solution

8. Let A be the set of all 3×3 skew-symmetri matrices whose entries are either $-1,0$, or 1 . If there are exactly three $0 s$ three 1 s , and there $(-1)^{\prime} s$, then the number of such matrices is \qquad .

- Watch Video Solution

9. Let $A=\left[a_{\mathrm{ij}}\right]_{3 \times 3}$ be a matrix such that $A A^{T}=4 I$ and $a_{\mathrm{ij}}+2 c_{\mathrm{ij}}=0$, where C_{ij} is the cofactor of a_{ij} and I is the unit matrix of order 3 .
$\left|\begin{array}{ccc}a_{11}+4 & a_{12} & a_{13} \\ a_{21} & a_{22}+4 & a_{23} \\ a_{31} & a_{32} & a_{33}+4\end{array}\right|+5 \lambda\left|\begin{array}{ccc}a_{11}+1 & a_{12} & a_{13} \\ a_{21} & a_{22}+1 & a_{23} \\ a_{31} & a_{32} & a_{33}+1\end{array}\right|=0$ then the value of λ is

- Watch Video Solution

10. Let S be the set which contains all possible vaues fo I, m, n, p, q, r for which $A=\left[I^{2}-3 p 00 m^{2}-8 q r 0 n^{2}-15\right]$ be non-singular idempotent matrix. Then the sum of all the elements of the set S is \qquad .

- Watch Video Solution

11. If A is a diagonal matrix of order 3×3 is commutative with every square matrix of order 3×3 under multiplication and trace $(A)=12$, then

D Watch Video Solution

12. If A is a square matrix of order 3 such that $|A|=2$, then $\left|\left(\operatorname{adj} A^{-1}\right)^{-1}\right|$ is
\qquad .

- Watch Video Solution

13. If A and B are two matrices of order 3 such that $A B=O$ and $A^{2}+B=I$, then $\operatorname{tr}\left(A^{2}+B^{2}\right)$ is equal to \qquad .

- Watch Video Solution

14. If a, b, and c are integers, then number of matrices $A=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]$ which are possible such that $A A^{T}=I$ is \qquad .

- Watch Video Solution

15. Let $A=\left[a_{\mathrm{ij}}\right]$ be 3×3 matrix and $B=\left[b_{\mathrm{ij}}\right]$ be 3×3 matrix such that b_{ij} is the sum of the elements of $i^{\text {th }}$ row of A except a_{ij}. If $\operatorname{det},(A)=19$, then the value of det. (B) is \qquad .

- Watch Video Solution

16. A square matrix M of order 3 satisfies $M^{2}=I-M$, where I is an identity matrix of order 3 . If $M^{n}=5 I-8 M$, then n is equal to \qquad .

- Watch Video Solution

17. Let $A=\left[a_{\mathrm{ij}}\right]_{3 \times 3}, B=\left[b_{\mathrm{ij}}\right]_{3 \times 3}$ and $C=\left[c_{\mathrm{ij}}\right]_{3 \times 3}$ be any three matrices, where $b_{\mathrm{ij}}=3^{i-j} a_{\mathrm{ij}}$ and $c_{\mathrm{ij}}=4^{i-j} b_{\mathrm{ij}}$. If det. $A=2$, then det. (BC) is equal to
\qquad -

- Watch Video Solution

18. If A is a square matrix of order 2×2 such that $|A|=27$, then sum of the infinite series $|A|+\left|\frac{1}{2} A\right|+\left|\frac{1}{4} A\right|+\left|\frac{1}{8} A\right|+\ldots$ is equal to \qquad .

(Watch Video Solution

19. If A is a aquare matrix of order 2 and det. $A=10$, then $\left((\text { tr. } A)^{2}-\operatorname{tr} .\left(A^{2}\right)\right)$ is equal to \qquad .

- Watch Video Solution

20. Let A and B are two square matrices of order 3 such that det. $(A)=3$
and det. $(B)=2$, then the value of det. $\left(\left(\operatorname{adj} .\left(B^{-1} A^{-1}\right)\right)^{-1}\right)$ is equal to
\qquad .

- Watch Video Solution

21. Let P, Q and R be invertible matrices of order 3 such $A=P Q^{-1}, B=Q R^{-1}$ and $C=R P^{-1}$. Then the value of det. $(A B C+B C A+C A B)$ is equal to \qquad .

- Watch Video Solution

22. If $A=\left[\begin{array}{lll}1 & x & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$ is the adjoint of a 3×3 matrix B and det. $(B)=4$, then the value of x is \qquad .

- Watch Video Solution

23. A, B and C are three square matrices of order 3 such that $A=$ diag. $(x, y$,
$x)$, det. $(B)=4$ and det. $(C)=2$, where $x, y, z \in I^{+}$. If det. (adj. (adj. (ABC))) $=2^{16} \times 3^{8} \times 7^{4}$, then the number of distinct possible matrices A is
24. Let $A=\left[a_{\mathrm{ij}}\right]$ be a matrix of order 2 where $a_{\mathrm{ij}} \in\{-1,0,1\}$ and adj. $A=-A$. If det. $(A)=-1$, then the number of such matrices is \qquad .

- Watch Video Solution

Jee Main Previous Year

1. Let A be 2×2 matrix.Statement $\mathrm{I} \operatorname{adj}(\operatorname{adj} A)=A$ Statement $\mathrm{II}|\operatorname{adj} A|=A$
A. Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 1.
B. Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 1.
C. Statement 1 is true, statement 2 is false.
D. Statement 1 is false, statement 2 is true.

Answer: B

- Watch Video Solution

2. The number of 33 non-singular matrices, with four entries as 1 and all other entries as 0 , is (1) $5(2) 6$ (3) at least 7 (4) less than 4
A. at least 7
B. less than 4
C. 5
D. 6

Answer: A

- Watch Video Solution

3. Let A be a 2×2 matrix with non-zero entries and let $A^{\wedge} 2=l$, where i is a 2×2 identity matrix, $\operatorname{Tr}(\mathrm{A}) \mathrm{i}=$ sum of diagonal elements of A and $|A|=$
determinant of matrix A. Statement 1: $\operatorname{Tr}(\mathrm{A})=0$ Statement $2:|A|=1$
A. Statement 1 is false, statement 2 is true.
B. Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 1.
C. Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 1.
D. Statement 1 is true, statement 2 is false.

Answer: D

- Watch Video Solution

4. Let A and B two symmetric matrices of order 3 .

Statement $1: A(B A)$ and $(A B) A$ are symmetric matrices.

Statement $2: A B$ is symmetric matrix if matrix multiplication of A with B is commutative.
A. Statement 1 is false, statement 2 is true.
B. Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 1.
C. Statement 1 is true, statement 2 is true, statement 2 is not a correct explanation for statement 1.
D. Statement 1 is true, statement 2 is false.

Answer: C

- Watch Video Solution

5. Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right)$. If u_{1} and u_{2} are column matrices such that
$A u_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $A u_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, then $u_{1}+u_{2}$ is equal to :
A. $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$
B. $\left(\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right)$
C. $\left(\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right)$
D. $\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)$

Answer: D

Watch Video Solution

6. Let P and Q be 3×3 matrices with $P \neq Q$. If $P^{3}=Q^{3} a n d P^{2} Q=Q^{2} P$, then determinant of $\left(P^{2}+Q^{2}\right)$ is equal to (1) 2 (2) 1 (3) 0 (4) 1
A. -2
B. 1
C. 0
D. -1

Answer: C

- Watch Video Solution

7. If $P=\left[\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$ is the adjoint of a 3×3 matrix A and $|A|=4$, then α is equal to
A. 4
B. 11
C. 5
D. 0

Answer: B

8. If A is an 3×3 non-singular matrix such that $\forall^{\prime}=A^{\prime} A$ and $B=A^{-1} A^{\prime}$, then BB equals (1) $I+B(2) I(3) B^{-1}(4)\left(B^{-1}\right)^{\prime}$
A. $I+B$
B. I
C. B^{-1}
D. $\left(B^{-1}\right)$ '

Answer: B

- Watch Video Solution

9. If $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b\end{array}\right]$ is a matrix satisfying the equation $\forall^{T}=9 I$, where I is 3×3 identity matrix, then the ordered pair (a, b) is equal to :
A. $(2,-1)$
B. $(-2,1)$
C. $(2,1)$
D. $(-2,-1)$

Answer: D

- Watch Video Solution

10. If $A=\left[\begin{array}{cc}5 a & -b \\ 3 & 2\end{array}\right]$ and $\operatorname{Aadj} A=A A^{T}$, then $5 a+b$ is equal to:
A. 5
B. 4
C. 13
D. -1

Answer: A

11. if $A=\left[\begin{array}{cc}2 & -3 \\ -4 & 1\end{array}\right]$ then $\left(3 A^{2}+12 A\right)=$?
A. $\left[\begin{array}{cc}72 & -63 \\ -84 & 51\end{array}\right]$
B. $\left[\begin{array}{cc}72 & -84 \\ -63 & 51\end{array}\right]$
C. $\left[\begin{array}{ll}51 & 63 \\ 84 & 72\end{array}\right]$
D. $\left[\begin{array}{ll}51 & 84 \\ 63 & 72\end{array}\right]$

Answer: C

- Watch Video Solution

Jee Advanced Previous Year

1. The number of 3×3 matrices A whose entries are either 0 or 1 and for which the system $A[x y z]=[100]$ has exactly two distinct solution is a .0 b .
$2^{9}-1$ c. 168 d. 2
A. 0
B. $2^{9}-1$
C. 168
D. 2

Answer: A

- Watch Video Solution

2. Let $\omega \neq 1$ be cube root of unity and S be the set of all non-singular matrices of the form $\left[1 a b \omega 1 c \omega^{2} \theta 1\right]$, where each of a, b, andc is either
ω or ω^{2} Then the number of distinct matrices in the set S is a. 2 b. 6 c. 4
d. 8
A. 2
B. 6
C. 4
D. 8

- Watch Video Solution

3. Let $P=\left[a_{\mathrm{ij}}\right]$ be a 3×3 matrix and let $Q=\left[b_{\mathrm{ij}}\right]$, where $b_{\mathrm{ij}}=2^{i+j_{a}}$ for $1 \leq i, j \leq 3$. If the determinant of P is 2 , then the determinant of the matrix Q is
A. 2^{10}
B. 2^{11}
C. 2^{12}
D. 2^{13}

Answer: D

- Watch Video Solution

4. Let $P=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]$ and I be the identity matrix of order 3. If $Q=[q i j]$
is a matrix, such that $P^{50}-Q=I$, then $\frac{q_{31}+q_{32}}{q_{21}}$ equals
A. 52
B. 103
C. 201
D. 205

Answer: B

D Watch Video Solution

5. How many 3×3 matrices M with entries from $\{0,1,2\}$ are there, for which the sum of the diagonal entries of M^{T} Mis5? 126 (b) 198 (c) 162 (d) 135
B. 126
C. 135
D. 162

Answer: A

- Watch Video Solution

6. Let MandN be two 3×3 non singular skew-symmetric matrices such that $M N=N M$ if P^{T} denote the transpose of P, then $M^{2} N^{2}\left(M^{T} N^{-1}\right)^{T}$ is equal to M^{2} b. $-N^{2}$ c. $-M^{2}$ d. $M N$
A. M^{2}
B. $-N^{2}$
C. $-M^{2}$
D. $M N$

Answer: C

7. Let ω be a complex cube root of unity with $\omega \neq 1$ andP $=\left[p_{i j}\right]$ be a $n \times n$ matrix withe $p_{i j}=\omega^{i+j}$ Then $p^{2} \neq O$, whe $\cap=$ a. 57 b .55 c .58 d .56
A. 57
B. 55
C. 58
D. 56

Answer: B::C::D

- Watch Video Solution

8. For 3×3 matrices MandN, which of the following statement (s) is (are)

NOT correct ? $N^{T} M N$ is symmetricor skew-symmetric, according as m is symmetric or skew-symmetric. $M N-N M$ is skew-symmetric for all
symmetric matrices MandN $M N$ is symmetric for all symmetric matrices
$\operatorname{MandN}(\operatorname{adj} M)(\operatorname{adj} N)=\operatorname{adj}(M N)$ for all invertible matrices MandN
A. $N^{T} M N$ is symmetric or skew-symmetric, according as M is symmetric or skew-symmetric
B. $M N-N M$ is skewOsymmetric for all symmetric matrices M and N
C. MN is symmetric for all symmetric matrices M and N
D. $(\operatorname{adj} M)(\operatorname{adj} N)=\operatorname{adj}(M N)$ for all inveriblr matrices M and N.

Answer: C::D

(Watch Video Solution

9. Let M be a 2×2 symmetric matrix with integer entries. Then M is invertible if The first column of M is the transpose of the second row of M The second row of M is the transpose of the first column of $M M$ is a diagonal matrix with non-zero entries in the main diagonal The product of entries in the main diagonal of M is not the square of an integer
A. the first column of M is the transpose of the second row of M
B. the second row of M is the transpose of the column of M
C. M is a diagonal matrix with non-zero entries in the main diagonal
D. the product of entries in the main diagonal of M is not the square of an integer

Answer: C::D

- Watch Video Solution

10. Let m and N be two 3×3 matrices such that $\mathrm{MN}=\mathrm{NM}$. Further if $M \neq N^{2}$ and $M^{2}=N^{4}$ then which of the following are correct.
A. determinant of $\left(M^{2}+M n^{2}\right)$ is 0
B. there is a 3×3 non-zero matrix U such that $\left(M^{2}+M N^{2}\right) U$ is the zero matrix
C. determinant of $\left(M^{2}+M N^{2}\right) \geq 1$
D. for a 3×3 matrix U, is the zero matrix

Answer: A::B

- Watch Video Solution

11. Let XandY be two arbitrary, 3×3, non-zero, skew-symmetric matrices and Z be an arbitrary 3×3, non-zero, symmetric matrix. Then which of the following matrices is (are) skew symmetric? a. $Y^{3} Z^{4} Z^{4} Y^{3}$ b. $X^{44}+Y^{44}$ c. $X^{4} Z^{3}-Z^{3} X^{4}$ d. $X^{23}+Y^{23}$
A. $Y^{3} Z^{4}-Z^{4} Y^{3}$
B. $X^{44}+Y^{44}$
C. $X^{4} Z^{3}-Z^{3} X^{4}$
D. $X^{23}+Y^{23}$

Answer: C::D

12. Let $p=\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0\end{array}\right]$, where $\alpha \in \mathbb{R}$. Suppose $Q=\left[q_{i j}\right]$ is a matrix such that $P Q=k l$, where $k \in \mathbb{R}, k \neq 0$ and l is the identity matrix of order 3. If $q_{23}=-\frac{k}{8}$ and $\operatorname{det}(Q)=\frac{k^{2}}{2}$, then
A. $\alpha=0, k=8$
B. $4 \alpha-k+8=0$
C. $\operatorname{det}(P \operatorname{adj}(Q))=2^{9}$
D. $\operatorname{det}(\mathrm{Q} \operatorname{adj}(\mathrm{P}))=2^{13}$

Answer: B::C

- Watch Video Solution

13. Which of the following is (are) NOT the square of a 3×3 matrix with real entries ?
A. $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$
B. $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$
C. $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$
D. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Answer: A::C

- Watch Video Solution

14. Let S be the set of all column matrices $\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ such that $b_{1}, b_{2}, b_{2} \in R$ and the system of equations (in real variables)
$-x+2 y+5 z=b_{1}$
$2 x-4 y+3 z=b_{2}$
$x-2 y+2 z=b_{3}$
has at least one solution. The, which of the following system (s) (in real
variables) has (have) at least one solution for each $\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right] \in S$?
A. $x+2 y+3 z=b_{1}, 4 y+5 z=b_{2}$ and $x+2 y+6 z=b_{3}$
B. $x+y+3 z=b_{1}, 5 x+2 y+6 z=b_{2}$ and $-2 x-y-3 z=b_{3}$
C. $x+2 y-5 z=b_{1}, 2 x-4 y+10 z=b_{2}$ and $x-2 y+5 z=b_{3}$
D. $x+2 y+5 z=b_{1}, 2 x+3 z=b_{2}$ and $x+4 y-5 z=b_{3}$

Answer: A::D

- View Text Solution

15. Let A be the set of all 3×3 symmetric matrices all of whose entries are either 0 or 1 . Five of these entries are 1 and four of them are 0 . The number of matrices in A is
A. 12
B. 6
C. 9
D. 3

Answer: A

- Watch Video Solution

16. Let A be the set of all 3×3 symmetric matrices all of whose either 0 or
17. Five of these entries are 1 and four of them are 0 .

The number of matrices A in A for which the system of linear equations
$A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
has a unique solution is
A. less than 4
B. at least 4 but less than 7
C. at least 7 but less than 10
D. at leat 10

Answer: B

- Watch Video Solution

17. Let A be the set of all 3×3 symmetric matrices all of whose either 0 or
18. Five of these entries are 1 and four of them are 0 .

The number of matrices A in A for which the system of linear equations
$A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
is inconsistent is
A. 0
B. more than 2
C. 2
D. 1

Answer: B

- Watch Video Solution

18. Let p be an odd prime number and T_{p}, be the following set of 2×2 matrices $T_{p}=\left\{A=\left[\begin{array}{ll}a & b \\ c & a\end{array}\right]: a, b, c \in\{0,1,2, \ldots \ldots . . . p-1\}\right\}$ The number of A in T_{p}, such that A is either symmetric or skew-symmetric or both, and $\operatorname{det}(A)$ divisible by p is
A. $(p-1)^{2}$
B. $2(p-1)$
C. $(p-1)^{2}+1$
D. $2 p-1$

Answer: D

- Watch Video Solution

19. Let P be an odd prime number and T_{p} be the following set of 2×2 matrices :

The number of A in T_{p} such that the trace of a is not divisible by p but det (A) divisible by p is [Note : The trace of matrix is the sum of its diaginal entries].
A. $(p-1)\left(p^{2}-p+1\right)$
B. $p^{3}-(p-1)^{2}$
C. $(p-1)^{2}$
D. $(p-1)\left(p^{2}-2\right)$

Answer: C

- View Text Solution

20. Let p be an odd prime number and T_{p}, be the following set of 2×2
matrices $T_{p}=\left\{A=\left[\begin{array}{ll}a & b \\ c & a\end{array}\right]: a, b, c \in\{0,1,2, \ldots \ldots . . . p-1\}\right\}$ The number of

A in T_{p}, such that A is either symmetric or skew-symmetric or both, and det (A) divisible by p is
A. $2 p^{2}$
B. $p^{3}-5 p$
C. $p^{3}-3 p$
D. $p^{3}-p^{2}$

Answer: D

- Watch Video Solution

21. Let a, b, and c be three real numbers satistying
$[a, b, c]\left[\begin{array}{lll}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=[0,0,0]$ If the point $P(a, b, c)$ with reference to (E),
lies on the plane $2 x+y+z=1$, the the value of $7 a+b+c$ is
A. 0
B. 12
C. 7
D. 6

Answer: D

- Watch Video Solution

22. Let a, b, and c be three real numbers satistying
$[a, b, c]\left[\begin{array}{lll}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=[0,0,0]$ Let ω be a solution of $x^{3}-1=0$ with
$\operatorname{Im}(\omega)>0 . \operatorname{Ifa}=2$ with b nd c satisfying (E) then the vlaue of $\frac{3}{\omega^{a}}+\frac{1}{\omega^{b}}+\frac{3}{\omega^{c}}$ is equa to (A) -2 (B) 2 (C) 3 (D) -3
A. -2
B. 2
C. 3
D. -3

Answer: A

D Watch Video Solution

23. Let a, b and c be three real numbers satisfying
$[a, b, c]\left[\begin{array}{lll}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=[0,0,0]$ Let $b=6$, with a and c satisfying (E). If alpha
and beta are the roots of the quadratic equation $a x^{2}+b x+c=0$ then
$\sum_{n=0}^{\infty}\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)^{n}$ is
A. 6
B. 7
C. $\frac{6}{7}$
D. ∞
24. Let K be a positive real number and $A=[2 k-12 \sqrt{k} 2 \sqrt{k} 2 \sqrt{k} 1-2 k-2 \sqrt{k} 2 k-1]$ andB $=[02 k-1 \sqrt{k} 1-2 k 02-\sqrt{k}-2 \sqrt{\bar{k}}$
. If $\operatorname{det}(\operatorname{adj} A)+\operatorname{det}(\operatorname{adjB})=10^{6}$, then $[k]$ is equal to. [Note: adjM denotes the adjoint of a square matix M and $[k]$ denotes the largest integer less than or equal to K].

- Watch Video Solution

25. Let M be a 3×3 matrix satisfying
$M[010]=M[1-10]=[11-1]$, andM[111] $=[0012]$ Then the sum of the diagonal entries of M is \qquad .

- Watch Video Solution

26. let $z=\frac{-1+\sqrt{3 i}}{2}$, wherei $=\sqrt{-1}$ and $\left.r, s \varepsilon P 1,2,3\right\}$. LetP $=\left[\begin{array}{cc}(-z)^{r} & z^{2 s} \\ z^{2 s} & z^{r}\end{array}\right]$ and I be the idenfity matrix or order 2 . Then the total number of ordered pairs (r, s) or which $P^{2}=-I$ is

- Watch Video Solution

Single Correct Answer

1. If $A=\left[\begin{array}{lll}0 & c & -b \\ -c & 0 & a \\ b & -a & 0\end{array}\right]$ and $B=\left[\begin{array}{lll}a^{2} & a b & a c \\ a b & b^{2} & b c \\ a c & b c & c^{2}\end{array}\right]$, then $(A+B)^{2}=$
A. A
B. B
C.I
D. $A^{2}+B^{2}$

- Watch Video Solution

2. If the value of prod_($\left.k=1)^{\wedge}(50)[\{: 1,2 k-1),(0,1):\}\right]$ isequal $\rightarrow[\{:(1, r),(0,1):\}]$ then $r^{`}$ is equal to
A. 62500
B. 2500
C. 1250
D. 12500

Answer: B

- View Text Solution

3. A square matrix P satisfies $P^{2}=I-P$ where I is identity matrix. If $P^{n}=5 I-8 P$, then n is
4. A and B are two square matrices such that $A^{2} B=B A$ and if $(A B)^{10}=A^{k} B^{10}$, then k is
A. 1001
B. 1023
C. 1042
D. none of these

Answer: B

- Watch Video Solution

5. If matrix $A=\left[a_{i j}\right]_{3 \times 3}$, matrix $B=\left[b_{i j}\right]_{3 \times 3}$, where $a_{i j}+a_{j i}=0$ and $b_{i j}-b_{j i}=0 \forall i, j$, then $A^{4} \cdot B^{3}$ is

A. Singular

B. Zero matrix
C. Symmetric
D. Skew-Symmetric matrix

Answer: A

- Watch Video Solution

6. If $A\left(\begin{array}{lll}1 & 3 & 4 \\ 3 & -1 & 5 \\ -2 & 4 & -3\end{array}\right)=\left(\begin{array}{lll}3 & -1 & 5 \\ 1 & 3 & 4 \\ +4 & -8 & 6\end{array}\right)$, then $A=$
A. $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2\end{array}\right)$
B. $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
C. $\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -2\end{array}\right)$
D. $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -2\end{array}\right)$

Answer: D

- Watch Video Solution

7. Let $A=\left[\begin{array}{ccc}-5 & -8 & -7 \\ 3 & 5 & 4 \\ 2 & 3 & 3\end{array}\right]$ and $B=\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$. If $A B$ is a scalar multiple of B, then the value of $x+y$ is
A. -1
B. -2
C. 1
D. 2

Answer: B

8. $A=\left[\begin{array}{cc}a & b \\ b & -a\end{array}\right]$ and $M A=A^{2 m}, m \in N$ for some matrix M, then which one of the following is correct ?
A. $M=\left[\begin{array}{ll}a^{2 m} & b^{2 m} \\ b^{2 m} & -a^{2 m}\end{array}\right]$
B. $M=\left(a^{2}+b^{2}\right)^{m}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
C. $M=\left(a^{m}+b^{m}\right)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
D. $M=\left(a^{2}+b^{2}\right)^{m-1}\left[\begin{array}{ll}a & b \\ b & -a\end{array}\right]$

Answer: D

- Watch Video Solution

9. If $A=\left[a_{i j}\right]_{m \times n}$ and $a_{i j}=\left(i^{2}+j^{2}-i j\right)(j-i), n$ odd, then which of the following is not the value of $\operatorname{Tr}(A)$
A. 0
B. $|A|$
C. $2|A|$
D. none of these

Answer: D

- Watch Video Solution

10. $|A-B| \neq 0, A^{4}=B^{4}, C^{3} A=C^{3} B, B^{3} A=A^{3} B$, then $\left|A^{3}+B^{3}+C^{3}\right|=$
A. 0
B. 1
C. $3|A|^{3}$
D. 6

Answer: A

11. If $A B+B A=0$, then which of the following is equivalent to $A^{3}-B^{3}$
A. $(A-B)\left(A^{2}+A B+B^{2}\right)$
B. $(A-B)\left(A^{2}-A B-B^{2}\right)$
C. $(A+B)\left(A^{2}-A B-B^{2}\right)$
D. $(A+B)\left(A^{2}+A B-B^{2}\right)$

Answer: C

- Watch Video Solution

12. A, B, C are three matrices of the same order such that any two are symmetric and the $3^{\text {rd }}$ one is skew symmetric. If $X=A B C+C B A$ and $Y=A B C-C B A$, then $(X Y)^{T}$ is
A. symmetric
B. skew symmetric
C. I-XY
D. $-Y X$

Answer: D

- Watch Video Solution

13. If A and P are different matrices of order n satisfying $A^{3}=P^{3}$ and
$A^{2} P=P^{2} A$ (where $|A-P| \neq 0$) then $\left|A^{2}+P^{2}\right|$ is equal to
A. n
B. 0
C. $|A||P|$
D. $|A+P|$

Answer: B

- Watch Video Solution

14. Let A, B are square matrices of same order satisfying $A B=A$ and $B A=B$ then $\left(A^{2010}+B^{2010}\right)^{2011}$ equals.
A. $A+B$
B. $2010(A+B)$
C. $2011(A+B)$
D. $2^{2011}(A+B)$

Answer: D

- Watch Video Solution

15. The number of 2×2 matrices A, that are there with the elements as real numbers satisfying $A+A^{T}=I$ and $A A^{T}=I$ is
A. zero
B. one
C. two
D. infinite

Answer: C

- Watch Video Solution

16. If the orthogonal square matrices A and B of same size satisfy $\operatorname{det} A+\operatorname{det} B=0$ then the value of $\operatorname{det}(A+B)$
A. -1
B. 1
C. 0
D. none of these

Answer: C

17. If $A=\left[\begin{array}{ll}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right], B=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right], C=A B A^{T}$, then $A^{T} C^{n} A$ equals to $\left(n \in I^{+}\right)$
A. $\left[\begin{array}{ll}-n & 1 \\ 1 & 0\end{array}\right]$
B. $\left[\begin{array}{ll}1 & -n \\ 0 & 1\end{array}\right]$
C. $\left[\begin{array}{ll}0 & 1 \\ 1 & -n\end{array}\right]$
D. $\left[\begin{array}{ll}1 & 0 \\ -n & 1\end{array}\right]$

Answer: D

(Watch Video Solution

18. Let A be a 3×3 matrix given by $A=\left(a_{i j}\right)_{3 \times 3}$. If for every column vector X satisfies $X^{\prime} A X=0$ and $a_{12}=2008, a_{13}=1010$ and $a_{23}=-2012$.

Then the value of $a_{21}+a_{31}+a_{32}=$
B. 2006
C. -2006
D. 0

Answer: C

- Watch Video Solution

19. Suppose A and B are two non singular matrices such that $B \neq I, A^{6}=I$ and $A B^{2}=B A$. Find the least value of k for $B^{k}=1$
A. 31
B. 32
C. 64
D. 63

Answer: D

20. Let A be a 2×3 matrix, whereas B be a 3×2 amtrix. If det. $(A B)=4$, then the value of det. (BA) is
A. -4
B. 2
C. -2
D. 0

Answer: D

- Watch Video Solution

21. Let A be a square matrix of order 3 so that sum of elements of each row is 1 . Then the sum elements of matrix A^{2} is
A. 1
B. 3
C. 0
D. 6

Answer: B

- Watch Video Solution

22. A and B be 3×3 matrices such that $A B+A=0$, then
A. $(A+B)^{2}=A^{2}+2 A B+B^{2}$
B. $|A|=|B|$
C. $A^{2}=B^{2}$
D. none of these

Answer: A

23. If $(A+B)^{2}=A^{2}+B^{2}$ and $|A| \neq 0$, then $|B|=$ (where A and B are matrices of odd order)
A. 2
B. -2
C. 1
D. 0

Answer: D

- Watch Video Solution

24. If A is a square matrix of order 3 such that $|A|=5$, then $|\operatorname{Adj}(4 A)|=$
A. $5^{3} \times 4^{2}$
B. $5^{2} \times 4^{3}$
C. $5^{2} \times 16^{3}$
D. $5^{3} \times 16^{2}$

Answer: C

D Watch Video Solution

25. If A and B are two non singular matrices and both are symmetric and commute each other, then
A. Both $A^{-1} B$ and $A^{-1} B^{-1}$ are symmetric.
B. $A^{-1} B$ is symmetric but $A^{-1} B^{-1}$ is not symmetric.
C. $A^{-1} B^{-1}$ is symmetric but $A^{-1} B$ is not symmetric.
D. Neither $A^{-1} B$ nor $A^{-1} B^{-1}$ are symmetric

Answer: A

D Watch Video Solution

26. If A is a square matrix of order 3 such that $|A|=2$, then $\left|\left(\operatorname{adj}^{-1}\right)^{-1}\right|$
A. 1
B. 2
C. 4
D. 8

Answer: C

- Watch Video Solution

27. Let matrix $A=\left[\begin{array}{ccc}x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2\end{array}\right]$, where $x, y, z \in N$. If
$|\operatorname{adj}(\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A)))|=4^{8} \cdot 5^{16}$, then the number of such (x, y, z) are
A. 28
B. 36
C. 45
D. 55

Answer: B

D Watch Video Solution

28. A be a square matrix of order 2 with $|A| \neq 0$ such that $|A+|A| \operatorname{adj}(A)|=0$, where $\operatorname{adj}(A)$ is a adjoint of matrix A, then the value of $|A-|A| \operatorname{adj}(A)|$ is
A. 1
B. 2
C. 3
D. 4

Answer: D

29. If A is a skew symmetric matrix, then $B=(I-A)(I+A)^{-1}$ is (where I is an identity matrix of same order as of A)
A. idempotent matrix
B. symmetric matrix
C. orthogonal matrix
D. none of these

Answer: C

- Watch Video Solution

30. If $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, then the trace of the matrix $\operatorname{Adj}(\operatorname{Adj} A)$ is
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

31. If $A=\left[\begin{array}{lll}1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0\end{array}\right]$ and $B=(\operatorname{adj} A)$ and $C=5 A$, then find the value of $\frac{|\operatorname{adjB}|}{|C|}$
A. 25
B. 2
C. 1
D. 5

Answer: C

32. Let A and B be two non-singular square matrices such that $B \neq I$ and $A B^{2}=B A$. If $A^{3}-B^{-1} A^{3} B^{n}$, then value of n is
A. 4
B. 5
C. 8
D. 7

Answer: C

Watch Video Solution

33. If A is an idempotent matrix satisfying $(I-0.4 A)^{-1}=I-\alpha A$ where I is the unit matrix of the same order as that of A then the value of α is
A. $-1 / 3$
B. $1 / 3$
C. $-2 / 3$
D. $2 / 3$

Answer: C

- Watch Video Solution

34. If A and B are two non-singular matrices which commute, then $\left(A(A+B)^{-1} B\right)^{-1}(A B)=$
A. $A+B$
B. $A^{-1}+B^{-1}$
C. $A^{-1}+B$
D. none of these

Answer: A

1. If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, then
A. $A^{3}-A^{2}=A-I$
B. $\operatorname{Det}\left(A^{2010}-I\right)=0$
C. $A^{50}=\left[\begin{array}{lll}1 & 0 & 0 \\ 25 & 1 & 0 \\ 25 & 0 & 1\end{array}\right]$
D. $A^{50}=\left[\begin{array}{lll}1 & 1 & 0 \\ 25 & 1 & 0 \\ 25 & 0 & 1\end{array}\right]$

Answer: A::B::C

- Watch Video Solution

2. If the elements of a matrix A are real positive and distinct such that $\operatorname{det}\left(A+A^{T}\right)^{T}=0$ then
A. $\operatorname{det} A>0$
B. $\operatorname{det} A \geq 0$
C. $\operatorname{det}\left(A-A^{T}\right)>0$
D. $\operatorname{det}\left(A . A^{T}\right)>0$

Answer: A::C::D

- Watch Video Solution

3. If $A=\left[\begin{array}{lll}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$ and X is a non zero column matrix such that
$A X=\lambda X$, where λ is a scalar, then values of λ can be
A. 3
B. 6
C. 12
D. 15

Answer: A::D

- Watch Video Solution

4. If A, B are two square matrices of same order such that $A+B=A B$ and I is identity matrix of order same as that of A, B, then
A. $A B=B A$
B. $|A-I|=0$
C. $|B-I| \neq 0$
D. $|A-B|=0$

Answer: A:C

5. If A is a non-singular matrix of order $n \times n$ such that $3 A B A^{-1}+A=2 A^{-1} B A$, then
A. A and B both are identity matrices
B. $|A+B|=0$
c. $\left|A B A^{-1}-A^{-1} B A\right|=0$
D. $A+B$ is not a singular matrix

Answer: B::C

- Watch Video Solution

6. If the matrix A and B are of 3×3 and $(I-A B)$ is invertible, then which of the following statement is/are correct ?
A. $I-B A$ is not invertible
B. I-BA is invertible
C. $I-B A$ has for its inverse $I+B(I-A B)^{-1} A$
D. $I-B A$ has for its inverse $I+A(I-B A)^{-1} B$

Answer: B::C

- Watch Video Solution

7. If A is a square matrix such that $A \cdot(\operatorname{Adj} A)=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]$, then
A. $|A|=4$
B. $|\operatorname{adj} A|=16$
C. $\frac{|\operatorname{adj}(\operatorname{adj} A)|}{|\operatorname{adj} A|}=16$
D. $|\operatorname{adj} 2 A|=128$

Answer: A::B::C

1. In which of the following type of matrix inverse does not exist always? a. idempotent
b. orthogonal c. involuntary
d. none of these

- Watch Video Solution

2. If both $A-\frac{1}{2} \operatorname{IandA}+\frac{1}{2}$ are orthogonal matices, then (a) A is orthogonal
(b) A is skew-symmetric matrix of even order (c) $A^{2}=\frac{3}{4} I$ (d)none of these

- Watch Video Solution

3. If nth-order square matrix A is a orthogonal, then $|\operatorname{adj}(\operatorname{adj} A)|$ is (a)always -1 if n is even (b) always 1 if n is odd (c) always 1 (d) none of these
4. If P is an orthogonal matrix and $Q=P A P^{T} a n d x=P^{T} Q^{1000} P$ then x^{-1} is, where A is involutary matrix. A b. $I \mathrm{c} . A^{1000} \mathrm{~d}$. none of these

Watch Video Solution

5. If A is a nilpotent matrix of index 2 , then for any positive integer $n, A(I+A)^{n}$ is equal to A^{-1} b. A c. A^{n} d. I_{n}

- Watch Video Solution

6. If AandB are two matrices such that $A B=\operatorname{Band} B A=A$, then $\left(A^{5}-B^{5}\right)^{3}=A-B$ b. $\left(A^{5}-B^{5}\right)^{3}=A^{3}-B^{3}$ c. $A-B$ is idempotent d. none of these

- Watch Video Solution

7. If Z is an idempotent matrix, then $(I+Z)^{n} I+2^{n} Z$ b. $I+\left(2^{n}-1\right) Z$ c. $I-\left(2^{n}-1\right) Z$ d. none of these

- Watch Video Solution

8. If A is an orthogonal matrix then A^{-1} equals A^{T} b. A c. A^{2} d. none of these

- Watch Video Solution

9. If $A^{2}=1$, then the value of $\operatorname{det}(A-I)$ is (where A has order 3) $1 \mathrm{~b} .-1 \mathrm{c} .0$ d. cannot say anything

- Watch Video Solution

10. Let A be an nth-order square matrix and B be its adjoint, then $\left|A B+K I_{n}\right|$ is (where K is a scalar quantity) $(|A|+K)^{n-2}$ b. $(|A|+) K^{n}$ c.
$(|A|+K)^{n-1} \mathrm{~d}$. none of these

- Watch Video Solution

11. $A=\left[\begin{array}{lll}a & 1 & 0 \\ 1 & b & d \\ 1 & b & c\end{array}\right], B=\left[\begin{array}{lll}a & 1 & 1 \\ 0 & d & c \\ f & g & h\end{array}\right], U=\left[\begin{array}{l}f \\ g \\ h\end{array}\right], V=\left[\begin{array}{c}a^{2} \\ 0 \\ 0\end{array}\right]$ If there is a vector matrix X , such that $A X=U$ has infinitely many solutions, then prove that $B X=V$ cannot have a unique solution. If $a f d \neq 0$. Then, prove that $B X=V$ has no solution.

- Watch Video Solution

12. If M is a 3×3 matrix, where det $M=1$ and $M M^{T}=1$, where I is an identity matrix, prove theat $\operatorname{det}(M-I)=0$.

- Watch Video Solution

13. If A is a diagonal matrix of order 3×3 is commutative with every square matrix or order 3×3 under multiplication and $\operatorname{tr}(A)=12$, then the value of $|A|^{1 / 2}$ is \qquad .

- Watch Video Solution

14. Let S be the set which contains all possible vaues fo I, m, n, p, q, r for which $A=\left[I^{2}-3 p 00 m^{2}-8 q r 0 n^{2}-15\right]$ be non-singular idempotent matrix. Then the sum of all the elements of the set S is \qquad .

- Watch Video Solution

15. Given a matrix $A=[a b c b c a c a b]$, wherea, b, c are real positive numbers $a b c=1 a n d A^{T} A=I$, then find the value of $a^{3}+b^{3}+c^{3}$

- Watch Video Solution

16. If A is a square matrix of order 3 such that $|A|=2$, then $\left|\left(\operatorname{adj} A^{-1}\right)^{-1}\right|$ is
\qquad .

- Watch Video Solution

17. Let $A=\left[\begin{array}{c}3 x^{2} \\ 1 \\ 6 x\end{array}\right], B=[a, b, c]$ and $C=\left[\begin{array}{ccc}(x+2)^{2} & 5 x^{2} & 2 x \\ 5 x^{2} & 2 x & (x+2)^{2} \\ 2 x & (x+2)^{2} & 5 x^{2}\end{array}\right]$ be three given matrices, where a, b, candx $\in R$ Given that $\operatorname{tr}(\mathrm{AB})=\operatorname{tr}(\mathrm{C})$. If $f(x)=a x^{2}+b x+c$, then the value of $f(1)$ is \qquad .

- Watch Video Solution

18. If A is an idempotent matrix satisfying, $(I-0.4 A)^{-1}=I-\alpha A$, whereI is the unit matrix of the name order as that of A, then th value of $|9 \alpha|$ is equal to \qquad .
19. Let $A=\left(\left[a_{i j}\right]\right)_{3 \times 3}$ be a matrix such that $\forall^{T}=4$ Ianda $_{i j}+2 c_{i j}=0$, wherec ${ }_{i j}$ is the cofactor of $a_{i j}$ andI is the unit matrix of order 3. $\left|a_{11}+4 a_{12} a_{13} a_{21} a_{22}+4 a_{23} a_{31} a_{32} a_{33}+4\right|+5 \lambda \mid a_{11}+1 a_{12} a_{13} a_{21} a_{22}+1 a_{23} a_{31} a$ then the value of 10λ is \qquad .

- Watch Video Solution

20. Let A be the set of all 3×3 skew-symmetri matrices whose entries are either $-1,0$, or 1 . If there are exactly three $0 s$ three 1 s , and there $(-1)^{\prime} \mathrm{s}$, then the number of such matrices is \qquad .

- Watch Video Solution

21. If $A=[0121233 a 1]$ and $A_{1}=[1 / 212 / 12 /-43 c 5 / 2-3 / 21 / 2]$, then the values of a anti c are equal to $1,1 \mathrm{~b} .1,-1 \mathrm{c} .1,2 \mathrm{~d} .-1,1$
22. For two unimodular complex number $z_{1} a n d z_{2}$ $\left[(z)_{1}-z_{2}(z)_{2} z_{1}\right]^{-1}\left[(z)_{1} z_{2}-(z)_{2} z_{1}\right]^{-1}$ is equal to $\left[z_{1} z_{2}(z)_{1}(z)_{2}\right]$ b. [1001] c. [1/2001/2] d. none of these

- Watch Video Solution

23. If AandB are two non-singular matrices of the same order such that $B^{r}=I$, for some positive integer $r>1$, then $A^{-1} B^{r-1} A=A^{-1} B^{-1} A=I$ b. $2 I$ c. O d. - I

Watch Video Solution

24. If A is non-diagonal involuntary matrix, then $A=I=O$ b. $A+I=O$ c. $A=I$ is nonzero singular d . none of these
25. if $A a n d B$ are squares matrices such that
$A^{2006}=\operatorname{Oand} A B=A+B$, thendet (B) equals 0 b. 1 c. -1 d. none of these

- Watch Video Solution

26. If matrix A is given by $A=[61124]$, then the determinant of
$A^{2005}-6 A^{2004}$ is 2^{2006}
b. $(-11) 2^{2005}$
c. -2^{2005}
d. $(-9) 2^{2004}$

D Watch Video Solution

27. If $A=[a b c x y z p q r], B[q-b y-p a-x r-c z]$ and if A is invertible, then which of the following is not true? $|A|=|B||A|=-|B||\operatorname{adj} A|=|\operatorname{adj} B| A$ is invertible if and only if B is invertible

- Watch Video Solution

28. If $A a n d B$ are two non-singular matrices such that $A B=C$, then $|B|$ is equal to $\frac{|C|}{|A|} \mathrm{b} \cdot \frac{|A|}{|C|} \mathrm{c} .|C|$ d. none of these

- Watch Video Solution

29. If $A(\alpha, \beta)=\left[\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & e^{\beta}\end{array}\right]$, then $A(\alpha, \beta)^{-1}$ is equal to

- Watch Video Solution

30. If $A=\left[\begin{array}{cc}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right] a n d a^{2}+b^{2}+c^{2}+d^{2}=1$, then A^{-1} is equal to a. $\left[\begin{array}{cc}a+i b & -c+i d \\ -c+i d & a-i b\end{array}\right]$ b. $\left[\begin{array}{cc}a-i b & -c-i d \\ -c-i d & a+i b\end{array}\right]$ c. $\left[\begin{array}{cc}a+i b & -c-i d \\ -c+i d & a-i b\end{array}\right]$ d. none of these
31. Statement 1: $A=[404222121] B^{-1}=[133143134]$. Then $(A B)^{-1}$ does not exist. Statement 2: Since $|A|=0,(A B)^{-1}=B^{-1} A^{-1}$ is meaning-less.

- Watch Video Solution

32. Statement 1: If $f(\alpha)=\left[\begin{array}{ccc}\cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$, then $[F(\alpha)]^{-1}=F(-\alpha)$.

Statement 2: For matrix $G(\beta)=\left[\begin{array}{ccc}\cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta\end{array}\right]$. we have
$[G(\beta)]^{-1}=G(-\beta)$

- Watch Video Solution

33. Statement 1: if a, b, c, d are real numbers and
$A=[a b c d] a n d A^{3}=O$, thenA ${ }^{2}=O$ Statement 2: For matrix $A=[a b c d]$ we have $A^{2}=(a+d) A+(a d-b c) I=O$
34. Statement 1: Matrix $3 \times 3, a_{i j}=\frac{i-j}{i+2 j}$ cannot be expressed as a sum of symmetric and skew-symmetric matrix. Statement 2: Matrix $3 \times 3, a_{i j}=\frac{i-j}{i+2 j}$ is neither symmetric nor skew-symmetric

- Watch Video Solution

35. Statement 1: If A, B, C are matrices such that
$\left|A_{3 \times 3}\right|=3,\left|B_{3 \times 3}\right|=-1$, and $\left|C_{2 \times 2}\right|={ }_{2}$, then $|2 A B C|=-12$. Statement 2:
For matrices A, B, C of the same order, $|A B C|=A=|A||B||C|$

- Watch Video Solution

36. Statement 1: For a singular square matrix $A, A B=A C B=C$ Statement 2; $|A|=0$, thenA $^{-1}$ does not exist.
37. Statement 1: The inverse of singular matrix $A=\left(\left[a_{i j}\right]\right)_{n \times n}$, wherea $_{i j}=0, i \geq j i s B=([a i j-1])_{n \times n}$ Statement 2: The inverse of singular square matrix does not exist.

- Watch Video Solution

38. Statement 1: The determinant of a matrix
$A=\left(\left[a_{i j}\right]\right)_{5 \times 5}$ wherea $_{i j}+a_{j i}=0$ for all iandj is zero. Statement 2: The determinant of a skew-symmetric matrix of odd order is zero

- Watch Video Solution

39. If $A=[1221] \operatorname{andf}(x)=\frac{1+x}{1-x}$, $\operatorname{thenf}(A)$ is [1111] b. [2222] c. 1-1-1-1d. none of these

D Watch Video Solution

40. Id $[1 / 250 \times 1 / 25]=[50-a 5]^{-2}$, then the value of x is $a / 125 \mathrm{~b} .2 a / 125 \mathrm{c}$. $2 a / 25 \mathrm{~d}$. none of these

- Watch Video Solution

41. If $A=[1 \tan x-\tan x 1]$, show that $A^{T} A^{-1}=[\cos 2 x-\sin 2 x \sin 2 x \cos 2 x]$.

- Watch Video Solution

42. If A is a square matrix of order n such that $|\operatorname{adj}(\operatorname{adj} A)|=|A|^{9}$, then the value of n can be 4 b .2 c . either 4 or 2 d . none of these

- Watch Video Solution

43. If A is order 2 square matrix such that $|A|=2$, then $|(\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A)))|$ is 512 b. 256 c. 64 d. none of these
44. If $A^{3}=O$, then $I+A+A^{2}$ equals a. $I-A$ b. $\left(I+A^{1}\right)^{-1} \mathrm{c} .(I-A)^{-1}$ d. none of these

- Watch Video Solution

45. For each real $x,=1$

- Watch Video Solution

46. $(-A)^{-1}$ is always equal to (where A is nth-order square matrix) $(-A)^{-1}$
b. $-A^{-1} c .(-1)^{n} A^{-1}$ d. none of these

- Watch Video Solution

47. The matrix X for which $[1-43-2] X=[-16-672]$ is $[-24-31] \mathrm{b}$.
$\left[-\frac{1}{5} \frac{2}{5}-\frac{3}{10} \frac{1}{5}\right]$ c. $[-161672]$ d. $\left[62 \frac{11}{2} 2\right]$

Watch Video Solution

48. If $A=\left[\begin{array}{cc}0 & -\tan \alpha \\ 2 & \tan \alpha \\ 2 & 0\end{array}\right]$ and I is 2×2 unit matrix, then $(I-A)\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & \sin \alpha\end{array}\right]$ is (a) $-I+A(\mathrm{~b}) I-A(\mathrm{c})-I-A(\mathrm{~d})$ non of these

- Watch Video Solution

49. Let $A d n B$ be 3×3 matrtices of ral numbers, where A is symmetric, B is skew-symmetric , and

$$
(A+B)(A-B)=(A-B)(A+B)
$$

If
$(A B)^{t}=(-1)^{k} A B$, where $(A B)^{t}$ is the transpose of the mattix $A B$, then find the possible values of k

- Watch Video Solution

50. If $\left[\begin{array}{cc}a & b \\ c & 1-a\end{array}\right]$ is an idempotent matrix and $f(x)=x-x^{2}, b c=\frac{1}{4}$, then the value of $1 / f(a)$ is \qquad .
51. Let x be the solution set of equation $A^{x}=I$, whereA $+[01-14-343-34]$ andI is the corresponding unit matrix and $x \subseteq N$, then the minimum value of $\sum\left(\cos ^{x} \theta+\sin ^{x} \theta\right), \theta \in R$

- Watch Video Solution

52. If $A=[\alpha 011] a n d B=[1051]$, find the values of α for which $A^{2}=B$

- Watch Video Solution

53. Let a and b be two real numbers such that $a>1, b>1$. If
$A=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$, then ($\left.\lim \right)_{n \rightarrow \infty} A^{-n}$ is (a) unit matrix (b) null matrix (c) $2 I$
(d) non of these

- Watch Video Solution

54. Let $f(x)=\frac{1+x}{1-x}$. If A is matrix for which $A^{3}=O$, $\operatorname{thenf}(A)$ is (a) $I+A+A^{2}$ (b) $I+2 A+2 A^{2}$ (c) $I-A-A^{2}$ (d) none of these

- Watch Video Solution

55. A and B are square matrices and A is non-singular matrix, then $\left(A^{-1} B A\right)^{n}, n \in I^{\prime}$,is equal to (A) $A^{-n} B^{n} A^{n}$ (B) $A^{n} B^{n} A^{-n}$ (C) $A^{-1} B^{n} A$ (D) $A^{-n} B A^{n}$

(Watch Video Solution

56. If A is a singular matrix, then adj A is a. singular b. non singular c. symmetric d. not defined

- Watch Video Solution

57. The inverse of a diagonal matrix is a. a diagonal matrix b. a skew symmetric matrix c. a symmetric matrix d. none of these

Watch Video Solution

58. If P is non-singular matrix, then value of $\operatorname{adj}\left(P^{-1}\right)$ in terms of P is (A) P
$\frac{P}{|P|}$ (B) $P|P|$ (C) P (D) none of these

- Watch Video Solution

59. If $\operatorname{adj} B=A,|P|=|Q|=1$, thenadj $\left(Q^{-1} B P^{-1}\right)$ is $P Q$ b. $Q A P$ c. $P A Q$ d. $P A^{1} Q$

- Watch Video Solution

60. If A is non-singular and $(A-2 I)(A-4 I)=O$, then $\frac{1}{6} A+\frac{4}{3} A^{-1}$ is equal to OI b. 2I c. 6I d. I

- Watch Video Solution

61. If $A(\alpha, \beta)=\left[\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & e^{\beta}\end{array}\right]$, then $A(\alpha, \beta)^{-1}$ is equal to a. $A(-\alpha,-\beta) \mathrm{b}$.
$A(-\alpha, \beta)$ c. $A(\alpha,-\beta)$ d. $A(\alpha, \beta)$

- Watch Video Solution

62. If AandB are two square matrices such that $B=-A^{-1} B A$, then $(A+B)^{2}$ is equal to $A^{2}+B^{2}$ b. O c. $A^{2}+2 A B+B^{2}$ d. $A+B$

- Watch Video Solution

63. $A=[1 \tan x-\tan x 1] \operatorname{andf}(x)$ is defined as $f(x)=\operatorname{det}^{T} A^{-1}$ en the value of $(f(f(f(f f(x))))$ is $(n \geq 2)$ \qquad .
64. The equation $[12213424 k][x y z]=[000]$ has a solution for (x, y, z) besides $(0,0,0)$ Then the value of k is \qquad .

Watch Video Solution

65. If $D_{1} a n d D_{2}$ are two 3×3 diagonal matrices, then which of the following is/are true? $D_{1} a n d D_{2}$ is a diagonal matrix b. $D_{1} D_{2}=D_{2} D_{1}$ c. $D 12+D 22$ is a diagonal matrix d. none of these

- Watch Video Solution

66. If AandB are symmetric and commute, then which of the following is/are symmetric? $A^{-1} B \mathrm{~b} \cdot A B^{-1}$ c. $A^{-1} B^{-1}$ d. none of these

- Watch Video Solution

67. If C is skew-symmetric matrix of order nand $\Xi s n \times 1$ column matrix, then $X^{T} C X$ is a.singular b. non-singular c . invertible d . non invertible

- Watch Video Solution

68.

$S=[011101110] a n d A=[b++a b--b c+b a--c a-c a+b](a, b, c \neq 0)$, thenSt
is a. symmetric matrix b. diagonal matrix c. invertible matrix d. singular matrix

- Watch Video Solution

69. Let $A=[122212221]$. Then $A^{2}-4 A-5 I_{3}=O$ b. $A^{-1}=\frac{1}{5}\left(A-4 I_{3}\right)$ c. A^{3} is not invertible d. A^{2} is invertible

- Watch Video Solution

70. Let $A=a_{0}$ be a matrix of order 3 , where $a_{i j}\{x ;$ if $i=j, x \in R 1$; if $|i-j|=1 ; 0$; otherwise then when of the following Hold (s) good: for $x=2, A$ is a diagonal matrix A is a symmetric matrix for $x=2, \operatorname{det} A$ has the value equal to 6 Let $f(x)=, \operatorname{det} A$, then the function $f(x)$ has both the maxima and minima.

- Watch Video Solution

71. A skew-symmetric matrix A satisfies the relation $A^{2}+I=O$, whereI is a unit matrix then A is a. idempotent b. orthogonal c. of even order d . odd order

- Watch Video Solution

72. If $A B=$ Aand $B A=B$, then a. $A^{2} B=A^{2}$
b. $B^{2} A=B^{2}$
c. $A B A=A$ d.
$B A B=B$
73. Each question has four choices a, b, c and d, out of which only one is correct. Each question contains STATEMENT 1 and STATEMENT 2. Both the statements are TRUE and STATEMENT 2 is the correct explanation of STATEMENT1. Both the statements are TRUE but STATEMENT 2 is NOT the correct explanation of STATEMENT 1. STATEMENT 1 is TRUE and STATEMENT 2 is FALSE. STATEMENT 1 is FALSE and STATEMENT 2 is TRUE. Statement 1 : $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))|-|A|^{n-1} \wedge 3$, where n is order of matrix A Statement 2: $|\operatorname{adj} A|=|A|^{n}$

- Watch Video Solution

74. Statement $1:$ if $D=\operatorname{diag}\left[d_{1}, d_{2}, d_{n}\right]$,then $\quad D^{-1}=\operatorname{diag}$ $\left[d_{1}^{-1}, d_{2}^{-1}, \ldots, d_{n}^{-1}\right]$ Statement 2: if $D=\operatorname{diag}\left[d_{1}, d_{2}, d_{n}\right]$,then $D^{n}=\operatorname{diag}$ $\left[d_{1}^{n}, d_{2}^{n}, \ldots, d_{n}^{n}\right]$

- Watch Video Solution

75. If A is a skew-symmetric matrix and n is odd positive integer, then A^{n} is a skew-symmetric matrix a symmetric matrix a diagonal matrix none of these

- Watch Video Solution

76. If $f(x)=[\cos x-\sin x-\sin x \cos c 1]$ and $g(y)=[\cos y \sin y \sin y \cos y]$, then $[f(x) g(y)]^{-1}$ is equal to (a) $f(-x) g(-y)$ (b) $g(-y) f(-x)$ (c) $f\left(x^{-1}\right) g\left(y^{-1}\right)$
$g\left(y^{-1}\right) f\left(x^{-1}\right)$

- Watch Video Solution

77. Let $F(\alpha)=[\cos \alpha-s \in \alpha 0 s \in \alpha \cos \alpha 0001]$, where $\alpha \in R$ Then $(F(\alpha))^{-1}$ is equal to $F\left(\alpha^{-1}\right)$ b. $F\left(-\alpha^{\square}\right)$ c. $F(2 \alpha)$ d. - [1110]

- Watch Video Solution

78. Elements of a matrix A or orddr 10×10 are defined as $a_{i j}=w^{i+j}$ (where w is cube root of unity), then trace (A) of the matrix is 0 b .1 c .3 d . none of these

- Watch Video Solution

79. If A is a 3×3 skew-symmetric matrix, then trace of A is equal to -1 b. 1
c. $|A|$ d. none of these

- Watch Video Solution

80. If AandB are symmetric matrices of the same order and $X=A B+B A a n d Y=A B-B A$, then $(X Y)^{T}$ is equal to $X Y$ b. $Y X$ c. $-Y X$ d. none of these

- Watch Video Solution

81. The number of solutions of the matrix equation $X^{2}=\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$ is (A) more than 2 (B) 2 (C) 0 (D) 1

- Watch Video Solution

82. If $A^{2}-A+I=0$, then the invers of A is $A^{-2} \mathrm{~b} . A+I \mathrm{c} . I-A \mathrm{~d} . A-I$

- Watch Video Solution

83. If $\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then $A=$ (A) $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ (B) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ (D) $-\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$

- Watch Video Solution

84. If AandB are two nonzero square matrices of the same ordr such that the product $A B=O$, then (a) both A and B must be singular (b) exactly
one of them must be singular (c) both of them are non singular (d) none of these

- Watch Video Solution

85. Let K be a positive real number and $A=[2 k-12 \sqrt{k} 2 \sqrt{k} 2 \sqrt{k} 1-2 k-2 \sqrt{k} 2 k-1]$ andB $=[02 k-1 \sqrt{k} 1-2 k 02-\sqrt{k}-2 \sqrt{k}$
. If $\operatorname{det}(\operatorname{adj} A)+\operatorname{det}(\operatorname{adjB})=10^{6}$, then[k] is equal to. [Note: adjM denotes the adjoint of a square matix M and $[k]$ denotes the largest integer less than or equal to $K]$.

- Watch Video Solution

86. Let XandY be two arbitrary, 3×3, non-zero, skew-symmetric matrices and Z be an arbitrary 3×3, non-zero, symmetric matrix. Then which of the following matrices is (are) skew symmetric? a. $Y^{3} Z^{4} Z^{4} Y^{3}$ b. $X^{44}+Y^{44}$ c. $X^{4} Z^{3}-Z^{3} X^{4}$ d. $X^{23}+Y^{23}$
87. Let $M a n d N$ be two 3×3 matrices such that $M N=N M$ Further, if $M \neq N^{2} a n d M^{2}=N^{4}$, then Determinant of $\left(M^{2}+M N^{2}\right)$ is 0 There is a 3×3 non-zeero matrix U such tht $\left(M^{2}+M N^{2}\right) U$ is the zero matrix Determinant of $\left(M^{2}+M N^{2}\right) \geq 1$ For a 3×3 matrix U, if $\left(M^{2}+M N^{2}\right) U$ equal the zero mattix then U is the zero matrix

- Watch Video Solution

88. Let M be a 2×2 symmetric matrix with integer entries. Then M is invertible if The first column of M is the transpose of the second row of M The second row of M is the transpose of the first column of $M M$ is a diagonal matrix with non-zero entries in the main diagonal The product of entries in the main diagonal of M is not the square of an integer

(3) Watch Video Solution

89. For 3×3 matrices MandN, which of the following statement (s) is (are) NOT correct ? $N^{T} M N$ is symmetricor skew-symmetric, according as m is symmetric or skew-symmetric. $M N-N M$ is skew-symmetric for all symmetric matrices MandN MN is symmetric for all symmetric matrices $\operatorname{MandN}(\operatorname{adjM})(\operatorname{adjN})=\operatorname{adj}(M N)$ for all invertible matrices MandN

- Watch Video Solution

90. If B is an idempotent matrix, and $A=I-B$, then a. $A^{2}=A \mathrm{~b} \cdot A^{2}=I \mathrm{c}$.
$A B=O$ d. $B A=O$

- Watch Video Solution

91. If $A^{-1}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -\frac{1}{3}\end{array}\right]$, then $|A|=-1 \quad$ b. $\operatorname{adj} A=\left[\begin{array}{ccc}-1 & 1 & 2 \\ 0 & -3 & -1 \\ 0 & 0 & \frac{1}{3}\end{array}\right]$
C.
$A=\left[\begin{array}{ccc}1 & \frac{1}{3} & 7 \\ 0 & \frac{1}{3} & 1 \\ 0 & 0 & -3\end{array}\right]$ d. $A=\left[\begin{array}{ccc}1 & -\frac{1}{3} & -7 \\ 0 & -3 & 0 \\ 0 & 0 & 1\end{array}\right]$

- Watch Video Solution

92.

$A_{1}=[0001001001001000], A_{2}=[000 i 00-i 00 i 00-i 000]$, then $A_{i} A_{k}+A_{k} A_{i}$ is equal to $2 l$ if $i=k b . O$ if $i \neq k \mathrm{c} .2 l$ if $i \neq k \mathrm{~d}$. O always

- Watch Video Solution

93. Which of the following statements is/are true about square matrix A or order n ? $(-A)^{-1}$ is equal to A^{-1} when \cap is odd only if
$A^{n}-O$, thenI $+A+A^{2}++A^{n-1}=(I-A)^{-1}$ If A is skew-symmetric matrix of odd order, then its inverse does not exist. $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$ holds always.

- Watch Video Solution

94. If A is an invertible matrix, tehn $(\operatorname{adj} A)^{-1}$ is equal to $\operatorname{adj} A^{-1}$ b. $\frac{A}{\operatorname{det} A}$ c. A d. $(\operatorname{det} A) A$

- Watch Video Solution

95. If $A=\left(\left(a_{i j}\right)\right)_{n \times n}$ and f is a function, we define $f(A)=\left(\left(f\left(a_{i j}\right)\right)\right)_{n \times n^{\prime}}$

Let $A=(\pi / 2-\theta \theta-\theta \pi / 2-\theta)$. Then $\sin A$ is invertible $\mathrm{b} \cdot \sin A=\cos A \mathrm{c} . \sin A$ is orthogonal d. $\sin (2 A)=2 A \sin A \cos A$

- Watch Video Solution

96. Suppose a_{1}, a, are real numbers, with $a_{1} \neq 0$. If a_{1}, a_{2}, a_{3}, are in A.P., then $A=\left[a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{5} a_{6} a_{7}\right]$ is singular $($ wherei $=\sqrt{-1})$ The system of equations $a_{1} x+a_{2} y+a_{3} z=0, a_{4} x+a_{5} y+a_{6} z=0, a_{7} x+a_{8} y+a_{9}=0$ has infinite number of solutions. $B=\left[a_{1} i a_{2} i a_{2} a_{1}\right]$ is non-singular none of these

- Watch Video Solution

97. If A, B, C are three square matrices of the same order, then $A B=A C \Rightarrow B=C$ Then $|A| \neq 0 \mathrm{~b}$. A is invertible c . A may be orthogonal d . is symmetric

- Watch Video Solution

98. Let $A=[1011]$. Then which of following is not true?
$(\lim)_{n \infty} \frac{1}{n^{2}} A^{-n}=[00-10]$
b. $\quad(\lim)_{n}{\underset{\infty}{\infty}}^{\frac{1}{n}} A^{-n}=[00-10]$
C.
$A^{-n}=[10-n 1] \forall n \neq N d$. none of these
99. If α, β, γ are three real numbers and $A=[1 \cos (\alpha-\beta) \cos (\alpha-\gamma) \cos (\beta-\alpha) 1 \cos (\beta-\gamma) \cos (\gamma-\alpha) \cos (\gamma-\beta) 1]$, then which of following is/are true? A is singular b. A is symmetric $c . A$ is orthogonal d. A is not invertible

- Watch Video Solution

100. The matrix $A=\left[\begin{array}{ccc}-5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1\end{array}\right]$ is (A) idempotent matrix (B) involutory matrix (C) nilpotent matrix (D) none of these

- Watch Video Solution

101. If AandB are square matrices of the same order and A is non-singular, then for a positive integer $n,\left(A^{-1} B A\right)^{n}$ is equal to $A^{-n} B^{n} A^{n}$ b. $A^{n} B^{n} A^{-n} c$.
$A^{-1} B^{n} A$ d. $n\left(A^{-1} B^{A}\right)$

- Watch Video Solution

102. If $A=[a b c d]$ (where $b c \neq 0$) satisfies the equations $x^{2}+k=0$, then $a+d=0 \mathrm{~b} . K=-|A| \mathrm{c} . k=|A| \mathrm{d}$. none of these

- Watch Video Solution

103. If $A, B, A+I, A+B$ are idempotent matrices, then $A B$ is equal to $B A b$.
-BA c. I d. O

- Watch Video Solution

104. Given the matrix $A=[(x, 3,2),(1, y, 4),(2,2 z)]$ If
$x y z=60$ and $8 x+4 y+3 z=20$, then $A(\operatorname{adj} A)$ is equal to (a) $\left[\begin{array}{llll}6 & 4 & 0 & 0 \\ 0 & 6 & 4 & 0 \\ 0 & 0 & 6 & 4\end{array}\right]$
(b) $\left[\begin{array}{llll}8 & 8 & 0 & 0 \\ 0 & 8 & 8 & 0 \\ 0 & 0 & 8 & 8\end{array}\right]$ (c) $\left[\begin{array}{llll}6 & 8 & 0 & 0 \\ 0 & 6 & 8 & 0 \\ 0 & 0 & 6 & 8\end{array}\right]$ (d) $\left[\begin{array}{llll}3 & 4 & 0 & 0 \\ 0 & 3 & 4 & 0 \\ 0 & 0 & 3 & 4\end{array}\right]$

- Watch Video Solution

105. Let $A d+2 B=[1206-33-531]$ and $2 A-B=[2-150-16012]$. Then $\operatorname{Tr}(B)$ has the value equal to 0 b .1 c .2 d . none

- Watch Video Solution

106. Which of the following in an orthogonal matrix [6/72/7-3/72/73/76/73/7-6/72/7]
b.
c.
d.
[6/7-2/73/72/73/7-3/7-6/72/73/7]

- Watch Video Solution

107. If $k \in R_{o}$ then $\operatorname{det}\left\{\operatorname{adj}\left(k I_{n}\right)\right\}$ is equal to (A) $K^{n-1}(\mathrm{~B}) K^{(n-1) n}$ (C) K^{n} (D) k

(D) Watch Video Solution

108. If $A_{1}, A_{2}, A_{2 n-1}$ are n skew-symmetric matrices of same order, then
$B=\sum_{r=1}^{n}(2 r-1)\left(A^{2 r-1}\right)^{2 r-1}$ will be (a) symmetric (b) skew-symmetric (c) neither symmetric nor skew-symmetric (d)data not adequate

- Watch Video Solution

109. Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 0 & 5 \\ 0 & 2 & 1\end{array}\right]$ and $B=[0,-3,1]$. Which of the following is true?
$A X=B$ has a unique solution $A X=B$ has exactly three solutions $A C=B$ has infinitely many solutions $A X=B$ is inconsistent
110. $A=\left[\begin{array}{ll}0 & 1 \\ 3 & 0\end{array}\right]$ and $A^{8}+A^{6}+A^{2}+I V=\left[\begin{array}{c}0 \\ 11\end{array}\right]$ (whereIis the 2×2 identity matrix), then the product of all elements of matrix V is \qquad .

- Watch Video Solution

111. Show that every square matrix A can be uniquely expressed as $P+i Q$, wherePand Q are Hermitian matrices.

- Watch Video Solution

112. Express A as the sum of a Hermitian and a skew-Hermitian matrix, where $A=[2+3 i 25-3-i 73-i 3-2 i i 2+i]$

- Watch Video Solution

113. Statement 1: If $A=\left(\left[a_{i j}\right]\right)_{n \times n}$ is such that $(a)_{i j}=a_{j i}, \forall i, j a n d A^{2}=O$, then matrix A null matrix. Statement $2:|A|=0$.

- Watch Video Solution

114. Statement 1: If A is an orthogonal matrix of order 2 , then $|A|= \pm 1$.

Statement 2: Every two-rowed real orthogonal matrix is of any one of the
forms $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ or $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$.

- Watch Video Solution

115. Show that the solutions of the equation $[x y z t]^{2}=$ Oare $[x y z t]=[\pm \sqrt{\alpha \beta}-\beta \alpha \pm \sqrt{\alpha \beta}]$, where α, β are libitrary.

- Watch Video Solution

116. If $A=\left[\begin{array}{cc}-1 & 1 \\ 0 & -2\end{array}\right]$, then prove that $A^{2}+3 A+2 I=O$ Hence, find BandC matrices of order 2 with integer elements, if $A=B^{3}+C^{3}$

- Watch Video Solution

117. If B, C are square matrices of order n and if $A=B+C$, $B C=C B, C^{2}=O$, then without using mathematical induction, show that for any positive integer $p, A^{p+1}=B^{p}[B+(p+1) C]$.

- Watch Video Solution

118. IfD $=\operatorname{diag}\left[d_{1}, d_{2}, d_{n}\right]$, then prove that $f(D)=\operatorname{diag}\left[f\left(d_{1}\right), f\left(d_{2}\right), f\left(d_{n}\right)\right]$, where $f(x)$ is a polynomial with scalar coefficient.

- Watch Video Solution

119. If S is a real skew-symmetric matrix, then prove that $I-S$ is nonsingular and the matrix $A=(I+S)(I-S)^{-1}$ is orthogonal.

- Watch Video Solution

120. If BandC are non-singular matrices and O is null matrix, then show that $[A B C O]^{-1}=\left[O C^{-1} B^{-1}-B^{1} A C^{-1}\right]$

- Watch Video Solution

121. Find the possible square roots of the two rowed unit matrix I. Let
$A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be squar root of the matrix $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Then $A^{2}=I$.

(Watch Video Solution

122. If $A=[122212221]$, then show that $A^{2}-4 A-5 I=O$, whereIand 0 are the unit matrix and the null matrix of order 3, respectively. Use this result
to find A^{-1}

(Watch Video Solution

123. Let M be a 3×3 matrix satisfying $M\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right], M\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$
,and $M\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ 12\end{array}\right]$ Then the sum of the diagonal entries of M is \ldots.

- Watch Video Solution

124. If A is unimodular, then which of the following is unimodular? $-A \mathrm{~b}$.
A^{-1} c. adjA d. ωA, where ω is cube root of unity

- Watch Video Solution

125. Consider three matrices $A=\left[\begin{array}{ll}2 & 1 \\ 4 & 1\end{array}\right], B=\left[\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right]$ and $C=\left[\begin{array}{cc}3 & -4 \\ -2 & 3\end{array}\right]$.

Then ghe value of the sum
$\operatorname{tr}(A)+\operatorname{tr}\left(\frac{A B C}{2}\right)+\operatorname{tr}\left(\frac{A(B C)^{2}}{4}\right)+\operatorname{tr}\left(\frac{A(B C)^{3}}{8}\right)+\ldots \ldots . .+\infty$ is (A) 6 (B) 9 (C)
12 (D) none of these

- Watch Video Solution

126. If $A B=$ Aand $B A=B$, then which of the following is/are true? A is idempotent b . B is idempotent c . A^{T} is idempotent d . none of these

- Watch Video Solution

127. If $A=\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right], B=\left[\begin{array}{cc}a & 1 \\ b & -1\end{array}\right] \operatorname{and}(A+B)^{2}=A^{2}+B^{2}+2 A B$, then a.
$a=-1$ b. $a=1 \mathrm{c} \cdot b=2 \mathrm{~d} . b=-2$

- Watch Video Solution

128. Let $A a n d B$ be two nonsinular square matrices, $A^{T} a n d B^{T}$ are the transpose matrices of AandB, respectively, then which of the following are correct? $B^{T} A B$ is symmetric matrix if A is symmetric $B^{T} A B$ is symmetric matrix if B is symmetric $B^{T} A B$ is skew-symmetric matrix for every matrix $A B^{T} A B$ is skew-symmetric matrix if A is skew-symmetric

- Watch Video Solution

129. If $A=\frac{1}{3}[12221-2 a 2 b]$ is an orthogonal matrix, then $a=-2 b$. $a=2, b=1 \mathrm{c} \cdot b=-1 \mathrm{~d} . b=1$

- Watch Video Solution

130. If A is a matrix such that $A^{2}+A+2 I=O$, the which of the following is/are true? A is non-singular A is symmetric A cannot be skew-symmetric
$A^{-1}=-\frac{1}{2}(A+I)$
131. If $A(\theta)=\left[s \int h \eta i \cos \theta i \cos \theta s \int h \eta\right]$, then which of the following is not true? $A(\theta)^{-1}=A(\pi-\theta) A(\theta)+A(\pi+\theta)$ is a null matrix $A(\theta)^{-1}$ is invertible for all $\theta \in R A(\theta)^{-1}=A(-\theta)$

- Watch Video Solution

132. If $(1-\tan \theta \tan \theta 1)(1 \tan \theta-\tan \theta 1)=[a-\mathbf{a}]$, then $a=\cos 2 \theta$ b. $a=1 \mathrm{c}$. $b=s \in 2 \theta$ d. $b=-1$

- Watch Video Solution

133. If $A=[3-342-340-11]$, then $\operatorname{adj}(\operatorname{adj} A)=A \quad$ b. $|\operatorname{adj}(\operatorname{adj} A)|=1$
c.
$\mid \operatorname{adj} A=I \mathrm{~d}$. none of these

- Watch Video Solution

134. If $\left[\begin{array}{cc}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]$ is to be square root of two-rowed unit matrix, then α, β and γ should satisfy the relation.
a. $1-\alpha^{2}+\beta \gamma=0$
b. $\alpha^{2}+\beta \gamma=0$
c. $1+\alpha^{2}+\beta \gamma=0$
d. $1-\alpha^{2}-\beta \gamma=0$

Watch Video Solution

135. If $A=\left[a_{\mathrm{ij}}\right]_{4 \times 4}$, such that $a_{\mathrm{ij}}=\left\{\begin{array}{ll}2, & \text { when } i=j \\ 0, & \text { when } i \neq j\end{array}\right.$ then $\left\{\frac{\operatorname{det}(\operatorname{adj}(\operatorname{adj} A))}{7}\right\}$ is (where $\{\cdot\}$ represents fractional part function)

- Watch Video Solution

136. Statement 1: Let A, B be two square matrices of the same order such that $A B=B A, A^{m}=O, n d B^{n}=O$ for some positive integers m, n, then
there exists a positive integer r such that $(A+B)^{r}=O$ Statement 2: If $A B=B A t h e n(A+B)^{r}$ can be expanded as binomial expansion.

- Watch Video Solution

137. Statement 1 :If the matrices, $A, B,(A+B)$ are non-singular, then

$$
\begin{aligned}
& {\left[A(A+B)^{-1} B\right]^{-1}=B^{-1}+A^{-1} \quad \text { Statement }} \\
& {\left[A(A+B)^{-1} B\right]^{-1}=\left[A\left(A^{-1}+B^{-1}\right) B\right]^{-1}=\left[\left(I+A^{-1}\right) B\right]^{-1}} \\
& =\left[\left(B^{+} A B^{-1}\right) B\right]^{-1}=\left[\left(B^{+} A I\right)\right]^{-1}=\left[\left(B^{+} A\right)\right]^{-1}=B^{-1} \wedge+A^{-1}
\end{aligned}
$$

- Watch Video Solution

138. Let AandB be two 2×2 matrices. Consider the statements (i)
$A B=O \Rightarrow A=O$ or $B=O$
(ii) $A B=I_{2} \Rightarrow A=B^{-1}$
$(A+B)^{2}=A^{2}+2 A B+B^{2}$ (i) and (ii) are false, (iii) is true (ii) and (iii) are false, (i) is true (i) is false (ii) and, (iii) are true (i) and (iii) are false, (ii) is true
139. The inverse of a skew-symmetric matrix of odd order a. is a symmetric matrix b. is a skew-symmetric c. is a diagonal matrix d. does not exist

- Watch Video Solution

140. The number of diagonal matrix, A or ordern which $A^{3}=A$ is a. is a a. 1
b. 0 c. 2^{n} d. 3^{n}

D Watch Video Solution

141. The equation $[1 x y][13402-1001]=[0]$ has fory $=0$ b. rational roots for $y=-1$ d. integral roots Then (ii) a. (p) (r) b. (q) (p) c. (p) (q) d. (r) (p)

- Watch Video Solution

142. A is a 2×2 matrix such that $A[1-1]=[-12]$ and $A^{2}[1-1]=[10]$ The sum of the elements of A is -1 b. 0 c .2 d .5

- Watch Video Solution

143. If $A=[a b 0 a]$ is nth root of I_{2}, then choose the correct statements: If n is odd, $a=1, b=0$ If n is odd, $a=-1, b=0$ If n is even, $a=1, b=0$ If n is even, $a=-1, b=0 \mathrm{a} . \mathrm{i}, \mathrm{ii}$, iii , iv b . $\mathrm{ii}, \mathrm{iii}$, iv $\mathrm{c} . \mathrm{i}, \mathrm{ii}$, iii , iv d . i, iii, iv

- Watch Video Solution

144. Let A, B be two matrices such that they commute, then for any positive integer $n, A B^{n}=B^{n} A(A B)^{n} A^{n} B^{n}$ only (i) and (ii) correct both (i) and (ii) correct only (ii) is correct none of (i) and (ii) is correct

- Watch Video Solution

145. The product of matrices $A=\left[\begin{array}{cc}\cos ^{2} \theta & \cos \theta \\ \sin \theta \cos \theta & \sin \theta \sin ^{2} \theta\end{array}\right]$ and
$B=\left[\begin{array}{cc}\cos ^{2} \phi \cos \phi & \sin \phi \cos \phi \\ \sin \phi & \sin ^{2} \phi\end{array}\right]$ is a null matrix if $\theta-\phi=(\mathrm{A}) 2 n \pi, n \in Z$ (B) $\frac{n \pi}{2}, n \in Z(\mathrm{C})(2 n+1) \frac{\pi}{2}, n \in Z$ (D) $n \pi, n \in Z$

- Watch Video Solution

146. If A is an upper triangular matrix of order $n \times$ nand B is a lower triangular matrix of order $n \times$ nandB is a lower triangular matrix of order $n \times n$, then prove that $\left(A^{\prime}+B\right) \times\left(A+B^{\prime}\right)$ will be a diagonal matrix of order $n \times n$ [assume all elements of A and $d B$ to e non-negative and a element of $\left.\left(A^{\prime}+B\right) \times\left(A+B^{\prime}\right) a s C_{i j}\right]$.

- Watch Video Solution

147. If $X=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, then prove that $(p I+q X)^{m}=p^{m} I+m p^{m-1} q X, \forall p, q \in R$, where I is a two rowed unit matrix and $m \in N$.

- Watch Video Solution

148. Let $\omega \neq 1$ be cube root of unity and S be the set of all non-singular
matrices of the form $\left[\begin{array}{ccc}1 & a & b \\ \omega & 1 & c \\ \omega^{2} & \theta & 1\end{array}\right]$, where each of a, b, and c is either ω
or ω^{2}. Then the number of distinct matrices in the set S is (a) 2 (b) 6 (c) 4
(d) 8

- Watch Video Solution

149. Let $P=\left[a_{i j}\right]$ be a 3×3 matrix and let $Q=\left[b_{i j}\right]$, whereb $b_{i j}=2^{i+j} a_{i j} f$ or $1 \leq i, j \leq 3$. If the determinant of P is 2 , then the determinant of the matrix Q is 2^{10} b. 2^{11} c. 2^{12} d. 2^{13}

Watch Video Solution

150. If $P=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right], A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $Q=P A P^{T}$ and $X=P^{T} Q^{2005} P$, then X equal to:

- Watch Video Solution

151. The number of 3×3 matrices A whose entries are either 0 or 1 and
for which the system $A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ has exactly two distinct solutions, is
a. 0
b. $2^{9}-1$
c. 168
d. 2
152. If $A=[\alpha 22 \alpha]$ and $\left|A^{3}\right|=125$, then the value of α is $\mathrm{a} . \pm 1 \mathrm{~b} . \pm 2 \mathrm{c} . \pm 3 \mathrm{~d}$. ± 5

- Watch Video Solution

153. Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4\end{array}\right], I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $A^{-1}=\left[\frac{1}{6}\left(A^{2}+c A+d I\right)\right]$

Then value of c and d are $(\mathrm{a})(=6,-11)(\mathrm{b})(6,11)(\mathrm{c})(-6,11)(\mathrm{d})(6,-11)$

- Watch Video Solution

154. A is an involuntary matrix given by $A=[01-14-343-34]$, then the inverse of $A / 2$ will be $2 A$ b. $\frac{A^{-1}}{2}$ c. $\frac{A}{2}$ d. A^{2}

- Watch Video Solution

155. If A is a non-singular matrix such that $\forall^{T}=A^{T} A$ and $B=A^{-1} A^{T}$, the matrix B is a. involuntary b. orthogonal c. idempotent d. none of these

- Watch Video Solution

156. Let MandN be two 3×3 non singular skew-symmetric matrices such that $M N=N M$ If P^{T} denote the transpose of P, then $M^{2} N^{2}\left(M^{T} N\right)^{-1}\left(M N^{-1}\right)^{T}$ is equal to M^{2} b. $-N^{2}$ c. $-M^{2}$ d. $M N$

- Watch Video Solution

157. Let ω be a complex cube root of unity with $\omega \neq 1$ andP $=\left[p_{i j}\right]$ be a $n \times n$ matrix withe $p_{i j}=\omega^{i+j}$ Then $p^{2} \neq O$, whe $\cap=$ a. 57 b. 55 c. 58 d. 56

- Watch Video Solution

158. If $A=[i-i-i i]$ and $B=[1-1-11]$, thenA ${ }^{8}$ equals $4 B \mathrm{~b} .128 B \mathrm{c} .-128 B \mathrm{~d}$. $-64 B$

- Watch Video Solution

159. If $[2-110-34] A=[-1-8-101-2-592215]$, then sum of all the elements of matrix A is 0 b. 1 c. 2 d. -3

- Watch Video Solution

160. If $A=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & 1\end{array}\right]$ then $A\left(\bar{A}^{T}\right)$ equals : a. O b. | c. - I d. 21

- Watch Video Solution

161. Identity the incorrect statement in respect of two square matrices AandB conformable for sum and product : a. $t_{r}(A+B)=t_{r}(A)+t_{r}(B) \mathrm{b}$. $t_{r}(\alpha A)=\alpha t_{r}(A), \in R c . t_{r}\left(A^{T}\right)=t_{r}(A)$ d. none of these

(D) Watch Video Solution

162. If A is a square matrix such that $A^{2}=A$, then write the value of $7 A-(I+A)^{3}$, where I is the identity matrix.

- Watch Video Solution

163. If A and B are square matrices of order n, then prove that AandB will commute iff $A-\lambda I a n d B-\lambda I$ commute for every scalar λ

- Watch Video Solution

164. Matrix A such that $A^{2}=2 A-I$, where I is the identity matrix, Then for $n \geq 2 . A^{n}$ is equal to
a. $2^{n-1} A-(n-1) l$
b. $2^{n-1} A-I$
c. $n A-(n-1) l$
d. $n A-I$

- Watch Video Solution

165. Let $A=\left[\begin{array}{ll}0 & \alpha \\ 0 & 0\end{array}\right]$ and $(A+1)^{50}=50 A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ Then the value of $a+b+c+d$ is (A) 2 (B) 1 (C) 4 (D) none of these

- Watch Video Solution

Question Bank

1. If matrix $A=\left[\left[\frac{1}{\sqrt{2}},\right]\left[\frac{1}{\sqrt{2}}\right],\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]\right]$ and B, is a matrix such that $B^{T} A=A^{T}$ and $K B^{T}=2 A^{T}-\sqrt{2} I$. (where I is unit matrix of order 2 and $K \in R^{l}$) then the value of K^{4} is
2. If X is a non-zero column matrix, such that $A X=\lambda X$ where λ is a scalar
and the matrix A is $\left[\begin{array}{ccc}4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2\end{array}\right]$ then sum of distinct values of λ is

- View Text Solution

3. Let $A=\left[\begin{array}{ccc}\sqrt{3} & 1 & 0 \\ 1 & -\sqrt{3} & 0 \\ 0 & 0 & 2\end{array}\right]$ and $d=\operatorname{det}\left(2 A^{T} \div A A^{T}+\operatorname{adj} A\right)$ then \sqrt{d} is

- View Text Solution

4. If Δ denotes the 'value of the determinant of the inverse of the matrix
$\left[\begin{array}{cc}-4 & -5 \\ 2 & 2\end{array}\right]$ then 2Δ is equal to

- View Text Solution

5. Let $A=[[1,0,2],[2,0,1][1,1,2]]$, then $\operatorname{det}\left((A-I)^{3}-4 A\right)$ is

- View Text Solution

6. $\left.\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]^{-1}\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]^{-[} \begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \wedge-1 \ldots\left[\begin{array}{cc}1 & 100 \\ 0 & 1\end{array}\right]^{-1}=\left[\begin{array}{ll}1 & a \\ b & 1\end{array}\right]$ then absolute value of $a+b$ is.

- View Text Solution

7. Let A be a squàre matrix of order 2 sụch that $A^{2}-4 A+4 I=O$ where I is an identity matrix of order 2 . If $B=A^{5}+4 A^{4}+6 A^{3}+4 A^{2}+A$, then $\operatorname{det}(B)$ is equal to
8. If $P=\left[\begin{array}{lll}1 & c & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$ is the adjoint of a 3×3 matrix Q and det. $(Q)=4$, then
c is equal to

- View Text Solution

9. If A is a 3×3 matrix with real entries such that det. $\operatorname{adj} A=16$, then det. $\operatorname{adj}(\operatorname{adj} A))$ is equal to

- View Text Solution

10. If $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$, then the number of values of α in $(0, \pi)$ satisfying $A+A^{T}=I$, is [Note: I is an identity matrix of order 2 and P^{T} denotes transpose of matrix P.]

- View Text Solution

11. For $\lambda \in R, f(\lambda)=\operatorname{det}(A-\lambda I)$ where $A=\left[\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right]$ and I is an identity matrix of order 2 . The minimum value of $f(\lambda)$ is equal to

- View Text Solution

12. For $\alpha, \beta, \gamma \in R$, let $A=\left[\begin{array}{ccc}\alpha^{2} & 6 & 8 \\ 3 & \beta^{2} & 9 \\ 4 & 5 & \gamma^{2}\end{array}\right] \quad$ and
$B=[[2, \alpha, 3,5],[2,2 \beta, 6],[1,4,2 \gamma-3]]$. If trace $A=$ trace B, then the value of (alpha^ ${ }^{\wedge} 1+$ beta $^{\wedge}-1+$ gamma $^{\wedge}-1$) is equal to

- View Text Solution

13. Let the matrix A and B be defined as $A=\left[\begin{array}{ll}3 & 2 \\ 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 1 \\ 7 & 3\end{array}\right]$ then the absolute value of det. $\left(2 A^{9} B^{-1}\right)$ is
A. 1
B. 2
C. -2
D. 4

Answer: C

- View Text Solution

14. Let D_{k} be the $k \times k$ matrix with 0 's in the main diagonal, unity as the element of $1^{\text {st }}$ row and $(f(k))^{\text {th }}$ column and k for all other entries. If $f(x)=x-x$ where x denotes the tional part function then the value of det.
$\left(D_{2}\right)+\operatorname{det}$.(D_3)' equals

- View Text Solution

15. Let $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$ and $10 B=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3\end{array}\right]$.ff B is the inverse of
matrix A , then alpha is
16. Let $A+2 B=\left[\begin{array}{ccc}1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1\end{array}\right]$ and $2 A-B=\left[\begin{array}{ccc}2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2\end{array}\right]$ then $\operatorname{Tr}(A)-\operatorname{Tr}(B)$ has the value equal to

- View Text Solution

17. If the product of n matrices $\left[[1, n][0,1]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]\right.$ is equal to the matrix $\left[\begin{array}{cc}1 & 378 \\ 0 & 1\end{array}\right]$ then the value of n is equal to

- View Text Solution

18. If A and B are non-singular matrices of order three such that $\operatorname{adj}(A B)=$ $[[1,1,1],[1, p, 1],[1,1, p]]$ and $\left|\mathrm{B}^{\wedge} 2 \operatorname{adj}(A)\right|=p^{\wedge}(2)-3$, then
19. Let $A_{r}=\left[\begin{array}{cc}r & 3 r-1 \\ 0 & \frac{1}{2^{r}}\end{array}\right]$, thenthevalueof $\lim \AA_{-} n$ rarr oo underset $(r$
$=1)$ overset (n) sum $\operatorname{det}\left(A_{-} r\right)^{`}$ is equal to

- View Text Solution

20. Let $A=[[1,2], \quad[3,4]]$ and $B=\left[\left[\begin{array}{lll}a, & b],[& c, \\ d\end{array}\right]\right]$ betwomatricessuchttheyarecomptative and c ne 3 bthenthevalueofl(a-d)/(2 b-
c) ${ }^{\prime}$ is

- View Text Solution

21. Let $A=\left[\begin{array}{lll}2 & 1 & 3 \\ 5 & 6 & 1 \\ 7 & 2 & 9\end{array}\right]$ if $A^{3}+p A^{2}+q A+r I=O$ (where O is null matrix),
then value of $|p|$ is
22. Let $A=\left[\begin{array}{ccc}-1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$ If adj. $A=k A^{T}$ theri the value of ' K ' is

- View Text Solution

23. If $A=\left[\begin{array}{ccc}0 & -1 & -2 \\ 2 & 4 & 3 \\ 1 & 1 & 1\end{array}\right]$ then $\operatorname{trace}(\operatorname{adj} A)$ is equal to.
