

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

SOLUTIONS AND PROPERTIES OF TRIANGLE

Single Correct Answer Type

1. In a triangle $\angle A=55^\circ, \angle B=15^\circ, \angle C=110^\circ.$ Then c^2-a^2

is equal to

A. ab

B. 2ab

C. -ab

D. none of these

Answer: A

2. In a triangle ABC if $2a=\sqrt{3}b+c$, then possible relation is

A.
$$c^2=a^2+b^2-ab$$

B. $a^2=b^2+c^2$
C. $b^2=a^2+c^2-ac\sqrt{3}$

$$D.a = b = c$$

Answer: B

3. A circle of area 20 sq. units is centered at the point O. Suppose ΔABC is inscribed in that circle and has area 8 sq. units. The central angles α , β and γ are as shown in the figure. The value of $(\sin \alpha + \sin \beta + \sin \gamma)$ is equal to

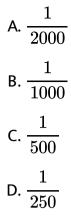
A.
$$\frac{4\pi}{5}$$

B. $\frac{3\pi}{4}$
C. $\frac{2\pi}{5}$
D. $\frac{\pi}{4}$

Answer: A

4. In $\Delta ABC, bc = 2b^2\cos A + 2c^2\cos A - 4bc\cos^2 A$, then ΔABC is

A. isosceles but not necessarily equilateral


B. equilateral

C. right angled but not necessarily isosceles

D. right angled isosceles

Answer: A

Answer: D

6. ΔABC has different side lengths a,b,c. If a^2, b^2, c^2 as sides form another ΔPQR , then ΔABC will always be

A. acute angled triangle only

B. obtuse angled triangle only

C. sometimes acute or sometimes obtuse depending on values

of a,b nd c

D. none of these

Answer: A

Watch Video Solution

7. In $\triangle ABC$, $\angle B=rac{\pi}{4}, \angle C=rac{\pi}{6}$. D is a point on BC which divides it in the ratio $1:3, \angle DAB=eta$, then

A.
$$\left(\sec.\frac{\pi}{6}\right)AB + \cot\beta = \cot\left(\frac{\pi}{6}\right)AC + (\sqrt{3} - 5)$$

B. $\left(\sec.\frac{\pi}{4}AB\cot\beta = \cot\left(\frac{\pi}{4}\right)AC(4\sqrt{3} - 5)$
C. $\left(\sec.\frac{\pi}{4}\right)AB + \cot\beta = \cot\left(\frac{\pi}{6}\right)AC + (4\sqrt{3} + 5)$
D. $\left(\sec.\frac{\pi}{6}\right)AB\cot\beta = \cot\left(\frac{\pi}{4}\right)AC(\sqrt{3} + 5)$

Answer: B

Watch Video Solution

8. The acute angle of a rhombus whose side is a mean proportional

between its diagonals is

A. $15^{\,\circ}$

B. 20°

C. 30°

D. 80°

Answer: C

Watch Video Solution

9. Let side a,b and c of ΔABC be related by the relation a : b : c = 3 : 5 : 4. Altitudes AD,BE and CF are dropped on BC, CA and AB, respectively. If $P_1D + P_2E + P_3F = 42$, then the value of a + b + A. 1200

B. 120

C. 12

D. none of these

Answer: A

10. Triangle ABC is right angle at A. The points P and Q are on hypotenuse BC such that BP = PQ = QC.if AP = 3 and AQ = 4, then length BC is equal to A. $3\sqrt{5}$

B. $5\sqrt{3}$

C. $4\sqrt{5}$

Answer: A

11. ABC is a right angled triangle of which A is the right angle, BD is drawn perpendicular to BC meets CA produced in D. If AB = 12, AC = 16, BC = 20, then BD =

A. 15

B. 25

C. 10

D. 225

Answer: A

12. In a ΔABC , the median AD is perpendicular to AC. If b = 5 and c

= 11, then a =

A. 10

B. 12

C. 14

D. $\sqrt{221}$

Answer: C

Watch Video Solution

13. ABC is an equilateral triangle where AB = a and P is any point in its plane such that PA = PB + PC. Then $\frac{PA^2 + PB^2 + PC^2}{a^2}$ is

B.
$$\frac{\sqrt{3}}{4}$$

C. $\frac{3}{4}$
D. 2

Answer: D

14. In
$$\Delta ABC$$
 if $\tan\left(\frac{A}{2}\right)\tan\left(\frac{B}{2}\right) + \tan\left(\frac{B}{2}\right)\tan\left(\frac{C}{2}\right) = \frac{2}{3}$ then $a+c$

A. 3b

B. 2b

C. 3b/2

D. 4b

Answer: B

15. In a triangle ABC if
$$\tan \frac{A}{2} \tan \frac{B}{2} = \frac{1}{3}$$
 and $ab = 4$, then the

value of c can be

A. 1

 $B.\,1.5$

 $\mathsf{C.}\,2.5$

D. none of these

Answer: C

16. In a triangle
$$ABC$$
 if
 $\cot\left(\frac{A}{2}\right)\cot\left(\frac{B}{2}\right) = c, \cot\left(\frac{B}{2}\right)\cot\left(\frac{C}{2}\right) = a$ and
 $\cot\left(\frac{C}{2}\right)\cot\left(\frac{A}{2}\right) = b$ then $\frac{1}{s-a} + \frac{1}{s-b} + \frac{1}{s-c} =$
A. -1
B. 0
C. 1

D. 2

Answer: D

Watch Video Solution

17. The perimeter of a triangle ABC right angled at C is 70 and the

inradius is 6, then |a-b|=

A.	1
	_
Β.	2

C. 8

D. 9

Answer: A

18. The diagonals of a parallelogram are inclined to each other at an angle of 45° , while its sides a and b(a > 0) are inclined to each other at an angle of 30° , then the value of $\frac{a}{b}$ is

A.
$$\frac{3}{2}$$

B. $\frac{3+\sqrt{5}}{2}$
C. $\frac{3+\sqrt{5}}{4}$

D.
$$rac{\sqrt{5}+1}{2}$$

Answer: D

Watch Video Solution

19. In a triangle ABC if
$$2\Delta^2 = rac{a^2b^2c^2}{a^2+b^2+c^2}$$
 , then it is

A. equilateral

B. isosceles but not right angled

C. isosceles right angled

D. right angled

Answer: D

Watch Video Solution

20. If in any triangle, the area $\Delta ABC \leq rac{b^2+c^2}{\lambda}$, then the largest

possible numerical value of λ is

A. 1 B. 2 C. 3

D. 4

Answer: D

21. In any triangle ABC, if $2\Delta a - b^2 c = c^3$, (where Δ is the area of

triangle), then which of the following is possible ?

A. B is obtuse

B. A is obtuse

C. C is obtuse

D. B is right angle

Answer: B

Watch Video Solution

22. In
$$\triangle ABC$$
, $a^2(s-a) + b^2(s-b) + c^2(s-c) =$

A. $4R\Delta(\cos A + \sin B + \cos C)$

B.
$$4R\Delta(\sin A + \sin B + \sin C)$$

C.
$$4R\Delta\left(1+4\sin.\frac{A}{2}\sin.\frac{B}{2}\sin.\frac{C}{2}\right)$$

D. none of these

Answer: C

23. Let ABC be an equilateral triangle, let KLMN be a rectangle with K, L on BC , M on AC and N on AB. Suppose AN/NB=2 and the area of triangle BKN is 6. The area of the triangle ABC is -

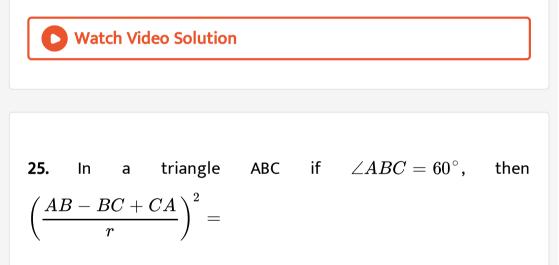
A. 54

B. 108

C. 48

D. none of these

Answer: B


Watch Video Solution

24. ABC is an acute angled triangle with circumcenter O and

orthocentre H. If AO=AH, then find the angle A.

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: C

A. 10

B. 11

C. 12

D. 14

Answer: C

Watch Video Solution

26. The area of an acute triangle ABC is Δ , the area of its pedal triangle is 'p', where $\cos B = \frac{2p}{\Delta}$ and $\sin B = \frac{2\sqrt{3}p}{\Delta}$. The value of $8(\cos^2 A \cos B + \cos^2 C)$ is

A. 1

B. 2

C. 3

D. none of these

Answer: C

Watch Video Solution

27. In a triangle ABC, D is a point on BC such that AD is the internal bisector of $\angle A$. Let $\angle B = 2 \angle C$ and CD = AB. Then $\angle A$ is

A. 18°

B. 36°

C. 54°

D. 72°

Answer: D

Watch Video Solution

28. In $\triangle ABC$, circumrdius is 3 inradius is 1.5 units. The value of a $a\cot^2 A + b^2\cot^3 B + c^3\cot^4 C$ is

A. $13\sqrt{3}$

B. $11\sqrt{6}$

C. 21

D. none of these

Answer: A

Watch Video Solution

29. AD, BE, CF are internal angular bisectors of ΔABC and I is the

incentre.

$$a(b+c)\mathrm{sec.}\; rac{4}{2}ID+b(a+c)\mathrm{sec.}\; rac{B}{2}IE+c(a+b)\mathrm{sec.}\; rac{C}{2}IF=kabc$$

If

, then the value of k is

A. 1

B. 2

C. 3

D. 4

Answer: B

30. In $\triangle ABC$ it is given distance between the circumcentre (O) and orthocentre (H) is $R\sqrt{1-8\cos A\cos B\cos C}$. If Q is the midopoint of OH, then AQ is

A.
$$\frac{R}{2}\sqrt{1+8\cos A\sin B\sin C}$$

B. $R\sqrt{1+8\cos A\sin B\sin C}$
C. $2R\sqrt{1+8\cos A\sin B\sin C}$
D. $\frac{R}{2}\sqrt{1+8\sin A\cos B\cos C}$

Answer: A

31. In any ΔABC line joiningcircumcentre (O) and incentre (I) is

parallel to AC, then OI is equal to

A.
$$R \left| \tan\left(\frac{A-C}{2}\right) \right|$$

B. $R \left| \tan(A-C) \right|$
C. $R \left| \sec\left(\frac{A-C}{2}\right) \right|$
D. $R \left| \sec(A-C) \right|$

Answer: A

32. Let the incircle of a ΔABC touches sides BC, CA and AB at D,E and F, respectively. Let area of ΔABC be Δ and that of DEF be Δ' . If a, b and c are side of DelaABC, then the value of $abc(a + b + c)\frac{\Delta'}{\Delta^3}$ is

A. 1	
B. 2	
C. 3	

D. 4

Answer: D

33. Let H be the orthocentre of triangle ABC. Then angle subtended

by side BC at the centre of incircle of ΔCHB is

A.
$$rac{A}{2} + 90^{\circ}$$

B. $rac{B+C}{2} + 90^{\circ}$
C. $rac{B-C}{2} + 90^{\circ}$

D. none of these

Answer: B

View Text Solution

34. If in a triangle ABC, $r_1 + r_2 + r_3 = 9r$, then the triangle is

necessarily

A. right angled

B. equilateral

C. obtuse angled

D. none of these

Answer: B

35. In triangle ABC, $r = \frac{R}{6}$ and $r_1 = 7r$. Then the measure of angle A =

A.
$$\frac{\pi}{12}$$

B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: D

O Watch Video Solution

36.
$$(r_2+r_3)\sqrt{rac{rr_2}{r_2r_3}}=$$

A. a

B.b

С. с

D. bc

Answer: A

Watch Video Solution

37. In
$$\Delta ABC$$
, right angled at A, $\cos^{-1} \left(rac{R}{r_2 + r_3}
ight)$ is

A. $30^{\,\circ}$

- B. 60°
- C. 90°
- D. $45^{\,\circ}$

Answer: B

Watch Video Solution

38. In $\triangle ABC$ if $r_1 = 2r_2 = 3r_3$ and D is the mid point of BC then $\cos \angle ADC =$

A.
$$\frac{7}{25}$$

B. $-\frac{7}{25}$
C. $\frac{24}{25}$
D. $-\frac{24}{25}$

Answer: D

Watch Video Solution

39. In the ambiguous case if the remaining angles of a triangle with given a, b, A and B_1, B_2, C_1, C_2 then $\frac{\sin C_1}{\sin B_1} + \frac{\sin C_2}{\sin B_2} =$

A. 2 cos A

B. 2 sin B

C. 2 tan A

D. 2 cot A

Answer: A

View Text Solution

40. Two sides of a triangle are of lengths $\sqrt{6}$ and 4 and the angle opposite to smaller side is 30. How many such triangles are possible? Find the length of their third side and area.

A. 0

B. 1

C. 2

D. infinite

Answer: C

41. If circumradius of triangle is 2, then the maximum value of

$\frac{abc}{a+b+c}$	is
A. 1	
B. 2	
C. 3	
D. 4	

Answer: D

42. Let ABC and AB'C be two non-congruent triangles with sides BC=B'C=5, AC=6, and $\angle A$ is fixed. If A_1 and A_2 are the area of the two triangles ABC and AB'C, then the value of $\frac{A_1^2 + A_2^2 - 2A_1A_2\cos 2A}{(A_1 + A_2)^2}$ is A.9/36

B. 25/36

C.25/16

D. 16/25

Answer: B

Watch Video Solution

Multiple Correct Answers Type

1. Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

A. $\pi/6$

B. $\pi/3$

C. $2\pi/3$

D. $5\pi/6$

Answer: A::D

2. If A, B, C are the angles of a triangle such that $\sin^2 A + \sin^2 B = \sin^2 C$, then

A. sin A + sin B >1

B. tan A tan B = 1

C. sin A + sin B = 1

D. tan A. tan B < 1

Answer: A::B

Watch Video Solution

3. In $\Delta ABC, \angle C = 2 \angle A$ and AC=2BC. Then which of the following is/are True ?

A. Angles A,B,C are in arithmetic progression

B. Angles A,C,B are in arithmetic progression

C. ΔABC is a right angled isosceles triangle

D. $BC^2 + CA^2 + AB^2 = 8R^2$, where R is the circum-radius of

ΔABC

4. In ΔABC , $AB=9,\,AC=17.5$, altitude from A to line BC cut at M, AM = 3. Then

A. radius of circle which circumscrive ΔABC is 26.25

B. radius of circle which which circumscribe ΔABM is 4.5

C. orthocentre of ΔABC lies outside ΔABC

D. orthocentre of ΔABC lies inside ΔABC

Answer: A::B::C

Watch Video Solution

5. If in a triangle ABC, heta is the angle determined by $\cos \theta = \left(a - b \right) / c$, then

A.
$$\frac{(a+b)\sin\theta}{2\sqrt{ab}} = \frac{\cos(A-B)}{2}$$
B.
$$\frac{(a+b)\sin\theta}{2\sqrt{ab}} = \frac{\cos(A+B)}{2}$$
C.
$$\frac{c\sin\theta}{2\sqrt{ab}} = \frac{\cos(A-B)}{2}$$
D.
$$\frac{c\sin\theta}{2\sqrt{ab}} = \frac{\cos(A+B)}{2}$$

Answer: A::D

6. Let a,b,c be the sides BC, CA, AB of ΔABC on xy plane. If abscissa and ordinate of vertices of the triangle are integers and R is the circumradius, then 2R can be equal to

A.
$$\frac{8}{9}abc$$

B. abc

C.
$$\frac{9}{8}abc$$

D. $\frac{abc}{2}$

Answer: A::B::D

7. In a
$$\triangle ABC$$
, if tan. $\frac{A}{2} = \frac{5}{6}$, tan. $\frac{B}{2} = \frac{20}{37}$, then which of the following is/are correct ?
A. $\angle B > \angle C$

 $\mathsf{B}. \angle B < \angle C$

 $\mathsf{C}.\,a>b>c$

D. a < b < c

Answer: A::C

8. If the area of a triangle is given Δ and angle C is given and if the value of the side c opposite to angle C is minimum then

A.
$$a = \sqrt{\frac{2\Delta}{\sin C}}$$

B. $b = \sqrt{\frac{2\Delta}{\sin C}}$
C. $a = \frac{4\Delta}{\sin C}$
D. $b = \frac{4\Delta}{\sin^2 C}$

Answer: A::B

9. Let 'P' be an interior point of ΔABC . If $\angle A = 45^\circ, \angle B = 60^\circ$ and $\angle C = 75^\circ$. If X=area of $\Delta PBC, Y =$ area of ΔPAC and Z = area of ΔPAB , then which of the following ratios is/are true ?

A. If P is the centroid, then X : Y : Z is 1 : 1 : 1

B. If P is the incentre, then X : Y : Z is $2 : \sqrt{6} : \left(\sqrt{3} + 1
ight)$

C. If P the orthocentre, then X : Y : Z is $1 : \sqrt{3} : \left(2 + \sqrt{3}\right)$

D. If P is the circumcentre, then X : Y : Z is $2: \sqrt{3}: 1$

Answer: A::B::C::D

View Text Solution

10. Let 'l' is the length of median from the vertex A to the side BC of a $\triangle ABC$. Then

A.
$$4l^2 = 2b^2 + 2c^2 - a^2$$

B.
$$4l^2=b^2+c^2+2bc\cos A$$

 $\mathsf{C.}\,4l^2=a^2+4bc\cos A$

D.
$$4l^2=(2s-a)^2{
m sin}^2rac{A}{2}$$

Answer: A::B::C::D

11. A circle having centre as O' and radius r' touches the incircle of ΔABC externally at. F, where F is on BC and also touches its circumcircle internally at G. It O is the circumcentre of ΔABC and I is its incentre, then

A. OO'=R-r'

B. Perpendicular distance from O to line joining IO' is $\left|\frac{b-c}{2}\right|$

C. Projection of OO' on line joining IO'=r'+R cos A

D.
$$r'=rac{\Delta}{a} an^2A$$

Answer: A::B::C::D

12. In triangle ABC, if $r_1 + r_2 = 3R$ and $r_2 + r_3 = 2R$, then

- A. $\angle A = 90^{\circ}$
- B. $\angle B = 45^{\circ}$

C. $\angle C = 60^{\circ}$

D. triangle ABC is right angled isosceles

Answer: A::C

Watch Video Solution

13. The radii r_1, r_2, r_3 of the escribed circles of the triangle ABC are in H.P. If the area of the triangle is $24cm^2 and$ its perimeter is

24cm, then the length of its largest side is 10 (b) 9 (c) 8 (d) none of these

A. The length of longest side of triangle ABC is equal to 10

B. The radius of circle inscribed in triangle ABC is equal to 4.

C. The circumradius of triangle ABC is equal to 5.

D. The sides of triangle ABC are in A.P.

Answer: A::C::D

Watch Video Solution

Comprehension Type

1. Let ABC be a triangle in which the line joining the circumecentre and incentre is parallel to base BC of the triangle. Then answer the

following questions :

Then range of $\angle A$ is

A.
$$\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$$

B. $\left[\frac{\pi}{3}, \frac{\pi}{2}\right)$
C. $\left[\frac{\pi}{3}, \frac{2\pi}{3}\right] = \left\{\frac{\pi}{3}\right\}$
D. $\left[0, \frac{\pi}{2}\right]$

Answer: B

2. Let ABC be a triangle in which the line joining the circumecentre and incentre is parallel to base BC of the triangle. Then answer the following questions :

If ODEI is a square where O and I stands for circumcentre and

incentre, respectively and D and E are the point of perpendicular from O and I on the base BC, then

A.
$$rac{r}{R}=rac{3}{8}$$

B. $rac{r}{R}=2-\sqrt{3}$
C. $rac{r}{R}=\sqrt{2}-1$
D. $rac{r}{R}=rac{1}{4}$

Answer: C

3. Let ABC be a triangle in which the line joining the circumecentre and incentre is parallel to base BC of the triangle. Then answer the following questions :

If $ar{} \angle A = 60^\circ$, then ΔABC is

A. isoceles

B. right angled

C. right angled isosceles

D. equilateral

Answer: D

View Text Solution

4. Incircle of ΔABC touches AB, BC, CA at R, P, Q, respectively. If $\frac{2}{AR} + \frac{5}{BP} + \frac{5}{CQ} = \frac{6}{r}$ and the perimeter of the triangle is the

smallest integer, then answer the following questions :

 ΔABC is

A. scalene

B. isosceles

C. equilateral

D. right angled

Answer: B

View Text Solution

5. Incircle of ΔABC touches AB, BC, CA at R, P, Q, respectively. If $\frac{2}{AR} + \frac{5}{BP} + \frac{5}{CQ} = \frac{6}{r}$ and the perimeter of the triangle is the smallest integer, then answer the following questions :

The inradius of incircle of ΔABC is

A. 4

B. 3

C. 2

D. 1

Answer: C

6. Incircle of ΔABC touches AB, BC, CA at R, P, Q, respectively. If $\frac{2}{AR} + \frac{5}{BP} + \frac{5}{CQ} = \frac{6}{r}$ and the perimeter of the triangle is the smallest integer, then answer the following questions :

The area of ΔABC is

A. 15 sq. units

B. 21 sq. units

C. 24 sq. units

D. 27 sq. units

Answer: D

View Text Solution