©゙doubtnut

CHEMISTRY

BOOKS - JEE ADVANCED PREVIOUS YEAR

JEE ADVANCED 2020

Section 1

1. The $1^{\text {st }}, 2^{\text {nd }}$ and the $3^{\text {rd }}$ ionization enthalpies. I_{1}, I_{2}, I_{3} of four atoms
with atomic numbers $n, n+1, n+2$ and $n+3$, where $n<10$, are
tabulated below. What is the value of n ?

Atomic number	Ionization Enthalpy (kJ/mol)		
	I_{1}	I_{2}	I_{3}
n	1681	3374	6050
$n+1$	2081	3952	6122
$n+2$	496	4562	6910
$n+3$	738	1451	7733

- Watch Video Solution

2. Consider the following compounds in the liquid form :
$\mathrm{O}_{2}, \mathrm{HF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{CCi}_{3}, \mathrm{CHCl}_{3}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$.
When a charged comb is brough near their flowing steam, how many of
them show deflection as per the following figure?

- Watch Video Solution

3. In the chemical reaction between stoichiometic quantities of KMnO_{4} and $K l$ in weakly basic solution, what is the number of moles of I_{2} released for 4 moles of KMnO_{4} consumed?
4. An acidified solution of potassium chromate was layered with an equal volume of amyl alcohol. When it was shaken after the addition of 1 ml of $3 \% \mathrm{H}_{2} \mathrm{O}_{2}$, a blue alcohol layer was obtianed. The blue color is due to the formation of a chromium (VI) compound ' X '. What is the number of oxygen atoms bonded to chromium through only single bonds in a molecule of 'X' ?

- Watch Video Solution

5. The structure of tripeptide will be as followed at $\mathrm{PH}=2$ (in highly acidic medium)

6. An organic compound ($\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$) rotates plane-polarized light. It produces pink colour with neutral FeCl_{3} solution. What is the total number of all the possible isomers for this compound?

- Watch Video Solution

Section 2

1. In an experiment, grams of a compound X (gas/liquid/solid)taken in a container is loaded in a balance as shown in figure I below. In the prasence of a magnetic field, the pan with X is either deflected upwards (figure II), or deflected downwards (figure III), dependign on the
compound X. Identify the correct statement(s).

A. If X is $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$, deflection of the pan is upwards.
B. If X is $K_{4}[F e(C N) 6](s)$, deflection of the the pan is upwards
C. If X is $\mathrm{O}_{2}(g)$, deflection of the pan is downwards.
D. If X is $C_{6} H_{6}(l)$, deflection of the pan is downwards

Answer: A::B::C

- Watch Video Solution

2. Which of the following plots is(are) correct for the given reaction? (
$[P]_{0}$ is the initial consentration of P)

A.
[P] ${ }_{0}$

B.

C.

Answer: A

- Watch Video Solution

3. Which among the following statement(s) is (are) true for the extraction of aluminium from bauxite ?
A. Hydrated $\mathrm{Al}_{2} \mathrm{O}_{3}$ precipitates, when CO_{2} is bubbled through a solution of sodium aluminate
B. Addition of $N a_{3} A l F_{6}$ lower the melting point of alumina.
C. CO_{2} is evolved at the anode during electrolysis.
D. The cathode is a steel vessel with a lining of carbon.

Answer: A::B::C::D

- Watch Video Solution

4. Choose the correct statement(s) among the following.
A. $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is reducing agent.
B. SnO_{2} reacts with KOH to form $\mathrm{K}_{2}\left[\mathrm{Sn}(\mathrm{OH})_{6}\right]$.
C. A solution of PbCl_{2} in HCl contains Pb^{2+} and Cl^{-}ions.
D. The reaction of $\mathrm{Pb}_{3} \mathrm{O}_{4}$ with hot dilute nitric acid to give $\mathrm{PbO} \mathrm{O}_{2}$ is a redox reaction.

Answer: A:B

- Watch Video Solution

5. Consider the following four compounds I, II, III, and IV.

Choose the correct statement(s).
A. The order of basicity is $I I>I>I I I>I V$.
B. The magnitude of $p K_{b}$ difference between I and II is more than that between III and IV.
C. Resonance effect is ore in III in IV.
D. Steric effect makes compound IV more basic than III

Answer: C::D

- Watch Video Solution

6. Consider the following transformations of a compound P .

Choose the correct option(s)
A. P is
B. X is $\mathrm{Pd}-\mathrm{C}$ /quinoline/ H_{2}
C.
P is

D.

Answer: B::C

- Watch Video Solution

Section 3

1. A solution of 0.1 weak base (B) is titrated with 0.1 M of a strong acid (

HA) . The variation of pH of the solution will be the volume of HA added is shown in the figure below. What is the $p K_{b}$ of the base ? The
neutralization reaction is given by $B+H A \rightarrow H A \rightarrow B H^{+}+A^{-}$

- Watch Video Solution

2. Liquids A and B from ideal solution for all composition of A and B at $25^{\circ} C$ Two such solutions with 0.25 and 0.50 mole fractions of A have the total vapor pressures of 0.3 and 0.4 , respectively. What is the vapor pressure of pure B in bar ?

(D) Watch Video Solution

3. The figure is the plot potential energy versus internuclear distance (d) of H_{2} molecule in the electronic ground state. What is the value of the net potential energy E_{0} (as indicated in the figure) in $\mathrm{kJ} \mathrm{mol}^{-1}$, for $d=d_{0}$ at which the electron repulsion and the nucleus - nucleus repulsion energies are absent ? As reference, the potential energy of H atom is taken as zero when its electron and the nucleus are infinitely far apart.
use Avogadro as $6.023 \times 10^{23} \mathrm{~mol}^{-1}$.

Internuclear distance $(d) \longrightarrow$
4. Consider the reaction sequence from P to Q shown below. The overall yield of the major product Q from P is 75%. What is the amount in grams Q obtained from 9.3 mL of P ? (Use density of $P=1.00 \mathrm{~g} \mathrm{~mL}^{-1}$, Molar of C $=12.0, \mathrm{H}=1.0, \mathrm{O}=16.0$ and $\mathrm{N}=14.0 \mathrm{~g} \mathrm{~m}^{-1}$

(iii) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} / \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

5. Tin is obtained from cassiterite by reduction with coke. Use the data given below to determine the minimum temperature (in K) at which the reduction of cassiterite by coke would take place .
at 298
K
$\Delta_{f} H^{0}\left(S n S O_{2}(s)\right)=-5.81 \mathrm{KJ} \mathrm{mol}^{-1}, \Delta_{f} H^{0}\left(\mathrm{CO}_{2}(g)\right)=-394.0 \mathrm{~kJ} \mathrm{~mol}$
$S^{0}\left(S n O_{2}(s)\right)=56.0 J K^{-1} \mathrm{~mol}^{-1}, S^{0}(S n(s))=52.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$S^{0}(C(s))=6.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, S^{0}\left(\mathrm{CO}_{2}(g)\right)=210.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Assume that the enthalpies and the entropies are temperature independent.
A. 830
B. 865
C. 900
D. 935

Answer: D

- Watch Video Solution

6. An acidified of $0.05 \mathrm{MZn}^{2+}$ is saturated with $0.1 \mathrm{M} \mathrm{H}_{2} S$. What is the minimum molar concentration (M) or H^{+}required to prevent the precipitation of ZnS ? Use $K_{s p}(Z n S)=1.25 \times 10^{-22}$ and overall dissociation constant of $H_{2} S, K_{\mathrm{NET}}=K_{1} K_{2}=1 \times 10^{-21}$.
