©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

VECTORS; DEFINITION, GEOMETRY RELATED TO VECTORS

Dpp 11

1. A line makes an angle θ both with x-axis and
y-axis. A possible range of θ is
A. $\left[0, \frac{\pi}{4}\right]$
B. $\left[0, \frac{\pi}{2}\right]$
C. $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
D. $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$

Answer: C

D Watch Video Solution

2. A line segment has length 63 and direction

 ratiosare $3,-2,6$. The components of the line vector are
A. $-27,18,54$
B. $27,-18,54$
C. 27, $-18,054$
D. $-7,-18,-54$

Answer: B

D Watch Video Solution
3. If \vec{a}, \vec{b} and \vec{c} are position vectors of A, B, and C respectively of $\triangle A B C$ and

$$
\text { if }|\vec{a}-\vec{b}|=4,|\vec{b}-\vec{c}|=2,|\vec{c}-\vec{a}|=3
$$

, then the distance between the centroid and incenter of $\triangle A B C$ is
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$
4. Let O be an interior point of $\triangle A B C$ such that $\overline{O A}+2 \overline{O B}+3 \overline{O C}=0$. Then the ratio of a $\triangle A B C$ to area of $\triangle A O C$ is
A. 2
B. $\frac{3}{2}$
C. 3
D. $\frac{5}{2}$

- Watch Video Solution

5. In a three-dimensional coordinate system,
$P, Q, a n d R$ are images of a point $A(a, b, c)$ in the $x-y, y-z a n d z-x$ planes, respectively. If G is the centroid of triangle $P Q R$, then area of triangle $A O G$ is (O is the origin) a. 0 b . $a^{2}+b^{2}+c^{2}$ c. $\frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)$ d. none of these
A. 0
B. $a^{2}+b^{2}+c^{2}$
C. $\frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)$
D. none of these

Answer: A

D Watch Video Solution

6. $A B C D E F$ is a regular hexagon in the $x-y$ plance with vertices in the anticlockwise direction. If $\vec{A} B=2 \hat{i}$, then $\overrightarrow{C D}$ is
A. $\hat{i}+\sqrt{3} \hat{j}$
B. $\hat{i}-\sqrt{3} \hat{j}$
C. $-\hat{i}+\sqrt{3} \hat{j}$
D. $\sqrt{3} \hat{i}-\hat{j}$

Answer: C

- Watch Video Solution

7. Let position vectors of point A, B and C of triangle ABC represents be
$\hat{i}+\hat{j}+2 \hat{k}, \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}+\hat{j}+\hat{k}$. Let $l_{1}+l_{2}$ and l_{3} be the length of perpendicular
AB, BC and CA , then $\left(l_{1}+l_{2}+l_{3}\right)$ equals
A. $\frac{2}{\sqrt{6}}$
B. $\frac{3}{\sqrt{6}}$
C. $\frac{\sqrt{6}}{2}$
D. $\frac{\sqrt{6}}{3}$

Answer: C

D Watch Video Solution
8. If D, E and F are the mid-points of the sides
$B C, C A$ and $A B$ respectively of a triangle $A B C$
and λ is scalar, such that
$\overrightarrow{A D}+\frac{2}{3} \overrightarrow{B E}+\frac{1}{3} \overrightarrow{C F}=\lambda \overrightarrow{A C}$, then λ is equal to
A. $\frac{1}{2}$
B. 1
C. $3 / 2$
D. 2
9. If points $(1,2,3),(0,-4,3),(2,3,5)$ and $(1,-5,-3)$ are vertices of tetrahedron, then the point where lines joining the mid-points of opposite edges of concurrent is
A. $(1,-1,2)$
B. $(-1,1,2)$
C. $(1,1,-2)$
D. $(-1,1,-2)$

Answer: A

D Watch Video Solution

10. The unit vector parallel to the resultant of
the vectors $2 \hat{i}+3 \hat{j}-\hat{k}$ and $4 \hat{i}-3 \hat{j}+2 \hat{k}$ is

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{37}}(6 \hat{i}+\hat{k}) \\
& \text { B. } \frac{1}{\sqrt{37}}(6 \hat{i}+\hat{j}) \\
& \text { C. } \frac{1}{\sqrt{37}}(6 \hat{i}+\hat{k})
\end{aligned}
$$

D. none of these

- Watch Video Solution

11. $A B C D E F$ is a regular hexagon. Find the vector $\vec{A} B+\vec{A} C+\vec{A} D+\vec{A} E+\vec{A} F$ in terms of the vector $\vec{A} D$
A. 1
B. 2
C. 3
D. none of these

Answer: C

- Watch Video Solution

12.

If
$\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, then find the angle between \vec{a} and \vec{b}.
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$

Answer: B

- Watch Video Solution

13. If sum of two unit vectors is a unit vector;
prove that the magnitude of their difference is
$\sqrt{3}$
A. $\sqrt{2}$
B. $\sqrt{3}$
C. 1
D. none of these

Answer: B

D Watch Video Solution

14. The position vectors of the points A, B, and
C are $\hat{i}+2 \hat{j}-\hat{k}, \hat{i}+\hat{j}+\hat{k}$, and
$2 \hat{i}+3 \hat{j}+2 \hat{k}$ respectively. If A is chosen as the
origin, then the position vectors B and C are
A. $\vec{i}+2 \hat{k}, \hat{i}+\hat{j}+3 \hat{k}$
B. $\hat{j}+2 \hat{k}, \hat{i}+\hat{j}+3 \hat{k}$
C. $-\hat{j}+2 \hat{k}, \hat{i}-\hat{j}+3 \hat{k}$

$$
\text { D. }-\hat{j}+2 \hat{k}, \hat{i}+\hat{j}+3 \hat{k}
$$

Answer: D

D Watch Video Solution

15. Orthocenter of an equilateral triangle $A B C$
is
the
origin
16.

If
$\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}, \overrightarrow{O C}=\vec{c}$,
$\overrightarrow{A B}+2 \overrightarrow{B C}+3 \overrightarrow{C A}=$
A. $3 \vec{c}$
B. $3 \vec{a}$
C. $\overrightarrow{0}$
D. $3 \vec{b}$

Answer: B

- Watch Video Solution

16. If the position vectors of P and Q are
$\hat{i}+2 \hat{j}-7 \hat{k}$ and $5 \hat{i}-3 \hat{j}+4 \hat{k}$ respectively,
the cosine of the angle between $\overrightarrow{P Q}$ and z-axis is

$$
\begin{aligned}
& \text { A. } \frac{4}{\sqrt{162}} \\
& \text { B. } \frac{11}{\sqrt{162}} \\
& \text { C. } \frac{5}{\sqrt{162}} \\
& \text { D. }-\frac{5}{\sqrt{162}}
\end{aligned}
$$

Answer: B

- Watch Video Solution

17. The non zero vectors \vec{a}, \vec{b}, and \vec{c} are related byi $\vec{a}=8 \vec{b} n d \vec{c}=-7 \vec{b}$. Then
the angle between \vec{a} and \vec{c} is (A) π (B) O (C)
$\frac{\pi}{4}$ (D) $\frac{\pi}{2}$
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. π
D. 0

Answer: C

- Watch Video Solution

18. The unit vector bisecting $\overrightarrow{O Y}$ and $\overrightarrow{O Z}$ is

$$
\begin{aligned}
& \text { A. } \frac{\vec{i}+\vec{j}+\vec{k}}{\sqrt{3}} \\
& \text { B. } \frac{\vec{i}-\vec{k}}{\sqrt{2}} \\
& \text { C. } \frac{\vec{j}+\vec{k}}{\sqrt{2}} \\
& \text { D. } \frac{-\vec{j}+\vec{k}}{\sqrt{2}}
\end{aligned}
$$

Answer: C

-
 Watch Video Solution

19. A unit tangent vector at $t=2$ on the curve
$x=t^{2}+2, y=4 t-5$ and $z=2 t^{2}-6 t$ is

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{3}}(\vec{i}+\vec{j}+\vec{k}) \\
& \text { B. } \frac{1}{3}(2 \vec{i}+2 \vec{j}+\vec{k}) \\
& \text { C. } \frac{1}{\sqrt{6}}(2 \vec{i}+\vec{j}+\vec{k}) \\
& \text { D. } \frac{1}{3}(\vec{i}+\vec{j}+\vec{k})
\end{aligned}
$$

Answer: B

D Watch Video Solution
20. If \vec{a} and \vec{b} are position vectors of A and B respectively, then the position vector of a point C in $\overrightarrow{A B}$ produced such that $\overrightarrow{A C}=2015$ $\overrightarrow{A B}$ is

$$
\begin{aligned}
& \text { A. } 2014 \vec{a}-2015 \vec{b} \\
& \text { B. } 2014 \vec{b}+2015 \vec{a} \\
& \text { C. } 2015 \vec{b}+2014 \vec{a} \\
& \text { D. } 2015 \vec{b}-2014 \vec{a}
\end{aligned}
$$

Answer: D

- Watch Video Solution

21. Let $\vec{a}=(1,1,-1), \vec{b}=(5,-3,-3)$
and $\vec{c}=(3,-1,2)$. If \vec{r} is collinear with \vec{c}
and has length $\frac{|\vec{a}+\vec{b}|}{2}$, then \vec{r} equals
A. $\pm 3 \vec{c}$
B. $\pm \frac{3}{2} \vec{c}$
C. $\pm \vec{c}$
D. $\pm \frac{2}{3} \vec{c}$

Answer: C
22. A line passes through the points whose position vectors are $\hat{i}+\hat{j}-2 \hat{k}$ and
$\hat{i}-3 \hat{j}+\hat{k}$. The position vector of a point on it at unit distance from the first point is

$$
\begin{aligned}
& \text { A. } \frac{1}{5}(5 \hat{i} \hat{j}-7 \hat{k}) \\
& \text { B. } \frac{1}{5}(4 \hat{i}+9 \hat{j}-15 \hat{k}) \\
& \text { C. }(\hat{i}-4 \hat{j}+3 \hat{k}) \\
& \text { D. } \frac{1}{5}(\hat{i}-4 \hat{j}+3 \hat{k})
\end{aligned}
$$

Answer: A

D Watch Video Solution

23. Three points A, B, and C have position vectors $-2 \vec{a}+3 \vec{b}+5 \vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}$ and $7 \vec{a}-\vec{c}$ with reference to an origin 0 .

Answer the following questions?

Which of the following is true?
A. $\overrightarrow{A C}=2 \overrightarrow{A B}$
B. $\overrightarrow{A C}=-3 \overrightarrow{A B}$

C. $\overrightarrow{A C}=3 \overrightarrow{A B}$

D. None of these

Answer: C

D Watch Video Solution

24. Three points A, B, and C have position vectors $-2 \vec{a}+3 \vec{b}+5 \vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}$ and $7 \vec{a}-\vec{c}$ with reference to an origin 0 .

Answer the following questions?

Which of the following is true?
A. $2 \overrightarrow{O A}-3 \overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{0}$
B. $2 \overrightarrow{O A}+7 \overrightarrow{O B}+9 \overrightarrow{O C}=\overrightarrow{0}$
с. $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{0}$
D. None of these

Answer: A

D Watch Video Solution

25. Three points A, B, and C have position vectors $-2 \vec{a}+3 \vec{b}+5 \vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}$ and $7 \vec{a}-\vec{c}$ with reference to an origin 0 .

Answer the following questions?

B divided $A C$ in ratio

A. $2: 1$
B. 2:3
C. 2: -3
D. 1: 2

Answer: B

- Watch Video Solution

