

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

SCALER TRIPLE PRODUCTS

Dpp 2 3

1. Number of integral value(s) of λ for which vectors $x^2\hat{i}-\hat{j}+x\hat{k}, (\lambda-1)\hat{i}-2\lambda\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$, in the order from right-handed system $\forall x\in \mathsf{R}$, is

A. 0

B. 2

C. 4

Answer: A

Watch Video Solution

2. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three linearly independent vectors, then

$$\frac{\left[\overrightarrow{a}+2\overrightarrow{b}-\overrightarrow{c}2\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}4\overrightarrow{a}-\overrightarrow{b}+5\overrightarrow{c}\right]}{\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]}$$

A. 0

B. 1

C. 2

D. -1

Answer: A

3. If
$$\overrightarrow{a}, \overrightarrow{b}$$
 are two unit vectors such that

$$\overrightarrow{a}+\left(\overrightarrow{a} imes\overrightarrow{b}
ight)=\overrightarrow{c}$$
 , where $\left|\overrightarrow{c}
ight|=2$, then value of $\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}
ight]$

A. 0

is

B. ± 1

 $\mathsf{C.}-3$

D. 3

Answer: D

Watch Video Solution

4. Let
$$\overrightarrow{a}$$
 and \overrightarrow{b} be unit vectors that are perpendicular to each other I. then $\left[\overrightarrow{a} + \left(\overrightarrow{a} \times \overrightarrow{b}\right)\overrightarrow{b} + \left(\overrightarrow{a} \times \overrightarrow{b}\right)\overrightarrow{a} \times \overrightarrow{b}\right]$ will always be equal to

B. zero

C. -1

D. 3

Answer: A

Watch Video Solution

5. If V is the volume of the parallelepiped having three coterminous edges as $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} , then the volume of the parallelepiped having three coterminous edges as

B.
$$4\mathsf{V}$$
C. V^2
D. V^3

 $\overrightarrow{lpha} = \left(\overrightarrow{a}.\overrightarrow{a}
ight)\overrightarrow{a} + \left(\overrightarrow{a}.\overrightarrow{b}
ight)\overrightarrow{b} + \left(\overrightarrow{a}.\overrightarrow{c}
ight)\overrightarrow{c}$,

 $\overrightarrow{eta} = \left(\overrightarrow{b}.\overrightarrow{a}
ight)\overrightarrow{a} + \left(\overrightarrow{b}.\overrightarrow{b}
ight) + \left(\overrightarrow{b}.\overrightarrow{c}
ight)\overrightarrow{c}$

A. 3V

Answer: D

Watch Video Solution

and $\overrightarrow{\lambda} = \left(\overrightarrow{c} \cdot \overrightarrow{a}\right) \overrightarrow{a} + \left(\overrightarrow{c} \cdot \overrightarrow{b}\right) \overrightarrow{b} + \left(\overrightarrow{c} \cdot \overrightarrow{c}\right) \overrightarrow{c}$ is

6. A parallelepiped is formed by planes drawn parallel to coordinate axes through the points A=(1,2,3) and B=(9,8,5). The volume of that parallelepiped is equal to (in cubic units)

B. 48

D. 96

C. 32

Answer: D

Watch Video Solution

independent system, then
$$\,\,orall\, heta \in R$$

$$\overrightarrow{p} = \overrightarrow{a}\cos heta + \overrightarrow{b}\sin heta + \overrightarrow{c}(\cos2 heta) \ \overrightarrow{q} = \overrightarrow{a}\cos\left(rac{2\pi}{3} + heta
ight) + \overrightarrow{b}\sin\left(rac{2\pi}{3} + heta
ight) + \overrightarrow{c}(\cos2)\left(rac{2\pi}{3} + heta
ight)$$

$$oldsymbol{q}^{'}$$

and
$$\overrightarrow{r} = \overrightarrow{a}\cos\left(\theta - \frac{2\pi}{3}\right) + \overrightarrow{b}\sin\left(\theta - \frac{2\pi}{3}\right) + \overrightarrow{c}\cos2\left(\theta - \frac{2\pi}{3}\right)$$
 then $\left[\overrightarrow{p}\overrightarrow{q}\overrightarrow{r}\right]$

7. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are any three vectors forming a linearly

A.
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \cos \theta$$

B.
$$\left[\overrightarrow{a} \stackrel{\longrightarrow}{b} \stackrel{\longrightarrow}{c}\right] \cos 2\theta$$

C.
$$\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right] \cos 3\theta$$

D. None of these

Answer: D

Watch Video Solution

8. Let
$$\overrightarrow{r} = \left(\overrightarrow{a} \times \overrightarrow{b}\right) \sin x + \left(\overrightarrow{b} \times \overrightarrow{c}\right) \cos y + \left(\overrightarrow{c} \times \overrightarrow{a}\right)$$
, where \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are non-zero non-coplanar vectors, If \overrightarrow{r} is orthogonal to $3\overrightarrow{a} + 5\overrightarrow{b} + 2\overrightarrow{c}$, then the value of $\sec^2 y + \csc^2 x + \sec y \csc x$ is

C. 5

D. 6

Answer: A

Watch Video Solution

- **9.** In a regular tetrahedron, prove that angle θ between any edge and the face not containing that edge is given by $\cos\theta=\frac{1}{\sqrt{3}}.$
 - A. 1/6
 - $\mathsf{B.}\,1/9$
 - $\mathsf{c.}\,1/3$
 - D. None of these

Answer: C

10. DABC be a tetrahedron such that AD is perpendicular to the base ABC and $\angle ABC=30^{\circ}$. The volume of tetrahedron is 18. If value of AB+BC+AD is minimum, then the length of AC is

A.
$$6\sqrt{2-\sqrt{3}}$$

$$\mathsf{B.}\,3\big(\sqrt{6}-\sqrt{2}\big)$$

D.
$$3(\sqrt{6} + \sqrt{2})$$

C. $6\sqrt{2+\sqrt{3}}$

Answer: A

View Text Solution

11. If
$$lphaigg(\overrightarrow{a} imes\overrightarrow{b}igg)+etaigg(\overrightarrow{b} imes\overrightarrow{c}igg)+\lambda\Big(\overrightarrow{c} imes\overrightarrow{a}\Big)=0$$
, then

A. \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are coplanar is all lpha , eta , $\lambda
eq 0$

B. \overrightarrow{a} , \overrightarrow{b} , \rightarrow are coplanar if any one of $\alpha,\beta,\lambda \neq 0$

C. \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non-coplanar for any $\alpha,\beta,\lambda \neq 0$

D. None of these

Answer: A::B

