© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

VECTOR ALGEBRA

Solved Examples And Exercises

1. In a trapezium, vector $\vec{B} C=\alpha \vec{A} D$ We will then find that $\vec{p}=\vec{A} C+\vec{B} D$ is collinear with $\vec{A} D$ If $\vec{p}=\mu \vec{A} D$, then which of the following is true? a. $\mu=\alpha+2$ b. $\mu+\alpha=2$ c. $\alpha=\mu+1$ d. $\mu=\alpha+1$

- Watch Video Solution

2. If the vectors $\vec{a} a n d \vec{b}$ are linearly idependent satisfying $(\sqrt{3} \tan \theta+1) \vec{a}+(\sqrt{3} \sec \theta-2) \vec{b}=0$, then the most general values of θ
are \quad a. $\quad n \pi-\frac{\pi}{6}, n \in Z \quad$ b. $\quad 2 n \pi \pm \frac{11 \pi}{6}, n \in Z \quad$ c. $\quad n \pi \pm \frac{\pi}{6}, n \in Z$ d.
$2 n \pi+\frac{11 \pi}{6}, n \in Z$

- Watch Video Solution

3. Given three non-zero, non-coplanar vectors \vec{a}, \vec{b}, and $\vec{\cdot}^{\vec{r}_{1}}=p \vec{a}+q \vec{b}+\vec{c}$ and $\vec{r}_{2}=\vec{a}+p \vec{b}+q \vec{\cdot}$ If the vectors $\vec{r}_{1}()_{+} 2 \vec{r}_{2}$ and $2 \vec{r}_{1}+\vec{r}_{2}$ are collinear, then (P, q) is a. $(0,0)$ b. $(1,-1)$ c. $(-1,1)$ d. $(1,1)$

D Watch Video Solution

4. Let $\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}, \vec{r}_{n}$ be the position vectors of points $P_{1}, P_{2}, P_{3}, P_{n}$ relative to the origin O If the vector equation $a_{1} \vec{r}_{1}+a_{2} \vec{r}_{2}++a_{n} \vec{r}_{n}=0$ hold, then a similar equation will also hold w.r.t. to any other origin provided a. $a_{1}+a_{2}++a_{n}=n$ b. $a_{1}+a_{2}++a_{n}=1$ c. $a_{1}+a_{2}++a_{n}=0$ d. $a_{1}=a_{2}=a_{3}+a_{n}=0$
5. In triangle $A B C, \angle A=30^{\circ}, H$ is the orthocenter and D is the midpoint of $B C$. Segment $H D$ is produced to T such that $H D=D T$ The length $A T$ is equal to
(a). $2 B C$
(b). $3 B C$
(c). $\frac{4}{2} B C$
(d). none of these

- Watch Video Solution

6. If $\vec{\alpha}+\vec{\beta}+\vec{\gamma}=a \vec{\delta} a n d \vec{\beta}+\vec{\gamma}+\vec{\delta}=b \vec{\alpha}, \vec{\alpha}$ and $\vec{\delta}$ are non-colliner, then $\vec{\alpha}+\vec{\beta}+\vec{\gamma}+\vec{\delta}$ equals a. $a \vec{\alpha}$ b. $b \vec{\delta}$ c. 0 d. $(a+b) \vec{\gamma}$

- Watch Video Solution

7. Given three vectors $\vec{a}=6 \hat{i}-3 \hat{j}, \vec{b}=2 \hat{i}-6 \hat{j a n d} \vec{c}=-2 \hat{i}+21 \hat{j}$ such that $\vec{\alpha}=\vec{a}+\vec{b}+\vec{c}$ Then the resolution of the vector $\vec{\alpha}$ into components with respect to $\vec{a} a n d \vec{b}$ is given by a. $3 \vec{a}-2 \vec{b}$ b. $3 \vec{b}-2 \vec{a}$ c. $2 \vec{a}-3 \vec{b}$ d. $\vec{a}-2 \vec{b}$

. Watch Video Solution

8. Let us define the length of a vector $a \hat{i}+b \hat{j}+c \hat{k} a s|a|+|b|+|c|$ This definition coincides with the usual definition of length of a vector $a \hat{i}+b \hat{j}+c \hat{k}$ is and only if a. $a=b=c=0 \mathrm{~b}$. any two of a, b, andc are zero c. any one of a, b, andc is zero d. $a+b+c=0$

- Watch Video Solution

9. Vectors $\vec{a}=-4 \hat{i}+3 \hat{k} ; \vec{b}=14 \hat{i}+2 \hat{j}-5 \hat{k}$ are laid off from one point. Vector \hat{d}, which is being laid of from the same point dividing the angle between vectors $\vec{a} a n d \vec{b}$ in equal halves and having the magnitude $\sqrt{6}$, is

$$
\text { a. } \hat{i}+\hat{j}+2 \hat{k} \text { b. } \hat{i}-\hat{j}+2 \hat{k} \text { c. } \hat{i}+\hat{j}-2 \hat{k} \text { d. } 2 \hat{i}-\hat{j}-2 \hat{k}
$$

10. Vectors $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}+4 \hat{k}$, are so placed that the end point of one vector is the starting point of the next vector. Then the vector are (A) not coplanar (B) coplanar but cannot form a triangle (C) coplanar and form a triangle (D) coplanar and can form a right angled triangle

- Watch Video Solution

11. The position vectors of the vertices A, B, and C of a triangle are $\hat{i}+\hat{j}, \hat{j}+\hat{k} a n d \hat{i}+\hat{k}$, respectively. Find the unite vector \hat{r} lying in the plane of $A B C$ and perpendicular to $I A$, whereI is the incentre of the triangle.

- Watch Video Solution

12. A ship is sailing towards the north at a speed of $1.25 \mathrm{~m} / \mathrm{s}$. The current is taking it towards the east at the rate of $1 \mathrm{~m} / \mathrm{s}$ and a sailor is climbing a
vertical pole on the ship at the rate of $0.5 \mathrm{~m} / \mathrm{s}$. Find the velocity of the sailor in space.

- Watch Video Solution

13. Given four points $P_{1}, P_{2}, P_{3} a n d P_{4}$ on the coordinate plane with origin
O which satisfy the condition $(\overrightarrow{O P})_{n-1}+(\overrightarrow{O P})_{n+1}=\frac{3}{2} \overrightarrow{O P}_{n}$ (i) If P1 and P2 lie on the curve $\mathrm{xy}=1$, then prove that P3 does not lie on the curve (ii) If $\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3$ lie on a circle $x^{2}+y^{2}=1$, then prove that P4 also lies on this circle.

- Watch Video Solution

14. $A B C D$ is a tetrahedron and O is any point. If the lines joining O to the vrticfes meet the opposite faces at P, Q, RandS, prove that $\frac{O P}{A P}+\frac{O Q}{B Q}+\frac{O R}{C R}+\frac{O S}{D S}=1$.

- Watch Video Solution

15. If \vec{a} and \vec{b} are non-collinear vectors and
$\vec{A}=(p+4 q) \vec{a}=(2 p+q+1) \vec{b} a n d \vec{B}=(-2 p+q+2) \vec{a}+(2 p-3 q-1) \vec{b}$,a n d if $3 \vec{A}=2 \vec{B}$, then determine p and q .

- Watch Video Solution

16. If \vec{a}, \vec{b} and \vec{c} are any three non-coplanar vectors, then prove that points
$l_{1} \vec{a}+m_{1} \vec{b}+n_{1} \vec{c}, l_{2} \vec{a}+m_{2} \vec{b}+n_{2} \vec{c}, l_{3} \vec{a}+m_{3} \vec{b}+n_{3} \vec{c}, l_{4} \vec{a}+m_{4} \vec{b}+n_{4} \vec{c} \quad$ are
coplanar if $\left[\begin{array}{cccc}l_{1} & l_{2} & l_{3} & l_{4} \\ m_{1} & m_{2} & m_{3} & m_{4} \\ n_{1} & n_{2} & n_{3} & n_{4} \\ 1 & 1 & 1 & 1\end{array}\right]=0$

- Watch Video Solution

17. If \vec{a}, \vec{b} and \vec{c} are three non-zero non-coplanar vectors, then find the linear relation between the following four vectors:
$\vec{a}-2 \vec{b}+3 \vec{c}, 2 \vec{a}-3 \vec{b}+4 \vec{c}, 3 \vec{a}-4 \vec{b}+5 \vec{c}, 7 \vec{a}-11 \vec{b}+15 \overrightarrow{.}$

- Watch Video Solution

18. Let a, b, c be distinct non-negative numbers and the vectors $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{k}, c \hat{i}+c \hat{j}+b \hat{k}$ lie in a plane, and then prove that the quadratic equation $a x^{2}+2 c x+b=0$ has equal roots.

Watch Video Solution

19. A pyramid with vertex at point P has a regular hexagonal base $A B C D E F$, Positive vector of points A and B are \hat{i} and $\hat{i}+2 \hat{j}$ The centre of base has the position vector $\hat{i}+\hat{j}+\sqrt{3} \hat{k}$ Altitude drawn from P on the base meets the diagonal $A D$ at point G find the all possible position vectors of G It is given that the volume of the pyramid is $6 \sqrt{3}$ cubic units and $A P$ is 5 units.
20. A straight line L cuts the lines $A B, A C a n d A D$ of a parallelogram $A B C D$ at points $\quad B_{1}, C_{1} a n d D_{1}$, respectively. If $(\vec{A} B)_{1}, \lambda_{1} \vec{A} B,(\vec{A} D)_{1}=\lambda_{2} \vec{A} \operatorname{Dand}(\vec{A} C)_{1}=\lambda_{3} \vec{A} C$, then prove that $\frac{1}{\lambda_{3}}=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}$.

- Watch Video Solution

21. A, B, CandD have position vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d}, respectively, such that $\vec{a}-\vec{b}=2(\vec{d}-\vec{c})$ Then a. ABandCD bisect each other b. BDandAC bisect each other c . $A B a n d C D$ trisect each other d . BDandAC trisect each other

- Watch Video Solution

22. If $\vec{a} a n d \vec{b}$ are two unit vectors and θ is the angle between them, then the unit vector along the angular bisector of \vec{a} and \vec{b} will be given by a.
$\frac{\vec{a}-\vec{b}}{\cos (\theta / 2)}$ b. $\frac{\vec{a}+\vec{b}}{2 \cos (\theta / 2)}$ c. $\frac{\vec{a}-\vec{b}}{2 \cos (\theta / 2)}$ d. none of these
23. $A B C D$ is a quadrilateral. E is the point of intersection of the line joining the midpoints of the opposite sides. If O is any point and $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=x \vec{O} E$, thenx is equal to a. 3 b .9 c .7 d .4

- Watch Video Solution

24. If vectors $\vec{A} B=-3 \hat{i}+4 \hat{k} a n d \vec{A} C=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a Delta $A B C$, then the length of the median through Ais a. $\sqrt{14} \mathrm{~b} . \sqrt{18} \mathrm{c}$. $\sqrt{29}$ d. $\sqrt{5}$

- Watch Video Solution

25. $A B C D$ parallelogram, and $A_{1} a n d B_{1}$ are the midpoints of sides $B C a n d C D$, respectivley. If $\vec{\forall}_{1}+\vec{A} B_{1}=\lambda \vec{A} C$, then λ is equal to a. $\frac{1}{2}$ b. 1 c. $\frac{3}{2}$ d. 2 e. $\frac{2}{3}$
26. The position vectors of the points PandQ with respect to the origin O are $\vec{a}=\hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}-2 \hat{k}$, respectively. If M is a point on $P Q$, such that $O M$ is the bisector of $\angle P O Q$, then $\overrightarrow{O M}$ is a. $2(\hat{i}-\hat{j}+\hat{k}) \mathrm{b}$. $2 \hat{i}+\hat{j}-2 \hat{k}$ c. $2(-\hat{i}+\hat{j}-\hat{k})$ d. $2(\hat{i}+\hat{j}+\hat{k})$

- Watch Video Solution

27. If G is the centroid of triangle $A B C$, then $\vec{G} A+\vec{G} B+\vec{G} C$ is equal to a. $\overrightarrow{0}$
b. $3 \vec{G} A$ c. $3 \vec{G} B$ d. $3 \vec{G} C$

- Watch Video Solution

28. Let $A B C$ be triangle, the position vecrtors of whose vertices are respectively $\hat{i}+2 \hat{j}+4 \hat{k},-2 \hat{i}+2 \hat{j}+\hat{k} a n d 2 \hat{i}+4 \hat{j}-3 \hat{k}$. Then Delta $A B C$ is a. isosceles b. equilateral c. right angled d. none of these
29. If $|\vec{a}+\vec{b}|<|\vec{a}-\vec{b}|$, then the angle between $\vec{a} a n d \vec{b}$ can lie in the interval a. $(\pi / 2, \pi / 2)$ b. $(0, \pi)$ c. $(\pi / 2,3 \pi / 2)$ d. $(0,2 \pi)$

- Watch Video Solution

30. ' I ' is the incentre of triangle $A B C$ whose corresponding sides are a, b, c, \quad rspectively. $a \vec{I} A+b \vec{I} B+c \vec{I} C$ is always equal to $a . \overrightarrow{0} \mathrm{~b}$. $(a+b+c) \vec{B} C$ c. $(\vec{a}+\vec{b}+\vec{c}) \vec{A} C$ d. $(a+b+c) \vec{A} B$

- Watch Video Solution

31. Let $x^{2}+3 y^{2}=3$ be the equation of an ellipse in the $x-y$ plane. AandB are two points whose position vectors are $-\sqrt{3} \hat{i}$ and $-\sqrt{3} \hat{i}+2 \hat{k}$ Then the position vector of a point P on the ellipse such that $\angle A P B=\pi / 4$ is a. $\pm \hat{j}$
b. $\pm(\hat{i}+\hat{j})$ c. $\pm \hat{i}$ d. none of these
32. If \vec{x} and \vec{y} are two non-collinear vectors and $A B C$ isa triangle with side lengths a, b, andc satisfying $(20 a-15 b) \vec{x}+(15 b-12 c) \vec{y}+(12 c-20 a)(\vec{x} x \vec{y})=0$, then triangle $A B C$ is a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. an isosceles triangle

- Watch Video Solution

33. If $\hat{i}-3 \hat{j}+5 \hat{k}$ bisects the angle between \hat{a} and $-\hat{i}+2 \hat{j}+2 \hat{k}$, whereâ is a unit vector, then a. $\hat{a}=\frac{1}{105}(41 \hat{i}+88 \hat{j}-40 \hat{k})$ b. $\hat{a}=\frac{1}{105}(41 \hat{i}+88 \hat{j}+40 \hat{k})$
c. $\hat{a}=\frac{1}{105}(-41 \hat{i}+88 \hat{j}-40 \hat{k})$ d. $\hat{a}=\frac{1}{105}(41 \hat{i}-88 \hat{j}-40 \hat{k})$

- Watch Video Solution

34. If $4 \hat{i}+7 \hat{j}+8 \hat{k}, 2 \hat{i}+3 \hat{j}+24 a n d 2 \hat{i}+5 \hat{j}+7 \hat{k}$ are the position vectors of the vertices A, BandC, respectively, of triangle $A B C$, then the position
vecrtor of the point where the bisector of angle A meets $B C$ is a. $\frac{2}{3}(-6 \hat{i}-8 \hat{j}-\hat{k})$ b. $\frac{2}{3}(6 \hat{i}+8 \hat{j}+6 \hat{k})$ c. $\frac{1}{3}(6 \hat{i}+13 \hat{j}+18 \hat{k})$ d. $\frac{1}{3}(5 \hat{j}+12 \hat{k})$

- Watch Video Solution

35. If \vec{b} is a vector whose initial point divides thejoin of $5 \hat{i}$ and $5 \hat{j}$ in the ratio $k: 1$ and whose terminal point is the origin and $|\vec{b}| \leq \sqrt{37}$, thenk lies in the interval a. [$-6,-1 / 6]$ b. $(-\infty,-6] \cup[-1 / 6, \infty)$ c. $[0,6]$ d. none of these

- Watch Video Solution

36. Find the value of λ so that the points P, Q, R and S on the sides $O A, O B, O C$ and $A B$, respectively, of a regular tetrahedron $O A B C$ are coplanar. It is given that $\frac{O P}{O A}=\frac{1}{3}, \frac{O Q}{O B}=\frac{1}{2}, \frac{O R}{O C}=\frac{1}{3}$ and $\frac{O S}{A B}=\lambda$.
$\lambda=\frac{1}{2}$ (B) $\lambda=-1$ (C) $\lambda=0$ (D) for no value of λ
37. A uni-modular tangent vector on the curve $x=t^{2}+2, y=4 t-5, z=2 t^{2}-6 t$ at $t=2$ is a. $\frac{1}{3}(2 \hat{i}+2 \hat{j}+\hat{k})$ b. $\frac{1}{3}(\hat{i}-\hat{j}-\hat{k})$ c. $\frac{1}{6}(2 \hat{i}+\hat{j}+\hat{k})$ d. $\frac{2}{3}(\hat{i}+\hat{j}+\hat{k})$

(Watch Video Solution

38. If \vec{x} and \vec{y} are two non-collinear vectors and a, b, and c represent the sides of a $A B C$ satisfying $(a-b) \vec{x}+(b-c) \vec{y}+(c-a)(\vec{x} x \vec{y})=0$, then $A B C$ is (where $\vec{x} x \vec{y}$ is perpendicular to the plane of xandy) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle

D Watch Video Solution

39. The position vectors of points $A a n d B$ w.r.t. the origin are $\vec{a}=\hat{i}+3 \hat{j}-2 \hat{k}$, $\vec{b}=3 \hat{i}+\hat{j}-2 \hat{k}$ respectively. Determine vector $\vec{O} P$ which bisects angle $A O B$, where P is a point on $A B$
40. What is the unit vector parallel to $\vec{a}=3 \hat{i}+4 \hat{j}-2 \hat{k}$? What vector should be added to \vec{a} so that the resultant is the unit vector \hat{i} ?

- Watch Video Solution

41. $A B C D$ is a quadrilateral and E is the point of intersection of the lines joining the middle points of opposite side. Show that the resultant
of $\quad \overrightarrow{O A}, \quad \overrightarrow{O B}, \quad \overrightarrow{O C}$ and $\quad \overrightarrow{O D}=4 \quad \overrightarrow{O E}$ where O is any point.

- Watch Video Solution

42. $A B C D$ is a parallelogram. If LandM are the mid-points of BCandDC respectively, then express $\vec{A} L a n d \vec{A} M$ in terms of $\vec{A} B a n d \vec{A} D$. Also, prove that $\vec{A} L+\vec{A} M=\frac{3}{2} \vec{A} C$
43. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are four vectors in three-dimensional space with the same initial point and such that $3 \vec{a}-2 \vec{b}+\vec{c}-2 \vec{d}=0$, show that terminals $A, B, C a n d D$ of these vectors are coplanar. Find the point at which ACandBD meet. Find the ratio in which P divides $A C a n d B D$

- Watch Video Solution

44. Find the vector of magnitude 3 , bisecting the angle between the vectors $\vec{a}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

45. If $\vec{a} a n d \vec{b}$ are two vectors of magnitude 1 inclined at 120°, then find the angle between $\vec{b} a n d \vec{b}-\vec{a}$
46. If $\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}$ are the position vectors of the collinear points and scalar pandq exist such that $\vec{r}_{3}=p \vec{r}_{1}+q \vec{r}_{2}$, then show that $p+q=1$.

- Watch Video Solution

47. Examine the following vector for linear independence:
$\vec{i}+\vec{j}+\vec{k}, 2 \vec{i}+3 \vec{j}-\vec{k},-\vec{i}-2 \vec{j}+2 \vec{k}$
$3 \vec{i}+\vec{j}-\vec{k}, 2 \vec{i}-\vec{j}+7 \vec{k}, 7 \vec{i}-\vec{j}+13 \vec{k}$

- Watch Video Solution

48. Show that the vectors $2 \vec{a}-\vec{b}+3 \vec{c}, \vec{a}+\vec{b}-2 \vec{c} a n d \vec{a}+\vec{b}-3 \vec{c}$ are noncoplanar vectors (where $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors)

- Watch Video Solution

49. Let $\vec{a}, \vec{b} a n d \vec{c}$ be three units vectors such that $2 \vec{a}+4 \vec{b}+5 \vec{c}=0$. Then which of the following statement is true? a. \vec{a} is parallel to \vec{b} b. \vec{a} is perpendicular to \vec{b} c. \vec{a} is neither parallel nor perpendicular to \vec{b} d. none of these

- Watch Video Solution

50. Four non -zero vectors will always be a. linearly dependent b. linearly independent c. either a or b
d. none of
these

- Watch Video Solution

51. A boat moves in still water with a velocity which is k times less than the river flow velocity. Find the angle to the stream direction at which the boat should be rowed to minimize drifting.
52. In a triangle $P Q R$, SandT are points on $Q R a n d P R$, respectively, such that $Q S=3 S R a n d P T=4 T R$ Let M be the point of intersection of PSandQT Determine the ratio $Q M$: $M T$ using the vector method .

- Watch Video Solution

53. In a quadrilateral $P Q R S, \vec{P} Q=\vec{a}, \vec{Q} R, \vec{b}, \vec{S} P=\vec{a}-\vec{b}, M$ is the midpoint of \vec{Q} Rand X is a point on $S M$ such that $S X=\frac{4}{5} S M$ Prove that $P, X a n d R$ are collinear.

- Watch Video Solution

54. If D, EandF are three points on the sides $B C, C A a n d A B$, respectively, of a triangle $A B C$ such that the $\frac{B D}{C D}, \frac{C E}{A E}, \frac{A F}{B F}=-1$

- Watch Video Solution

55. Sow that $x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}, x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{k}$, and $x_{3} \hat{i}+y_{3} \hat{j}+z_{3} \hat{k}$, are noncoplanar if $\left|x_{1}\right|>\left|y_{1}\right|+\left|z_{1}\right|,\left|y_{2}\right|>\left|x_{2}\right|+\left|z_{2}\right|$ and $\left|z_{3}\right|>\left|x_{3}\right|+\left|y_{3}\right|$.

- Watch Video Solution

56. The position vector of the points PandQ are $5 \hat{i}+7 \hat{j}-2 \hat{k}$ and
$-3 \hat{i}+3 \hat{j}+6 \hat{k}$, respectively. Vector $\vec{A}=3 \hat{i}-\hat{j}+\hat{k}$ passes through point P and vector $\vec{B}=-3 \hat{i}+2 \hat{j}+4 \hat{k}$ passes through point Q. A third vector $2 \hat{i}+7 \hat{j}-5 \hat{k}$ intersects vectors AandB Find the position vectors of points of intersection.

- Watch Video Solution

57. Consider the vectors
$\hat{i}+\cos (\beta-\alpha) \hat{j}+\cos (\gamma-\alpha) \hat{k}, \cos (\alpha-\beta) \hat{i}+\hat{j}+\cos (\gamma-\beta) \hat{k} a n d \cos (\alpha-\gamma) \hat{i}+\cos (\beta-\gamma) \hat{k}$
where α, β, and γ are different angles. If these vectors are coplanar, show that a is independent of α, β and γ
58. If $\vec{A} n d \vec{B}$ are two vectors and k any scalar quantity greater than zero,
then prove that $|\vec{A}+\vec{B}|^{2} \leq(1+k)|\vec{A}|^{2}+\left(1+\frac{1}{k}\right)|\vec{B}|^{2}$

- Watch Video Solution

59. The
$x \hat{i}+(x+1) \hat{j}+(x+2) \hat{k},(x+3) \hat{i}+(x+4) \hat{j}+(x+5) \hat{k} a n d(x+6) \hat{i}+(x+7) \hat{j}+(x+8$ are coplanar if x is equal to a. 1 b. -3 c. 4 d. 0

- Watch Video Solution

60. \vec{A} isa vector with direction cosines $\cos \alpha, \cos \beta a n d \cos \gamma$ Assuming the $y-z$ plane as a mirror, the directin cosines of the reflected image of \vec{A} in the plane are a. $\cos \alpha, \cos \beta, \cos \gamma$ b. $\cos \alpha,-\cos \beta, \cos \gamma$ c. $-\cos \alpha, \cos \beta, \cos \gamma \mathrm{d}$. $-\cos \alpha,-\cos \beta,-\cos \gamma$
61. The vector \vec{a} has the components $2 p$ and 1 w.r.t. a rectangular Cartesian system. This system is rotated through a certain angel about the origin in the counterclockwise sense. If, with respect to a new system, \vec{a} has components $(p+1)$ and 1 , then p is equal to a. -4 b. $-1 / 3 \mathrm{c} .1 \mathrm{~d} .2$

- Watch Video Solution

62. The sides of a parallelogram are $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. The unit vector parallel to one of the diagonals is a. $\frac{1}{7}(3 \hat{i}+6 \hat{j}-2 \hat{k})$ b. $\frac{1}{7}(3 \hat{i}-6 \hat{j}-2 \hat{k})$ c. $\frac{1}{\sqrt{69}}(\hat{i}+6 \hat{j}+8 \hat{k})$ d. $\frac{1}{\sqrt{69}}(-\hat{i}-2 \hat{j}+8 \hat{k})$

- Watch Video Solution

63. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vector and λ is a real number, then the vectors $\vec{a}+2 \vec{b}+3 \vec{c}, \lambda \vec{b}+\mu \vec{c}$ and $(2 \lambda-1) \vec{c}$ are coplanar when a. $\mu \in R$ b.
$\lambda=\frac{1}{2}$ c. $\lambda=0 \mathrm{~d}$. no value of λ

Watch Video Solution

64. If points $\hat{i}+\hat{j}, \hat{i}-\hat{j}$ andp $\hat{i}+q \hat{j}+r \hat{k}$ are collinear, then a. $p=1 \mathrm{~b} . r=0 \mathrm{c}$. $q R$ d. $q \neq 1$

- Watch Video Solution

65. If the vectors $\hat{i}-\hat{j}, \hat{j}+\hat{k}$ and \vec{a} form a triangle, then \vec{a} may be $\mathrm{a} . \hat{i}-\hat{k} \mathrm{~b}$. $\hat{i}-2 \hat{j}-\hat{k} \mathrm{c} .2 \hat{i}+\hat{j}+\hat{k} \mathrm{~d} . \hat{i}+\hat{k}$

- Watch Video Solution

66. If the resultant of three forces $\vec{F}_{1}=p \hat{i}+3 \hat{j}-\hat{k}, \vec{F}_{2}=6 \hat{i}-\hat{k}$ and $\vec{F}_{3}=-5 \hat{i}+\hat{j}+2 \hat{k}$ acting on a parricle has magnitude equal to 5 units, then the value of p is a. -6 b. -4 c .2 d. 4
67. $\vec{a}, \vec{b}, \vec{c}$ are three coplanar unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$. If three vectors \vec{p}, \vec{q}, and \vec{r} are parallel to \vec{a}, \vec{b}, and \vec{c}, respectively, and have integral but different magnitudes, then among the following options, $|\vec{p}+\vec{q}+\vec{r}|$ can take a value equal to a. 1 b. 0 c. $\sqrt{3}$ d. 2

- Watch Video Solution

68. The vector $\hat{i}+x \hat{j}+3 \hat{k}$ is rotated through an angle θ and doubled in
magnitude, then it becomes $4 \hat{i}+(4 x-2) \hat{j}+2 \hat{k}$. Then value of x are $-\frac{2}{3}$ (b) $\frac{1}{3}$ (c) $\frac{2}{3}$ (d) 2

- Watch Video Solution

69. Prove that point $\hat{i}+2 \hat{j}-3 \hat{k}, 2 \hat{i}-\hat{j}+\hat{k}$ and $2 \hat{i}+5 \hat{j}-\hat{k}$ from a triangle in space.
70. Show that the point A, B and C with position vectors $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}=2 \hat{i}$ $j+\hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$, respectively from the vertices of a right angled triangle.

- Watch Video Solution

71. If $2 \vec{A} C=3 \vec{C} B$, then prove that $2 \vec{O} A=3 \vec{C} B$ then prove that $2 \vec{O} A+3 \vec{O} B$ $=5 \vec{O} C$ where O is the origin.

- Watch Video Solution

72. Fined the unit vector in the direction of vector $\vec{P} Q$, where P and Q are the points ($1,2,3$) and ($4,5,6$), respectively.

- Watch Video Solution

73. For given vector, $\vec{a}=2 \hat{i} j+2 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$, find the unit vector in the direction of the vector $\vec{a}+\vec{b}$.

- Watch Video Solution

74. If the projections of vector \vec{a} on $x-y$ - and z-axes are 2,1 and 2 units ,respectively, find the angle at which vector \vec{a} is inclined to the z-axis.

- Watch Video Solution

75. Find a vector in the direction of the vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude 8 units.

- Watch Video Solution

76. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are the position vector of point A, B, C and D, respectively referred to the same origin O such that no three of these point are
collinear and $\vec{a}+\vec{c}=\vec{b}+\vec{d}$, than prove that quadrilateral ABCD is a parallelogram.

- Watch Video Solution

77. Show that the points $A(6,-7,0), B(16,-19,-4), C(0,3,-6)$ and $D(2,-5,10)$ are such that $A B a n d C D$ interesect at the point $P(1,-1,2)$

Watch Video Solution

78. Statement 1: The direction cosines of one of the angular bisectors of two intersecting line having direction cosines as $l_{1}, m_{1}, n_{1} a n d l_{2}, m_{2}, n_{2}$ are proportional to $l_{1}+l_{2}, m_{1}+m_{2}, n_{1}+n_{2}$ Statement 2: The angle between the two intersection lines having direction cosines as l_{1}, m_{1}, n_{1} andl $_{2}, m_{2}, n_{2}$ is given by $\cos \theta=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}$

- Watch Video Solution

79. Statement 1: In Delta $A B C, \vec{A} B+\vec{B} C+\vec{C} A=0$ Statement 2: If $\vec{O} A=\vec{a}, \vec{O} B=\vec{b}$, then $\vec{A} B=\vec{a}+\vec{b}$

- Watch Video Solution

80. Statement 1: If $\vec{u} a n d \vec{v}$ are unit vectors inclined at an angle $\alpha a n d \vec{x}$ is a unit vector bisecting the angle between them, then
$\vec{x}=(\vec{u}+\vec{v}) /(2 \sin (\alpha / 2)$ Statement 2: If Delta $A B C$ is an isosceles triangle with $A B=A C=1$, then the vector representing the bisector of angel A is given by $\vec{A} D=(\vec{A} B+\vec{A} C) / 2$.

- Watch Video Solution

81. Statement 1: If $\cos \alpha, \cos \beta$, and $\cos \gamma$ are the direction cosines of any line segment, then $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$. Statement 2 : If $\cos \alpha, \cos \beta$, andcos γ are the direction cosines of any line segment, then $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=1$.

- Watch Video Solution

82. A vector has components p and 1 with respect to a rectangular

Cartesian system. The axes are rotted through an angel α about the origin the anticlockwise sense. Statement 1: IF the vector has component $p+2$ and 1 with respect to the new system, then $p=-1$. Statement 2 : Magnitude of the original vector and new vector remains the same.

- Watch Video Solution

83. Statement 1: if three points P, $Q a n d R$ have position vectors \vec{a}, \vec{b}, and \vec{c}, respectively, and $2 \vec{a}+3 \vec{b}-5 \vec{c}=0$, then the points P, Q, andR must be collinear. Statement 2: If for three points $A, B, a n d C, \vec{A} B=\lambda \vec{A} C$, then points A, B, andC must be collinear.

- Watch Video Solution

84. In a four-dimensional space where unit vectors along the axes are $\hat{i}, \hat{j}, \hat{k}$ andlı, and $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \vec{a}_{4}$ are four non-zero vectors such that no vector can be expressed as a linear combination of others and $(\lambda-1)\left(\vec{a}_{1}-\vec{a}_{2}\right)+\mu\left(\vec{a}_{2}+\vec{a}_{3}\right)+\gamma\left(\vec{a}_{3}+\vec{a}_{4}-2 \vec{a}_{2}\right)+\vec{a}_{3}+\delta \vec{a}_{4}=0$, then a. $\lambda=1 \mathrm{~b} \cdot \mu=-2 / 3 \mathrm{c} . \gamma=2 / 3 \mathrm{~d} . \delta=1 / 3$

- Watch Video Solution

85. Let $A B C$ be a triangle, the position vectors of whose vertices are $7 \hat{j}+10 \hat{k},-\hat{i}+6 \hat{j}+6 \hat{k}$ and $-4 \hat{i}+9 \hat{j}+6 \hat{k}$ ThenDelta $A B C$ is a. isosceles b. equilateral c. right angled d. none of these

- Watch Video Solution

86. If non-zero vectors $\vec{a} a n d \vec{b}$ are equally inclined to coplanar vector
\vec{c}, then \vec{c} can be a. $\frac{|\vec{a}|}{|\vec{b}|} \vec{b} \vec{b}$ b. $\frac{|\vec{b}|}{|\vec{a}|} \vec{b}$ c.

$$
|\vec{a}|+2|\vec{b}| \quad|\vec{a}|+|\vec{b}| \quad|\vec{a}|+|\vec{b}| \quad|\vec{a}|+|\vec{b}|
$$

$\frac{|\vec{a}|}{|\vec{a}|+2|\vec{b}|} a+\frac{|\vec{b}|}{|\vec{a}|+2|\vec{b}|} \vec{b}$ d. $\frac{|\vec{b}|}{2|\vec{a}|+|\vec{b}|} a+\frac{|\vec{a}|}{2|\vec{a}|+|\vec{b}|} \vec{b}$

- Watch Video Solution

87. If $A(-4,0,3)$ and $B(14,2,-5)$, then which one of the following points lie on the bisector of the angle between $\vec{O} \operatorname{Aand} \vec{O} B(O$ is the origin of reference)? a. $(2,2,4)$ b. $(2,11,5)$ c. $(-3,-3,-6)$ d. $(1,1,2)$

- Watch Video Solution

88. Prove that the sum of three vectors determined by the medians of a triangle directed from the vertices is zero.

- Watch Video Solution

89. Prove that the resultant of two forces acting at point O and represented by $\vec{O} B$ and $\vec{O} C$ is given by $2 \vec{O} D$, where D is the midpoint of

D Watch Video Solution

90. Two forces $\vec{A} B$ and $\vec{A} D$ are acting at vertex A of a quadrilateral $A B C D$ and two forces $\vec{C} B$ and $\vec{C} D$ at C prove that their resultant is given by $4 \vec{E} F$, where E and F are the midpoints of $A C$ and $B D$, respectively.

D Watch Video Solution

91. ABC is a triangle and P any point on BC . if $\vec{P} Q$ is the sum of $\vec{A} P+\vec{P} B+$ $\vec{P} C$, show that $A B P Q$ is a parallelogram and Q, therefore, is a fixed point.

- Watch Video Solution

92. If vector $\vec{a}+\vec{b}$ bisects the angle between \vec{a} and \vec{b}, then prove that $|\vec{a}|$ $=|\vec{b}|$.
93. ABCDE is a pentagon .prove that the resultant of force $\vec{A} B, \vec{A} E, \vec{B} C, \vec{D} C$, $\vec{E} D$ and $\vec{A} C$, is $3 \vec{A} C$.

- Watch Video Solution

94. if $\vec{A} o+\vec{O} B=\vec{B} O+\vec{O} C$, than prove that B is the midpoint of $A C$.

- Watch Video Solution

95. A unit vector of modulus 2 is equally inclined to x-and y-axes at an angle $\pi / 3$. Find the length of projection of the vector on the z-axis.

- Watch Video Solution

96. Let \vec{a}, \vec{b} and \vec{c} be unit vectors such that $\vec{a}+\vec{b}-\vec{c}=0$. If the area of triangle formed by vectors $\vec{a} a n d \vec{b}$ is A, then what is the value of $4 A^{2}$?

- Watch Video Solution

97. If the resultant of three forces
$\vec{F}_{1}=p \hat{i}+3 \hat{j}-\hat{k}, \vec{F}_{2}=6 \hat{i}-\hat{k}$ and $\vec{F}_{3}=-5 \hat{i}+\hat{j}+2 \hat{k}$ acting on a parricle has magnitude equal to 5 units, then the value of p is a. -6 b. -4 c. 2 d. 4

(Watch Video Solution

98. Statement 1: Let $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} be the position vectors of four points $A, B, C a n d D$ and $3 \vec{a}-2 \vec{b}+5 \vec{c}-6 \vec{d}=0$. Then points A, B, C, andD are coplanar. Statement 2: Three non-zero, linearly dependent coinitial vector $(\vec{P} Q, \vec{P}$ Rand $\vec{P} S$) are coplanar. Then $\vec{P} Q=\lambda \vec{P} R+\mu \vec{P} S$, where λ and μ are scalars.
99. Statement 1:Let $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ be three points such that $\vec{a}=2 \hat{i}+\hat{k}, \vec{b}=3 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{c}=-\hat{i}+7 \hat{j}-5 \hat{k}$ Then $O A B C$ is a tetrahedron. Statement 2: Let $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ be three points such that vectors $\vec{a}, \vec{b} a n d \vec{c}$ are non-coplanar. Then $O A B C$ is a tetrahedron where O is the origin.

- Watch Video Solution

100. Statement 1: If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, then \vec{a} and \vec{b} are perpendicular to each other. Statement 2: If the diagonal of a parallelogram are equal magnitude, then the parallelogram is a rectangle.

- Watch Video Solution

101. Statement 1: $\vec{a}=3 \vec{i}+p \vec{j}+3 \vec{k}$ and $\vec{b}=2 \vec{i}+3 \vec{j}+q \vec{k}$ are parallel vectors if $p=9 / 2 a n d q=2 . \quad$ Statement $2: \quad$ if
$\vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}$ and $\vec{b}=b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k} \quad$ are parallel, then $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{3} .}{b_{3}}$

- Watch Video Solution

102. The position vectors of the vertices A, Band C of a triangle are three unit vectors \vec{a}, \vec{b}, and \vec{c}, respectively. A vector \vec{d} is such that $\vec{d} \vec{a}=\vec{d} \vec{b}=\vec{d} \vec{c}$ and $\vec{d}=\lambda(\vec{b}+\vec{c})$ Then triangle $A B C$ is a. acute angled b . obtuse angled c. right angled d. none of these

- Watch Video Solution

103. aandb form the consecutive sides of a regular hexagon $A B C D E F$

Column I, Column II If $\vec{C} D=x \vec{a}+y \vec{b}$, then, p. $x=-2$ If $\vec{C} E=x \vec{a}+y \vec{b}$, then, $\mathrm{q} x=-1$ lf $\vec{A} E=x \vec{a}+y \vec{b}$, then, r. $y=1 \vec{A} D=-x \vec{b}$, then, s. $y=2$

- Watch Video Solution

104. Column I, Column II Collinear vectors, p. \vec{a} Coinitial vectors, q. \vec{b} Equal vectors, r. \vec{c} Unlike vectors (same intitial point), s. \vec{d}

- Watch Video Solution

105. Statement 1: $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{a}+\vec{b}|=5$, then $|\vec{a}-\vec{b}|=5$.

Statement 2: The length of the diagonals of a rectangle is the same.

- Watch Video Solution

106. A man travelling towards east at $8 \mathrm{~km} / \mathrm{h}$ finds that the wind seems to blow directly from the north On doubling the speed, he finds that it appears to come from the north-east. Find the velocity of the wind.

- Watch Video Solution

107. OABCDE is a regular hexagon of side 2 units in the XY-plane in the first quadrant. O being the origin and OA taken along the x-axis. A point P is taken on a line parallel to the z-axis through the centre of the hexagon at a distance of 3 unit from O in the positive Z direction. Then find vector AP.

- Watch Video Solution

108. If $\vec{a}=7 \hat{i}-4 \hat{k} a n d \vec{b}=-2 \hat{i}-\hat{j}+2 \hat{k}$, determine vector \vec{c} along the internal bisector of the angle between of the angle between vectors \vec{a} and \vec{b} suchthat $|\vec{c}|=5 \sqrt{6}$

- Watch Video Solution

109. Find a unit vector \vec{c} if $\overrightarrow{-i}+\vec{j}-\vec{k}$ bisects the angle between \vec{c} and $3 \vec{i}+4 \vec{j}$.
110. The vectors $2 i+3 \hat{j}, 5 \hat{i}+6 \hat{j}$ and $8 \hat{i}+\lambda \hat{j}$ have initial points at (1, 1). Find the value of λ so that the vectors terminate on one straight line.

- Watch Video Solution

111. If \vec{a}, \vec{b} and \vec{c} are three non-zero vectors, no two of which ar collinear, $\vec{a}+2 \vec{b}$ is collinear with \vec{c} and $\vec{b}+3 \vec{c}$ is collinear with \vec{a}, then find the value of $|\vec{a}+2 \vec{b}+6 \vec{c}|$

- Watch Video Solution

112. i. Prove that the points $\vec{a}-2 \vec{b}+3 \vec{c}, 2 \vec{a}+3 \vec{b}-4 \vec{c}$ and $-7 \vec{b}+10 \vec{c}$ are are collinear, where $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar. ii. Prove that the points $A(1,2,3), B(3,4,7)$, and $C(-3,-2,-5)$ are collinear. find the ratio in which point C divides $A B$.

- Watch Video Solution

113. Check whether the given three vectors are coplanar or non-coplanar.
$-2 \hat{i}-2 \hat{j}+4 \hat{k},-2 \hat{i}+4 \hat{j}, 4 \hat{i}-2 \hat{j}-2 \hat{k}$

- Watch Video Solution

114. Prove that the four points $6 \hat{i}-7 \hat{j}, 16 \hat{i}-19 \hat{j}-4 \hat{k}, 3 \hat{j}-6 \hat{k} a n d 2 \hat{i}+5 \hat{j}+105$ form a tetrahedron in space.

- Watch Video Solution

115. If $\vec{a} a n d \vec{b}$ are two non-collinear vectors, show that points
$l_{1} \vec{a}+m_{1} \vec{b}, l_{2} \vec{a}+m_{2} \vec{b} \quad$ and $\quad l_{3} \vec{a}+m_{3} \vec{b} \quad$ are collinear if $\left|l_{1} l_{2} l_{3} m_{1} m_{2} m_{3} 111\right|=0$.

- Watch Video Solution

116. Show, by vector methods, that the angularbisectors of a triangle are concurrent and find an expression for the position vector of the point of concurrency in terms of the position vectors of the vertices.

- Watch Video Solution

117. Let $\vec{A}(t)=f_{1}(t) \hat{i}+f_{2}(t) \hat{j}$ and $\vec{B}(t)=g(t) \hat{i}+g_{2}(t) \hat{j}, t \in[0,1], f_{1}, f_{2}, g_{1} g_{2}$ are continuous functions. If $\vec{A}(t)$ and $\vec{B}(t)$ are non-zero vectors for all t and $\vec{A}(0)=2 \hat{i}+3 \hat{j}, \vec{A}(1)=6 \hat{i}+2 \hat{j}, \vec{B}(0)=3 \hat{i}+2 \hat{i}$ and $\vec{B}(1)=2 \hat{j}+6 \hat{j}$ Then,show that $\vec{A}(t)$ and $\vec{B}(t)$ are parallel for some t.

- Watch Video Solution

118. Find the least positive integral value of x for which the angel between vectors $\vec{a}=x \hat{i}-3 \hat{j}-\hat{k}$ and $\vec{b}=2 x \hat{i}+x \hat{j}-\hat{k}$ is acute.

- Watch Video Solution

119. If vectors $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=$ lambda $\hat{i}+\hat{j}+2 \hat{k}$ are coplanar, then find the value of $(\lambda-4)$

- Watch Video Solution

120. Find the values of λ such that $x, y, z \neq(0,0,0)$ and $(\hat{i}+\hat{j}+3 \hat{k}) x+(3 \hat{i}-3 \hat{j}+\hat{k}) y+(-4 \hat{i}+5 \hat{j}) z=\lambda(x \hat{i}+y \hat{j}+z \hat{k}$, where $\hat{i}, \hat{j}, \hat{k}$ are unit vector along coordinate axes.

- Watch Video Solution

121. A vector has component A_{1}, A_{2} and A_{3} in a right -handed rectangular

Cartesian coordinate system OXYZ The coordinate system is rotated about the x-axis through an angel $\pi / 2$. Find the component of A in the new coordinate system in terms of A_{1}, A_{2}, and A_{3}

- Watch Video Solution

122. The position vectors of the point

A, B, CandDare $3 \hat{i}-2 \hat{j}-\hat{k}, 2 \hat{i}+3 \hat{j}-4 \hat{k},-\hat{i}+\hat{j}+2 \hat{k} \quad$ and $\quad 4 \hat{i}+5 \hat{j}+\lambda \hat{k}$, respectively. If the points A, B, CandD lie on a plane, find the value of λ

- Watch Video Solution

123. Let $O A C B$ be a parallelogram with O at the origin and $O C$ a diagonal.

Let D be the midpoint of $O A$ using vector methods prove that $B D a n d C O$ intersect in the same ratio. Determine this ratio.

- Watch Video Solution

124. In a triangle $A B C$, DandE are points on $B C a n d A C$, respectivley, such that $B D=2 D C a n d A E=3 E C$ Let P be the point of intersection of
$A D a n d B E$ Find $B P / P E$ using the vector method.

- Watch Video Solution

125. Prove, by vector method or otherwise, that the point of intersection of the diagonals of a trapezium lies on the line passing through the midpoint of the parallel sides (you may assume that the trapezium is not a parallelogram).

- Watch Video Solution

126. If the resultant of two forces is equal in magnitude to one of the components and perpendicular to it direction, find the other components using the vector method.

- Watch Video Solution

127. The axes of coordinates are rotated about the z-axis though an angle of $\pi / 4$ in the anticlockwise direction and the components of a vector are $2 \sqrt{2}, 3 \sqrt{2}, 4$. Prove that the components of the same vector in the original system are -1,5,4.
128. Three coinitial vectors of magnitudes $a, 2 a$ and $3 a$ meet at a point and their directions are along the diagonals if three adjacent faces if a cube. Determined their resultant R. Also prove that the sum of the three vectors determinate by the diagonals of three adjacent faces of a cube passing through the same corner, the vectors being directed from the corner, is twice the vector determined by the diagonal of the cube.

- Watch Video Solution

129. If two side of a triangle are $\hat{i}+2 \hat{j} a n d \hat{i}+\hat{k}$, then find the length of the third side.

- Watch Video Solution

130. If in parallelogram $A B C D$, diagonal vectors are $\vec{A} C=2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{B} D=-6 \hat{i}+7 \hat{j}-2 \hat{k}$, then find the adjacent side vectors $\vec{A} B$ and $\vec{A} D$
131. Find the resultant of vectors $\vec{a}=\hat{i}-\hat{j}+2 \hat{k} a n d \vec{b}=\hat{i}+2 \hat{j}-4 \hat{k}$ Find the unit vector in the direction of the resultant vector.

- Watch Video Solution

132. Check whether the three vectors $2 \hat{i}+2 \hat{j}+3 \hat{k},-3 \hat{i}+3 \hat{j}+2 \hat{k} a n d 3 \hat{i}+4 \hat{k}$ from a triangle or not

- Watch Video Solution

133. The midpoint of two opposite sides of a quadrilateral and the midpoint of the diagonals are the vertices of a parallelogram. Prove that using vectors.

- Watch Video Solution

134. The lines joining the vertices of a tetrahedron to the centroids of opposite faces are concurrent.

- Watch Video Solution

135. Find the angle of vector $\vec{a}=6 \hat{i}+2 \hat{j}-3 \hat{k}$ with x-axis.

- Watch Video Solution

136. If the vectors $\vec{\alpha}=a \hat{i}+a \hat{j}+c \hat{k}, \vec{\beta}=\hat{i}+\hat{k} a n d \vec{\gamma}=c \hat{i}+c \hat{j}+b \hat{k}$ are coplanar, then prove that c is the geometric mean of $a a n d b$

Watch Video Solution

137. The points with position vectors $60 i+3 j$, $40 i-8 j$, ai $-52 j$ are collinear if a. $a=-40 \mathrm{~b} . a=40 \mathrm{c} . a=20 \mathrm{~d}$. none of these
138. Lett α, β and γ be distinct real numbers. The points whose position vector's are $\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k} ; \beta \hat{i}+\gamma \hat{j}+\alpha \hat{k}$ and $\gamma \hat{i}+\alpha \hat{j}+\beta \hat{k}$

Watch Video Solution

139. Let $\vec{a}=\vec{i}-\vec{k}, \vec{b}=x \vec{i}+\vec{j}+(1-x) \vec{k}$ and $\vec{c}=y \vec{i}+x \vec{j}+(1+x-y) \vec{k}$. Then $[\vec{a} \vec{b} \vec{c}]$ depends on (A) only x (B) only y (C) Neither x nor y (D) both x and y

- Watch Video Solution

140. In a $\triangle O A B, \mathrm{E}$ is the mid point of OB and D is the point on AB such that $A D: D B=2: 1$ If $O D$ and $A E$ intersect at P then determine the ratio of $O P: P D$ using vector methods
141. If \vec{a}, \vec{b} are two non-collinear vectors, prove that the points with position vectors $\vec{a}+\vec{b}, \vec{a}-\vec{b}$ and $\vec{a}+\lambda \vec{b}$ are collinear for all real values of λ

- Watch Video Solution

142. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{c}=\hat{i}+\alpha \hat{j}+\beta \hat{k}$ are linearly dependent vectors \& $|\vec{c}|=\sqrt{3}$, then ordered pair (α, β) is $(1,1)(b)(1,-1)$ $(-1,1)(d)(-1,-1)$

- Watch Video Solution

143. The number of distinct real values of λ, for which the vectors $\lambda^{2} \hat{i}+\hat{j}+k, \hat{i}-\lambda^{2} \hat{j}+\hat{k} a n d \hat{i}+\hat{j}-\lambda^{2} \hat{k}$ are coplanar is a. zero b . one c . two d . three
144. If $\vec{A} O+\vec{O} B=\vec{B} O+\vec{O} C$, then A, BnadC are (where O is the origin) a. coplanar b. collinear c. non-collinear d. none of these

- Watch Video Solution

145. Find a vector magnitude 5 units, and parallel to the resultant of the vectors $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

146. Show that the points $A(1,-2,-8), B(5,0,-2)$ and $C(1,3,7)$ are collinear, and find the ratio in which B divides $A C$

- Watch Video Solution

147. The position vectors of PandQ are $5 \hat{i}+4 \hat{j}+a \hat{k}$ and $-\hat{i}+2 \hat{j}-2 \hat{k}$, respectively. If the distance between them is 7, then find the value of a
148. Given three points are $A(-3,-2,0), B(3,-3,1)$ and $C(5,0,2)$ Then find a vector having the same direction as that of $\vec{A} B$ and magnitude equal to $|\vec{A} C|$

- Watch Video Solution

149. Let $A B C D$ be a p[arallelogram whose diagonals intersect at P and let O be the origin. Then prove that $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=4 \vec{O} P$

- Watch Video Solution

150. If $A B C D$ is quadrilateral and EandF are the mid-points of $A C a n d B D$ respectively, prove that $\vec{A} B+\vec{A} D+\vec{C} B+\vec{C} D=4 \vec{E} F$

- Watch Video Solution

151. If $A B C D$ is a rhombus whose diagonals cut at the origin O, then proved that $\overrightarrow{O A}+\vec{O} B+\vec{O} C+\vec{O} D+\vec{O}$

- Watch Video Solution

152. Let D, EandF be the middle points of the sides $B C, C A a n d A B$, respectively of a triangle $A B C$ Then prove that $\vec{A} D+\vec{B} E+\vec{C} F=\overrightarrow{0}$.

- Watch Video Solution

153. Consider the set of eight vector $V=\{a \hat{i}+b \hat{j}+c \hat{k} ; a, b c \in\{-1,1\}\}$ Three non-coplanar vectors can be chosen from V is 2^{p} ways. Then p is \qquad .
154. Find the direction cosines of the vector joining the points $A(1,2,-3) a \cap B(-1-2,1)$ directed from $A \rightarrow B$

Watch Video Solution

155. Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$

- Watch Video Solution

156. The median $A D$ of the triangle $A B C$ is bisected at E and $B E$ meets $A C$ at F. Find AF:FC.

- Watch Video Solution

157. Vectors \vec{a} and \vec{b} are non-collinear. Find for what value of n vectors $\vec{c}=(n-2) \vec{a}+\vec{b}$ and $\vec{d}=(2 n+1) \vec{a}-\vec{b}$ are collinear?
158. Prove that the necessary and sufficient condition for any four points in three-dimensional space to be coplanar is that there exists a liner relation connecting their position vectors such that the algebraic sum of the coefficients (not all zero) in it is zero.

- Watch Video Solution

159. Points $A(\vec{a}), B(\vec{b}), C(\vec{c}) \operatorname{andD}(\vec{d})$ are relates as $x \vec{a}+y \vec{b}+z \vec{c}+w \vec{d}=0$ and $x+y+z+w=0$, wherex, y, z, andw are scalars (sum of any two of x, y, znadw is not zero). Prove that if $A, B, C a n d D$ are concylic, then $|x y||\vec{a}-\vec{b}|^{2}=|w z||\vec{c}-\vec{d}|^{2}$

- Watch Video Solution

160. If \vec{a}, \vec{b} and \vec{c} are non-coplanar vectors, prove that the four points $2 \vec{a}+3 \vec{b}-\vec{c}, \vec{a}-2 \vec{b}+3 \vec{c}, 3 \vec{a}+4 \vec{b}-2 \vec{c}$ and $\vec{a}-6 \vec{b}+6 \vec{c}$ are coplanar.

Watch Video Solution

161. Find the unit vector in the direction of the vector $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$.

- Watch Video Solution

162. Let \vec{a}, \vec{b} and \vec{c} be unit vectors, such that $\vec{a}+\vec{b}+\vec{c}=\vec{x}, \vec{a} \vec{x}=1, \vec{b} \vec{x}=\frac{3}{2},|\vec{x}|=2$. Then find the angel between and \times

- Watch Video Solution

163. Let \vec{A} and \vec{B} be two non-parallel unit vectors in a plane. If $(\alpha \vec{A}+\vec{B})$ bisects the internal angle between $\vec{A} a n d \vec{B}$, then find the value of α

- Watch Video Solution

164. If the vectors $3 \vec{p}+\vec{q} ; 5 p-3 \vec{q} a n d 2 \vec{p}+\vec{q} ; 4 \vec{p}-2 \vec{q}$ are pairs of mutually perpendicular vectors, then find the angle between vectors $\vec{p} a n d \vec{q}$

- Watch Video Solution

165. $P(1,0,-1), Q(2,0,-3), R(-1,2,0)$ andS $(,-2,-1)$, then find the projection length of $\vec{P} Q o n \vec{R} S$

- Watch Video Solution

166. A, B, C, D are any four points, prove that $\vec{A} B \vec{C} D+\vec{B} C \vec{A} D+\vec{C} A \vec{B} D=0$.

- Watch Video Solution

167. Let $\hat{u}=\hat{i}+\hat{j}, \hat{v}=\hat{i}-\hat{j}$ and $\hat{w}=\hat{i}+2 \hat{j}+3 \hat{k}$ If \hat{n} is a unit vector such that $\hat{u} \hat{n}=0$ and $\dot{\hat{v}} \dot{\hat{n}}=0$, then find the value of $|\hat{w} \hat{n}|$.
168. If the angel between unit vectors $\vec{a} a n d \vec{b} 60^{\circ}$, then find the value of $|\vec{a}-\vec{b}|$

- Watch Video Solution

169. $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0},|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=9$,find the angle between \vec{a} and \vec{c}.

- Watch Video Solution

170. Constant forces $P_{1}=\hat{i}+\hat{j}+\hat{k}, P_{2}=-\hat{i}+2 \hat{j}-\hat{k}$ and $P_{3}=-\hat{j}-\hat{k}$ act on a particle at a point A Determine the work done when particle is displaced from position $A(4 \hat{i}-3 \hat{j}-2 \hat{k}) \rightarrow B(6 \hat{i}+\hat{j}-3 \hat{k})$
171. If \vec{a}, and \vec{b} are unit vectors, then find the greatest value of $|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|$

- Watch Video Solution

172. Let $G_{1}, G_{2} a n d G_{3}$ be the centroids of the triangular faces $O B C, O C A a n d O A B$, respectively, of a tetrahedron $O A B C$ If V_{1} denotes the volumes of the tetrahedron OABCandV 2 that of the parallelepiped with $O G_{1}, O G_{2} a n d O G_{3}$ as three concurrent edges, then prove that $4 V_{1}=9 V_{1}$

- Watch Video Solution

173. Prove that $\hat{i} \times(\vec{a} \times \hat{i}) \hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \hat{k})=2 \vec{a}$

- Watch Video Solution

174. If $\hat{i} \times[(\vec{a}-\hat{j}) \times \hat{i}]+\hat{j} \times[(\vec{a}-\hat{k}) \times \hat{j}]+\hat{k} \times[(\vec{a}-\hat{i}) \times \hat{k}]=0$, then find vector \vec{a}

- Watch Video Solution

175. Let \vec{a}, \vec{b}, and \vec{c} be any three vectors, then prove that $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=[\vec{a} \vec{b} \vec{c}]^{2}$

- Watch Video Solution

176. If $[\vec{a} \vec{b} \vec{c}]=2$, then find the value of
$[(\vec{a}+2 \vec{b}-\vec{c})(\vec{a}-\vec{b})(\vec{a}-\vec{b}-\vec{c})]$

- Watch Video Solution

177. If \vec{a}, \vec{b}, and \vec{c} are mutually perpendicular vectors and $\vec{a}=\alpha(\vec{a} \times \vec{b})+\beta(\vec{b} \times \vec{c})+\gamma(\vec{c} \times \vec{a})$ and $[\vec{a} \vec{b} \vec{c}]=1$, then find the value of $\alpha+\beta+\gamma$

- Watch Video Solution

178. If a, bandc are non-copOlanar vector, then that prove $\left|\left(\begin{array}{c}\vec{a} \vec{d}\end{array}\right)(\vec{b} \times \vec{c})+(\vec{b} \vec{d})(\vec{c} \times \vec{a})+(\vec{c} \vec{d})(\vec{a} \times \vec{b})\right| \quad$ is independent of d, wheree is a unit vector.

- Watch Video Solution

179. Prove that vectors $\vec{u}=\left(a l+a_{1} l_{1}\right) \hat{i}+\left(a m+a_{1} m_{1}\right) \hat{j}+\left(a n+a_{1} n_{1}\right) \hat{k}$ $\vec{v}=\left(b l+b_{1} l_{1}\right) \hat{i}+\left(b m+b_{1} m_{1}\right) \hat{j}+\left(b n+b_{1} n_{1}\right) \hat{k}$
$\vec{w}=\left(b l+b_{1} l_{1}\right) \hat{i}+\left(b m+b_{1} m_{1}\right) \hat{j}+\left(b n+b_{1} n_{1}\right) \hat{k}$ are coplanar.

(D) Watch Video Solution

180. For any four vectors, prove that
$(\vec{b} \times \vec{c}) \vec{a} \times \vec{d}+(\vec{c} \times \vec{a}) \vec{b} \times \vec{d}+(\vec{a} \times \vec{b}) \vec{c} \times \vec{d}=0$.

- Watch Video Solution

181. If \vec{b} and \vec{c} are two-noncollinear vectors such that $\vec{a}|\mid(\vec{b} \times \vec{c})$, then prove that $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$ is equal to $|\vec{a}|^{2}(\vec{b} \vec{c})$.

- Watch Video Solution

182. If the vectors A, B, C of a triangle $A B C$ are (1, 2, 3), ($-1,0,0$), ($0,1,2$), respectively then find $\angle A B C$

- Watch Video Solution

183. Let \vec{a}, \vec{b} and \vec{c} be pairwise mutually perpendicular vectors, such that $|\vec{a}|=1,|\vec{b}|=2,|\vec{c}|=2$. Then find the length of $\vec{a}+\vec{b}+\vec{c}$

- Watch Video Solution

184. Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is a perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$, for any two non-zero vectors $\vec{a} a n d \vec{b}$

- Watch Video Solution

185. If $|\vec{a}|=3,|\vec{b}|=4 a n d$ the angle between aandb is 120°, then find the value of $|4 \vec{a}+3 \vec{b}|$

- Watch Video Solution

186. If \vec{a}, \vec{b}, and \vec{c} be three non-coplanar vector and a^{\prime}, b^{\prime} andc constitute the reciprocal system of vectors, then prove that
$\vec{r}=\binom{\cdot}{\vec{r} \vec{a}^{\prime}} \vec{a}+\binom{\cdot}{\vec{r} \vec{b}} \vec{b}+\binom{\cdot}{\vec{r} \vec{c}} \vec{c} \vec{r}=\left(\begin{array}{c}\cdot \\ \vec{r} \vec{a}^{\prime}\end{array} \vec{a}^{\prime}+\left(\begin{array}{c}\cdot \vec{r}^{\prime} \\ \end{array}\right) \vec{b}^{\prime}+\left(\vec{r} \vec{c}^{\prime}\right) \vec{c}^{\prime}\right.$

- Watch Video Solution

187. Find $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a}+\vec{b}) \vec{a}-\vec{b}=8,|\vec{a}|=8|\vec{b}|$

- Watch Video Solution

188. Let \vec{a}, \vec{b}, and \vec{c} and $\vec{a}^{\prime}, \vec{b}^{\prime}, \vec{c}^{\prime}$ are reciprocal system of vectors, then prove that $\vec{a}^{\prime} \times \vec{b}^{\prime}+\vec{b}^{\prime} \times \vec{c}^{\prime}+\vec{c}^{\prime} \times \vec{a}^{\prime}=\frac{\vec{a}+\vec{b}+\vec{c}}{[\vec{a} \vec{b}]}$.

$$
[\vec{a} \vec{b} \vec{c}]
$$

- Watch Video Solution

189. If \vec{a}, \vec{b}, and \vec{c} are three non-coplanar non-zero vecrtors, then prove that $(\vec{a} \cdot \vec{a}) \vec{b} \times \vec{c}+(\vec{a} \cdot \vec{b}) \vec{c} \times \vec{a}+(\vec{a} \cdot \vec{c}) \vec{a} \times \vec{b}=[\vec{b} \vec{c} \vec{a}] \vec{a}$
190. Find a set of vectors reciprocal to the set $-\hat{i}+\hat{j}+\hat{k}, \hat{i}-\hat{j}+\hat{k}, \hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

191. If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq 0$, where \vec{a}, \vec{b}, and \vec{c} are coplanar vectors, then for some scalar k prove that $\vec{a}+\vec{c}=k \vec{b}$

- Watch Video Solution

192. If $\vec{a}=2 \vec{i}+3 \vec{j}-\vec{k}, \vec{b}=-\vec{i}+2 \vec{j}-4 \vec{k}$ and $\vec{c}=\vec{i}+\vec{j}+\vec{k}$, then find thevalue of $(\vec{a} \times \vec{b}) \vec{a} \times \vec{c}$
193. If the vectors $\vec{c}, \vec{a}=x \hat{i}+y \hat{j}+z \hat{k} a n d \vec{b}=\hat{j}$ are such that $\vec{a}, \vec{c} a n d \vec{b}$ form a right-handed system, then find $\overrightarrow{\text {. }}$

Watch Video Solution

194. Given that $\vec{a} \vec{b}=\vec{a} \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ and \vec{a} is not a zero vector. Show that $\vec{b}=\overrightarrow{.}$

- Watch Video Solution

195. If $|\vec{a}|=5,|\vec{a}-\vec{b}|=8$ and $|\vec{a}+\vec{b}|=10$, then find $|\vec{b}|$

- Watch Video Solution

196. If A, B, C, D are four distinct point in space such that $A B$ is not perpendicular to
$C D$ and
$\vec{A} B \vec{C} D=k\left(|\vec{A} D|^{2}+|\vec{B} C|^{2}-|\vec{A} C|^{2}-|\vec{B} D|^{2}\right)$, then find the value of k

- Watch Video Solution

197. If $\vec{a}=2 \hat{i}+3 \hat{j}-5 \hat{k}, \vec{b}=m \hat{i}+n \hat{j}+12 \hat{k} a n d \vec{a} \times \vec{b}=\overrightarrow{0}$, then find (m, n)

- Watch Video Solution

198. If $|\vec{a}|=2|\vec{b}|=5$ and $|\vec{a} \times \vec{b}|=8$, then find the value of \vec{a}. \vec{b}

- Watch Video Solution

199. Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2 \vec{a} \times \vec{b}$ and given a geometrical interpretation of it.

- Watch Video Solution

200. If \vec{x} and \vec{y} are unit vectors and $|\vec{z}|=\frac{2}{7}$ such that $\vec{z}+\vec{z} \times \vec{x}=\vec{y}$, then find the angle θ between \vec{x} and \vec{z}

- Watch Video Solution

201. Prove that $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

(Watch Video Solution

202. Let $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors and $\vec{a} . \vec{b}=\vec{a} . \vec{c}=0$. If the angel between \vec{b} and \vec{c} is $\frac{\pi}{3}$, then find the value of $|[\vec{a} \vec{b} \vec{c}]|$.

(Watch Video Solution

203. The position vectors of the four angular points of a tetrahedron are $A(\hat{j}+2 \hat{k}), B(3 \hat{i}+\hat{k}), C(4 \hat{i}+3 \hat{j}+6 \hat{k})$ and $D(2 \hat{i}+3 \hat{j}+2 \hat{k})$ Find the volume
of the tetrahedron $A B C D$

- Watch Video Solution

204. If the vectors $2 \hat{i}-3 \hat{j}, \hat{i}+\hat{j}-\hat{k} a n d 3 \hat{i}-\hat{k}$ form three concurrent edges of a parallelepiped, then find the volume of the parallelepiped.

- Watch Video Solution

205. If $\vec{u}, \vec{v} a n d \vec{w}$ are three non-copOlanar vectors, then prove that $(\vec{u}+\vec{v}-\vec{w}) \vec{u}-\vec{v} \times(\vec{v}-\vec{w})=\vec{u} \vec{v} \times \vec{w}$

- Watch Video Solution

206. Find the value of a so that the volume of the parallelepiped formed by vectors $\hat{i}+a \hat{j}+k, \hat{j}+a \hat{k} a n d a \hat{i}+\hat{k}$ becomes minimum.
207. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j}-\hat{k}$, then find the vaue of $|\vec{a} \vec{a} \vec{a} \vec{b} \vec{a} \vec{c} \vec{b} \vec{a} \vec{b} \vec{a} \vec{b} \vec{a} \cdot \vec{a} \cdot \vec{a} \cdot \vec{a} \vec{a}|$.

D Watch Video Solution

208. Prove that $[\vec{l} \vec{m} \vec{n}][\vec{a} \vec{b} \vec{c}]=|\vec{l} \vec{a} \vec{l} \vec{b} \vec{l} \vec{c} \vec{m} \vec{a} \vec{m} \vec{a} \vec{m} \vec{a} \vec{n} \vec{a} \vec{n} \vec{a} \vec{n} \vec{a}|$.

- Watch Video Solution

209. Find the altitude of a parallelepiped whose three coterminous edtges are vectors $\vec{A}=\hat{i}+\hat{j}+\hat{k}, \vec{B}=2 \hat{i}+4 \hat{j}-\hat{k}$ and $\vec{C}=\hat{i}+\hat{j}+3 \hat{k} w i t h \vec{A}$ and \vec{B} as the sides of the base of the parallepiped.

D Watch Video Solution

210. If \vec{a} and \vec{b} are two vectors such that $|\vec{a} \times \vec{b}|=2$, then find the value of $[\vec{a} \vec{b} \vec{a} \times \vec{b}]$.

- Watch Video Solution

211.

Prove
that
$\vec{R}+\frac{[\vec{R} \vec{\beta} \times(\vec{\beta} \times \vec{\alpha})] \vec{\alpha}}{|\vec{\alpha} \times \vec{\beta}|^{2}}+\frac{[\vec{R} \vec{\alpha} \times(\vec{\alpha} \times \vec{\beta})] \vec{\beta}}{|\vec{\alpha} \times \vec{\beta}|^{2}}=\frac{[\vec{R} \vec{\alpha} \vec{\beta}](\vec{\alpha} \times \vec{\beta})}{|\vec{\alpha} \times \vec{\beta}|^{2}}$

- Watch Video Solution

212. If \vec{a}, \vec{b}, and \vec{c} are non-coplanar unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}, \vec{b}$ and \vec{c} are non-parallel, then prove that the angel between $\vec{a} a n d \vec{b} i s 3 \pi / 4$.
$\vec{r} \cdot \vec{a}=0, \vec{r} \cdot \vec{b}=1$ and $\left[\begin{array}{ccc}\vec{r} & \vec{a} & \vec{b}\end{array}\right]=1, \vec{a} \vec{b} \neq 0,(\vec{a} \vec{b})^{2}-|\vec{a}|^{2}|\vec{b}|^{2}=1$, then find \vec{r} in terms of \vec{a} and \vec{b}.

- Watch Video Solution

214. If $\vec{a} a n d \vec{b}$ are two given vectors and k is any scalar, then find the vector \vec{r} satisfying $\vec{r} \times \vec{a}+k \vec{r}=\vec{b}$

- Watch Video Solution

215. \vec{a}, \vec{b} and \vec{c} are three non-coplanar vectors and \vec{r} is any arbitrary vector.

Prove that $[\vec{b} \vec{c} \vec{r}] \vec{a}+[\vec{c} \vec{a} \vec{r}] \vec{b}+[\vec{a} \vec{b} \vec{r}] \vec{c}=[\vec{a} \vec{b} \vec{c}] \vec{r}$

- Watch Video Solution

216. If vector \vec{x} satisfying $\vec{x} x \vec{a}+(\vec{x} \vec{b}) \vec{c}=\vec{d} \quad$ is given

$$
\vec{a} \times(\overrightarrow{d x x \vec{c}})
$$

$\vec{x}=\lambda \vec{a}+\vec{a} \times \longrightarrow$, then find the value of λ

$$
(\vec{a} \vec{c})|\vec{a}|^{2}
$$

Watch Video Solution

217. Find the vector of length 3 unit which is perpendicular to $\hat{i}+\hat{j}+\hat{k}$ and lies in the plane of $\hat{i}+\hat{j}+\hat{k}$ and $2 \hat{k}-3 \hat{j}$.

- Watch Video Solution

218. If \vec{b} is not perpendicular to \vec{c}, then find the vector \vec{r} satisfying the equyation $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ and $\vec{r} \vec{c}=0$.
219. If \vec{a}, \vec{b} and \vec{c} are three non coplanar vectors, then prove that

$$
\vec{d}=\frac{\vec{a} \vec{d}}{[\vec{a} \vec{b} \vec{c}]}(\vec{b} \times \vec{c})+\frac{\vec{b} \vec{d}}{[\vec{a} \vec{b} \vec{c}]}(\vec{c} \times \vec{a})+\frac{\vec{d} \vec{d}}{[\vec{a} \vec{b} \vec{c}]}(\vec{a} \times \vec{b})
$$

- Watch Video Solution

220. Let \vec{a}, \vec{b} and \vec{c} be three non-zero vectors such that $\vec{a}+\vec{b}+\vec{c}=0$ and $\lambda \vec{b} \times \vec{a}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0$, then find the value of λ

- Watch Video Solution

221. Prove that $(\vec{a} \hat{i})(\vec{a} \times \hat{i})+(\vec{a} j)(\vec{a} \times \hat{j})+(\vec{a} \hat{k})(\vec{a} \times \hat{k})=0$.

- Watch Video Solution

222.If $(\vec{a} \times \vec{b})^{2}+(\vec{a} \vec{b})^{2}=144 a n d|\vec{a}|=4$, then find the value of $|\vec{b}|$

- Watch Video Solution

223. A particle has an angular speed of $3 \mathrm{rad} / \mathrm{s}$ and the axis of rotation passes through the points $(1,1,2)$ and $(1,2,-2)$ Find the velocity of the particle at point $P(3,6,4)$

- Watch Video Solution

224. Find the moment of \vec{F} about point (2, -1, 3), where force $\vec{F}=3 \hat{i}+2 \hat{j}-4 \hat{k}$ is acting on point $(1,-1,2)$.

- Watch Video Solution

225. Given $|\vec{a}|=|\vec{b}|=1$ and $|\vec{a}+\vec{b}|=\sqrt{3}$. If \vec{c} is a vector such that $\vec{c}-\vec{a}-2 \vec{b}=3(\vec{a} \times \vec{b})$, then find the value of $\vec{c} \vec{b}$

- Watch Video Solution

226. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both $\vec{a} a n d \vec{b}$. If the angle between $a a n d b$ is $\frac{\pi}{6}$, then prove that $\left|a_{1} a_{2} a_{3} b_{1} b_{2} b_{3} c_{1} c_{2} c_{3}\right|=\frac{1}{4}(a 12+a 22+a 32)(b 12+b 22+b 32)$

- Watch Video Solution

227. If $\vec{a}, \vec{b}, \vec{c}$, and \vec{d} are four non-coplanar unit vector such that \vec{d} make equal angles with all the three vectors \vec{a}, \vec{b} and \vec{c}, then prove that $[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{b}]=[\vec{d} \vec{c} \vec{a}]$
228. If the volume of a parallelepiped whose adjacent edges are $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+\alpha \hat{j}+2 \hat{k}, \vec{c}=\hat{i}+2 \hat{j}+\alpha \hat{k}$ is 15 , then find the value of α if $(\alpha>0)$

- Watch Video Solution

229. Prove that if $[\vec{l} \vec{m} \vec{n}]$ are three non-coplanar vectors, then $[\vec{l} \vec{m} \vec{n}](\vec{a} \times \vec{b})=|\vec{l} \vec{a} \vec{l} \vec{b} \vec{l} \vec{m} \vec{a} \vec{m} \vec{b} \vec{m} \vec{a} \vec{a} \vec{n} \vec{b} \vec{n}|$.

- Watch Video Solution

230. Using dot product of vectors, prove that a parallelogram, whose diagonals are equal, is a rectangle

- Watch Video Solution

231. If $a+2 b+3 c=4$, then find the least value of $a^{2}+b^{2}+c^{2}$

- Watch Video Solution

232. In any triangle $A B C$, prove the projection formula $a=b \cos C+$ os B using vector method.

- Watch Video Solution

233. Prove that an angle inscribed in a semi-circle is a right angle using vector method.

- Watch Video Solution

234. If $\vec{a} \cdot \hat{i}=\vec{a} .(\hat{i}+\hat{j})=\vec{a} \cdot(\hat{i}+\hat{j}+\hat{k})$, then find the unit vector \vec{a}

- Watch Video Solution

235. Prove by vector method that $\cos (A+B) \cos A \cos B-\sin A \sin B$

- Watch Video Solution

236. If the scalar projection of vector $x \hat{i}-\hat{j}+\hat{k}$ on vector $2 \hat{i}-\hat{j}+5 \hat{k} i s \frac{1}{\sqrt{30}}$, then find the value of x

- Watch Video Solution

237. If $\vec{a}=x \hat{i}+(x-1) \hat{j}+\hat{k} a n d \vec{b}=(x+1) \hat{i}+\hat{j}+a \hat{k}$ make an acute angle $\forall x \in R$, then find the values of a

- Watch Video Solution

238. A unit vector a makes an angle $\frac{\pi}{4}$ with z -axis. If $a+i+j$ is a unit vector, then a can be equal to
239. if \vec{a}, \vec{b} and \vec{c} are there mutually perpendicular unit vectors and \vec{a} ia a unit vector make equal angles which \vec{a}, \vec{b} and \vec{c} then find the value of $|\vec{a}+\vec{b}+\vec{c}+\vec{d}|^{2}$

Watch Video Solution

240. If \vec{a}, \vec{b}, and \vec{c} be non-zero vectors such that no tow are collinear or $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$ If θ is the acute angle between vectors \vec{b} and \vec{c}, then find the value of $s \int h \eta$

- Watch Video Solution

241. If $\vec{p}, \vec{q}, \vec{r}$ denote vector $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}$, respectively, show that \vec{a} is parallel to $\vec{q} \times \vec{r}, \vec{b}$ is parallel $\vec{r} \times \vec{p}, \vec{c}$ is parallel to $\vec{p} \times \vec{q}$

- Watch Video Solution

242. If \vec{a}, and \vec{b} be two non-collinear unit vector such that $\vec{a} \times(\vec{a} \times \vec{b})=\frac{1}{2} \vec{b}$, then find the angle between \vec{a}, and \vec{b}

- Watch Video Solution

243. Show that $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$ if and only if \vec{a} and \vec{c} are collinear of $(\vec{a} \times \vec{c}) \times \vec{b}=0$.

- Watch Video Solution

244. Prove that $(\vec{a}(\vec{b} \times \hat{i}) \hat{i}+(\vec{a} \vec{b} \times \hat{j}) \hat{j}+(\vec{a} \vec{b} \times \hat{k}) \hat{k}=\vec{a} \times \vec{b}$

- Watch Video Solution

245. For any four vectors, $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} prove that $\vec{a} \times(\vec{b} \times(\vec{c} \times \vec{d}))=(\vec{b} \vec{d})[\vec{a} \vec{c} \vec{d}]$

- Watch Video Solution

246. If \vec{a}, \vec{b}, and \vec{c} are three vectors such that $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}, \vec{c} \times \vec{a}=\vec{b}$, then prove that $|\vec{a}|=|\vec{b}|=|\vec{c}|$

Watch Video Solution

$$
\vec{b} \times(\vec{a} \times \vec{b})
$$

247. If $\vec{a}=\vec{p}+\vec{q}, \vec{p} \times \vec{b}=0 \operatorname{and} \vec{q} \vec{b}=0$, then prove that $\frac{\vec{b} \times(\vec{a} \times \vec{b})}{\text {. }}=\vec{q}$
$\vec{b} \vec{b}$

- Watch Video Solution

248. If $\vec{a}=\hat{i}+\hat{j}+\hat{k} a n d \vec{b}=\hat{i}-2 \hat{j}+\hat{k}$, then find vector \vec{c} such that $\vec{a} \vec{c}=2 a n d \vec{a} \times \vec{c}=\vec{b}$

- Watch Video Solution

249. If $\vec{x} \cdot \vec{a}=0, \vec{x} \cdot \vec{b}=0$ and $\vec{x} \cdot \vec{c}=0$ for some non-zero vector \vec{x}, then prove that $[\vec{a} \vec{b} \vec{c}]=0$.

- Watch Video Solution

250. If \vec{a}, \vec{b}, and \vec{c} are mutually perpendicular vectors of equal magnitudes, then find the angle between vectors $\vec{a} a n d \vec{a}+\vec{b}+\overrightarrow{.}$

- Watch Video Solution

251. If \vec{a}, \vec{b}, and \vec{c} are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, then find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$

- Watch Video Solution

252. If three unit vectors \vec{a}, \vec{b}, and \vec{c} satisfy $\vec{a}+\vec{b}+\vec{c}=0$, then find the angle between $\vec{a} a n d \vec{b}$

- Watch Video Solution

253. If $|\vec{a}|+|\vec{b}|=|\vec{c}|$ and $\vec{a}+\vec{b}=\vec{c}$, then find the angle between $\vec{a} a n d \vec{b}$

- Watch Video Solution

254. Find the angle between the vectors $\hat{i}-2 \hat{j}+3 \hat{k} a n d 3 \hat{i}-2 \hat{j}+\hat{k}$
255. If $\vec{r} \hat{i}=\vec{r} \hat{j}=\vec{r} \hat{k}$ and $|\vec{r}|=3$, then find the vector \vec{r}

- Watch Video Solution

256. If \vec{a}, \vec{b}, and \vec{c} are non-zero vectors such that $\vec{a} \vec{b}=\vec{a} \vec{c}$, then find the geometrical relation between the vectors.

- Watch Video Solution

257. Find the projection of vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$

- Watch Video Solution

258. If θ is th angel between the unit vectors a and b , then prove that
$\cos \left(\frac{\theta}{2}\right)=\frac{1}{2}|\vec{a}+\vec{b}|_{\ldots,} \sin \left(\frac{\theta}{2}\right)=\frac{1}{2}|\vec{a}-\vec{b}|$
259. \vec{a}, \vec{b}, and \vec{c} are three unit vectors and every two are inclined to each other at an angel $\cos ^{-1}(3 / 5)$ If $\vec{a} \times \vec{b}=p \vec{a}+q \vec{b}+r \vec{c}$, wherep, q, r are scalars, then find the value of q

- Watch Video Solution

260. Given unit vectors \hat{m}, n̂and \hat{p} such that angel between $\hat{m} a n d \hat{n}$ is α and angle between $\hat{p} a n d(\hat{m} \times \hat{n})$ is also α, if $[\hat{n} \hat{p} \hat{m}]=1 / 4$, then find the value of α

- Watch Video Solution

261. Let \vec{a}, \vec{b}, and \vec{c} be non-coplanar vectors and let the equation $\vec{a}^{\prime}, \vec{b}^{\prime}, \vec{c}^{\prime}$ are reciprocal system of vector $\vec{a}, \vec{b}, \vec{c}$, then prove that $\vec{a} \times \vec{a}^{\prime}+\vec{b} \times \vec{b}^{\prime}+\vec{c} \times \vec{c}^{\prime}$ is a null vector.
262. Vector $\vec{O} A=\hat{i}+2 \hat{j}+2 \hat{k}$ turns through a right angle passing through the positive x -axis on the way. Show that the vector in its new position is $\frac{4 \hat{i}-\hat{j}-\hat{k}}{\sqrt{2}}$

- Watch Video Solution

263. The base of the pyramid $A O B C$ is an equilateral triangle $O B C$ with each side equal to $4 \sqrt{2}, O$ is the origin of reference, $A O$ is perpendicualar to the plane of $O B C$ and $|\vec{A} O|=2$. Then find the cosine of the angle between the skew straight lines, one passing though A and the midpoint of $O B a n d$ the other passing through O and the mid point of $B C$

- Watch Video Solution

264. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k} a n d \vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$
265. Let the vectors $\vec{a} a n d \vec{b}$ be such that $|\vec{a}|=3|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angel between $\vec{a} a n d \vec{b}$ is?

- Watch Video Solution

266. Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b}) \cdot$

- Watch Video Solution

267. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$ Find a vector \vec{d} which is perpendicular to both $\vec{a} a n d \vec{b}$ and $\vec{d} \vec{d}=15$.

- Watch Video Solution

268. If $A, B a n d C$ are the vetices of a triangle $A B C$, then prove sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.

- Watch Video Solution

269. Application of cross product trigonometric proof; $\sin (A+B)=$ $\sin A \cos B+\cos A \sin B$

- Watch Video Solution

270. Find a unit vector perpendicular to the plane determined by the points (1, $-1,2),(2,0,-1) \operatorname{and}(0,2,1)$

- Watch Video Solution

271. If $\vec{a} a n d \vec{b}$ are two vectors, then prove that $(\vec{a} \times \vec{b})^{2}=|\vec{a} \vec{a} \vec{a} \vec{b} \vec{b} \vec{a} \vec{b} \vec{b}|$.
272. In isosceles triangles $A B C,|\vec{A} B|=|\vec{B} C|=8$, a point E divides $A B$ internally in the ratio $1: 3$, then find the angle between \vec{C} Eand $\vec{C} A($ where $|\vec{C} A|=12)$

- Watch Video Solution

273. Prove that in a tetrahedron if two pairs of opposite edges are perpendicular , then the third pair is also perpendicular.

- Watch Video Solution

274. Let \vec{a}, \vec{b}, and \vec{c} are vectors such that $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=5$, and $(\vec{a}+\vec{b})$ is perpendicular to $\vec{c},(\vec{b}+\vec{c})$ is perpendicular to $\vec{a} a n d(\vec{c}+\vec{a})$ is perpendicular to \vec{b} Then find the value of $|\vec{a}+\vec{b}+\vec{c}|$.
275. If $|\vec{a}|=|\vec{b}|=|\vec{a}+\vec{b}|=1$, then find the value of $|\vec{a}-\vec{b}|$

- Watch Video Solution

276. If $\vec{a}=4 \hat{i}+6 \hat{j} a n d \vec{b}=3 \hat{j}+4 \hat{k}$, then find the component of $\vec{a} a n d \vec{b}$

- Watch Video Solution

277. A particle acted by constant forces $4 \hat{i}+\hat{j}-3 \hat{k} a n d 3 \hat{i}+\hat{9}-\hat{k}$ is displaced from point $\hat{i}+2 \hat{j}+3 \hat{k}$ to point $5 \hat{i}+4 \hat{j}+\hat{k}$ find the total work done the forces in units.

- Watch Video Solution

278. If \vec{a}, \vec{b}, and \vec{c} are there mutually perpendicular unit vectors and \vec{d} is a unit vector which makes equal angles with \vec{a}, \vec{b}, and \vec{c}, then find the value of $|\vec{a}+\vec{b}+\vec{c}+\vec{d}|^{2}$
A. $4+2 \sqrt{2}$
B. $4+2 \sqrt{3}$
C. $2+\sqrt{5}$
D. $3+\sqrt{5}$

Answer: B

Watch Video Solution

279. Let $\vec{a}=x \hat{i}+12 \hat{j}-\hat{k}, \vec{b}=2 \hat{i}+2 x \hat{j}+\hat{k} a n d \vec{c}=\hat{i}+\hat{k}$ If the ordered set
$[\vec{b} \vec{c} \vec{a}]$ is left handed, then find the values of x
280. If \vec{a}, \vec{b}, and \vec{c} are three non-coplanar vectors, then find the value of
$\frac{\vec{a} \vec{b} \times \vec{c}}{\vec{b} \vec{c} \times \vec{a}}+\frac{\vec{b} \vec{c} \times \vec{a}}{\vec{\cdot}(\vec{a} \times \vec{b})}+\frac{\vec{\cdot}(\vec{b} \times \vec{a}) .}{\vec{a} \vec{b} \times \vec{c}}$.

- Watch Video Solution

281. If $\vec{a}, \vec{b}, \vec{c} a n d \vec{d}$ are the position vectors of the vertices of a cyclic
quadrilateral $\left.\quad \begin{array}{c}A B C D, \\ (\vec{b}-\vec{a}) \vec{d}-\vec{a} \\ \frac{|\vec{a} \times \vec{b}+\vec{b} \times \vec{d}+\vec{d} \times x \vec{a}|}{|\vec{b} \times \vec{c}+\vec{c} \times \vec{d}+\overrightarrow{d x x} \vec{b}|} \\ (\vec{b}-\vec{c}) \vec{d}-\vec{c}\end{array}\right)$

- Watch Video Solution

282. The position vectors of the vertices of a quadrilateral with A as origin are $B(\vec{b}), D(\vec{d}) \operatorname{andC}(\vec{l} \vec{b}+m \vec{d})$ Prove that the area of the quadrialateral is $\frac{1}{2}(l+m)|\vec{b} \times \vec{d}|$
283. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$, then show that $\vec{a}-\vec{d}$, is paralelto $\vec{b}-\vec{c}$ provided $\vec{a} \neq \leftrightarrow d$ and $\vec{b} \neq \overrightarrow{.}$

- Watch Video Solution

284. Show by a numerical example and geometrically also that $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ does not imply $\vec{b}=\vec{c}$

- Watch Video Solution

285. In triangle $A B C, p o \in t s D$, EandF are taken on the sides $B C, C$ Aand $A B$, respectigvely, such that $\frac{B D}{D C}=\frac{C E}{E A}=\frac{A F}{F B}=n$. Prove that $-(D E F)=\frac{n^{2}-n+1}{\left((n+1)^{2}\right)_{A B C}}$.

- Watch Video Solution

286. Let A, B, C be points with position vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}+\hat{j}+2 \hat{k}$ respectively. Find the shortest distance between point B and plane $O A C$

- Watch Video Solution

287. Let $\vec{a} a n d \vec{b}$ be unit vectors such that $|\vec{a}+\vec{b}|=\sqrt{3}$. Then find the value of $(2 \vec{a}+5 \vec{b}) 3 \vec{a}+\vec{b}+\vec{a} \times \vec{b}$

- Watch Video Solution

288. uandv are two non-collinear unit vectors such that $\left|\frac{\hat{u}+\hat{v}}{2}+\hat{u} \times \hat{v}\right|=1$. Prove that $|\hat{u} \times \hat{v}|=\left|\frac{\hat{u}-\hat{v}}{2}\right|$.
289. A rigid body is spinning about a fixed point $(3,-2,-1)$ with an angular velocity of $4 \mathrm{rad} / \mathrm{s}$, the axis of rotation being in the direction of $(1,2,-2)$.

Find the velocity of the particle at point $(4,1,1)$.

- Watch Video Solution

290. $\vec{r} \times \vec{a}=\vec{b} \times \vec{a} ; \vec{r} \times \vec{b}=\vec{a} \times \vec{b} ; \vec{a} \neq \overrightarrow{0} ; \vec{b} \neq \overrightarrow{0} ; \vec{a} \neq \lambda \vec{b}$, and \vec{a} is not perpendicular to \vec{b}, then find \vec{r} in terms of $\vec{a} a n d \vec{b}$

- Watch Video Solution

291. If $|\vec{a}|=2$, then find the value of $|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}$

- Watch Video Solution

292. If \vec{a}, \vec{b} and \vec{c} are the position vectors of the vertices A, BandC respect ively, of $A B C$, prove that the perpendicular distance of the vertedx A from
the base $B C$ of the triangle $A B C$ is $\underline{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}$.

$$
|\vec{c}-\vec{b}|
$$

- Watch Video Solution

293. A, B, CandD are any four points in the space, then prove that
$|\vec{A} B \times \vec{C} D+\vec{B} C \times \vec{A} D+\vec{C} A \times \vec{B} D|=4$ (area of $A B C$.)

- Watch Video Solution

294. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$

- Watch Video Solution

295. Using vectors, find the area of the triangle with vertices $A(1,1,2), B$ $(2,3,5)$ and $C(1,5,5)$.
296. Let \vec{a}, \vec{b} and \vec{c} be three verctors such that $\vec{a} \neq 0,|\vec{a}|=|\vec{c}|=1,|\vec{b}|=4$ and $|\vec{b} \times \vec{c}|=\sqrt{15}$ If $\vec{b}-2 \vec{c}=\lambda \vec{a}$, then find the value of λ

- Watch Video Solution

297. Find the area a parallelogram whose diagonals are $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k} a n d \vec{b}=\hat{i}-3 \hat{j}+4 \hat{k}$

- Watch Video Solution

298. If $\vec{a} a n d \vec{b}$ are unit vectors such that $(\vec{a}+\vec{b}) \cdot(2 \vec{a}+3 \vec{b}) \times(3 \vec{a}-2 \vec{b})=0$, then angle between \vec{a} and \vec{b} is 0 b . $\pi / 2 \mathrm{c} . \pi \mathrm{d}$. indeterminate
299. If $\vec{a} a n d \vec{b}$ are any two unit vectors, then find the greatest positive integer in the range of $\frac{3|\vec{a}+\vec{b}|}{2}+2|\vec{a}-\vec{b}|$.

- Watch Video Solution

300. If the vectors \vec{a}, \vec{b}, and \vec{c} form the sides $B C$, $C A a n d A B$, respectively, of triangle $A B C$, then $\vec{a} \vec{b}+\vec{b} \vec{c}+\vec{a} \vec{a}=0 \quad$ b. $\quad \vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$ C.
$\vec{a} \vec{b}=\vec{b} \vec{c}=\vec{a} \vec{a}$ d. $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0$

- Watch Video Solution

301. Let \vec{u} be a vector on rectangular coordinate system with sloping angle 60° Suppose that $|\vec{u}-\hat{i}|$ is geometric mean of $|\vec{u}|$ and $|\vec{u}-2 \hat{i}|$, where \hat{i} is the unit vector along the x-axis. Then find the value of $(\sqrt{2}+1)|\vec{u}|$
302. Two adjacent sides of a parallelogram $A B C D$ are given by $\vec{A} B=2 \hat{i}+10 \hat{j}+11 \hat{k}$ and $\vec{A} D=-\hat{i}+2 \hat{j}+2 \hat{k}$ The side $A D$ is rotated by an acute angle α in the plane of the parallelogram so that $A D$ becomes $A D^{\prime}$ If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angel α is given by $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4 \sqrt{5}}{9}$

- Watch Video Solution

303. Let \vec{a}, \vec{b}, and \vec{c} be non-coplanar unit vectors, equally inclined to one another at an angle θ. If $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=p \vec{a}+q \vec{b}+r \vec{c}$, find scalars p, qandr in terms of θ

- Watch Video Solution

304. Given three vectors \vec{a}, \vec{b}, and \vec{c} two of which are non-collinear. Further if $(\vec{a}+\vec{b})$ is collinear with $\vec{c},(\vec{b}+\vec{c})$ is collinear with
$\vec{a},|\vec{a}|=|\vec{b}|=|\vec{c}|=\sqrt{2}$ Find the value of $\vec{a} \vec{b}+\vec{b} \vec{c}+\vec{\cdot} \vec{a} 3$ b. -3 c .0 d. cannot be evaluated

(Watch Video Solution

305. The value of a so that the volume of parallelepiped formed by $\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k} a n d a \hat{i}+\hat{k}$ is minimum is -3 b. 3 c. $1 / \sqrt{3}$ d. $\sqrt{3}$

(Watch Video Solution

306. $A_{1}, A_{2}, \ldots, A_{n}$ are the vertices of a regular plane polygon with n sides and O as its centre. Show that $\sum_{i=1}^{n} \overrightarrow{O A_{i}} \times \overrightarrow{O A_{i+1}}=(1-n)\left(\overrightarrow{O A_{2}} \times \overrightarrow{O A_{1}}\right)$

- Watch Video Solution

307. If \vec{c} is a given non-zero scalar, and $\vec{A} a n d \vec{B}$ are given non-zero vector such that $\vec{A} \perp B$, then find vector \vec{X} which satisfies the equation
$\vec{A} \vec{X} a n d \vec{A} \times \vec{X}=\vec{B}$

- Watch Video Solution

308. $A, B, C a n d D$ are any four points in the space, then prove that
$|\vec{A} B \times \vec{C} D+\vec{B} C \times \vec{A} D+\vec{C} A \times \vec{B} D|=4$ (area of $A B C$.)

- Watch Video Solution

309. If vectors \vec{a}, \vec{b}, and \vec{c} are coplanar, show that
$|\vec{a} \vec{b} \vec{c} \vec{a} \vec{a} \vec{a} \vec{b} \vec{a} \vec{c} \vec{b} \vec{a} \vec{b} \vec{b} \vec{c}|=\odot$

Watch Video Solution

310. Let $\vec{A}=2 \vec{i}+\vec{k}, \vec{B}=\vec{i}+\vec{j}+\vec{k} \vec{C}=4 \hat{i}-3 \hat{j}+7 \hat{k}$ Determine a vector \vec{R} satisfying $\vec{R} \times \vec{B}=\vec{C} \times \vec{B}$ and $\vec{R} \vec{A}=0$.

- Watch Video Solution

311. Determine the value of c so that for all real x, vectors $c x \hat{i}-6 \hat{j}-3 \hat{k} a n d x \hat{i}+2 \hat{j}+2 c x \hat{k}$ make an obtuse angle with each other.

- Watch Video Solution

312. If $\vec{r}=x_{1}(\vec{a} \times \vec{b})+x_{2}(\vec{b} \times \vec{a})+x_{3}(\vec{c} \times \vec{d})$ and $4[\vec{a} \vec{b} \vec{c}]=1$, then $x_{1}+x_{2}+x_{3}$ is equal to (A) $\frac{1}{2} \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
(B) $\frac{1}{4} \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
$2 \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$ (D) $4 \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$

- Watch Video Solution

313. $[(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b})]$ is equal to (where \vec{a}, \vec{b} and \vec{c} are nonzero non-coplanar vector) $[\vec{a} \vec{b} \vec{c}]^{2} \mathrm{~b}$. $[\vec{a} \vec{b} \vec{c}]^{3} \mathrm{c}$. $[\vec{a} \vec{b} \vec{c}]^{4}$ d. $[\vec{a} \vec{b} \vec{c}]$
314. If V be the volume of a tetrahedron and V be the volume of another tetrahedran formed by the centroids of faces of the previous tetrahedron and $V=K V^{\prime}$, then K is equal to 9 b. 12 c. 27 d. 81

- Watch Video Solution

315. If \vec{a}, \vec{b} and \vec{c} are non coplanar vectors and $\vec{a} \times \vec{c}$ is perpendicular to $\vec{a} \times(\vec{b} \times \vec{c})$, then the value of $[a \times(\vec{b} \times \vec{c})] \times \vec{c}$ is equal to $[\vec{a} \vec{b} \vec{c}] \mathrm{b}$. $2[\vec{a} \vec{b} \vec{c}] \vec{b}$ c. $\overrightarrow{0}$ d. $[\vec{a} \vec{b} \vec{c}] \vec{a}$

- Watch Video Solution

316. $A(\vec{a}), B(\vec{b}), C(\vec{c})$ are the vertices of the triangle $A B C$ and $R(\vec{r})$ is any point in the plane of triangle ABC , then $r \cdot(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})$ is always equal to
317. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and \vec{p}, $\vec{q} a n d \vec{r}$ the vectors
defined by the relation $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}$ and $\vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$. Then the value of the expression $(\vec{a}+\vec{b}) \vec{p}+(\vec{b}+\vec{c}) \vec{q}+(\vec{c}+\vec{a}) \vec{r}$ is a. 0 b .1 c .2 d . 3

- Watch Video Solution

318. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vecrors and \vec{r} be any arbitrary vector. Then $(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{r} \times \vec{b})$ is always equal to $[\vec{a} \vec{b} \vec{c}] \vec{r}$ b. $2[\vec{a} \vec{b} \vec{c}] \vec{r}$ c. $3[\vec{a} \vec{b} \vec{c}] \vec{r}$ d. none of these

- Watch Video Solution

319. The position vectors of point A, B, and C are $\hat{i}+\hat{j}+\hat{k}, \hat{i}+5 \hat{j}-\hat{k}$ and $2 \hat{i}+3 \hat{j}+5 \hat{k}$, respectively. Then greatest angel of
triangle $A B C$ is $120^{\circ} \mathrm{b} \cdot 90^{\circ} \mathrm{c} \cdot \cos ^{-1}(3 / 4) \mathrm{d}$. none of these

- Watch Video Solution

320. Let $\vec{a}(x)=(s \in x) \hat{i}+(\cos x) \hat{j} a n d \vec{b}(x)=(\cos 2 x) \hat{i}+(\sin 2 x \hat{j})$ be two variable vectors $(x \in R)$ Then $\vec{a}(x) a n d \vec{b}(x)$ are a. collinear for unique value of x b. perpendicular for infinite values of x c. zero vectors for unique value of x d. none of these

- Watch Video Solution

321.

$\vec{a}=2 \hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+2 \hat{k}, \vec{c}=\hat{i}+\hat{j}+2 \hat{k} \operatorname{and}(1+\alpha) \hat{i}+\beta(1+\alpha) \hat{j}+\gamma(1+\alpha)(1$ are a.- $2,-4,-\frac{2}{3}$ b. $2,-4, \frac{2}{3}$ c. $-2,4, \frac{2}{3}$ d. $2,4,-\frac{2}{3}$

- Watch Video Solution

322. If \vec{a}, \vec{b} and \vec{c} are unit vectors satisfying $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=9$, then $|2 \vec{a}+5 \vec{b}+5 \vec{c}|$ is.

Watch Video Solution

323. If $\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is non-zero vector and
$|(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b})+(\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a})|=0, \quad$ then
a.
$|\vec{a}|=|\vec{b}|=|\vec{c}| \mathrm{b} .|\vec{a}|+|\vec{b}|+|\vec{c}|=|d|$ c. \vec{a}, \vec{b}, and \vec{c} are coplanar d. none of these

- Watch Video Solution

324. The vector(s) which is/are coplanar with vectors $\hat{i}+\hat{j}+2 \hat{k} a n d \hat{i}+2 \hat{j}+\hat{k}$, and perpendicular to vector $\hat{i}+\hat{j}+\hat{k}$, is/are a. $\hat{j}-\hat{k}$ b. $-\hat{i}+\hat{j} c . \hat{i}-\hat{j}$ d. $-\hat{j}+\hat{k}$

- Watch Video Solution

325. Let $\vec{a}=-\hat{i}-\hat{k}, \vec{b}=-\hat{i}+\hat{j}$ and $\vec{c}=\hat{i}+2 \hat{j}+3 \hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{r} \vec{a}=0$, then find the value of $\vec{r} \vec{b}$

- Watch Video Solution

326. Let \vec{a}, \vec{b}, and \vec{c} be vectors forming right-hand traid. Let
$\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}$, and $\vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$,
If $\quad x \cup R^{+}$,
then
$x[\vec{a} \vec{b} \vec{c}]+\frac{[\vec{p} \vec{q} \vec{r}]}{x}$ b. $x^{4}[\vec{a} \vec{b} \vec{c}]^{2}+\frac{[\vec{p} \vec{q} \vec{r}]}{x^{2}}$ has least value $=\left(\frac{3}{2}\right)^{2 / 3}$ C.
$[\vec{p} \vec{q} \vec{r}]>0 \mathrm{~d}$. none of these

- Watch Video Solution

327. From a point O inside a triangle $A B C$, perpendiculars $O D$, OEandOf are drawn to rthe sides $B C, C A a n d A B$, respecrtively. Prove that the perpendiculars from A, B, and C to the sides $E F, F$ DandDE are concurrent.

- Watch Video Solution

328. If $a a n d b$ are vectors in space given by $\vec{a}=\frac{\hat{i}-2 \hat{j}}{\sqrt{5}}$ and $\vec{b}=\frac{\hat{2} i+\hat{j}+3 \hat{k}}{\sqrt{14}}$, then find the value of $(2 \vec{a}+\vec{b})(\vec{a} \times \vec{b}) \times(\vec{a}-2 \vec{b})$

- Watch Video Solution

329. Find the work done by the force $F=3 \hat{i}-\hat{j}-2 \hat{k}$ acting on a particle such that the particle is displaced from point $A(-3,-4,1) \top o \in t B(-1,-1,-2)$

- Watch Video Solution

330. If $\vec{a}, \vec{b}, \vec{c}$ are three given non-coplanar vectors and any arbitrary vector $\vec{r} \quad$ in space, where $\quad \Delta 1=|\vec{r} \vec{a} \vec{b} \vec{a} \cdot \vec{a} \vec{r} \vec{b} \vec{b} \vec{b} \cdot \vec{b} \vec{r} \vec{c} \vec{b} \vec{c} \cdot \vec{c}|$
$\Delta 2=|\vec{a} \vec{a} \vec{r} \vec{a} \cdot \vec{a} \vec{a} \vec{b} \vec{r} \vec{b} \vec{b} \vec{b} \vec{a} \vec{c} \vec{r} \vec{c} \cdot \vec{c}| \quad \Delta 3=|\vec{a} \vec{a} \vec{b} \vec{a} \vec{r} \vec{a} \vec{a} \vec{b} \vec{b} \vec{b} \vec{r} \vec{b} \vec{a} \vec{c} \vec{b} \vec{c} \vec{r} \vec{c}|$
$\Delta=|\vec{a} \vec{a} \vec{b} \vec{a} \cdot \vec{a} \vec{a} \vec{b} \vec{b} \vec{b} \cdot \vec{b} \vec{a} \vec{c} \vec{b} \vec{c} \cdot \vec{c}|$ then prove that
$\vec{r}=\frac{\Delta 1}{\Delta} \vec{a}+\frac{\Delta 2}{\Delta} \vec{b}+\frac{\Delta 3}{\Delta} \vec{c}$.

D Watch Video Solution

331. If $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ are three non-collinear points and origin does not lie in the plane of the points A, BandC, then point $P(\vec{p})$ in the plane of the $A B C$ such that vector $\vec{O} P$ is \perp to planeof $A B C$, show that
$\vec{O} P=\frac{[\vec{a} \vec{b} \vec{c}](\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})}{4^{2}}$, where is the area of the $A B C$

D Watch Video Solution

332. $O A B C$ is regular tetrahedron in which D is the circumcentre of $O A B$ and E is the midpoint of edge $A C$ Prove that $D E$ is equal to half the edge of tetrahedron.

- Watch Video Solution

333. In a quadrilateral $A B C D$ it is given tghat $A B|\mid C D$ nad the diagonals ACandBD are perpendicular to each other. Show that $A D B C \geq A B C D$

- Watch Video Solution

334. If $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ and $\vec{E}_{1}, \vec{E}_{2}, \vec{E}_{3}$ are two sets of vectors such that $\vec{e}_{i} \vec{E}_{j}=1$, if $i=j a n d \vec{e}_{i} \vec{E}_{j}=0$ and if $i \neq j$, then prove that $\left[\vec{e}_{1} \vec{e}_{2} \vec{e}_{3}\right]\left[\vec{E}_{1} \vec{E}_{2} \vec{E}_{3}\right]=1$.

- Watch Video Solution

335. A line l is passing through the point \vec{b} and is parallel to vector \vec{c} Determine the distance of point $A(\vec{a})$ from the line l in the form
$\vec{b}-\vec{a}+\frac{(\vec{a}-\vec{b}) \vec{c}}{|\vec{c}|^{2}} \vec{c}$ or $\frac{|(\vec{b}-\vec{a}) \times \vec{c}|}{|\vec{c}|}$.

Watch Video Solution

336. Given the vectors \vec{A}, \vec{B}, and \vec{C} form a triangle such that $\vec{A}=\vec{B}+\vec{C}$ find a, b, c, andd such that the area of the triangle is $5 \sqrt{6}$ where $\vec{A}=a \hat{i}+b \hat{j}+c \hat{k} \vec{B}=d \hat{i}+3 \hat{j}+4 \hat{k} \vec{C}=3 \hat{i}+\hat{j}-2 \hat{k}$

- Watch Video Solution

337. Let a three dimensional vector \vec{V} satisfy the condition, $2 \vec{V}+\vec{V} \times(\hat{i}+2 \hat{j})=2 \hat{i}+\hat{k}$ If $3|\vec{V}|=\sqrt{m}$ Then find the value of m

- Watch Video Solution

$\vec{u}=\hat{i}-2 \hat{j}+3 \hat{k} ; \vec{v}=2 \hat{i}+\hat{j}+4 \hat{k} ; \vec{w}=\hat{i}+3 \hat{j}+3 \hat{k}$ and $(\vec{u} \vec{R}-15) \hat{i}+(\vec{v} \vec{R}-30) \hat{j}+($
Then find the greatest integer less than or equal to $|\vec{R}|$

- Watch Video Solution

339. Let $\vec{O} A-\vec{a}, \hat{O} B=10 \vec{a}+2 \vec{b}$ and $\vec{O} C=\vec{b}$, where O, AandC are noncollinear points. Let p denotes the areaof quadrilateral $O A C B$, and let q denote the area of parallelogram with OAandOC as adjacent sides. If $p=k q$, then find k

- Watch Video Solution

340. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} \vec{b}=0=\vec{a} \vec{c}$ and the angel between \vec{b} and \vec{c} is $\frac{\pi}{3}$, then find the value of $|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|$
341. If \vec{x}, \vec{y} are two non-zero and non-collinear vectors satisfying $\left[(a-2) \alpha^{2}+(b-3) \alpha+c\right] \vec{x}+\left[(a-2) \beta^{2}+(b-3) \beta+c\right] \vec{y}+\left[(a-2) \gamma^{2}+(b-3) \gamma+c\right.$ are three distinct real numbers, then find the value of $\left(a^{2}+b^{2}+c^{2}-4\right)$

- Watch Video Solution

342. Let $\vec{a}=\alpha \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=\alpha \hat{i}+2 \alpha \hat{j}-2 \hat{k}$, and $\vec{c}=2 \hat{i}+\alpha \hat{j}+\hat{k} \quad$ Find thevalue of 6α, such that $\{(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})\} \times(\vec{c} \times \vec{a})=0$.

- Watch Video Solution

343. Let \vec{a}, \vec{b} and \vec{c} be three vectors having magnitudes 1 , 5and 3 , respectively, such that the angel between $\vec{a} a n d \vec{b}$ is θ and $\vec{a} \times(\vec{a} \times \vec{b})=c$. Then $\tan \theta$ is equal to a. 0 b. $2 / 3 \mathrm{c} .3 / 5 \mathrm{~d} .3 / 4$

- Watch Video Solution

344. Two vectors in space are equal only if they have equal component in
a. a given direction
b. two given directions
c. three given directions d. in any arbitrary direction

- Watch Video Solution

345. Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{j}-\hat{k} a n d \vec{c}=\hat{k}-\hat{i}$. If \vec{d} is a unit vector such that $\vec{a} . \vec{d}=0=[\vec{b} \vec{c} \vec{d}]$, then d equals a. $\pm \frac{\hat{i}+\hat{j}-2 \hat{k}}{\sqrt{6}}$ b. $\pm \frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}$ c. $\pm \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$ d. $\pm \hat{k}$

- Watch Video Solution

346. If vectors $\vec{a} a n d \vec{b}$ are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the perpendicular to a is $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$ b. $\frac{\vec{a} \vec{b}}{|\vec{b}|^{2}}$ c. $\vec{b}-\frac{\vec{b} \vec{a}}{|\vec{a}|^{2}}$ d. $\frac{\vec{a} \times(\vec{b} \times \vec{a})}{|\vec{b}|^{2}}$
347. If $\vec{a} \times(\vec{b} \times \vec{c})$ is perpendicular to $(\vec{a} \times \vec{b}) \times \vec{c}$, we may have $(\vec{a} \vec{c})|\vec{b}|^{2}=(\vec{a} \vec{b})(\vec{b} \vec{c})$ b. $\vec{a} \vec{b}=0$ c. $\vec{a} \vec{c}=0$ d. $\vec{b} \vec{c}=0$

- Watch Video Solution

348. $[\vec{a} \times \vec{b} \vec{c} \times \vec{d} \vec{e} \times \vec{f}]$ is equal to (a) $[\vec{a} \vec{b} \vec{d}][\vec{c} \vec{e} \vec{f}]-[\vec{a} \vec{b} \vec{c}][\vec{d} \vec{e} \vec{f}]$
$[\vec{a} \vec{b} \vec{e}][\vec{f} \vec{c} \vec{d}]-[\vec{a} \vec{b} \vec{f}][\vec{e} \vec{c} \vec{d}] \quad$ (c) $[\vec{c} \vec{d} \vec{a}][\vec{b} \vec{e} \vec{f}]-[\vec{a} \vec{d} \vec{b}][\vec{a} \vec{e} \vec{f}]$
$[\vec{a} \vec{c} \vec{e}][\vec{b} \vec{d} \vec{f}]$

- Watch Video Solution

349.

\vec{b} and \vec{c}
are
non-collinear
$\vec{a} \times(\vec{b} \times \vec{c})+(\vec{a} \vec{b}) \vec{b}=(4-2 x-\sin y) \vec{b}+\left(x^{2}-1\right) \vec{c}$ and $(\vec{c} \vec{c}) \vec{a}=\vec{\cdot}$ Then a. $x=1$ b. $x=-1$ c. $y=(4 n+1) \pi / 2, n \in I$ d. $y=(2 n+1) \pi / 2, n \in I$

- Watch Video Solution

350. Unit vectors $\vec{a} a n d \vec{b}$ are perpendicular, and unit vector \vec{c} is inclined at angle θ to both $\vec{a} a n d \vec{b}$ If $\vec{c}=\alpha \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})$, then (a) $\alpha=\beta$
$\gamma^{2}=1-2 \alpha^{2}$ (c) $\gamma^{2}=-\cos 2 \theta$ (d) $\beta^{2}=\frac{1+\cos 2 \theta}{2}$

- Watch Video Solution

351. If $\vec{a} \perp \vec{b}$, then vector \vec{v} in terms of $\vec{a} a n d \vec{b}$ satisfying the equation s

$$
\begin{equation*}
\vec{v} \vec{a}=\text { 0and } \vec{v} \vec{b}=1 \text { and }[\vec{v} \vec{a} \vec{b}]=1 \text { is } \frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{2}} \text { b. } \frac{\vec{b}}{|\vec{b}|^{\square}}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{2}} \tag{c}
\end{equation*}
$$

$\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{\square}}$ d. none of these

- Watch Video Solution

352. If $\vec{a}^{\prime}=\hat{i}+\hat{j}, \vec{b}^{\prime}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}^{\prime}=2 \hat{i}+\hat{j}-\hat{k}$, then the altitude of the parallelepiped formed by the vectors \vec{a}, \vec{b} and \vec{c} having base formed by \vec{b} and \vec{c} is (where \vec{a}^{\prime} is reciprocal vector \vec{a})

- Watch Video Solution

353. If $\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{j}+\hat{k}, \vec{c}=\hat{k}+\hat{i}$, then in the reciprocal system of vectors $\vec{a}, \vec{b}, \vec{c}$ reciprocal \vec{a} of vector \vec{a} is a. $\frac{\hat{i}+\hat{j}+\hat{k}}{2}$ b. $\frac{\hat{i}-\hat{j}+\hat{k}}{2}$ c. $\frac{-\hat{i}-\hat{j}+\hat{k}}{2}$ d. $\frac{\hat{i}+\hat{j}-\hat{k}}{2}$

- Watch Video Solution

354. If unit vectors $\vec{a} a n d \vec{b}$ are inclined at angle 2θ such that $|\vec{a}-\vec{b}|<1$ and $0 \leq \theta \leq \pi$, then θ lies in interval a. $[0, \pi / 6]$ b. $[5 \pi / 6, \pi]$ $[\pi / 6, \pi / 2]$ d. $[\pi / 2,5 \pi / 6]$
355. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and $\vec{p}, \vec{q} a n d \vec{r}$ the vectors defined by the relation $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}$ and $\vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$. Then the value of the expression $(\vec{a}+\vec{b}) \vec{p}+(\vec{b}+\vec{c}) \vec{q}+(\vec{c}+\vec{a}) \vec{r}$ is a. 0 b .1 c .2 d . 3

- Watch Video Solution

356. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{2} \hat{k}, \vec{b}=b_{1} \hat{i}+a_{2} \hat{j}+b_{2} \hat{k}$, and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{2} \hat{k}$, be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both vectors $\vec{a} a n d \vec{b}$. If the angle between aandb is $\pi / 6$, then $\left|a_{1} a_{2} a_{3} b_{1} b_{2} b_{3} c_{1} c_{2} c_{3}\right|^{2}$ is equal to $01 \frac{1}{4}(a 12+a 22+a 32)(b 12+b 22+b 32)$ 3 $\frac{3}{4}(a 12+a 22+a 32)(b 12+b 22+b 32)(c 12+c 22+c 32)$

- Watch Video Solution

357. A, B, CandD are four points such that
$\vec{A} B=m(2 \hat{i}-6 \hat{j}+2 \hat{k}), \vec{B} C=(\hat{i}-2 \hat{j}) a n d \vec{C} D=n(-6 \hat{i}+15 \hat{j}-3 \hat{k}) \quad$ If $\quad C D$ intersects $A B$ at some point E, then a. $m \geq 1 / 2$ b. $n \geq 1 / 3$ c. $m=n$ d. $m<n$

- Watch Video Solution

358. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k} a n d \vec{c}=\hat{i}-\hat{j}-\hat{k}$ be three vectors. A vector \vec{v} in the plane of $\vec{a} a n d \vec{b}$, whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$ is given by a. $\hat{i}-3 \hat{j}+3 \hat{k}$ b. $-3 \hat{i}-3 \hat{j}+3 \hat{k} \mathrm{c} \cdot 3 \hat{i}-\hat{j}+3 \hat{k} \mathrm{~d} \cdot \hat{i}+3 \hat{j}-3 \hat{k}$

- Watch Video Solution

359. If \hat{a}, \hat{b}, and \hat{c} are unit vectors, then $|\hat{a}-\hat{b}|^{2}+|\hat{b}-\hat{c}|^{2}+|\hat{c}-\hat{a}|^{2}$ does not exceed

- Watch Video Solution

360. Which of the following expressions are meaningful? $\vec{u} \vec{v} \times \vec{w} \mathrm{~b}$.
$(\vec{u} \vec{v}) \vec{w}$ c. $(\vec{u} \vec{v}) \vec{w}$ d. $\vec{u} \times(\vec{v} \vec{w})$

- Watch Video Solution

361. Find the value of λ if the volume of a tetrashedron whose vertices are with position vectors $\hat{i}-6 \hat{j}+10 \hat{k},-\hat{i}-3 \hat{j}+3 \hat{k}, 5 \hat{i}-\hat{j}+\lambda \hat{k}$ and $7 \hat{i}-4 \hat{j}+7 \hat{k}$ is 11 cubic unit.

- Watch Video Solution

362. Let $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}=\hat{k} a n d \vec{c}=\hat{i}+\hat{j}-2 \hat{k}$ be three vectors. A vector in the plane of \vec{b} and \vec{c}, whose projection on \vec{a} is of magnitude $\sqrt{2 / 3}$, is a. $2 \hat{i}+3 \hat{j}-3 \hat{k}$ b. $2 \hat{i}-3 \hat{j}+3 \hat{k}$ c. $-2 \hat{i}-\hat{j}+5 \hat{k}$ d. $2 \hat{i}+\hat{j}+5 \hat{k}$
363. If $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d}) \vec{a} \times \vec{d}=0$, then which of the following may be true? $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are necessarily coplanar b. \vec{a} lies in the plane of \vec{c} and \vec{d} c. \vec{b} lies in the plane of $\vec{a} a n d \vec{d} \mathrm{~d} . \vec{c}$ lies in the plane of \vec{a} and \vec{d}

- Watch Video Solution

364. Vector $\frac{1}{3}(2 i-2 j+k)$ is (A) a unit vector (B) makes an angle $\pi / 3$ with vector $(2 \hat{i}-4 \hat{j}+3 \hat{k})$ (C) parallel to vector $\left(-\hat{i}+\hat{j}-\frac{1}{2} \hat{k}\right)$ (D) perpendicular to vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$

- Watch Video Solution

365. Let $\vec{u} a n d \vec{v}$ be unit vectors such that $\vec{u} \times \vec{v}+\vec{u}=\vec{w}$ and $\vec{w} \times \vec{u}=\vec{v}$ Find the value of [$\vec{u} \vec{v} \vec{w}$]
366. The scalarslandm such that $l \vec{a}+m \vec{b}=\vec{c}$, where \vec{a}, \vec{b} and \vec{c} are given vectors, are equal to

- Watch Video Solution

367. If $O A B C$ is a tetrahedron where O is the orogin $\operatorname{anf} A, B$, andC are the other three vertices with position vectors, \vec{a}, \vec{b}, and \vec{c} respectively, then prove that the centre of the sphere circumscribing the tetrahedron is given by position vector $\frac{a^{2}(\vec{b} \times \vec{c})+b^{2}(\vec{c} \times \vec{a})+c^{2}(\vec{a} \times \vec{b})}{2[\vec{a} \vec{b} \vec{c}]}$.

- Watch Video Solution

368. Let k be the length of any edge of a regular tetrahedron (a tetrahedron whose edges are equal in length is called a regular tetrahedron). Show that the angle between any edge and a face not containing the edge is $\cos ^{-1}(1 / \sqrt{3})$.
369. In $A B C$, a point P is taken on $A B$ such that $A P / B P=1 / 3$ and point Q is taken on $B C$ such that $C Q / B Q=3 / 1$. If R is the point of intersection of the lines $A Q a n d C P$, ising vedctor method, find the are of $A B C$ if the area of $B R C$ is 1 unit

- Watch Video Solution

370. Let $A B C D$ be a p[arallelogram whose diagonals intersect at P and let
O be the origin. Then prove that $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=4 \vec{O} P$

- Watch Video Solution

371. If $\left|(a-x)^{2}(a-y)^{2}(a-z)^{2}(b-x)^{2}(b-y)^{2}(b-z)^{2}(c-x)^{2}(c-y)^{2}(c-a)^{2}\right|=0$ and vectors \vec{A}, \vec{B}, and \vec{C}, where $\vec{A}=a^{2} \hat{i}+a \hat{j}+\hat{k}$, etc, are non-coplanar, then prove that vectors \vec{X}, \vec{Y} and \vec{Z}, where $\vec{X}=x^{2} \hat{i}+x \hat{j}+\hat{k}$, etc. may be coplanar.
372. If $\vec{a}=x \hat{i}+y \hat{j}+z \hat{k}, \vec{b}=y \hat{i}+z \hat{j}+x \hat{k} a n d \vec{c}=z \hat{i}+x \hat{j}+y \hat{k}$, then $\vec{a} \times(\vec{b} \times \vec{c})$ is (a)parallel to $(y-z) \hat{i}+(z-x) \hat{j}+(x-y) \hat{k} \quad$ (b)orthogonal to $\hat{i}+\hat{j}+\hat{k}$ (c)orthogonal to $(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$ (d)orthogonal to $x \hat{i}+y \hat{j}+z \hat{k}$

- Watch Video Solution

373. The lengths of two opposite edges of a tetrahedron are a and b; the shortest distane between these edges is d, and the angel between them is θ Prove using vectors that the volume of the tetrahedron is $\frac{a b d \sin \theta}{6}$.

- Watch Video Solution

374. Find the volume of a parallelepiped having three vectors of equal magnitude $|\vec{a}|$ and equal inclination θ with each other.

- Watch Video Solution

375. If vectors $\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{B}=\hat{i}+\hat{j}+5 \hat{k} a n d \vec{C}$ form a left-handed system, then \vec{C} is a. $11 \hat{i}-6 \hat{j}-\hat{k}$ b. $-11 \hat{i}+6 \hat{j}+\hat{k}$ c. $11 \hat{i}-6 \hat{j}+\hat{k}$ d. $-11 \hat{i}+6 \hat{j}-\hat{k}$

- Watch Video Solution

376. A vector \vec{d} is equally inclined to three vectors $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=3 \hat{j}-2 \hat{k}$ Let \vec{x}, \vec{y}, and \vec{z} be thre vectors in the plane of $\vec{a}, \vec{b} ; \vec{b}, \vec{c} ; \vec{c}, \vec{a}$, respectively. Then $\vec{x} \vec{d}=-1 \mathrm{~b} . \vec{y} \vec{d}=1 \mathrm{c} . \vec{z} \vec{d}=0 \mathrm{~d}$.
$\vec{r} \vec{d}=0$, where $\vec{r}=\lambda \vec{x}+\mu \vec{y}+\delta \vec{z}$

- Watch Video Solution

377. Vectors $\vec{A} a n d \vec{B}$ satisfying the vector equation
$\vec{A}+\vec{B}=\vec{a}, \vec{A} \times \vec{B}=\vec{b}$ and $\vec{A} \cdot \vec{a}=1$, where $\vec{a} a n d \vec{b}$ are given vectors, are a.
$\vec{A}=\frac{(\vec{a} \times \vec{b})-\vec{a}}{a^{2}}$
b. $\vec{B}=\frac{(\vec{b} \times \vec{a})+\vec{a}\left(a^{2}-1\right)}{a^{2}}$
c. $\vec{A}=\frac{(\vec{a} \times \vec{b})+\vec{a}}{a^{2}}$
d.
$\vec{B}=\frac{(\vec{b} \times \vec{a})-\vec{a}\left(a^{2}-1\right)}{a^{2}}$

- Watch Video Solution

378. if $\left.\vec{\alpha}|\mid(\vec{\beta} \times \vec{\gamma})$, then $(\vec{\alpha} \times \beta) \vec{\alpha} \times \vec{\gamma}$ equals to $| \vec{\alpha}\right|^{2}(\vec{\beta} \vec{\gamma})$ b.
$|\vec{\beta}|^{2}(\vec{\gamma} \vec{\alpha})$ c. $|\vec{\gamma}|^{2}(\vec{\alpha} \vec{\beta})$ d. $|\vec{\alpha}||\vec{\beta}||\vec{\gamma}|$

- Watch Video Solution

379. Let $\vec{\alpha}=a \hat{i}+b \hat{j}+c \hat{k}, \vec{\beta}=b \hat{i}+c \hat{j}+a \hat{k} a n d \vec{\gamma}=c \hat{i}+a \hat{j}+b \hat{k}$ are three coplanar vectors with $a \neq b$, and $\vec{v}=\hat{i}+\hat{j}+\hat{k}$ Then v is perpendicular to $\vec{\alpha}$ b. $\vec{\beta}$ c. $\vec{\gamma}$ d. none of these
380. $a_{1}, a_{2}, a_{3}, \in R-\{0\}$ and $a_{1}+a_{2} \cos 2 x+a_{3} \sin ^{2} x=0$ or allx $\in R$, then (a)vector $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} a n d \vec{b}=4 \hat{i}+2 \hat{j}+\hat{k}$ are perpendicular to each other (b)vector $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} a n d \vec{b}=-\hat{i}+\hat{j}+2 \hat{k}$ are parallel to each other (c)vector $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ is of length $\sqrt{6}$ units, then one of the ordered triple $\left(a_{1}, a_{2}, a_{3}\right)=(1,-1,-2)$ (d)are perpendicular to each other if $2 a_{1}+3 a_{2}+6 a_{3}=26$, then $\left|a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right|$ is $2 \sqrt{6}$

- Watch Video Solution

381. If P is any arbitrary point on the circumcirlce of the equllateral trangle of side length l units, then $|\vec{P} A|^{2}+|\vec{P} B|^{2}+|\vec{P} C|^{2}$ is always equal to $2 l^{2}$ b. $2 \sqrt{3} l^{2}$ c. l^{2} d. $3 l^{2}$

- Watch Video Solution

382. Let $\vec{a} a n d \vec{b}$ be two non-zero perpendicular vectors. A vecrtor \vec{r} satisfying the equation $\vec{r} \times \vec{b}=\vec{a}$ can be $\vec{b}-\frac{\vec{a} \times \vec{b}}{}$ b. $2 \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$ c.
$|\vec{a}| \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$ d. $|\vec{b}| \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$

- Watch Video Solution

383. If $\vec{a} a n d \vec{b}$ are two vectors and angle between them is θ, then
$|\vec{a} \times \vec{b}|^{2}+(\vec{a} \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2}$

$$
|\vec{a} \times \vec{b}|=(\vec{a} \vec{b}) \text {, if } \quad \theta=\pi / 4
$$

$\vec{a} \times \vec{b}=(\vec{a} \vec{b}) \hat{n}$, (wheren̂ is unit vector,) if $\theta=\pi / 4(\vec{a} \times \vec{b}) \vec{a}+\vec{b}=0$

- Watch Video Solution

384. Let \vec{r} be a unit vector satisfying $\vec{r} \times \vec{a}=\vec{b}$, where $|\vec{a}|=3 a n d|\vec{b}|=2$.
Then $\quad \vec{r}=\frac{2}{3}(\vec{a}+\vec{a} \times \vec{b})$
b. $\quad \vec{r}=\frac{1}{3}(\vec{a}+\vec{a} \times \vec{b}$
c. $\vec{r}=\frac{2}{3}(\vec{a}-\vec{a} \times \vec{b} \quad \mathrm{~d}$.
$\vec{r}=\frac{1}{3}(-\vec{a}+\vec{a} \times \vec{b}$

Watch Video Solution

385. If vector $\vec{b}=(\tan \alpha,-1,2 \sqrt{\sin \alpha / 2})$ and $\vec{c}=\left(\tan \alpha, \tan \alpha, \frac{3}{\sqrt{\sin \alpha / 2}}\right)$ are orthogonal and vector $\vec{a}=(1,3, \sin 2 \alpha)$ makes an obtuse angle with the $z-$ axis, then the value of α is $\alpha=(4 n+1) \pi+\tan ^{-1} 2$ b. $\alpha=(4 n+1) \pi-\tan ^{-1} 2$
c. $\alpha=(4 n+2) \pi+\tan ^{-1} 2$ d. $\alpha=(4 n+2) \pi-\tan ^{-1} 2$

- Watch Video Solution

386. Let \vec{a}, \vec{b}, and \vec{c} be non-zero vectors and $\vec{V}_{1}=\vec{a} \times(\vec{b} \times \vec{c}) \operatorname{and} \vec{V}_{2}(\vec{a} \times \vec{b}) \times \vec{?}$ Vectors $\vec{V}_{1} \operatorname{and} \vec{V}_{2}$ are equal. Then $\vec{a} a n \vec{b}$ are orthogonal b. $\vec{a} a n d \vec{c}$ are collinear c. \vec{b} and \vec{c} are orthogonal d. $\vec{b}=\lambda(\vec{a} \times \vec{c})$ when λ is a scalar

- Watch Video Solution

387. $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}, \vec{c}=\hat{i}+\hat{j}-2 \hat{k} \quad$ A vector coplanar with \vec{b} and \vec{c} whose projectin on \vec{a} is magnitude $\sqrt{\frac{2}{3}}$ is $2 \hat{i}+3 \hat{j}-3 \hat{k}$ b. $-2 \hat{i}-\hat{j}+5 \hat{k}$
c. $2 \hat{i}+3 \hat{j}+3 \hat{k}$ d. $2 \hat{i}+\hat{j}+5 \hat{k}$

- Watch Video Solution

388. Let $\vec{P} R=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{S} Q=\hat{i}-3 \hat{j}-4 \hat{k}$ determine diagonals of a parallelogram PQRS, and $\vec{P} T=\hat{i}+2 \hat{j}+3 \hat{k}$ be another vector. Then the volume of the parallelepiped determine by the vectors $\vec{P} T, \vec{P} Q$ and $\vec{P} S$ is 5 b. 20 c. 10 d. 30

- Watch Video Solution

389. If in a right-angled triangle $A B C$, the hypotenuse $A B=p$, then
$\overrightarrow{A B} \cdot \overrightarrow{A C}+\overrightarrow{B C} \cdot \overrightarrow{B A}+\overrightarrow{C A} \cdot \overrightarrow{C B}$ is equal to $2 p^{2}$ b. $\frac{p^{2}}{2}$ c. p^{2} d. none of these
390. If $\vec{a}=(\hat{i}+\hat{j}+\hat{k})$, $\vec{a} \vec{b}=1$ and $\vec{a} \times \vec{b}=\hat{j}-\hat{k}$, then \hat{b} is $\hat{i}-\hat{j}+\hat{k}$ b. $2 \hat{j}-\hat{k}$ c. \hat{i} d. $2 \hat{i}$

- Watch Video Solution

391. If a satisfies $\vec{a} \times(\hat{i}+2 \hat{j}+\hat{k})=\hat{i}-\hat{k}$, then \vec{a} is equal to $\lambda \hat{i}+(2 \lambda-1) \hat{j}+\lambda \hat{k}, \lambda R \quad$ b. $\lambda \hat{i}+(1-2 \lambda) \hat{j}+\lambda \hat{k}, \lambda R \quad$ c. $\lambda \hat{i}+(2 \lambda+1) \hat{j}+\lambda \hat{k}, \lambda R \quad \mathrm{~d}$.
$\lambda \hat{i}-(1+2 \lambda) \hat{j}+\lambda \hat{k}, \lambda R$

- Watch Video Solution

392. If $\vec{r} \vec{a}=\vec{r} \vec{b}=\vec{r} \vec{c}=0$, where \vec{a}, \vec{b}, and \vec{c} are non-coplanar, then $\vec{r} \perp(\vec{c} \times \vec{a})$ b. $\vec{r} \perp(\vec{a} \times \vec{b})$ c. $\vec{r} \perp(\vec{b} \times \vec{c})$ d. $\vec{r}=\overrightarrow{0}$
393. The unit vector orthogonal to vector $-\hat{i}+2 \hat{j}+2 \hat{k}$ and making equal angles with the x and y -axis ,
a. $\pm \frac{1}{3}(2 \hat{i}+2 \hat{j}-\hat{k})$
b. $\pm \frac{1}{3}(\hat{i}+\hat{j}-\hat{k})$
c. $\pm \frac{1}{3}(2 \hat{i}-2 \hat{j}-\hat{k})$
d. none of these

- Watch Video Solution

394. Vectors $3 \vec{a}-5 \vec{b}$ and $2 \vec{a}+\vec{b}$ are mutually perpendicular. If $\vec{a}+4 \vec{b} a n d \vec{b}-\vec{a}$ are also mutually perpendicular, then the cosine of the angel between $a a n d b$ is a. $\frac{19}{5 \sqrt{43}}$ b. $\frac{19}{3 \sqrt{43}}$ c. $\frac{19}{2 \sqrt{45}}$ d. $\frac{19}{6 \sqrt{43}}$

- Watch Video Solution

395. If vectors $\vec{a} a n d \vec{b}$ are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the
perpendicular to a is $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$ b. $\frac{\vec{a} \vec{b}}{|\vec{b}|^{2}}$ c. $\vec{b}-\frac{\vec{b} \vec{a}}{|\vec{a}|^{2}}$ d. $\frac{\vec{a} \times(\vec{b} \times \vec{a})}{|\vec{b}|^{2}}$

- Watch Video Solution

396. The value of x for which the angle between $\vec{a}=2 x^{2} \hat{i}+4 x \hat{j}+\hat{k}$ and $\vec{b}=7 \hat{i}-2 \hat{j}+\hat{k}$ is obtuse and the angle between b and the z -axis acute and less that $\pi / 6$ is ${ }^{`} \mathrm{a} 1 / / 20 r \mathrm{x}<0{ }^{`} \mathrm{~d}$. none of these

- Watch Video Solution

397. Let $\vec{a} \cdot \vec{b}=0$, where $\vec{a} a n d \vec{b}$ are unit vectors and the unit vector \vec{c} is inclined at an angle θ to both $\vec{a} a n d \vec{b}$ If $\vec{c}=m \vec{a}+n \vec{b}+p(\vec{a} \times \vec{b}),(m, n, p \in R)$, then a.- $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$ b. $\frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}$
c. $0 \leq \theta \leq \frac{\pi}{4}$ d. $0 \leq \theta \leq \frac{3 \pi}{4}$

- Watch Video Solution

$3 \vec{a}+\vec{b}$ and $\vec{a}-4 \vec{b}$, where $|\vec{a}|=6$ and $|\vec{b}|=8$, and $\vec{a} a n d \vec{b}$ are anti-parallel. Then the length of the longer diagonal is 40 b .64 c .32 d .48

- Watch Video Solution

399. Let the position vectors of the points PandQ be $4 \hat{i}+\hat{j}+\lambda \hat{k}$ and $2 \hat{i}-\hat{j}+\lambda \hat{k}$, respectively. Vector $\hat{i}-\hat{j}+6 \hat{k}$ is perpendicular to the plane containing the origin and the points PandQ. Then λ equals $1 / 2$
b. 1/2 c. 1 d . none of these

Watch Video Solution

400. aandc are unit vectors and $|b|=4$. The angel between aandc is $\cos ^{-1}(1 / 4) a n d b-2 c=\lambda a$ The value of λ is $3,-4 \mathrm{~b} .1 / 4,3 / 4 \mathrm{c} .-3,4 \mathrm{~d}$. -1/4, 3/4
401. If $\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is non-zero vector and
$|(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b})+(\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a})|=0, \quad$ then a.
$|\vec{a}|=|\vec{b}|=|\vec{c}|$ b. $|\vec{a}|+|\vec{b}|+|\vec{c}|=|d|$ c. \vec{a}, \vec{b}, and \vec{c} are coplanar d. none of these

- Watch Video Solution

402. Let \vec{a}, \vec{b}, and \vec{c} be three non-coplanar vectors and \vec{d} be a non-zero vector, which is perpendicular to $(\vec{a}+\vec{b}+\vec{c})$ Now

$$
\vec{d}=(\vec{a} \times \vec{b}) \sin x+(\vec{b} \times \vec{c}) \cos y+2(\vec{c} \times \vec{a}) \text { Then } \quad \text { a. } \frac{\vec{a}+\vec{b}}{[\vec{a} \vec{b} \vec{c}]}=2
$$

b.
$\vec{a}+\vec{b}$
$=-2 \mathrm{c}$. minimum value of $x^{2}+y^{2}$ is $\pi^{2} / 4 \mathrm{~d}$. minimum value of $[\vec{a} \vec{b} \vec{c}$]
$x^{2}+y^{2}$ is $5 \pi^{2} / 4$

- Watch Video Solution

403. If $\vec{a}+2 \vec{b}+3 \vec{c}=0$, then $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=2(\vec{a} \times \vec{b})$ b. $6(\vec{b} \times \vec{c})$
c. $3(\vec{c} \times \vec{a})$ d. $\overrightarrow{0}$

- Watch Video Solution

404. $\vec{a} a n d \vec{b}$ are two non-collinear unit vector, and $\vec{u}=\vec{a}-(\vec{a} \vec{b}) \vec{b}$ and $\vec{v}=\vec{a} \times \vec{b}$ Then $|\vec{v}|$ is $|\vec{u}|$ b. $|\vec{u}|+|\vec{u} \vec{b}|$ c. $|\vec{u}|+|\vec{u} \vec{a}|$
none of these

- Watch Video Solution

405. The angles of triangle, two of whose sides are represented by
vectors $\sqrt{3}(\hat{a} \times \vec{b}$ and $\hat{b}-(\hat{a} \hat{b}) \hat{a}$, where $\vec{b})$ is a non zero vector and \hat{a} is unit vector in the direction of \vec{a}, are $\tan ^{-1}(\sqrt{3}) b \cdot \tan ^{-1}(1 / \sqrt{3}) c \cdot \cot ^{-1}(0) d$. $\tan ^{-1}(1)$
406. \vec{a}, \vec{b}, and \vec{c} are unimodular and coplanar. A unit vector \vec{d} is perpendicular to then. If $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\frac{1}{6} \hat{i}-\frac{1}{3} \hat{j}+\frac{1}{3} \hat{k}$, and the angel between \vec{a} and \vec{b} is 30^{0}, then \vec{c} is a. $(\hat{i}-2 \hat{j}+2 \hat{k}) / 3$ b. $(-\hat{i}+2 \hat{j}-2 \hat{k}) / 3$ c. $(2 \hat{i}+2 \hat{j}-\hat{k}) / 3$ d. $(-2 \hat{i}-2 \hat{j}+\hat{k}) / 3$

- Watch Video Solution

407. Vectors perpendicular to $\hat{i}-\hat{j}-\hat{k}$ and in the plane of $\hat{i}+\hat{j}+\hat{k}$ and $-\hat{i}+\hat{j}+\vec{k}$ are $\hat{i}+\hat{k}$ b. $2 \hat{i}+\hat{j}+\hat{k}$ c. $3 \hat{i}+2 \hat{j}+\hat{k}$ d. $-4 \hat{i}-2 \hat{j}-2 \hat{k}$

- Watch Video Solution

408. If side $\vec{A} B$ of an equilateral trangle $A B C$ lying in the $x-y$ plane $3 \hat{i}$, then side $\vec{C} B$ can be $-\frac{3}{2}(\hat{i}-\sqrt{3} \hat{j})$ b. $-\frac{3}{2}(\hat{i}-\sqrt{3} \hat{j})$ c. $-\frac{3}{2}(\hat{i}+\sqrt{3} \hat{j})$ $\frac{3}{2}(\hat{i}+\sqrt{3} \hat{j})$
409. 36. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b}) \cdot \vec{c} \times \vec{d}=1$ and $\vec{a} . \vec{c}=\frac{1}{2}$ then a) \vec{a}, \vec{b} and \vec{c} are non-coplanar b) $\vec{b}, \vec{c}, \vec{d}$ are non -coplanar c) \vec{b}, \vec{d} are non parallel d) \vec{a}, \vec{d} are parallel and \vec{b}, \vec{c} are parallel

- Watch Video Solution

410. Let two non-collinear unit vector \hat{a} a $\mathrm{n} \mathrm{d} \hat{b}$ form an acute angle. A point P moves so that at any time t, the position vector $O P$ (where O is the origin) is given by âcost $+\hat{b} \sin t W h e n P$ is farthest from origin O, let M be the length of OPandu be the unit vector along $O P$ Then (a)
$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|} \operatorname{and} M=(1+\hat{a} \hat{b})^{1 / 2}$
(b) $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=\left(1+\hat{a}^{\wedge}\right)^{1 / 2}$
$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|} \operatorname{and} M=(1+2 \hat{a} \hat{b})^{1 / 2}$ (d) $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ andM $=(1+2 \hat{a} \hat{b})^{1 / 2}$

411. Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-\hat{k}$ A vector in the plane of \vec{a} and \vec{b} whose projection of c is $1 / \sqrt{3}$ is a. $4 \hat{i}-\hat{j}+4 \hat{k}$ b. $3 \hat{i}+\hat{j}+3 \hat{k}$ c. $2 \hat{i}+\hat{j}+2 \hat{k}$ d. $4 \hat{i}+\hat{j}-4 \hat{k}$

- Watch Video Solution

412. If \vec{a}, \vec{b} and \vec{c} are three non-zero, non coplanar vector $\vec{b}=\vec{b}-\frac{\vec{b} \vec{a}}{|\vec{a}|^{2}} \vec{a}$,
$\vec{c}_{1}=\vec{c}-\frac{\vec{\cdot} \vec{a}}{|\vec{a}|^{2}} \vec{a}+\frac{\vec{b} \vec{c}}{|\vec{c}|^{2}} \vec{b}_{1} \quad, \quad, c_{2}=\vec{c}-\frac{\vec{\cdot} \vec{a}}{|\vec{a}|^{2}} \vec{a}-\frac{\vec{b} \vec{c}}{\left|\vec{b}_{1}\right|^{2}}$
$b_{1}, \vec{c}_{3}=\vec{c}-\frac{\vec{\cdot} \vec{a}}{|\vec{c}|^{2}} \vec{a}+\frac{\vec{b} \vec{c}}{|\vec{c}|^{2}} \vec{b}_{1}, \vec{c}_{4}=\vec{c}-\frac{\vec{a} \vec{a}}{|\vec{c}|^{2}} \vec{a}=\frac{\vec{b} \vec{c}}{|\vec{b}|^{2}} \vec{b}_{1}$ then the set of orthogonal vectors is $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{3}\right)$ b. $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{2}\right)$ c. $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{1}\right)$ d. $\left(\vec{a}, \vec{b}_{2}, \vec{c}_{2}\right)$

- Watch Video Solution

413. The unit vector which is orthogonal to the vector $5 \hat{j}+2 \hat{j}+6 \hat{k}$ and is coplanar with vectors $2 \hat{i}+\hat{j}+\hat{k}$ andi $\hat{i} \hat{j}+\hat{k}$ is $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$ b. $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{13}}$ c. $\frac{3 \hat{i}-\hat{k}}{\sqrt{10}}$ d. $\frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}$

- Watch Video Solution

414. If $\vec{a} a n d \vec{b}$ are unequal unit vectors such that $(\vec{a}-\vec{b}) \times[(\vec{b}+\vec{a}) \times(2 \vec{a}+\vec{b})]=\vec{a}+\vec{b}$, then angle θ between $\vec{a} a n d \vec{b}$ is 0 b. $\pi / 2$ c. $\pi / 4$ d. π

- Watch Video Solution

415. If $\vec{a}, \vec{b}, \vec{c}$ are 3 unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}}{2}$ then $(\vec{b}$ and \vec{c} being non parallel). (a)angle between $\vec{a} \& \vec{b}$ is $\frac{\pi}{3}$ (b)angle between \vec{a} and \vec{c} is $\frac{\pi}{3}$ (c)angle between \vec{a} and \vec{b} is $\frac{\pi}{2}$ (d)angle between \vec{a} and \vec{c} is $\frac{\pi}{2}$
416. If in triangle $A B C, \vec{A} B=\frac{\vec{u}}{|\vec{u}|}-\frac{\vec{v}}{|\vec{v}|} \operatorname{and} \vec{A} C=\frac{2 \vec{u}}{|\vec{u}|}$, where $|\vec{u}| \neq|\vec{v}|$, then $1+\cos 2 A+\cos 2 B+\cos 2 C=0 b \cdot \sin A=\cos C$ c. projection of $A C$ on $B C$ is equal to $B C$ d. projection of $A B$ on $B C$ is equal to $A B$

- Watch Video Solution

417. A vector \vec{d} is equally inclined to three vectors $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=3 \hat{j}-2 \hat{k}$ Let \vec{x}, \vec{y}, and \vec{z} be thre vectors in the plane of $\vec{a}, \vec{b} ; \vec{b}, \vec{c} ; \vec{c}, \vec{a}$, respectively. Then $\vec{x} \vec{d}=-1 \mathrm{~b} . \vec{y} \vec{d}=1 \mathrm{c} . \vec{z} \vec{d}=0 \mathrm{~d}$.
$\vec{r} \vec{d}=0$, where $\vec{r}=\lambda \vec{x}+\mu \vec{y}+\delta \vec{z}$

- Watch Video Solution

418. If $a \times(b \times c)=(a \times b) \times c$, then $(\vec{c} \times \vec{a}) \times \vec{b}=\overrightarrow{0} b . \vec{c} \times(\vec{a} \times \vec{b})=\overrightarrow{0}$ c. $\vec{b} \times(\vec{c} \times \vec{a}) \overrightarrow{0}$ d. $(\vec{c} \times \vec{a}) \times \vec{b}=\vec{b} \times(\vec{c} \times \vec{a})=\overrightarrow{0}$

(D) Watch Video Solution

419. If \hat{a}, \hat{b}, and \hat{c} are three unit vectors inclined to each other at angle θ, then the minimum value of θ is $\frac{\pi}{3}$ b. $\frac{\pi}{4}$ c. $\frac{2 \pi}{3}$ d. $\frac{5 \pi}{6}$

- Watch Video Solution

420. Let the pairs a, bandc, d each determine a plane. Then the planes are parallel if $\quad(\vec{a} \times \vec{c}) \times(\vec{b} \times \vec{d})=\overrightarrow{0} \quad$ b. $\quad(\vec{a} \times \vec{c}) \vec{b} \times \vec{d}=\overrightarrow{0}$ C.

$$
(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0} \text { d. }(\vec{a} \times \vec{b}) \vec{c} \times \vec{d}=\overrightarrow{0}
$$

- Watch Video Solution

421. $P(\vec{p})$ and $Q(\vec{q})$ are the position vectors of two fixed points and $R(\vec{r})$ is the position vectorvariable point. If R moves such that $(\vec{r}-\vec{p}) \times(\vec{r}-\vec{q})=0$ then the locus of R is
422. Two adjacent sides of a parallelogram $A B C D$ are $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. Then the value of $|A C \times B D|$ is $20 \sqrt{5}$ b. $22 \sqrt{5}$ c. $24 \sqrt{5}$ d. $26 \sqrt{5}$

- Watch Video Solution

423. If \hat{a}, \hat{b}, and \hat{c} are three unit vectors, such that $\hat{a}+\hat{b}+\hat{c}$ is also a unit vector and θ_{1}, θ_{2} andth η_{3} are angles between the vectors $\hat{a}, \hat{b} ; \hat{b}, \hat{c} a n d \hat{c}, \hat{a}$ respectively, then among θ_{1}, θ_{2}, andth η_{3} a. all are acute angles b . all are right angles c. at least one is obtuse angle d. none of these

- Watch Video Solution

424. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} \vec{b}=0=\vec{a} \vec{c}$ and the angle between \vec{b} and \vec{c} is $\pi / 3$, then the value of $|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|$ is $1 / 2 \mathrm{~b} .1 \mathrm{c} .2 \mathrm{~d}$. none of these
425. Let $\vec{a}=\hat{i}+\hat{j} ; \vec{b}=2 \hat{i}-\hat{k}$ Then vector \vec{r} satisfying $\vec{r} \times \vec{a}=\vec{b} \times \vec{a} a n d \vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ is $\hat{i}-\hat{j}+\hat{k} \mathrm{~b} .3 \hat{i}-\hat{j}+\hat{k} \mathrm{c} .3 \hat{i}+\hat{j}-\hat{k} \mathrm{~d} . \hat{i}-\hat{j}-\hat{k}$

- Watch Video Solution

426. If $\vec{a} a n d \vec{b}$ are two vectors, such that $\vec{a} \vec{b}<0$ and $|\vec{a} \vec{b}|=|\vec{a} \times \vec{b}|$, then the angle between vectors $\vec{a} a n d \vec{b}$ is π b. $7 \pi / 4$ c. $\pi / 4 \mathrm{~d} .3 \pi / 4$

- Watch Video Solution

427. \vec{a}, \vec{b}, and \vec{c} are three vectors of equal magnitude. The angel between each pair of vectors is $\pi / 3$ such that $|\vec{a}+\vec{b}+\vec{c}|=6$. Then $|\vec{a}|$ is equal to 2b. -1 c. 1 d. $\sqrt{6} / 3$
428. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is a. $\vec{a}+\vec{b}+\vec{c} \quad \mathrm{~b}$.

$$
\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}+\frac{\vec{c}}{|\vec{c}|} \text { c. } \frac{\vec{a}}{|\vec{a}|^{2}}+\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{c}}{|\vec{c}|^{2}} \text { d. }|\vec{a}| \vec{a}-|\vec{b}| \vec{b}+|\vec{c}| \vec{c}
$$

- Watch Video Solution

429. Let $\vec{a} a n d \vec{b}$ be two non-collinear unit vector. If
$\vec{u}=\vec{a}-(\vec{a} \vec{b}) \vec{b}$ and $\vec{v}=\vec{a} \times \vec{b}$, then $|\vec{v}|$ is $|\vec{u}|$ b. $|\vec{u}|+|\vec{u} \vec{a}|$ c. $|\vec{u}|+|\vec{u} \vec{b}|$ d.
$|\vec{u}|+\hat{u}|\vec{a}+\vec{b}|$

- Watch Video Solution

430. The vertex A triangle $A B C$ is on the line $\vec{r}=\hat{i}+\hat{j}+\lambda \hat{k}$ and the vertices BandC have respective position vectors $\hat{i} a n d \hat{j}$ Let Delta be the area of the triangle and Delta $[3 / 2, \sqrt{33} / 2]$. Then the range of values of λ
corresponding to A is $a .[-8,4] \cup[4,8]$
b. $[-4,4]$
c. $[-2,2]$
d. $[-4,-2] \cup[2,4]$

- Watch Video Solution

431. If a is real constant $A, B a n d C$ are variable angles and $\sqrt{a^{2}-4} \tan A+a \tan B+\sqrt{a^{2}+4} \tan c=6 a$, then the least vale of $\tan ^{2} A+\tan ^{2} b+\tan ^{2}$ Cis 6 b. 10 c. 12 d. 3

Watch Video Solution

432. The position vectors of the vertices A, Band C of a triangle are three unit vectors \vec{a}, \vec{b}, and \vec{c}, respectively. A vector \vec{d} is such that $\vec{d} \vec{a}=\vec{d} \vec{b}=\vec{d} \vec{c}$ and $\vec{d}=\lambda(\vec{b}+\vec{c})$ Then triangle $A B C$ is a. acute angled b. obtuse angled c. right angled d. none of these

- Watch Video Solution

433. Given that $\vec{a}, \vec{b}, \vec{p}, \vec{q}$ are four vectors such that $\vec{a}+\vec{b}=\mu \vec{p}, \vec{b} \cdot \vec{q}=0$ and $|\vec{b}|^{2}=1$, where $\mu \quad$ is a scalar. Then $\left|\left(\begin{array}{c}\vec{a} \vec{q}\end{array}\right) \vec{p}-(\vec{p} \vec{q}) \vec{a}\right|$ is equal to (a) $2|\vec{p} \cdot \vec{q}|$ (b) (1/2) $|\vec{p} \cdot \vec{q}|$ (c) $|\vec{p} \times \vec{q}|$ (d) $|\vec{p} \cdot \vec{q}|$

- Watch Video Solution

434. In fig. $A B, D E a n d G F$ are parallel to each other and $A D, B G a n d E F$ are parallel to each other. If $C D: C E=C G: C B=2: 1$, then the value of area $(A E G)$: area (ABD) is equal to $7 / 2$ b. 3 c. 4 d. $9 / 2$

Watch Video Solution

435. In a quadrilateral $A B C D, \vec{A} C$ is the bisector of $\vec{A} B a n d \vec{A} D$, angle between $\vec{A} B$ and $\vec{A} D$ is $2 \pi / 3,15|\vec{A} C|=3|\vec{A} B|=5|\vec{A} D|$ Then the angle

between $\vec{B} A$
$\cos ^{-1}(2 \sqrt{7})$

- Watch Video Solution

436. Position vector \hat{k} is rotated about the origin by angle 135° in such a way that the plane made by it bisects the angle between $\hat{i} a n d \hat{j}$ Then its new position is a. $\pm \frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$ b. $\pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$ c. $\frac{\hat{i}}{\sqrt{2}}-\frac{\hat{k}}{\sqrt{2}}$ d. none of these

- Watch Video Solution

437. A non-zero vector \vec{a} is such that its projections along vectors
$\frac{\hat{i}+\hat{j}}{\sqrt{2}}, \frac{-\hat{i}+\hat{j}}{\sqrt{2}}$ and \hat{k} are equal, then unit vector along \vec{a} is $\frac{\sqrt{2} \hat{j}-\hat{k}}{\sqrt{3}}$ b. $\frac{\hat{j}-\sqrt{2} \hat{k}}{\sqrt{3}}$
c. $\frac{\sqrt{2}}{\sqrt{3}} \hat{j}+\frac{\hat{k}}{\sqrt{3}}$ d. $\frac{\hat{j}-\hat{k}}{\sqrt{2}}$

- Watch Video Solution

438. Let $\vec{a}=2 i+j+k, \vec{b}=i+2 j-k$ and a unit vector \vec{c} be coplanar. If \vec{c} is perpendicular to \vec{a}, then \vec{c} is $\frac{1}{\sqrt{2}}(-j+k)$ b. $\frac{1}{\sqrt{3}}(-i-j-k)$ c. $\frac{1}{\sqrt{5}}(-k-2 j)$ d. $\frac{1}{\sqrt{3}}(i-j-k)$

- Watch Video Solution

439. Let $\vec{a}=2 i+j-2 k a n d \vec{b}=i+j$ If \vec{c} is a vector such that $\vec{a} \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2}$ between $\vec{a} \times \vec{b}$ and $\vec{c} i s 30^{0}$, then $|(\vec{a} \times \vec{b}) \times \vec{c}|$ । equal to $2 / 3$ b. $3 / 2$ c. 2 d. 3

- Watch Video Solution

440. Let $A B C D$ be a tetrahedron such that the edges $A B, A C a n d A D$ are mutually perpendicular. Let the area of triangles $A B C, A C D a n d A D B$ be 3 , 4 and 5 sq. units, respectively. Then the area of triangle $B C D$ is $5 \sqrt{2}$ b. 5 c. $\frac{\sqrt{5}}{2}$ d. $\frac{5}{2}$
441. Vector \vec{a} in the plane of $\vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=\hat{i}-\hat{j}+\hat{k}$ is such that it equally inclined to \vec{b} and \vec{d} where $\vec{d}=\hat{j}+2 \hat{\hat{k}}$ The value of \vec{a} is a. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{2}}$ b. $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$ c. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$ d. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$

- Watch Video Solution

442. If \vec{a}, \vec{b} and \vec{c} are non-coplanar unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b} is a. $3 \pi / 4 \mathrm{~b} . \pi / 4 \mathrm{c}$. $\pi / 2$ d. π

- Watch Video Solution

443. Let \vec{u}, \vec{v} and \vec{w} be vectors such that $\vec{u}+\vec{v}+\vec{w}=0$. If $|\vec{u}|=3,|\vec{v}|=4$ and $|\vec{w}|=5$, then $\vec{u} \vec{v}+\vec{v} \vec{w}+\vec{w} \vec{u}$ is 47 b. -25 c. 0 d. 25

- Watch Video Solution

444. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar vectors, then
$(\vec{a}+\vec{b}+\vec{c})(\vec{a}+\vec{b}) \times(\vec{a}+\vec{c})$ equals 0
b. $[\vec{a} \vec{b} \vec{c}]$
c. $2[\vec{a} \vec{b} \vec{c}]$ d. $-[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

445. \vec{p}, \vec{q}, and \vec{r} are three mutually perpendicular vectors of the same magnitude. If vector \vec{x} satisfies the equation $\vec{p} \times((\vec{x}-\vec{q}) \times \vec{p})+\vec{q} \times((\vec{x}-\vec{r}) \times \vec{q})+\vec{r} \times((\vec{x}-\vec{p}) \times \vec{r})=0$, then \vec{x} is
given by a. $\frac{1}{2}(\vec{p}+\vec{q}-2 \vec{r})$
b. $\frac{1}{2}(\vec{p}+\vec{q}+\vec{r})$
C. $\frac{1}{3}(\vec{p}+\vec{q}+\vec{r})$
d. $\frac{1}{3}(2 \vec{p}+\vec{q}-\vec{r})$

- Watch Video Solution

446. If vectors b, candd are not coplanar, then prove that vector $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})+(\vec{a} \times \vec{c}) \times(\overrightarrow{d x} \times \vec{b})+(\vec{a} \times \vec{d}) \times(\vec{b} \times \vec{c})$ is parallel to \vec{a}

- Watch Video Solution

447. The position vectors of the vertices A, B and C of a tetrahedron $A B C D$ are $\hat{i}+\hat{j}+\hat{k}, \hat{k}, \hat{i}$ and $\hat{3} i$,respectively. The altitude from vertex D to the opposite face $A B C$ meets the median line through Aof triangle $A B C$ at a point E. If the length of the side $A D$ is 4 and the volume of the tetrahedron is $2 / 2 / 3$, find the position vectors of the point E for all its possible positfons

- Watch Video Solution

448. Consider three vectors \vec{a}, \vec{b} and $\overrightarrow{\text { • }}$ Statement 1
$\vec{a} \times \vec{b}=((\hat{i} \times \vec{a}) \vec{b}) \hat{i}+((\hat{j} \times \vec{a}) \vec{b}) \hat{j}+((\hat{k} \times \vec{a}) \vec{b}) \hat{k} \quad$ Statement $\quad 2:$
$\vec{c}=(\hat{i} \vec{c}) \hat{i}+(\hat{j} \vec{c}) \hat{j}+(\hat{k} \vec{c}) \hat{k}$

(Watch Video Solution

449. If \vec{A}, \vec{B} and \vec{C} are vectors such that $|\vec{B}|-|\vec{C}|$. Prove that $[(\vec{A}+\vec{B}) \times(\vec{A}+\vec{C})] \times(\vec{B}+\vec{C}) \cdot(\vec{B}+\vec{C})=0$

- Watch Video Solution

450.

A parallelogram
is
constructed
on
$3 \vec{a}+\vec{b}$ and $\vec{a}-4 \vec{b}$, where $|\vec{a}|=6$ and $|\vec{b}|=8$, and $\vec{a} a n d \vec{b}$ are anti-parallel. Then the length of the longer diagonal is 40 b .64 c .32 d .48
451. Statement 1: Vector $\vec{c}=5 \hat{i}+7 \hat{j}+2 \hat{k}$ is along the bisector of angel between $\vec{a}=\hat{i}+2 \hat{j}+2 \hat{k} a n d \vec{b}=-8 \hat{i}+\hat{j}-4 \hat{k}$ Statement $2: \quad \vec{c}$ is equally inclined to $\vec{a} a n d \vec{b}$

- Watch Video Solution

452. Statement 1: A component of vector $\vec{b}=4 \hat{i}+2 \hat{j}+3 \hat{k}$ in the direction perpendicular to the direction of vector $\vec{a}=\hat{i}+\hat{j}+\hat{k} i s \hat{i}-\hat{j}$ Statement 2: A component of vector in the direction of $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ is $2 \hat{i}+2 \hat{j}+2 \hat{k}$

- Watch Video Solution

453. Statement 1 : Points $A(1,0), B(2,3), C(5,3)$, andD(6, 0$)$ are concyclic.

Statement 2 : Points A, B, C, andD form an isosceles trapezium or $A B a n d C D$ meet at E Then $E A E B=E C E D$

- Watch Video Solution

454. Let \vec{r} be a non-zero vector satisfying $\vec{r} \vec{a}=\vec{r} \vec{b}=\vec{r} \vec{c}=0$ for given non-zero vectors \vec{a}, \vec{b} and $\overrightarrow{:}$ Statement $1:[\vec{a}-\vec{b} \vec{b}-\vec{c} \vec{c}-\vec{a}]=0$ Statement 2: $[\vec{a} \vec{b} \vec{c}]=0$

- Watch Video Solution

455. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} ; \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} ; \vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both
$\vec{a} \& \vec{b}$. If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|^{2}=$

- Watch Video Solution

456. Statement 1: If $\vec{A}=2 \hat{i}+3 \hat{j}+6 \hat{k}, \vec{B}=\hat{i}+\hat{j}-2 \hat{k}$ and $\vec{C}=\hat{i}+2 \hat{j}+\hat{k}$, then

$$
|\vec{A} \times(\vec{A} \times(\vec{A} \times \vec{B})) \vec{C}|=243
$$

$|\vec{A} \times(\vec{A} \times(\vec{A} \times \vec{B})) \vec{C}|=|\vec{A}|^{2}|[\vec{A} \vec{B} \vec{C}]|$

- Watch Video Solution

457. Statement $1: \vec{a}, \vec{b}$, and \vec{c} are three mutually perpendicular unit vectors and \vec{d} is a vector such that $\vec{a}, \vec{b}, \vec{c} a n d \vec{d}$ are non-coplanar. If $[\vec{d} \vec{b} \vec{c}]=[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{a}]=1$, thend $=\vec{a}+\vec{b}+\vec{c} \quad$ Statement $\quad 2:$ $[\vec{d} \vec{b} \vec{c}]=[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{a}] \Rightarrow \vec{d}$ is equally inclined to $\vec{a}, \vec{b}, \vec{c}$.

- Watch Video Solution

458. Let vectors $\vec{a}, \vec{b}, \vec{c}$, and \vec{d} be such that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=0$. Let P_{1} and P_{2} be planes determined by the pair of vectors \vec{a}, \vec{b}, and \vec{c}, \vec{d}, respectively. Then the angle between $P_{1} a n d P_{2}$ is a. $0 \mathrm{~b} . \pi / 4 \mathrm{c} . \pi / 3 \mathrm{~d} . \pi / 2$

- Watch Video Solution

459. The number of vectors of unit length perpendicular to vectors $\vec{a}=(1,1,0) a n d \vec{b}=(0,1,1)$ is a. one b. two c. three d. infinite

- Watch Video Solution

460. For any two \vec{a} and $\vec{b},(\vec{a} \times \hat{i}) \vec{b} \times \hat{i}+(\vec{a} \times \hat{j}) \vec{b} \times \hat{j}+(\vec{a} \times \hat{k}) \vec{b} \times \hat{k}$ is always equal to $\vec{a} \vec{b}$ b. $2 \vec{a} \vec{b}$ c. zero d. none of these

- Watch Video Solution

461. Let $f(t)=[t] \hat{i}+(t-[t]) \hat{j}+[t+1] \hat{k}$, where[.] denotes the greatest integer function. Then the vectors $f\left(\frac{5}{4}\right)$ and $f(t), 0<t<i$ are(a) parallel to each other(b) perpendicular(c) inclined at $\cos ^{-1} 2\left(\sqrt{7\left(1-t^{2}\right)}\right)$ (d) inclined at $\cos ^{-1}\left(\frac{8+t}{\sqrt{1+t^{2}}}\right)$;
462. If \vec{a} is parallel to $\vec{b} \times \vec{c}$, then $(\vec{a} \times \vec{b}) \vec{a} \times \vec{c}$ is equal to $|\vec{a}|^{2}(\vec{b} \vec{c})$ b.
$|\vec{b}|^{2}\left(\begin{array}{c}\vec{a} \vec{c}\end{array}\right)$ c. $|\vec{c}|^{2}(\vec{a} \vec{b})$ d. none of these

- Watch Video Solution

463. The three vectors $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}$ taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume:

- Watch Video Solution

464. If $\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is non-zero vector and
$|(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b})+(\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a})|=0$, then
a.
$|\vec{a}|=|\vec{b}|=|\vec{c}|$ b. $|\vec{a}|+|\vec{b}|+|\vec{c}|=|d|$ c. \vec{a}, \vec{b}, and \vec{c} are coplanar d. none of these

- Watch Video Solution

465. If $|a|=2 a n d|b|=3$ and $a b=0$, then $(a \times(a \times(a \times(a \times b))))$ is equal to $48 \hat{b}$ b. $-48 \hat{b}$ c. $48 a ̂$ d. $-48 \hat{a}$

- Watch Video Solution

466. If the two diagonals of one its faces are $6 \hat{i}+6 \hat{k} a n d 4 \hat{j}+2 \hat{k}$ and of the edges not containing the given diagonals is $c=4 \hat{j}-8 \hat{k}$, then the volume of a parallelepiped is 60 b .80 c .100 d .120

- Watch Video Solution

467. The volume of a tetrahedron formed by the coterminous edges \vec{a}, \vec{b}, and \vec{c} is 3 . Then the volume of the parallelepiped formed by the
coterminous edges $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ is 6 b .18 c .36 d .9

- Watch Video Solution

468. If \vec{a}, \vec{b}, and \vec{c} are three mutually orthogonal unit vectors, then the triple product $[\vec{a}+\vec{b}+\vec{c} \vec{a}+\vec{b} \vec{b}+\vec{c}]$ equals: (a.) 0 (b.) 1 or -1 (c.) 1 (d.) 3

- Watch Video Solution

469. Vector \vec{c} is perpendicular to vectors $\vec{a}=(2,-3,1) \operatorname{and} \vec{b}=(1,-2,3)$ and satisfies the condition $\vec{\cdot}(\hat{i}+2 \hat{j}-7 \hat{k})=10$. Then vector \vec{c} is equal to a. $(7,5,1)$ b. $-7,-5,-1$ c. $1,1,-1$ d. none of these

- Watch Video Solution

470. Given $\vec{a}=x \hat{i}+y \hat{j}+2 \hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j} ; \vec{a} \perp \vec{b}, \vec{a} \vec{c}=4$. Then

$$
[\vec{a} \vec{b} \vec{c}]^{2}=|\vec{a}| \mathrm{b} .[\vec{a} \vec{b} \vec{c}]^{=}|\vec{a}| \mathrm{c} \cdot[\vec{a} \vec{b} \vec{c}]^{=} 0 \mathrm{~d} .[\vec{a} \vec{b} \vec{c}]=|\vec{a}|^{2}
$$

471. $\vec{a} a n d \vec{b}$ are two unit vectors that are mutually perpendicular. A unit vector that is equally inclined to \vec{a}, \vec{b} and $\vec{a} \times \vec{b}$ is a. $\frac{1}{\sqrt{2}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$ b. $\frac{1}{2}(\vec{a} \times \vec{b}+\vec{a}+\vec{b})$ c. $\frac{1}{\sqrt{3}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$ d. $\frac{1}{3}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$

- Watch Video Solution

472. If \vec{r} and \vec{s} are non-zero constant vectors and the scalar b is chosen such that $|\vec{r}+b \vec{s}|$ is minimum, then the value of $|b \vec{s}|^{2}+|\vec{r}+b \vec{s}|^{2}$ is equal to a.2 $|\vec{r}|^{2}$ b. $|\vec{r}|^{2} / 2$ c. $3|\vec{r}|^{2}$ d. $|r|^{2}$

- Watch Video Solution

473. The scalar $\vec{A}(\vec{B}+\vec{C}) \times(\vec{A}+\vec{B}+\vec{C})$ equals a. 0 b. $[\vec{A} \vec{B} \vec{C}]+[\vec{B} \vec{C} \vec{A}]$ c. $[\vec{A} \vec{B} \vec{C}]$ d. none of these
474. The volume of he parallelepiped whose sides are given by $\vec{O} A=2 i-2, j, \vec{O} B=i+j-k a n d \vec{O} C=3 i-k$ is a. $\frac{4}{13}$ b. 4 c. $\frac{2}{7}$ d. 2

- Watch Video Solution

475. For non-zero vectors \vec{a}, \vec{b}, and $\vec{c},|(\vec{a} \times \vec{b}) \vec{c}|=|\vec{a}||\vec{b}||\vec{c}|$ holds if and only if a. $\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0 \mathrm{~b} . \vec{b} \cdot \vec{c}=0, \vec{c} \cdot \vec{a}=0 \mathrm{c} . \vec{c} \cdot \vec{a}=0, \vec{a} \cdot \vec{b}=0 \mathrm{~d}$. $\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0, \vec{c} \cdot \vec{a}=0$

Watch Video Solution

476. For three vectors $\vec{u}, \vec{v} a n d \vec{w}$ which of the following expressions is not
equal to any of the remaining three ? a. $\vec{u} \vec{v} \times \vec{w} \mathrm{~b} .(\vec{v} \times \vec{w}) \vec{u} \mathrm{c} . \vec{v} \vec{u} \times \vec{w} \mathrm{~d}$.
$(\vec{u} \times \vec{v}) \vec{w}$
477. Let \vec{A} be a vector parallel to the line of intersection of planes P_{1} and P_{2} Plane P_{1} is parallel to vectors $2 \hat{j}+3 \hat{k}$ and $4 \hat{j}-3 k a n d P_{2}$ is parallel to $\hat{j}-\hat{k} a n d 3 \hat{i}+3 \hat{j}$ Then the angle betweenvector \vec{A} and a given vector $2 \hat{i}+\hat{j}-2 \hat{k}$ is a. $\pi / 2$ b. $\pi / 4$ c. $\pi / 6$ d. $3 \pi / 4$

- Watch Video Solution

478. If $\vec{a} \vec{b}=\beta$ and $\vec{a} \times \vec{b}=\vec{c}$, then \vec{b} is $(\beta \vec{a}-\vec{a} \times \vec{c})$
b. $\underline{(\beta \vec{a}+\vec{a} \times \vec{c})}$ $|\vec{a}|^{2} \quad|\vec{a}|^{2}$
$\frac{(\beta \vec{c}-\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$ d. $\frac{(\beta \vec{a}+\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$

- Watch Video Solution

479. \vec{b} and \vec{c} are unit vectors. Then for any arbitrary vector
$\vec{a},(((\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})) \times(\vec{b} \times \vec{c})) \vec{b}-\vec{c}$ is always equal to a. $|\vec{a}|$ b. $\frac{1}{2}|\vec{a}|$
c. $\frac{1}{3}|\vec{a}|$ d. none of these

Watch Video Solution

480. Let $\vec{a} a n d \vec{b}$ be mutually perpendicular unit vectors. Then for any
arbitrary $\quad \vec{r}, \quad$ a. $\quad \vec{r}=(\dot{r} \hat{a}) \hat{a}+(\vec{r} \hat{b}) \hat{b}+(\vec{r} \hat{a} \times \hat{b})(\hat{a} \times \hat{b})$
b.
$\vec{r}=(\dot{r} \hat{a})-(\dot{r} \hat{b}) \hat{b}-(\vec{r} \hat{a} \times \hat{b})(\hat{a} \times \hat{b})$
C.
$\vec{r}=(\stackrel{\rightharpoonup}{r} \dot{a}) \hat{a}-(\dot{r} \hat{b}) \hat{b}+(\vec{r} \hat{a} \times \hat{b})(\hat{a} \times \hat{b})$ none of these

- Watch Video Solution

481. Value of $[\vec{a} \times \vec{b} \vec{a} \times \vec{c} \vec{d}]$ is always equal to $(\vec{a} \vec{d})[\vec{a} \vec{b} \vec{c}]$ b.

$$
(\vec{a} \vec{c})[\vec{a} \vec{b} \vec{d}] \text { c. }(\vec{a} \vec{b})[\vec{a} \vec{b} \vec{d}] \text { d. none of these }
$$

482. Let $\vec{a} a n d \vec{b}$ be unit vectors that are perpendicular to each other. Then $[\vec{a}+(\vec{a} \times \vec{b}) \vec{b}+(\vec{a} \times \vec{b}) \vec{a} \times \vec{b}]$ will always be equal to 1 b. 0 c. -1 d. none of these

- Watch Video Solution

483. Let $\vec{r}, \vec{a}, \vec{b}$ and \vec{c} be four nonzero vectors such that $\vec{r} \vec{a}=0,|\vec{r} \times \vec{b}|=|\vec{r}||\vec{b}|$ and $|\vec{r} \times \vec{c}|=|\vec{r}||\vec{c}|$ Then [abc] is equal to $|a||b||c|$ b. $-|a||b||c| c .0$ d. none of these

- Watch Video Solution

484. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} a n d \vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three nonzero vectors such that \vec{c} is a unit vector perpendicular to both $\vec{a} a n d \vec{b}$ If the angle between $\vec{a} a n d \vec{b}$ is $\pi / 6$, then the value of
$\left|a_{1} b_{1} c_{1} a_{2} b_{2} c_{2} a_{3} b_{3} c_{3}\right|$ is a.0 b. 1 c. $\frac{1}{4}(a 12+a 22+a 32)(b 12+b 22+b 32)$ d. $\frac{3}{4}(a 12+a 22+a 32)(b 12+b 22+b 32)$

- Watch Video Solution

485. If $4 \vec{a}+5 \vec{b}+9 \vec{c}=0$, then $(\vec{a} \times \vec{b}) \times[(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})]$ is equal to a vector perpendicular to the plane of a, b, c b. a scalar quantity c. $\overrightarrow{0}$ d. none of these

- Watch Video Solution

486. If \vec{a}, \vec{b}, and \vec{c} are such that $[\vec{a} \vec{b} \vec{c}]=1, \vec{c}=\lambda \vec{a} \times \vec{b}$, angle, between $\vec{a} a n d \vec{b}$ is $\frac{2 \pi}{3},|\vec{a}|=\sqrt{2},|\vec{b}|=\sqrt{3}$ and $|\vec{c}|=\frac{1}{\sqrt{3}}$, then the angel between $\vec{a} a n d \vec{b}$ is $\frac{\pi}{6}$ b. $\frac{\pi}{4}$ c. $\frac{\pi}{3}$ d. $\frac{\pi}{2}$

- Watch Video Solution

487. A vector of magnitude $\sqrt{2}$ coplanar with the vector $\vec{a}=\hat{i}+\hat{j}+2 \hat{k} a n d \vec{b}=\hat{i}+2 \hat{j}+\hat{k}, \quad$ and perpendicular to the vector $\vec{c}=\hat{i}+\hat{j}+\hat{k}$, is a. $-\hat{j}+\hat{k}$ b. $\hat{i}-\hat{k}$ c. $\hat{i}-\hat{j}$ d. $\hat{i}-\hat{j}$

Watch Video Solution

488. Let P be a point interior to the acute triangle $A B C$ If $P A+P B+P C$ is a null vector, then w.r.t traingel $A B C$, point P is its a. centroid b . orthocentre c. incentre d. circumcentre

- Watch Video Solution

489. G is the centroid of triangle $A B C a n d A_{1}$ and B_{1} are the midpoints of sides $A B a n d A C$, respectively. If Delta $_{1}$ is the area of quadrilateral $G A_{1} A B_{1}$ and Delta is the area of triangle $A B C$, then Delta/ Delta ${ }_{1}$ is equal to a. $\frac{3}{2}$ b. 3 c. $\frac{1}{3}$ d. none of these
490. Points $\vec{a}, \vec{b}, \vec{c}$, and \vec{d} are coplanar and $(\sin \alpha) \vec{a}+(2 \sin 2 \beta) \vec{b}+(3 \sin 3 \gamma) \vec{c}-\vec{d}=0$. Then the least value of $\sin ^{2} \alpha+\sin ^{2} 2 \beta+\sin ^{2} 3$ yis a. $\frac{1}{14}$ b. 14 c. 6 d. $1 / \sqrt{6}$

Watch Video Solution

491. If $\vec{a} a n d \vec{b}$ are any two vectors of magnitudes 1 and 2 , respectively, and $(1-3 \vec{a} \vec{b})^{2}+|2 \vec{a}+\vec{b}+3(\vec{a} \times \vec{b})|^{2}=47$, then the angel between \vec{a} and \vec{b} is $\pi / 3 \mathrm{~b} \cdot \pi-\cos ^{-1}(1 / 4)$ c. $\frac{2 \pi}{3}$ d. $\cos ^{-1}(1 / 4)$

- Watch Video Solution

492. If $\vec{a} a n d \vec{b}$ are any two vectors of magnitudes 2 and 3 , respectively, such that $|2(\vec{a} \times \vec{b})|+|3(\vec{a} \vec{b})|=k$, then the maximum value of k is $\sqrt{13}$
b. $2 \sqrt{13}$ c. $6 \sqrt{13}$ d. $10 \sqrt{13}$

- Watch Video Solution

493. \vec{a}, \vec{b} and \vec{c} are unit vectors such that $|\vec{a}+\vec{b}+3 \vec{c}|=4$. Angle between \vec{a} and $\vec{b} i s \theta_{1}$, between \vec{b} and \vec{c} is θ_{2} and between $\vec{a} a n d \vec{c}$ varies $[\pi / 6,2 \pi / 3]$ Then the maximum of $\cos \theta_{1}+3 \cos \theta_{2}$ is 3 b. 4 c. $2 \sqrt{2}$ d. 6

- Watch Video Solution

494. If the vector product of a constant vector $\vec{O} A$ with a variable vector $\vec{O} B$ in a fixed plane $O A B$ be a constant vector, then the locus of B is a. a straight line perpendicular to $\vec{O} A \mathrm{~b}$. a circle with centre O and radius equal to $|\vec{O} A|$ c. a straight line parallel to $\vec{O} A$ d. none of these

- Watch Video Solution

495. Let \vec{u}, \vec{v} and \vec{w} be such that $|\vec{u}|=1,|\vec{v}|=2 a n d|\vec{w}|=3$. If the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} and vectors \vec{v} and \vec{w} are perpendicular to each other, then $|\vec{u}-\vec{v}+\vec{w}|$ equals 2 b. $\sqrt{7}$ c. $\sqrt{14} \mathrm{~d}$. 14

- Watch Video Solution

496. If the two adjacent sides of two rectangles are represented by vectors

$$
\vec{p}=5 \vec{a}-3 \vec{b} ; \vec{q}=-\vec{a}-2 \vec{b} \text { and } \vec{r}=-4 \vec{a}-\vec{b} ; \vec{s}=-\vec{a}+\vec{b},
$$

respectively, then the angel between the vector
$\vec{x}=\frac{1}{3}(\vec{p}+\vec{r}+\vec{s})$ and $\vec{y}=\frac{1}{5}(\vec{r}+\vec{s})$ is $\operatorname{adcos}^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$ b. $\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
c. $\pi-\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$ d. cannot be evaluate

- Watch Video Solution

497. Let P, Q, R and S be the points on the plane with position vectors $-2 i-j, 4 i, 3 i+3 j a n d-3 j+2 j$, respectively. The quadrilateral PQRS must be a Parallelogram, which is neither a rhombus nor a rectangle Square Rectangle, but not a square Rhombus, but not a square

- Watch Video Solution

498. $\vec{u}, \vec{v} a n d \vec{w}$ are three non-coplanar unit vecrtors anf $\alpha, \beta a n d \gamma$ are the angles between $\vec{u} a n d \vec{v}, \vec{v} a n d \vec{w}$, and $\vec{w} a n d \vec{u}$, respectively, and \vec{x}, \vec{y} and \vec{z} are unit vectors along the bisectors of the angles $\alpha, \beta a n d \gamma$, respectively. Prove that $[\vec{x} x \vec{y} \vec{y} \times \vec{z} \vec{z} \times \vec{x}]=\frac{1}{16}[\vec{u} \vec{v} \vec{w}]^{2} \frac{\sec ^{2} \alpha}{2} \frac{\sec ^{2} \beta}{2} \frac{\sec ^{2} \gamma}{2}$.

- Watch Video Solution

499. If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} ; \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}, . \vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ and $[3 \vec{a}+\vec{b} 3 \vec{b}+\vec{c} 3 \vec{c}+\vec{a}]=28[\vec{a} \vec{b} \vec{c}]$, then find the value of $\frac{\lambda}{4}$.
500. Find the absolute value of parameter t for which the area of the triangle whose vertices the $A(-1,1,2) ; B(1,2,3)$ and $C(t, 1,1)$ is minimum.

Watch Video Solution

501. The condition for equations $\vec{r} \times \vec{a}=\vec{b}$ and $\vec{r} \times \vec{c}=\vec{d}$ to be consistent is $\vec{b} \vec{c}=\vec{a} \vec{d} \mathrm{~b} \cdot \vec{a} \vec{b}=\vec{d} \mathrm{c} . \vec{b} \vec{c}+\vec{a} \vec{d}=0 \mathrm{~d} . \vec{a} \vec{b}+\vec{d}=0$

- Watch Video Solution

502. If aandb are nonzero non-collinear vectors, then $[\vec{a} \vec{b} \hat{i}] \hat{i}+[\vec{a} \vec{b} \hat{j}] \hat{j}+[\vec{a} \vec{b} \hat{k}] \hat{k}$ is equal to $\vec{a}+\vec{b}$ b. $\vec{a} \times \vec{b}$ c. $\vec{a}-\vec{b}$ d. $\vec{b} \times \vec{a}$

- Watch Video Solution

503. If $\vec{r} \vec{a}=\vec{r} \vec{b}=\vec{r} \vec{c}=\frac{1}{2}$ or some nonzero vector \vec{r}, then the area of the triangle whose vertices are $A(\vec{a}), B(\vec{b}) \operatorname{and} C(\vec{c}) i s(\vec{a}, \vec{b}, \vec{c}$ are noncoplanar) $|[\vec{a} \vec{b} \vec{c}]|$ b. $|\vec{r}|$ c. $|[\vec{a} \vec{b} \vec{c}] \vec{r}|$ d. none of these

- Watch Video Solution

504. A vector of magnitude 10 along the normal to the curve $3 x^{2}+8 x y+2 y^{2}-3=0$ at its point $P(1,0)$ can be (A) $6 \hat{i}+8 \hat{j}$ (B) $-8 \hat{i}+3 \hat{j}$
$6 \hat{i}-8 \hat{j}$ (D) $8 \hat{i}+6 \hat{j}$

- Watch Video Solution

505. If $a(\vec{\alpha} \times \vec{\beta})+b(\vec{\beta} \times \vec{\gamma})+c(\vec{\gamma} \times \vec{\alpha})=0$ and at least one of a, bandc is nonzero, then vectors $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$ are a. parallel b. coplanar c. mutually perpendicular d. none of these

- Watch Video Solution

506. If $(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})=\vec{b}$, where \vec{a}, \vec{b}, and \vec{c} are nonzero vectors, then \vec{a}, \vec{b}, and \vec{c} can be coplanar \vec{a}, \vec{b}, and \vec{c} must be coplanar \vec{a}, \vec{b}, and \vec{c} cannot be coplanar none of these

- Watch Video Solution

507. If $\vec{a}, \vec{b}, \vec{c}$ are any three noncoplanar vector, then the equaltion $[\vec{b} \times \vec{c} \vec{c} \times \vec{a} \vec{a} \times \vec{b}] x^{2}+[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}] x+1+[\vec{b}-\vec{c} \vec{c}-\vec{a} \vec{a}-\vec{b}]=0$ has roots a. real and distinct b. real c. equal d. imaginary

- Watch Video Solution

508. If $\vec{x}+\vec{c} \times \vec{y}=\vec{a}$ and $\vec{y}+\vec{c} \times \vec{x}=\vec{b}$, where \vec{c} is a nonzero vector, then
which of the following is not correct? $\vec{x}=\xrightarrow{\vec{b} \times \vec{c}+\vec{a}+(\vec{a}) \vec{c}}$ b.

$$
1+\vec{\cdot} \vec{c}
$$

$$
\vec{x}=\frac{\vec{c} \times \vec{b}+\vec{b}+(\vec{a}) \vec{c}}{1+\vec{c} \vec{c}} \text { c. } \vec{y}=\frac{\vec{a} \times \vec{c}+\vec{b}+(\vec{b}) \vec{c}}{1+\vec{c}} \text { d. none of these }
$$

509. If $\vec{a} a n d \vec{b}$ are two unit vectors incline at angle $\pi / 3$, then $\{\vec{a} \times(\vec{b}+\vec{a} \times \vec{b})\} \vec{b}$ is equal to $\frac{-3}{4}$ b. $\frac{1}{4}$ c. $\frac{3}{4}$ d. $\frac{1}{2}$

- Watch Video Solution

510. If \vec{a} and \vec{b} are orthogonal unit vectors, then for a vector \vec{r} noncoplanar with \vec{a} and \vec{b}, vector $r \times a$ is equal to a. $[\vec{r} \vec{a} \vec{b}] \vec{b}-(\vec{r} \cdot \vec{b})(\vec{b} \times \vec{a})$ b. $[\vec{r} \vec{a} \vec{b}](\vec{a}+\vec{b})$ c. $[\vec{r} \vec{a} \vec{b}] \vec{a}-(\vec{r} . \vec{a}) \vec{a} \times \vec{b} \mathrm{~d}$ none of these

- Watch Video Solution

511. Let V be the volume of the parallelepiped formed by the vectors
$\vec{a}=a_{i} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. If
a_{r}, b_{r} and $c r$, where $r=1,2,3$, are non-negative real numbers and 3
$\sum_{r=1}\left(a_{r}+b_{r}+c_{r}\right)=3 L$ show that $V \leq L^{3}$

- Watch Video Solution

512. Find 3-dimensional vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3} \quad$ satisfying $\vec{v}_{1} \cdot \vec{v}_{1}=4, \vec{v}_{1} \cdot \vec{v}_{2}=-2, \vec{v}_{1} \cdot \vec{v}_{3}=6, \vec{v}_{2} \cdot \vec{v}_{2}=2, \vec{v}_{2} \cdot \vec{v}_{3}=-5, \vec{v}_{3} \cdot \vec{v}_{3}=29$

(Watch Video Solution

513. Let $\vec{u} a n d \vec{v}$ be unit vectors such that $\vec{u} \times \vec{v}+\vec{u}=\vec{w}$ and $\vec{w} \times \vec{u}=\vec{v}$

Find the value of $[\vec{u} \vec{v} \vec{w}]$

- Watch Video Solution

514. For any two vectors \vec{u} and \vec{v} prove that $(\vec{u} \vec{v})^{2}+|\vec{u} \times \vec{v}|^{2}=|\vec{u}|^{2}|\vec{v}|^{2}$
515. If the incident ray on a surface is along the unit vector \vec{v}, the reflected ray is along the unit vector \vec{w} and the normal is along the unit vector \vec{a} outwards, express \vec{w} in terms of \vec{a} and \vec{v}

Watch Video Solution

516. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are distinct vectors such that
$\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ and $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$, prove that $(\vec{a}-\vec{d}) \vec{b}-\vec{c} \neq 0$,

- Watch Video Solution

517. Let $\vec{V}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{W}=\hat{i}+3 \hat{k}$ If \vec{U} is a unit vector, then the maximum value of the scalar triple product $[U V W]$ is $-1 \mathrm{~b} . \sqrt{10}+\sqrt{6} \mathrm{c}$.
$\sqrt{59}$ d. $\sqrt{60}$
518. If the vectors $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar and I,m,n are distinct real numbers, then $[(l \vec{a}+m \vec{b}+n \vec{c})(l \vec{b}+m \vec{c}+n \vec{a})(l \vec{c}+m \vec{a}+n \vec{b})]=0$, implies
(A) $|m+m n+n|=0$
(B) $l+m+n=0$ (C) $l^{2}+m^{2}+n^{2}=0$

Watch Video Solution

519. If \vec{a}, \vec{b} and \vec{c} are unit coplanar vectors, then the scalar triple product
$[2 \vec{a}-\vec{b} 2 \vec{b}-\vec{c} 2 \vec{c}-\vec{a}]$ is 0 b. 1 c. $-\sqrt{3}$ d. $\sqrt{3}$

- Watch Video Solution

