©゙" doubtnut

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

VECTORS TRIPLE PRODUCTS, RECIPROCAL SYSTEM OF VECTORS

Dpp 24

1. $\vec{a}=2 \vec{i}+\vec{j}+\vec{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$,
$\vec{a} \times \vec{b}=5 \hat{i}+2 \hat{j}-12 \hat{k}, \vec{a} \cdot \vec{b}=11$, then $b_{1}+b_{2}+b_{3}=$
A. 3
B. 5
C. 7
D. 9

- Watch Video Solution

2. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are unit vectors such that $\vec{a} \cdot \vec{b}=\frac{1}{2}, \vec{c} \cdot \vec{d}=\frac{1}{2}$ and angle between $\vec{a} \times \vec{b}$ and $\vec{c} \times \vec{d}$ is $\frac{\pi}{6}$ then the value of $\left.\left|\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{d}\end{array}\right] \vec{c}-[\vec{a} \vec{b} \vec{c}]\right| \vec{d} \right\rvert\,=$
A. $3 / 2$
B. $3 / 4$
C. $3 / 8$
D. 2

Answer: C

- Watch Video Solution

3. If $\vec{a}, \vec{b}, \vec{d}, \vec{d}$ be vectors such that
$[\vec{a} \vec{b} \vec{c}]=2$
and
$(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})+(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{d})+(\vec{c} \times \vec{a}) \times(\vec{b}$
Then the value of μ is
A. 0
B. 1
C. 3
D. 4

Answer: D

- Watch Video Solution

4. Let $(\hat{p} \times \vec{q}) \times(\hat{p} . \vec{q}) \vec{q}$
$=\left(x^{2}+y^{2}\right) \vec{q}+(14-4 x-6 y) \vec{p}$

Where \hat{p} and \hat{q} are two non-collinear vectors \vec{p} is unit vector and x, y are scalars. Then the value of $(x+y)$ is
A. 4
B. 5
C. 6
D. 7

Answer: B

- View Text Solution

5. If $\vec{a}, \vec{b}, \vec{c}$ are three on-coplanar vectors such that $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}, \vec{c} \times \vec{a}=\vec{b}$, then the value of $|\vec{a}|+|\vec{b}|+|\vec{c}|$ is
A. $1 / 3$
B. 1
C. 3
D. 6

Answer: C

- Watch Video Solution

6. Let \widehat{a} and \hat{b} be two unit vectors such that $\widehat{a} . \hat{b}=\frac{1}{3}$ and $\vec{a} \times \vec{b}=\vec{c}$, Also $\vec{F}=\alpha \widehat{a}+\beta \hat{b}+\lambda \hat{c}$,
where, α, β, λ are scalars. If $\alpha=k_{1}(\widehat{F} . \widehat{a})-k_{2}(\widehat{F} . \hat{b})$ then the value of $2\left(k_{1}+k_{2}\right)$ is
A. $2 \sqrt{3}$
B. $\sqrt{3}$
C. 3
D. 1

Answer: C

7. Let \vec{a} and \vec{c} be unit vectors inclined at $\pi / 3$ with each other. If $(\vec{a} \times(\vec{b} \times \vec{c})) \cdot(\vec{a} \times \vec{c})=5$, then $[\vec{a} \vec{b} \vec{c}]$ is equal to
A. -10
B. -5
C. -20
D. none of these

Answer: A

- Watch Video Solution

8. if $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}+2 \hat{k}$ and $|\vec{c}|=1$

Such that $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]$ has maximum value, then the value of $|(\vec{a} \times \vec{b}) \times \vec{c}|^{2}$ is
A. 0
B. 1
C. $\frac{4}{3}$
D. none of these

Answer: A

- Watch Video Solution

9. If the angles between the vectors \vec{a} and \vec{b}, \vec{b} and \vec{c}, \vec{c} an \vec{a} are respectively $\frac{\pi}{6}, \frac{\pi}{4}$ and $\frac{\pi}{3}$, then the angle the vector \vec{a} makes with the plane containing \vec{b} and \vec{c}, is
A. $\cos ^{-1} \sqrt{1-\sqrt{2 / 3}}$
B. $\cos ^{-1} \sqrt{2-\sqrt{3 / 2}}$
C. $\cos ^{-1} \sqrt{\sqrt{3 / 2}-1}$
D. $\cos ^{-1} \sqrt{\sqrt{2 / 3}}$

Answer: B

10. Let \vec{a}, \vec{b} and \vec{c} be three vectors having magnitudes 1,1 and 2 resectively. If $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=\overrightarrow{0}$ then the acute angel between \vec{a} and \vec{c} is
A. $\pi / 4$
B. $\pi / 6$
C. $\pi / 3$
D. $\pi / 2$

Answer: B

- Watch Video Solution

11. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors and $\vec{p}, \vec{q}, \vec{r}$ are reciprocal vectors, then $(l \vec{a}+m \vec{b}+n \vec{c}) \cdot(l \vec{p}+m \vec{q}+n \vec{r})$ is equal to
A. $l^{2}+m^{2}+n^{2}$
B. $|m+m n+n|$
C. 0
D. None of these

Answer: A

- Watch Video Solution

12. Let $\vec{a}=\hat{i}-3 \hat{j}+4 \hat{k}, \vec{B}=6 \hat{i}+4 \hat{j}-8 \hat{k}, \vec{C}=5 \hat{i}+2 \hat{j}+5 \hat{k}$ and a vector \vec{R} satisfies $\vec{R} \times \vec{B}=\vec{C} \times \vec{B}, \vec{R} \cdot \vec{A}=0$, then the value of $\frac{|\vec{B}|}{|\vec{R}-\vec{C}|}$ is
A. 1
B. 2
C. 3
D. 4

- Watch Video Solution

13. The volume of the parallelepiped whose coterminous edges are represented by the vectors $2 \vec{b} \times \vec{c}, 3 \vec{c} \times \vec{a}$ and $4 \vec{a} \times \vec{b}$ where $\vec{a}=(1+\sin \theta) \hat{i}+\cos \theta \hat{j}+\sin 2 \theta \hat{k}$
$\vec{b}=\sin \left(\theta+\frac{2 \pi}{3}\right) \hat{i}+\cos \left(\theta+\frac{2 \pi}{3}\right) \hat{j}+\sin \left(2 \theta+\frac{4 \pi}{3}\right) \hat{k}$,
$\vec{c}=\sin \left(\theta-\frac{2 \pi}{3}\right) \hat{i}+\cos \left(\theta-\frac{2 \pi}{3}\right) \hat{j}+\sin \left(2 \theta-\frac{4 \pi}{3}\right) \hat{k}$ is 18 cubic units, then the values of θ, in the interval $\left(0, \frac{\pi}{2}\right)$, is/are
A. $\frac{\pi}{9}$
B. $\frac{2 \pi}{9}$
C. $\frac{\pi}{3}$
D. $\frac{4 \pi}{9}$

Answer: A::B::D
14. Let \vec{a} and \vec{b} be two non- zero perpendicular vectors. A vector \vec{r} satisfying the equation $\vec{r} \times \vec{b}=\vec{a}$ can be
A. $\vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
B. $2 \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
c. $|\vec{a}||\vec{b}|-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
D. $|\vec{b}||\vec{b}|-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$

Answer: A::B::C::D

- Watch Video Solution

15. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors, then which of the following statement(s) is/are true?
A. $\vec{a} \times(\vec{b} \times \vec{c}), \vec{b} \times(\vec{c} \times \vec{a}),(\vec{c} \times \vec{a}), \vec{c} \times(\vec{a} \times \vec{b})$
form a right handed system
B. $\vec{c},(\vec{a} \times \vec{b}) \times \vec{c}, \vec{a} \times \vec{b}$ from a right handed system
C. $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}<0$ if $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$
D. $\frac{(\vec{a} \times \vec{b}) \cdot(\vec{b} \times \vec{c})}{(\vec{b} \times \vec{c}) \cdot(\vec{a} \times \vec{c})}=-1$ if $\vec{a}+\vec{b}+\vec{c}=0$

Answer: B::C::D

- Watch Video Solution

16. Vectors $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors and \vec{c} is equally inclined to both \vec{a} and \vec{b}. Let

$$
\begin{aligned}
& \vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a}) \\
& =\left(4+x^{2}\right) \vec{b}-\left(4 x \cos ^{2} \theta\right) \vec{a}
\end{aligned}
$$

then \vec{a} and \vec{b} are non-collinear vectors, $x>0$

$$
\text { A. } x=2
$$

B. $\theta=0^{\circ}$
C. $\theta=x$
D. $x=4$

Answer: A::B::C

- Watch Video Solution

17. If \vec{a} and \vec{b} are unequal unit vectors such that $(\vec{a}-\vec{b}) \times[(\vec{b}+\vec{a}) \times(2 \vec{a}+\vec{b})]=\vec{a}+\vec{b}$, then angle θ between \vec{a} and \vec{b} can be
A. $\frac{\pi}{2}$
B. 0
C. π
D. $\frac{\pi}{4}$
18. $\vec{a}=2 \hat{i}+\hat{j}+2 \hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and non zero vector \vec{c} are such that $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$.
Then vector \vec{c} may be given as
A. $4 \hat{i}+2 \hat{j}+4 \hat{k}$
B. $4 \hat{i}-2 \hat{j}+4 \hat{k}$
C. $\hat{i}+\hat{j}+\hat{k}$
D. $\hat{i}-4 \hat{j}+\hat{k}$

Answer: A

- Watch Video Solution

19. Volume of parallelogram whose adjacent sides are given by $\vec{a}, \vec{b}, \vec{b} \times \vec{c}$ is
A. 18
B. 54
C. 12
D. 36

Answer: D

- View Text Solution

20. A vector along the bisector of angle between the vectors \vec{b} and \vec{c} is,
A. $(2+\sqrt{3}) \hat{i}+(1-\sqrt{3}) \hat{j}+(2+\sqrt{3}) \hat{k}$
B. $(2+\sqrt{3}) \hat{i}+(1-\sqrt{3}) \hat{j}-(2+\sqrt{3}) \hat{k}$
C. $(2+\sqrt{3}) \hat{i}-(1-\sqrt{3}) \hat{j}-(2+\sqrt{3}) \hat{k}$
D. $(2+\sqrt{3}) \hat{i}-(1-\sqrt{3}) \hat{j}+(2+\sqrt{3}) \hat{k}$

Answer: A

\square

