

# MATHS

# **BOOKS - JEE ADVANCED PREVIOUS YEAR**

JEE (ADVANCED ) 2020

## Section 1

1. For a complex z , let Re(z) denote the real part of z . Let S be the set of all complex numbers z satisfying  $z^4 - |z|^4 = 4iz^2$ , where  $I = \sqrt{-1}$ . Then the minimum possible value of  $|z_1 - z_2|^2$  where  $z_1, z_2 \in S$  with Re $(z_1) > 0$  and  $Re(z_2) < 0$ , is ....

**2.** The probability that a missile hits a target successfully is 0.75. In order to destroy the target completely , at least three successful hits are required . Then the minimum number of missiles that have to be fired so that the probability of completely destroying teh target is NOT less than 0.95, is ......

Watch Video Solution

**3.** Let O be the centre of the circle  $x^2 + y^2 = r^2$  where  $r > \frac{\sqrt{5}}{2}$ . Suppose PQ is a chord of this circle and the equation of the line passing through P and Q is 2x + 4y = 5, If the centre of the circumcircle of the triangle OPQ lies on the line x + 2y = 4, then the value of r is ....

# Watch Video Solution

**4.** The trace of a square matrix is defined to be the sum of its diagonal entries . If A is  $2 \times 2$  matrix such that the trace of A is 3 and the trace of  $A^3$  is -18, then the value of the determinant of A is . . ..

5. Let the functions :  $(-1, 1) \rightarrow R$  and  $g: (-1, 1) \rightarrow (-1, 1)$  be defined by f(x) = |2x - 1| + |2x + 1| and g(x) = x - [x] where [x] denotes the greatest integar less than or equal to x, Let  $f \circ g(-1, 1) \rightarrow R$  be the composite function defined by  $(f \circ g)(x) = f(g(x))$ . Suppose c is the number of points in the interval (-1, 1) at which  $f \circ g$  is NOT continuous, and suppose d is the number of points in the interval (-1, 1) at which  $f \circ g$  is NOT differentiable. Then the value of c + is \_\_\_\_\_

Watch Video Solution

$$\lim_{x \to \frac{\pi}{2}} \left( 4\sqrt{2} \right) \frac{\sin 3x + \sin x}{\left( 2\sin 2x \sin \frac{3x}{2} + \cos \frac{5x}{2} \right) - \left( \sqrt{2} + \sqrt{2}\cos 2x + \cos \frac{3x}{2} \right)}$$
is

1. Let b be a nonzero real number , Suppose  $f\colon R o R$  is differentiable function such that f(0) = 1 . If the derivative f' of f satisfies the equation

$$f'(x)=rac{f(x)}{b^2+x^2}$$

for all  $x \in R$  , then which of the following statements is/are True ?

A. If b > 0 then f is an increasing function

B. If b < 0 then f is a decreasing function

C. f(x)f(-x)=1 for all  $x\in\mathbb{R}$ 

D. f(x)-f(-x)=0 for all  $x\in\mathbb{R}$ 

#### Answer: A::C

**2.** Let a and b be positive real numbers such that a > 1 and b < a. Let be a point in the first quadrant that lies on the hyperbola  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ . Suppose the tangent to the hyperbola at P passes through the oint (1,0) and suppose the normal to the hyperbola at P cuts off equal intercepts on the coordinate axes . Let  $\Delta$  denote the area of the triangle formed by the tangent at P , the normal at P and the x - axis . If a denotes the eccentricity of the hyperbola , then which of the following statements is/are TRUE ?

- A.  $1 < e < \sqrt{2}$
- B.  $\sqrt{2} < e < 2$
- $\mathsf{C}.\, \Delta = a^4$
- D.  $\Delta=b^4$

#### Answer: A::D

**3.** Le  $f: R \to R$  and  $g: R \to R$  be functions satisfying f(x + y) = f(x) + f(y) + f(x)f(y) and f(x) = xg(x) for all  $x, y \in R$ . If  $\lim_{x \to 0} g(x) = 1$ , then which of the following statements is/are TRUE ?

A. f is differentiable at every  $x \in R$ 

B. If g(0)=1 , then g is differentiable at every  $x\in R$ 

C. The derivative f(1) is equal to 1

D. The derivative f'(0) is equal to 1

### Answer: A::B::D

Watch Video Solution

4. Let  $\alpha, \beta, \gamma, \delta$  be real numbers such that  $\alpha^2 + \beta^2 + \gamma^2 \neq 0$  and  $\alpha + \gamma = 1$ . Supose the point (3, 2, -1) is the mirror image of the point (1, 0, -1) with respect to the planet  $lpha x + eta y + \gamma z = \delta$  . Then which of the following statements is/are TRUE ?

A. lpha+eta=2

B.  $\delta-\gamma=3$ 

 $\mathsf{C}.\,\delta+eta=4$ 

D.  $\alpha + \beta + \gamma = \delta$ 

#### Answer: A::B::C

Watch Video Solution

5. Let a and b be positive real numbers . Suppose  $\overrightarrow{PQ} = a\hat{i} + b\hat{j}$  and  $\overrightarrow{PS} = a\hat{i} - b\hat{j}$  are adjacent sides of a parallelofram PQRS. Let  $\overrightarrow{u}$  and  $\overrightarrow{v}$  be the vectors of  $\overrightarrow{w} = \hat{i} + \hat{j}$  along  $\overrightarrow{PQ}$  and  $\overrightarrow{PS}$  respectively. If  $|\overrightarrow{u}| + |\overrightarrow{v}| = |\overrightarrow{w}|$  and if the area of the parallelogram PQRS is 8, then which of the following statements is/are TRUE ?

A. a+b=4

 $\mathsf{B.}\,a-b=2$ 

C. The length of the diagonal P R of the parallelogram PQRS is 4

D.  $\overrightarrow{w}$  is an angle of the vectors  $\overrightarrow{PQ}$  and  $\overrightarrow{PS}$ 

#### Answer: A::C

Watch Video Solution

6. For nonnegative integers s and r , let

$$egin{pmatrix} s \ r \end{pmatrix} = rac{s\,!}{r\,!(s-r)\,!} & ext{if} \quad r\leq g \ 0 & ext{if} \quad > s \ 0 & ext{} \end{cases}$$

For positive integers m and n , let

$$g(m,n) = \sum_{p=0}^{m+n} rac{f(m,n,p)}{inom{n+p}{p}}$$

where for nay nonnegative integer p ,

$$f(m,n,p)=\sum_{i=0}^{p}inom{n+i}{i},inom{n+i}{p},inom{p+n}{p-i}$$
 Then which of the

following statements is/are TRUE ?

A. g(m,n) = g(n,m) for all positive integers m,n

B. g(m+n+1) = g(m+1,n) for all positive integers m,n

C. g(2m,2n) = 2g(m,n) for all positive integers m,n

D. (2m,2n) =  $\left(g(m,n)
ight)^2$  for all positive integers m,n

#### Answer: A::B::D

**Watch Video Solution** 

### Section 3

**1.** An engineer is required to visit a factroy for exactly four days during the first 15 days of every month and it I mandatory that no two visits take on consecutive days . Then the number of all possible ways in which such visits to the factory can be made by the engineer during 1- 15 June 2021 is

**2.** In a hotel , four rooms are available , Six persons are to be accommodated in these four rooms in such a way that each of these rooms contains at least one person and at most two persons . Then the number of all possible ways in which this can be done is \_\_\_\_\_

Watch Video Solution

**3.** Two fair dice , each with faces numbered 1,2,3,4,5 and 6 are rolled together and the sum of the numbers on the faces is observed . This process is repeated till sum is either a prime number or a perfect square . Suppose the sum turns out to be a parfect square before it turns out to be a prime number , If is the probability that this perfect square is an odd number , then the value of 14p , is \_\_\_\_\_



**4.** Let the functions 
$$f \colon [0,1] o R$$
 be defined by

$$f(x)=rac{4^x}{4^x+2}$$
 Then the value of

$$f\left(\frac{1}{40}\right) + f\left(\frac{2}{20}\right) + f\left(\frac{3}{40}\right) + \dots + \left(\frac{39}{40}\right) - f\left(\frac{1}{2}\right)$$
 is \_\_\_\_\_

Watch Video Solution

5. Let  $R \to R$  be a differentiable functions such that its derivative f' is continuous and  $f(\pi) = -6$ . If F :  $[0, \pi] \to R$  is defined by  $F(x) \int_0^x f(t) dt$ , and  $\int_0^x f(t) dt$  and if  $\int_0^\pi (f'(x) + F(x)) \cos x dx = 2$ then the value of f(0) is \_\_\_\_\_

Watch Video Solution

6. Let the function  $f:(0,\pi) \to \mathbb{R}$  be defined by  $f(\theta = (\sin \theta + \cos \theta)^2 + (\sin \theta - \cos \theta)^4$  Suppose the function f has a local minimum at  $\theta$  precisely when  $\theta \in \{\lambda_1, \pi, \dots, \lambda_r \pi\}$ , where  $0 < \lambda_1 < \dots < \lambda_r < 1$ . Then the value of  $\lambda_1 + \dots + \lambda_r$  is \_\_\_\_\_