© 'doubtnut

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

SCALER TRIPLE PRODUCTS

Dpp 23

1. Number of integral value(s) of λ for which vectors $x^{2} \hat{i}-\hat{j}+x \hat{k},(\lambda-1) \hat{i}-2 \lambda \hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$, in the order from right-handed system $\forall x \in \mathrm{R}$, is
A. 0
B. 2
C. 4
D. 6

Answer: A

- Watch Video Solution

2. Let $\vec{a}, \vec{b}, \vec{c}$ be three linearly independent vectors, then $[\vec{a}+2 \vec{b}-\vec{c} 2 \vec{a}+\vec{b}+\vec{c} 4 \vec{a}-\vec{b}+5 \vec{c}]$

$$
\overline{[\vec{a}} \vec{b} \vec{c}]
$$

A. 0
B. 1
C. 2
D. -1

- Watch Video Solution

3. If \vec{a}, \vec{b} are two unit vectors such that $\vec{a}+(\vec{a} \times \vec{b})=\vec{c}$, where $|\vec{c}|=2$, then value of $[\vec{a} \vec{b} \vec{c}]$ is
A. 0
B. ± 1
C. -3
D. 3

Answer: D

- Watch Video Solution

4. Let \vec{a} and \vec{b} be unit vectors that are perpendicular to each other I. then $[\vec{a}+(\vec{a} \times \vec{b}) \vec{b}+(\vec{a} \times \vec{b}) \vec{a} \times \vec{b}]$ will always be equal to
A. 1
B. zero
C. -1
D. 3

Answer: A

- Watch Video Solution

5. If V is the volume of the parallelepiped having three coterminous edges as \vec{a}, \vec{b} and \vec{c}, then the volume of the parallelepiped having three coterminous edges as
$\vec{\alpha}=(\vec{a} \cdot \vec{a}) \vec{a}+(\vec{a} \cdot \vec{b}) \vec{b}+(\vec{a} \cdot \vec{c}) \vec{c}$,
$\vec{\beta}=(\vec{b} \cdot \vec{a}) \vec{a}+(\vec{b} \cdot \vec{b})+(\vec{b} \cdot \vec{c}) \vec{c}$
and $\vec{\lambda}=(\vec{c} \cdot \vec{a}) \vec{a}+(\vec{c} \cdot \vec{b}) \vec{b}+(\vec{c} \cdot \vec{c}) \vec{c}$ is
A. 3 V
B. 4 V
C. V^{2}
D. V^{3}

Answer: D

- Watch Video Solution

6. A parallelepiped is formed by planes drawn parallel to coordinate axes through the points $A=(1,2,3)$ and $B=(9,8,5)$. The volume of that parallelepiped is equal to (in cubic units)
A. 192
B. 48
C. 32
D. 96

Answer: D

D Watch Video Solution

7. If \vec{a}, \vec{b} and \vec{c} are any three vectors forming a linearly independent system, then $\forall \theta \in R$
$\vec{p}=\vec{a} \cos \theta+\vec{b} \sin \theta+\vec{c}(\cos 2 \theta)$
$\vec{q}=\vec{a} \cos \left(\frac{2 \pi}{3}+\theta\right)+\vec{b} \sin \left(\frac{2 \pi}{3}+\theta\right)+\vec{c}(\cos 2)\left(\frac{2 \pi}{3}+\theta\right)$
and
$\vec{r}=\vec{a} \cos \left(\theta-\frac{2 \pi}{3}\right)+\vec{b} \sin \left(\theta-\frac{2 \pi}{3}\right)+\vec{c} \cos 2\left(\theta-\frac{2 \pi}{3}\right)$
then $[\vec{p} \vec{q} \vec{r}]$
A. $[\vec{a} \vec{b} \vec{c}] \cos \theta$
B. $[\vec{a} \vec{b} \vec{c}] \cos 2 \theta$
C. $[\vec{a} \vec{b} \vec{c}] \cos 3 \theta$
D. None of these

Answer: D

D Watch Video Solution

8. Let $\vec{r}=(\vec{a} \times \vec{b}) \sin x+(\vec{b} \times \vec{c}) \cos y+(\vec{c} \times \vec{a})$, where \vec{a}, \vec{b} and \vec{c} are non-zero non-coplanar vectors, If \vec{r} is orthogonal to $3 \vec{a}+5 \vec{b}+2 \vec{c}$, then the value of $\sec ^{2} y+\operatorname{cosec}^{2} x+\sec y \operatorname{cosec} x$ is
A. 3
B. 4
C. 5
D. 6

Answer: A

- Watch Video Solution

9. In a regular tetrahedron, prove that angle θ between any edge and the face not containing that edge is given by $\cos \theta=\frac{1}{\sqrt{3}}$.
A. $1 / 6$
B. $1 / 9$
C. $1 / 3$
D. None of these

Answer: C

10. DABC be a tetrahedron such that $A D$ is perpendicular to the base ABC and $\angle A B C=30^{\circ}$. The volume of tetrahedron is 18 . If value of $A B+B C+A D$ is minimum, then the length of $A C$ is
A. $6 \sqrt{2-\sqrt{3}}$
B. $3(\sqrt{6}-\sqrt{2})$
C. $6 \sqrt{2+\sqrt{3}}$
D. $3(\sqrt{6}+\sqrt{2})$

Answer: A

D View Text Solution

11. If $\alpha(\vec{a} \times \vec{b})+\beta(\vec{b} \times \vec{c})+\lambda(\vec{c} \times \vec{a})=0$, then
A. $\vec{a}, \vec{b}, \vec{c}$ are coplanar is all $\alpha, \beta, \lambda \neq 0$
B. $\vec{a}, \vec{b}, \rightarrow$ are coplanar if any one of $\alpha, \beta, \lambda \neq 0$
C. $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar for any $\alpha, \beta, \lambda \neq 0$
D. None of these

Answer: A::B

- Watch Video Solution

