©゙"doubtnut

MATHS

BOOKS - JEE ADVANCED PREVIOUS YEAR

JEE (ADVANCED) 2020

Section 1

1. Suppose a, b denote the distinct real roots of the quadrtic polynomial $x^{2}+20 x-2020$ and suppose c, d denote the distinct complex roots of the quadratic polynomial $x^{2}-20 x+2020$, then the value of $a c(a-c)+a d(a-d) b c(b-c) b d(b-d)$ is
A. 0
B. 8000
C. 8080
D. 16000

Answer: D

- Watch Video Solution

2. If the function $F: R \rightarrow R$ is defined by $f(x)=|x|(x-\sin x)$, then which o f the following statemnts is true?
A. f is one-one but NOT onto
B. f is onto but NOT one-one
C. fis BOT one- one and onto

D. f is NEITHER one-one NOR onto

Answer: C

- Watch Video Solution

3. Let the function : $R \rightarrow R$ and $g: R \rightarrow R$ be defined by
$f=(x)^{x 1}-e^{x \mid 1}$ and $g(x)=\frac{1}{2}\left(e^{x-1}+e^{1 x}\right)$
Then the area f the region in the first quarant bounded by the curves $g=f(x), y=g(x)$ and $\mathrm{x}=0 \mathrm{n}$ is
A. $(2-\sqrt{3})+\frac{1}{2}\left(e-e^{1}\right)$
B. $(2+\sqrt{3})+\frac{1}{2}\left(e-e^{1}\right)$
C. $(2-\sqrt{3})+\frac{1}{2}\left(e+e^{1}\right)$
D. $(2+\sqrt{3})+\frac{1}{2}\left(e+e^{1}\right)$

Answer: A

- Watch Video Solution

4. Let a, b and λ positive real numbers. Suppoose P is an end point of the latus rectum of the parabola $y^{2}=4 \lambda x$ and suppoose the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes thorugh the point. P. if the tangents to the parabola and the ellipse at the point P are perpendicular to each other, then the eccentricity of the ellipse is

> A. $\frac{1}{\sqrt{2}}$
> B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{2}{5}$

Answer: A

D Watch Video Solution

5. Let C_{1} and C_{2} be two biased coins such that the probabilities of getting heat in a single toss are $\frac{2}{3}$ and $\frac{1}{3}$, respectively. Suppose α is the number of hed that appear when C_{1} is tossed twice. Independently. Then the probability that the roots of the quadratic polynomil $x^{2}-a x+\beta$ are real equals, is

$$
\text { A. } \frac{40}{81}
$$

B. $\frac{20}{81}$
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: B

(Watch Video Solution

6. consider all rectangles lying in the region $\left\{(x, y) \in R \times R: 0 \leq x \leq \frac{\pi}{2}\right.$ and $\left.0 \leq 2 \sin (2 x)\right\} \quad$ and having one side on the x-axis. The area of the rectangle which has the maximum perimeter among all such rectangles. Is
A. $\frac{3 \pi}{2}$
B. π
C. $\frac{\pi}{2 \sqrt{3}}$
D. $\frac{\sqrt{3}}{2}$

Answer: C

- Watch Video Solution

Section 2

1. Let the function $f: R \rightarrow R$ be defined by $f(x)=x^{3}-x^{2}+(x-1) \sin x$ and $\operatorname{let} g: R \rightarrow R$ be an arbitrary function Let $f g: R \rightarrow R$ be the function defined by $(f g)(x)=f(x) g(x)$. Then which of the folloiwng statements is/are TRUE ?
A. If g is continuous at $x=1$, then $f g$ is differentiable at $\mathrm{x}=1$
B. If g is differentiable at $x=1$, then $f g$ is continuous at $\mathrm{x}=1$
C. if g is differentiable at $\mathrm{x}=1$, then $\mathrm{f} g$ is differentiable at $x=1$
D. If $\mathrm{f} g$ is diffrentiable at $\mathrm{x}=1$, then g is diffrentiable at $\mathrm{x}=1$

Answer: A::C

- Watch Video Solution

2. Let M be a 3×3 invertible matrix with real entries and let I denote the $3 \times$ matrix. If $M^{-1} \operatorname{adj}(\operatorname{adjM})$. Then which of
the following statements, is/are ALWAYS TRUE ?
A. $M=I$
B. $\operatorname{det} M=1$
C. $M^{2}=I$
D. $(a d j M)^{2}=I$

Answer: B:C:D

(Watch Video Solution

3. Let s be the set of all complex numbers Z satisfying $\left|z^{2}+z+1\right|=1$. Then which of the following statements is/are TRUE?
A. $\left|z+\frac{1}{2}\right| \leq \frac{1}{2}$ for $a|\quad| z \in S$
B. $|Z| \leq 2$ for all $z \in S$
C. $\left|z+\frac{1}{2}\right| \geq \frac{1}{2}$ for all $z \in S$
D. The set S has exactly four elements.

Answer: B::C

- Watch Video Solution

4. Let x, y an z be positive real numbers. Suppose x, y and z are the length of the sides of triangle opposite ot its angles,
X, Y and Z respectively.If
$\tan \frac{X}{2}+\tan \frac{Z}{2}=\frac{2 y}{x+y+x}$ then which of the following statement is/are TURE ?
A. $2 Y=X+Z$
B. $Y=X+Z$
C. $\tan \frac{X}{2}=\frac{x}{y+z}$
D. $x^{2}+z^{2}-y^{2}=x z$

Answer: B::C

- Watch Video Solution

5. Let L_{1} and L_{2} be the foollowing straight lines.
$L_{1}: \frac{x-1}{1}=\frac{y}{-1}=\frac{z-1}{3}$ and $L_{2}: \frac{x-1}{-3}=\frac{y}{-1}=\frac{z-1}{1}$
Suppose the striight line $L: \frac{x-\alpha}{l}=\frac{y-m}{m}=\frac{z-\gamma}{-2}$
lies in the plane containing L_{1} and L_{2} and passes throug the point of intersection of L_{1} and L_{2} if the L bisects the acute angle between the lines L_{1} and L_{2}, then which of the following statements is /are TRUE ?
A. $\alpha-\gamma=3$
B. $l+m=2$
C. $\alpha-\gamma=1$
D. $l+m=0$

Answer: A::B

- Watch Video Solution

6. Which of the following inequalities is/are TRUE ?
A. $\int_{0}^{1} x \cos x d x \geq \frac{3}{8}$
B. $\int_{0}^{1} x \sin x d x \geq \frac{3}{10}$
C. $\int_{0}^{1} x^{2} \cos x d x \geq \frac{1}{2}$
D. $\int_{0}^{1} x^{2} \sin x d x \geq \frac{2}{9}$

Answer: A::B::D

D Watch Video Solution

Section 3

1. Let m be the minimum possible value of $\log _{3}\left(3^{y_{1}}+3^{y_{2}}+3^{y_{3}}\right)$. Where y_{1}, y_{2}, y_{3} are real number for which $y_{1}+y_{2}+y_{3}=9$ Let M be the maxmum possible value of $\left(\log 3 x_{1}+\log _{3} x_{2}+\log _{3} x_{2}\right)$ where x_{1}, x_{2}, x_{3} are positive real numbers for whcih $x_{1}+x_{2}+x_{3}=9$ then the value of $\log _{2} m^{3}+\log _{3}\left(M^{2}\right)$ is
2. Let $a_{1}, a_{2}, a_{3} \ldots$ be a sequance of positive integers in arithmetic progression with common difference 2 . Also let $b_{1}, b_{2}, b_{3} \ldots \ldots$ be a sequences of posotive intergers in geometric progression with commo ratio 2 . If $a_{1}=b_{1}=c_{2}$. then the number of all possible values of c, for which the equality.
$2\left(a_{1}+a_{2} .+\ldots .+a_{n}\right)=b_{1}+b_{2}+\ldots .+b_{n}$ holes for same positive integer n, is

- Watch Video Solution

3. Let $f:[0,2] \rightarrow \mathbb{R}$ be the function defined by $f(x)=(3-\sin (2 \pi x)) \sin \left(\pi x-\frac{\pi}{4}\right)-\sin \left(3 \pi x+\frac{\pi}{4}\right)$

If $\alpha, \beta \in[0,2]$ are such that
$\{x \in[0,2]: f(x) \geq 0\}=[\alpha, \beta]$, then the value of $\beta-\alpha$ is. \qquad

- Watch Video Solution

4. In a triangle
$P Q R, \leq t: a \vec{a}=\vec{Q} R=\vec{b}=\vec{R} P$ and $\vec{c}=\vec{P} Q .$,
If $|\vec{a}|=3,|\vec{b}|=4$ and $\frac{\vec{a} \cdot(\vec{c} \cdot \vec{b})}{\vec{\rightarrow}(\vec{a}-\vec{b})}=\frac{|\vec{a}|}{|\vec{a}|+|\vec{b}|}$
then the value of $|\vec{a} \times \vec{b}|^{2}$ is

- Watch Video Solution

5. For a polynomia $g(x)$ with real coefficients, let m_{g} denote the number of distinct real roots of $g(x)$. Suppose S is the
set of polynomials with real coefficients defined by
$S=\left\{\left(x^{2}-1\right)^{2}\left(a_{0}+a_{1}+a_{2} x^{2}+a_{3} x^{3}\right): a_{0} a_{1}, a_{2}, a_{3}=\mathbb{R}\right\}$
For a polynomial f. let f and f denote its first and second order derivties, respectively. Then the minimum possible value of $\left(m_{f},+m_{f}\right)$. where $f \in S$ is, \qquad

- Watch Video Solution

6. Let a denote the base of the natural loganthim. The value
of real number a for which the right hand limit
$\lim _{x \rightarrow} \frac{(1-x)^{1 / x}-e^{-1}}{x^{e}}$ is equal to a nonzer real number is, \qquad

- Watch Video Solution

