

India's Number 1 Education App

CHEMISTRY

FOR IIT JEE ASPIRANTS OF CLASS 11 FOR CHEMISTRY

CHEMICAL BONDING AND MOLECULAR STRUCTURE

Example

1. Lattice energy in sodium chloride is y kJ. Assuming the same interionic distance, what will be the lattice energy of magnesium sulphide?

2. Both Na and H occur in group 1 of the periodic table ,yet melting point of HCI is -114 $^{\circ}$ C. Why ?

3. Why is HCl predominantly covalent in the gaseous state but is ionic in aqueous solution? **Watch Video Solution 4.** Sigma bond is stronger than the pi bond. Explain. **Watch Video Solution** 5. A diatomic molecule has **Watch Video Solution 6.** Write the increasing order of bond energies of H_2, F_2 and HF molecules.

7. Dissociatin enthalpies of methane, ethane and ethylene are respectively 400, 680 and $540kcalmol^{-1}$. Calculate $\sigma C - H$, $\sigma C - C$ and $\pi C - C$ bond energies.

8. The As-CI bond distance in $AsCI_3$ is 2.20Å. Estimate the SBCR (single bond covalent radius) of As. (Assume EN of both to be same and radius of CI = 0.99Å).

9. What is the nitrogen - oxygen bond order in NO_3^- ion ?

10. Write the order of oxygen - oxygen bond energies of $O_2' O_3$ and $H_2 O_2$ molecules.

11. The dipole moments of SO_2 and CO_2 are 5.37×10^{-30} C.m and zero respectively. What can be said about the shapes of the two molecules?

12. Dipole moment of H_2S is 0.95 D, Find the S- H bond moment. Bond angle in H_2S is 96 degree and cos 48 degree is 0.66.

13. The dipole moment of HBr is 2.60×10^{-30} C.m and the inteatomic spacing is $1.41A^0$. What is the percentage ionic character of HBr?

14. Can P_x overlap a P_y orbital ? Why or why not ?

Watch Video Solution

15. Considering X-axis as the internucler axis, which out of the following atomic orbitals will from a sigma bond?

(a)1s and 1s (b)1s and $2p_x$ (c) $2p_y$ and $2p_y$ (d)1s and 2s.

A. 1S and 1S

B. 1S and 2Px

C. $2P_Y$ and $2P_v$

D. IS and 2S

Answer:

16. What are the type of bonds present in hydrogen cyanide molecule?

17. Discuss the hybridisation of carbon atoms in allene $\left(C_3H_4\right)$ and show the π -orbital overlap.

18. Predict the shapes of the following species and the type of hybrid orbitals on the central atom.

(a) $PbCl_4$, (b) SbF_6^- and (c) PCl_3

19. Write the decreasing order of

(a) carbon - carbon and

(b) carbon - hydrogen bond lengths in ethane, ethylene and acetylene molecules.

20. Calculate the ratio between hybrid orbitals and pure orbitals in

$$CH_2 = C = CH_2$$

Allene.

21. Deduce the shape of

(1) SO_3 (2) SO_3^{-2} (3) BF_3 (4) BF_4^{-1} (5) NF_3

22. PCl_3 has the shape of a trigonal pyramid, whereas $I\!F_5$ has the shape of a suquare pyramid. Account for this difference.

23. The type of bond s present in ammonium chloride is (are):

24. Is there any change in hybridisation of the B and N atom as a result of the following reaction?

 $BF_3 + NH_3 \rightarrow F_3B.NH_3$

25. What is the change in hybridization (if any) of the Al atom in the following reaction.

 $AlCl_3 + Cl^- \rightarrow AlCl_4$

26. Does peroxide ion, O_2^2 , has a longer or shorter bond length than O_2 ? Explain.

Watch Video Solution

27. Which of the following molecules has the higher bond order?

(1) BN (2) CO (3) NO (4) Ne_2 (5) F_2

View Text Solution

28. The bond order in N_2^- is

Watch Video Solution

29. Which one in each of the following pairs is expected to exhibit hydrogen bonding together?

(a) $CH_3 - CH_2 - OH$ and $CH_3 - O - CH_3$

- (b) CH_3NH_2 and CH_3SH (c) CH_3OCH_3 and $\left(CH_3\right)_3N$
 - A watch vellage extraction
 - Watch Video Solution

- **30.** Which is exprected to have highest melting point : $PH_3, NH_3, \left(CH_3\right)_3$ N? Explain.
 - Watch Video Solution

Check Your Grasp

- **1.** The pair of elements which on combination is most likely to form an ionic compound is:
 - Watch Video Solution

2. Write the Lewis dot symbols of the following ions:

 $Li^+, Cl^-, O^{2-}, Mg^{2-}$ and N^{3-}

3. Why $CaCl_2$ and NaCl are bad conductor of electricity in the solid state.

4. Which one of each of the following pairs is expected have the larger

bond angle?

- (1) H_2O and NH_3 (2) SF_2 and BeF_2
- (3) BF_3 and BF_4^- (4) PH_3 and NH_3
- (5) NH_3 and NF_3

5. Write down the conjugate base of the following: (i) NH_4^+ ,(ii) HCOOH (iii) H_3O^+ $H_2NCONH_3^+$

6. The molecule electronic configuration of oxygen molecule is.

7. Write molecule electronic configuration of H_2 , H_2^+ , H_2^- and calculate the bond order in each case.

Evaluate Your Self 1

1. The compound containing coordinate bond is

A. SO_3

 $B.O_3$

 $C.H_2SO_4$

D. All of these

Answer: D

Watch Video Solution

2. Benzoic acid contains

A. 15σ and 2π - bond

B. 15σ and 4π -bonds

C. 14σ and 4π - bonds

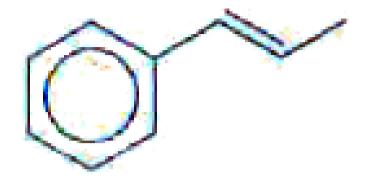
D. 13σ and 4π - bonds

Answer: B

3. Which of the following is an electrovalent linkage?

A. $CaCl_2$

 $\mathsf{B.}\mathit{AlCl}_3$


 $\mathsf{C}.\mathit{SiCl}_4$

 $\mathsf{D.}\, PCl_3$

Answer: A

4. How many bonds are there in

- A. 14σ , 8π
- B. 18σ , 8π
- C. 19σ , 4π
- D. 14σ , 2π

Answer: C

Watch Video Solution

5. Which statement is not correct?

- A. A sigma bond is weaker than a π bond.
- B. A sigma bond is stroger than a π -bond.
- C. A double bond is stronger than a sigma bond.
- D. A double bond is shorter than a single bond.

Answer: A

Watch Video Solution

- 6. Most covalent halifde of aluminium is
 - A. AlCl₃

 - $B.AlI_3$
 - $C.AlBr_3$
 - $D.AlF_3$

Answer: B

7. Among LiCl, $BeCl_2$, BCl_3 and CCl_4 , the covalent bond charater follows the order-

$$A. LiCl > BeCl_2 > BCl_3 > CCl_4$$

$$B. \ LiCl < BeCl_2 < BCl_3 < CCl_4$$

$$C. LiCl > BeCl_2 > CCl_4 > BCl_3$$

$$\mathsf{D}.\mathit{LiCl} < \mathit{BeCl}_2 < \mathit{BCl}_3 > \mathit{CCl}_4$$

Answer: B

Watch Video Solution

Evaluate Your Self 2

1. Which of the following has zero dipole moment?

A. NH_3

 $B.H_2O$

 $C.BCl_3$

 $\mathsf{D}.\,SO_2$

Answer: C

Watch Video Solution

2. Increasing order of dipole moment is H_2O , NH_3 , NF_3 and CCl_4 is

A.
$$CCl_4 < NF_3 < NH_3 < H_2O$$

B.
$$CCl_4 > NF_3 > NH_3 > H_2O$$

$$C. NF_3 > H_2O > CCl_4 > H_2O$$

D. all the four have equal dipole moments

Answer: A

3. Non-zero dipole moment is shown by

A. CCl_4

 $\mathsf{B.}\,\mathit{CO}_2$

 $C.H_2O$

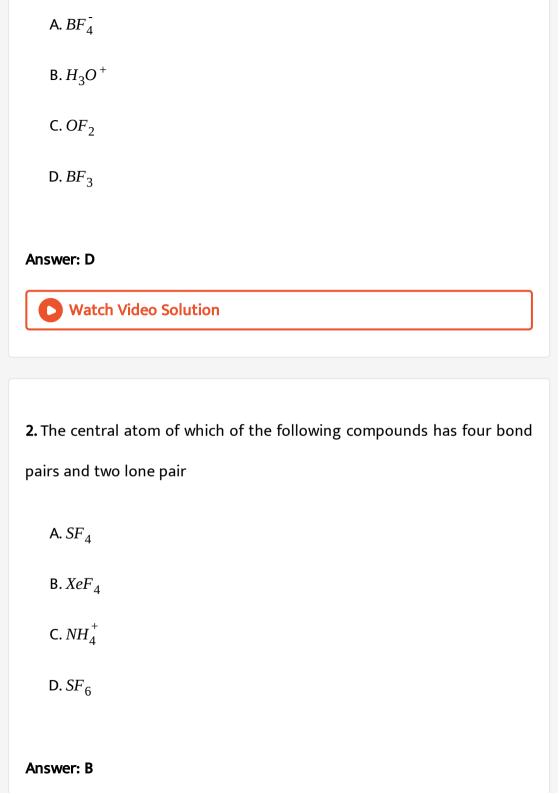
Answer: C

4. Which of the following has zero dipole moment?
A. CH_2Cl_2
$B.NH_3$
C. <i>CH</i> ₄
$D.\mathit{PH}_3$
Answer: C
Watch Video Solution
5. Which of the following molecules has zero dipole moment ?
5. Which of the following molecules has zero dipole moment ? $ \mbox{A. } \textit{BeCl}_2 $
A. BeCl ₂
A. $BeCl_2$ B. HCl

Answer: A

Watch Video Solution

- 6. Which of the following is polar?
 - A. I_3^-
 - B. CO_3^{2-}
 - $C. XeF_{\Lambda}$
 - $D.PF_3$


Answer: D

Watch Video Solution

Evaluate Your Self 3

1. Which of the following does not have sp^3 hybridisation?

- 3. Which of following has square planar shape?
 - A. XeF_4
 - B. $SiCl_{4}$
 - $C. NH_{4}^{+}$
 - D. BF_{4}^{-}

Answer: A

- 4. Which of the following molecules has trigonal planar geometry?
 - A. BF_3
 - $B.NH_3$

 $C.H_2O$

D. IF_3

Answer: A

Watch Video Solution

- **5.** Shape and hybridisation of SO_2 are
 - A. V shape, sp
 - B. triangular planar, sp^2
 - C. V shape, sp^2
 - D. tetrahedral, sp^2

Answer: C

6. What type of orbital hydridisation is considered on P in PCl_5 ?

A.
$$sp^3d$$

B. dsp^3

C. sp^3d^2

D. d^2sp

Answer: A

7. The bond length in O_2^+ , O_2 , O_2^- and O_2^{2-} follows the order:

A.
$$O_2 > O_2^+ > O_2^- > O_2^2$$

$$B.O_2^+ > O_2 > O_2^- > O_2^{2-}$$

$$C.O_2^+ > O_2^{2-} > O_2^- > O_2$$

$$D. O_2^{2-} > O_2^{-} > O_2^{+} > O_2$$

Answer: B

Watch Video Solution

- 8. Which of the following is not paramagnetic?
 - A. S^{2}
 - B. NO
 - $C. O_{2}^{-}$
 - D. N_{2}^{-}

Answer: A

- **9.** Which of the following is not paramagnetic?
 - A. Ne_2

$B.He_2^+$
$C.O_2^+$
$D.\ N_2^+$
Answer: A
Watch Video Solution
10. How many bonds B_2 have ?
A. 0
B. 1
C. 2
D. 3
Answer: B
Watch Video Solution

11. Which one of the following molecules is paramagnetic?
A. F_2
$B.B_2$
C. <i>Li</i> ₂
$D.N_2$
Answer: B
Watch Video Solution
12. The bond order of CO molecule is
A. 2

B. 2.5

C. 3

D. 3.5

Answer: C

Cuq Interoduction Valence And Formula Writing

- 1. Chemical bond formation takes place when
 - A. Energy is absorbed
 - B. Forces of attraction overcome forces of repulsion
 - C. Forces of repulsion overcome forces of attraction
 - D. Forces of attraction are eqaul to forces of repulsion.

Answer: D

Watch Video Solution

2. During bond formation, potential energy of the system

A. Increases B. Decreases C. Remains the same D. Can't tbe predicted **Answer: B Watch Video Solution** 3. Two atoms X and Y have 5 and 7 valence electrons. The formula of the compound formed by their combination is A. X Y $B. X Y_2$ $C.XY_3$ $D. X_3 Y$

Answer: C

4. Electronic configuration of an element A is $1s^22s^22p^63s^1$ and electronic configuration of another element B is $1s^22s^22p^63s^23p^4$. The possible compound that can be formed between A and B is

- A. AB
- $B.AB_{2}$
- $C.A_2B$
- $D.A_2B_2$

Answer: C

Watch Video Solution

Cuq Kossel Lewis Throry

1. Covalence	for	central	atom	is	maximum	in
i. Covalence	: 101	Central	atom	13	IIIaxiiiiuiii	111

A. BF_3

 $\mathsf{B.}\, SO_2Cl_2$

 $\mathsf{C.}\, POCl_3$

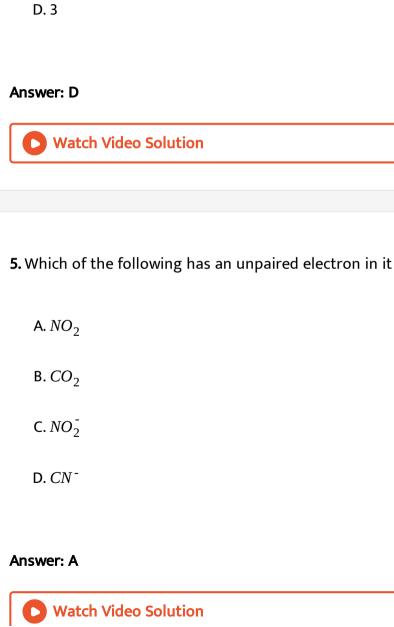
D. BeCl₂

Answer: B

- 2. The covalence of central atom is maximum in
 - A. HCN
 - $\mathrm{B.}\, \mathrm{NH}_{4}^{^{+}}$
 - **C**. *PCl*₅
 - D. *H*₂*O*

Answer: C

Watch Video Solution


- 3. A molecule which cannot exist theoretcally is:
 - A. SF_4
 - B. OF_2
 - $C. OF_4$
 - D. O_2F_2

Answer: C

Watch Video Solution

4. The mol.wt of an Oxide of Hydrogen is 34. Therefore the number of covalent bonds in its molecule are

A. 4

B. 5

C. 2

5. What is the expected valency of sulphur (Z=16)?
A. 4
B. 6
C. 8
D. 7
Answer: B
Watch Video Solution

7. The electrovalency of the element is equal to the

A. Sodium hydride

B. Calcium carbide

C. Magenesium oxide

Answer: D Watch Video Solution B. In Covalence A. Transfer of electrons takes place B. Sharing of electron takes place C. Sharing of electron by one atom only D. None of these take place. Answer: B Watch Video Solution	
A. Transfer of electrons takes place B. Sharing of electron takes place C. Sharing of electron by one atom only D. None of these take place. Answer: B	Answer: D
A. Transfer of electrons takes place B. Sharing of electron takes place C. Sharing of electron by one atom only D. None of these take place. Answer: B	Watch Video Solution
A. Transfer of electrons takes place B. Sharing of electron takes place C. Sharing of electron by one atom only D. None of these take place. Answer: B	
B. Sharing of electron takes place C. Sharing of electron by one atom only D. None of these take place. Answer: B	3. In Covalence
C. Sharing of electron by one atom only D. None of these take place. Answer: B	A. Transfer of electrons takes place
D. None of these take place. Answer: B	B. Sharing of electron takes place
Answer: B	C. Sharing of electron by one atom only
	D. None of these take place.
Watch Video Solution	Answer: B
	Watch Video Solution
9. Variable valency is generally shown by-	2 Variable valency is generally shown by

D. Aluminium fluoride

A. Alkali metals B. Transition metals C. Alkaline earth metals D. Inert geses **Answer: B Watch Video Solution** 10. The bond between two identical non-metal atoms has a pair of electrons: A. Unequally shared between them B. Transferred fully from one atom to the other atom C. With identical spins D. Equally shared between them Answer: D

11. Only triple bond is present in

- A. N_2O
- $\mathsf{B.}\, CO_2$
- C. HCN
- $D.N_2$

Answer: D

- 12. Which of the following is not property of covalent compounds
 - A. They have low melting points
 - B. They are not electrical conductors

C. They exhibit space isomerism

D. They undergo chemical reaction quickly

Answer: D

Watch Video Solution

13. The number of electron pairs present in the valence shell of central atom in SF_6 molecule are

A. 4

B. 6

C. 8

D. 7

Answer: B

14. Which of the following has no multiple bonds

- A. HCN
- B. C_2H_2
- $C. C_2 H_6$
- D. C_2H_2

Answer: C

Watch Video Solution

15. $\ln \left[Co(NH_3)_6 \right] Cl_3$, the number of covalent bonds is

- A. 3
- B. 6
- C. 9
- D. 18

Answer: D

Watch Video Solution

16. An element X forms compounds of the formula XCl_3 , X_2O_5 & Ca_3X_2 but does not form XCl_5 , which of the following is the elements (X):-

- A. Al
- B.P
- $\mathsf{C}.\,B$
- D.N

Answer: D

Watch Video Solution

Cuq Ionic Bond And Lattice Energy

1. Which of the following metals are obtained by electrolysis of their chlorides in molten state?
A. Cryolite
B. Sylvine
C. Urea
D. Rock salt
Answer: C Watch Video Solution
2. Ionic compounds do not exhibit space isomerism because

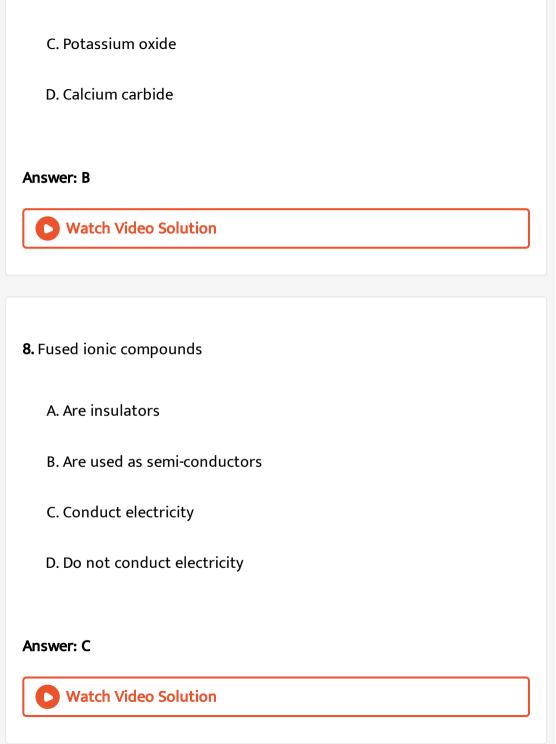
A. They are solids

C. They are electrolytes

B. The ionic bond is non-direactional

D. they contain ions
Answer: B
Watch Video Solution
3. KCl easily dissolves in water because
A. It is a salt of potassium
B. It reacts with water
C. It is an electrovalent compound
D. Its ions are casily solvated
Answer: D
Watch Video Solution
4. In a crystal cations and anions are held together by

A. electrons B. electrostatic forces C. nuclear forces D. covalent bonds **Answer: B Watch Video Solution 5.** The electronegativities of F, Cl, Br, and I are 4.0, 3.0, 2.8, and 2.5,respectively. The hydrogen halide with a high percentage of ionic character is A. HF B. HCl C. HBr D. HI


Answer: A Watch Video Solution 6. The stability of ionic crystal depends principally on A. Electronegativity B. Lattice energy C. Sublimation energy D. Electron affinity **Answer: B**

7. Which of the following is an ionic compound?

A. Sodium hydride

B. Carborundum

9. Molten sodium chloride conducts electricity due to the presence of:
A. Free electrons
B. Free ions
C. Free moleucles
D. Atoms of sodium and chlorine
Answer: B
Watch Video Solution
10. The ionic reactions are usually very fast because :
A. Fast
B. Slow
C. Very slow
D. Medium

Answer: A

Watch Video Solution

11. Which of the following are not ionic compounds?

- A. $BaCl_2$
- $B.Al_2O_3$
- C. CaH_2
- D. AlCl₃

Answer: D

Watch Video Solution

12. When NaCl is dissolved in water the sodium ion becomes

A. Oxidised

B. Reduced C. Hydrolysed D. Hydrated Answer: D **Watch Video Solution** 13. A bond is said to be 50% ionic, when the difference in the electronegativity value of the participating atoms is _____. A. More than 1.7 B. Equal to 1.7 C. Less than 1.7 D. Much greater than 1.7 **Answer: B Watch Video Solution**

14. CaQ and NaCI have the same crystal structure and approximately the same ionic radii. If U is the lattice energy of NaCl, the approximate lattice energy of CaO is

A. U/2

B. U

C. 4U

D. 2U

Answer: C

Watch Video Solution

15. Indicate the nature of bonding in CCl_4 and CaH_2

A. Covalent in CCl_4 and electrovalent in CaH_2 s

B. Electrotovalent in both CCl_4 and CaH_2

C. Covalent in both CCl_4 and CaH_2 D. Electrovalent in CCl_4 and covalent in CaH_2 Answer: A

Watch Video Solution

Cuq Fajan S Rules

1. Highest covalent character is found in

- - A. CaF₂
 - B. CaCl₂
- C. CaBr₂
- D. *CaI*₂

Answer: D

2. Which of the following has the highest melting point?
A. NaCl
$B. \mathit{MgCl}_2$
C. AlCl ₃
D. LICI
Answer: A
Watch Video Solution
Watch Video Solution
3. Arrange LiF, NaF, KF, RbF and CsF in order of increasing lattice energy.
3. Arrange LiF, NaF, KF, RbF and CsF in order of increasing lattice energy.
3. Arrange LiF, NaF, KF, RbF and CsF in order of increasing lattice energy. A. RbF, CsF

D. CsF, CsF
Answer: C Watch Video Solution
Cuq Bond Parameters
1. In which of the following bond angle is maximum
A. CH_4
B. <i>H</i> ₂ <i>O</i>
C. <i>NH</i> ₃
D. <i>CO</i> ₂
Answer: D
Watch Video Solution

2. Among the following highest bond energy is for

A. H- H

B. C - H

C. C - C

D. F - F

Answer: A

Watch Video Solution

3. The correct order of O - O bond length in $O_2H_2O_2$ and O_3 is

A.
$$O_2 > O_3 > H_2 O_2$$

B.
$$O_3 > H_2 O_2 > O_2$$

$$C. H_2 O_2 > O_3 > O_2$$

D.
$$O_2 > H_2 O_2 > O_3$$

Answer: C

Watch Video Solution

Cuq Polarity And Dipole Moment

1. Which of the following order of dipole moment is correct for these compounds?

A.
$$ID = 3.3356C. m$$

B.
$$ID = 3.3356 \times 10^{-30}C$$
. m

$$C.ICm = 3.3356D$$

D.
$$ICm = 3.3356 \times 10^{-30}D$$

Answer: B

2. The unit of dipolemoment is
A. Einstein
B. Dalton
C. Debye
D. Curie
Answer: C
Watch Video Solution
3. The unit of dipole moment is
A. e.s.u-cm
B. coluomb - cm
C. coluomb-metre

Answer: C Watch Video Solution **4.** A pure covalent bond is formed between: A. H-Cl B. Cl - Cl C. C - Cl D. Na - Cl **Answer: B Watch Video Solution** 5. Which of the following is not a polar molecule? A. HCl

Watch Video Solution 6. Which of the following pair of molecules will have permanent dipole moment? A. NO_2 and CO_2 $B.NO_2$ and O_3 $C. SiF_4$ and CO_2 D. SiF_4 and NO_2

Watch Video Solution

B. HF

 $C. H_2S$

 $D.NH_3$

Answer: B

Answer: B

Cuq Resonance And Formal Charge

- 1. Resonance structures of a molecule do not have:
 - A. identical arrangement fo atoms
 - B. nearly same energy content
 - C. the same number of paired electrons
 - D. identical bonding

Answer: D

- 2. In which of the following compounds resonance does not occurs
- (a) H_2O (b) SiO_2 (c) SO_2 (d) CO_2
 - A. a and d

B. a and b

C. c and d

D.b, c and d

Answer: B

Watch Video Solution

3. Which of the following Lewis dot structure of CO_2 is incorrect?

A. : O = C = O :

. 0 - 0 - 0 .

 $\mathsf{B.}:O\equiv C\text{-}O\cdots:$


 $C.:O\cdots - C \equiv O:$

D. All

Answer: C

4. In the following electron dot structure, calculate the formal charge from left to right nitrogen atom respectively:

- A. -1, -1, +1
- B.-1, +1, -1
- C. +1. -1. -1
- D. +1, -1, +1

Answer: B

Watch Video Solution

Cuq Valence Bond Theory

1. Which overlap is involved in HCl molecule? A. s-s B. p-p C. s-d D. s-p **Answer: D Watch Video Solution** 2. The number of sigma bonds formed in ethane by the overlapping of $sp^3 - sp^3$ orbitals A. $sp^2 - s$ $\mathsf{B.}\, \mathsf{sp}^3 - \mathsf{p}$ C.s-sD. p-p co axial

Watch Video Solution

3. Number of π bonds and σ bonds in the following structure is

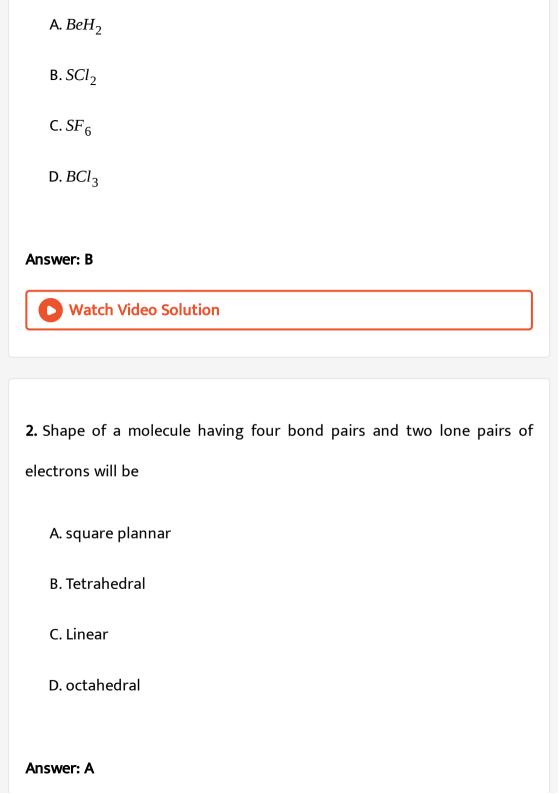
A. 6,19

B. 4,20

C. 5,19

D. 5,20

- **4.** The bond energy is highest in the molecule
 - A. H_2
 - $B.F_2$
 - $C. Cl_2$
 - $D.I_2$


Answer: A

Watch Video Solution

Cuq Vsepr Theory

1. The number of electrons in the valence shell of the central atom of a molecule is 8. the molecule is

3. Shape	of PCl_5	mo	lecule	is
----------	------------	----	--------	----

- A. Octahedron
- B. Square pyramid
- C. Trigonal bipyramid
- D. Pyramidal

Answer: C

- **4.** Which of the following is a non-linear molecule?
 - **A.** *CO*₂
 - $\mathsf{B.}\,C_2\!H_2$

C. HCN
$D.H_2O$
Answer: D
Watch Video Solution
5. In carbon tetrachloride, four valence of carbon are directed to four
corners of
A. Cube
B. Hexagon
C. Prism
D. Tetrahedron
Answer: D
Watch Video Solution

6. The ratio of number of lone pairs on central atom in ammonia, Water and \textit{XeF}_2 are

A. 3:2:1

B.2:1:3

C. 1:2:3

D. 2:3:1

Answer: C

Watch Video Solution

7. CO_2 has same geometry as .

A. A and C

B. B and D

C. A and D

D.	C	and	D
υ.	_	arra	$\boldsymbol{\mathcal{L}}$

Answer: C

Watch Video Solution

- 8. Which species has the maximum number of lone pair of electrons on the central atom?.
 - A. $\left[CIO_3^{-}\right]$
 - B. XeF_{Δ}
 - $\mathsf{C}.\,SF_{\mathtt{A}}$
 - D. I_3

Answer: D

1. In which of the following the hybrid orbitals of the central atom have the same s-character

A. 0.25

B. 0.75

C. 0.4

D. 0.1666

Answer: D

Watch Video Solution

2. Hybrid orbital with least s-character is

A. sp³d

 $B. sp^2$

 $\mathsf{C}.\,\mathsf{sp}^3$

D.	sp

Answer: A

Watch Video Solution

- **3.** Bond angle between two hybrid orbitals is $105\,^\circ$ Percentage of sorbital character of hybrid orbital is between
 - A. 0.5
 - B. 0.3333
 - C. 0.166
 - D. 0.25

Answer: D

4. sp^3 hybrid orbitals have equal s and p character.

A. sp

 $B. sp^3$

 $C. sp^2$

D. sp^3d

Answer: A

5. Hybrid orbital with maximum p-character is

A. sp^3d

B. *sp*³

C. sp

D. sp^3d^2

Answer: B Watch Video Solution

- 6. Hybridisation involves
 - A. Addition of an electron pair
 - B. Combination and redistribution of atomic orbitals
 - C. Removal of an electron pair
 - D. Separation of orbitals

Answer: B

- **7.** One hybridization of one s and one p orbital we get
 - A. Two mutually perpendicular orbitals

C. Four orbitalsdirected tetrahedrally	
D. Three orbitals in a plane	
Answer: B	
Watch Video Solution	
3. As the s-character of hybridisation orbital increases, the bond angle	
A. Increases	
B. Decreases	
C. Does not change	
D. Becomes zero	
Answer: A	
Watch Video Solution	

B. Two orbital at 180 $^{\circ}$

A. sp^2

B. sp

 $\mathsf{C}.\,\mathsf{sp}^3$

D. dsp^2

Answer: B

Watch Video Solution

10. sp^3 d hybridisation result in

A. A square planar molecule

B. An octahedral molecule

C. A trigonal bipyramid molecule

D. A tetrahedron molecule

Answer: C

Watch Video Solution

- **11.** The type of hybrid orbitals used by chlorine atom in ClO_2^- is :
 - A. sp^3
 - B. sp^2
 - C. sp
 - D. sp^3d^2

Answer: A

Watch Video Solution

Cuq Dative Bond

1. A covalent bond is formed between

A. Transfer of electron B. Sharing of electrons C. donation of electrons D. None of these process. **Answer: C Watch Video Solution** 2. Give examples of two compounds in which there exists electrovalency, covalency and coordinate covalency. A. Electrons are equally shared by the atoms B. Electrons of one atom are shared between the two atoms C. Hydrogen bond is formed D. None of the above Answer: B

- 3. Which one of the following statement is true for Ammonium ion?
 - A. All bonds are ionic
 - B. All bonds are coordinate covalent
 - C. H atoms are situated at the comers of a square
 - D. H atoms are situated at the corners of a tetrahedron

Cuq Molecular Orbital Theory

- 1. Anti-bonding molecule orbital is formed by
 - A. Addition of wave functions of atomic orbitals

B. Substraction of wave functions of atomic orbitals
C. Multiplication of wave functions of atomic orbitals
D. Fiunding the arthemetic mean
Answer: B
Watch Video Solution
2. Molecular orbital theory
A. Monocentric
B. Bicentric
C. Polycentric
D. None
Answer: C
Watch Video Solution

- 3. A bonding molecule orbital is produced by
 - A. Destuctive interference of wave functions
 - B. Constructive interference of wave functions
 - C. Pairing of electrons with opposite spin
 - D. Combination of +ve and -ve functions

Answer: B

- 4. Oxygen molecule is
 - A. diamagnetic with no unpared electrons
 - B. diamagnetic with two unpaired electrons
 - C. paramagnetic with two unpaired electrons
 - D. paramagnetic with no unpaired electrons

Answer: C

5. The paramagnetic property of the oxygen molecule is due to the presence of unpiared electrons present in .

A. M.O.T

B. Resonance theory

C. V.B.T

D. VSEPR theory

Answer: A

Watch Video Solution

6. Which of the following orbitals of a diatomic molecule AB will not have positive overlap?

A. 2s(A) and 2s(B)

B. 2s(A) and $2P_z(B)$

C. $2P_{\tau}(A)$ and $2P_{\tau}(B)$

D. $2P_{x}(A)$ and $2P_{z}(B)$

Answer: D

Watch Video Solution

7. Which of the following is miscible with water

A. CS_2

B. C_2H_5OH

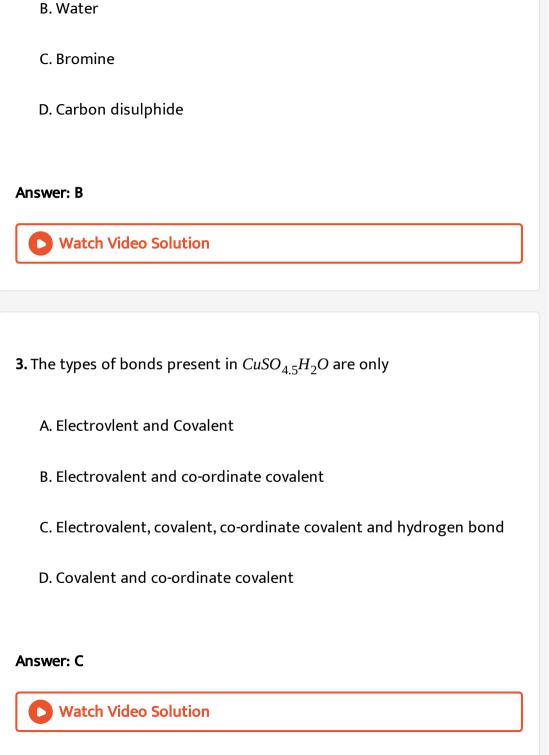
C. CCl_{Δ}

D. CHCl₃

Answer: B

Cuq Hydrogen Bonding

- 1. The coupling between base units of DNA is through
 - A. Hydrogen bonding
 - B. Electrostatic bonding
 - C. Covalent bonding
 - D. Vander Waal's forces


Answer: A

Watch Video Solution

2. Which of the following exists as a liquid at room temperature due to the formation of associated molecules

A. Benzene

4. Ethyl alcohol is highly miscible with water because if forms the following bond with water

A. Covalent bond

B. Ionic bond

C. Hydrogen bond

D. Dative bond

Answer: C

5. Water is a liquid, while H_2S is a gas at ordinary temperature. Explain.

A. Water has higher molecular weight

B. Hydrogen sulphide is a weak acid

C. electronegativity of S gt O

D. Water molecules associate through hydrogen bonding

Answer: D

Watch Video Solution

6. When two ice cubes are pressed over each other, they unite to form one cube. Which of the following forces is responsible to hold them together?

- A. Dipole dipole interaction
- B. Vanderwaals forces
- C. Hydrogen bond formation
- D. Covalent attraction

Answer: C

7. Most volatile compound is		
A. HF		
B. HBr		
C. HCl		
D. HI		
Answer: C		
Watch Video Solution		
8. Whichof the following substances is covalently bonded ?		
8. Whichof the following substances is covalently bonded? A. Silica		
A. Silica		
A. Silica B. Diamond		

Answer: C

- **9.** Among the following the weakest force of interaction is
 - A. Dative bond
 - B. Metallicbond
 - C. Hydrogen bond
 - D. Vanderwaals forces

Answer: D

Watch Video Solution

Exercise I C W Valence And Formula Writing

1. An atom has 2K, 8 L, 11 M, 2N electrons, the total number of s-electrons

will be

A. A B

 $B.A_{2}B_{3}$

 $C. A_3 B_2$

 $D.AB_2$

Answer: B

Watch Video Solution

2. Two elements X and Y have following electronic configurations.

 $X: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

 $Y: 1s^2 2s^2 2p^6 3s^2 3p^5$

The expected compound formed by combination of X and Y will be

expresed as

A. <i>XY</i> ₂		
$B. X_5 Y_2$		
$C.X_2Y_5$		
D. <i>XY</i> ₅		
Answer: A		
Watch Video Solution		
3. The atomic numbers of four elements, A,B,C and D are 6,8,10 and 12		
respectively. The two elements which can react to form ionic bonds (or		
ionic compounds) are:		
A. Coordinate		
B. Covalent		
C. Ionic		
D. Metallic		

Answer: C

- **4.** An atom with atomic number 20 is most likely to combine chemically with the atom whose atomic number is
 - A. 11
 - B. 16
 - C. 18
 - D. 10

Answer: B

Watch Video Solution

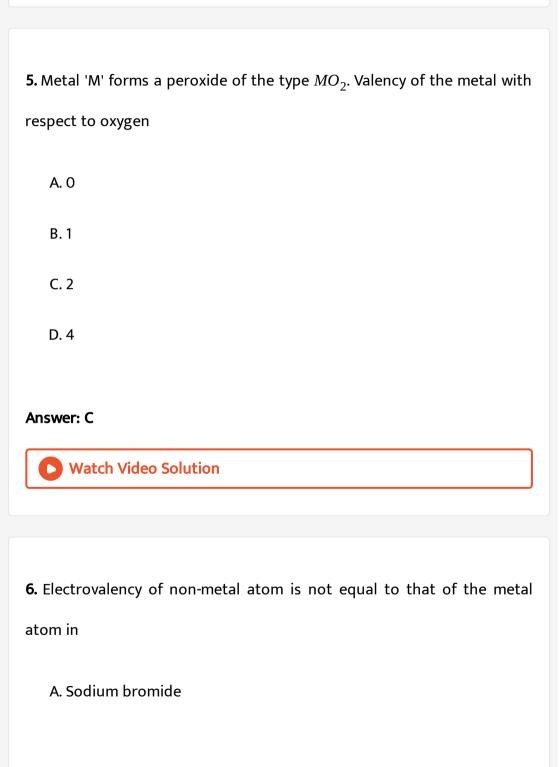
5. If stability were attained with 6 electrons rather than with 8 electrons, what would be the formula of the stable fluoride ion

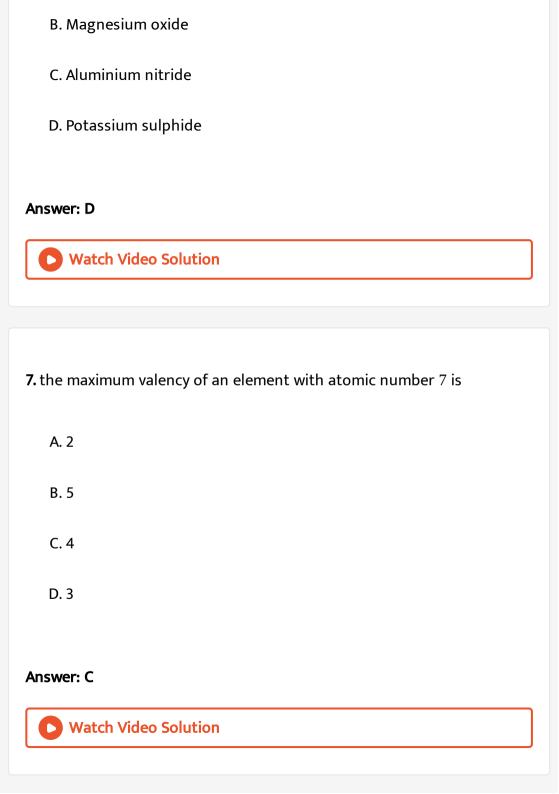
A. F^{3+}
$B.F^{+}$
$C.F^-$
D. F^{2-}
Answer: B
Watch Video Solution
Exercise I C W Kossel Lewis Theory And Octet Rule
1. Duplet configuration is not found in
A. Hydride ion
B. Hydrogen molecule
C. Lithium cation
D. Be^{3+}

Watch Video Solution

- 2. Which of the following ions has a pseudo-inert-gas configuration?
 - **A.** *Na* ⁺
 - B. *Cu* +
 - $C.K^+$
 - D. S^{-2}

Answer: B




Watch Video Solution

3. The number of valency electrons and the velency with respect to hydrogen are equal for

B. Silicon C. Phosphorus D. Chlorine **Answer: B Watch Video Solution** 4. The element having highest velency with respect to oxygen is A. Sodium B. Aluminium C. Chlorine D. Sulphur **Answer: C** Watch Video Solution

A. Sulphur

8. Valence of sulphur in sulphuric acid is
A. 2
B. 4
C. 6
D. 8
Answer: C
Watch Video Solution
9. The electrons generally involved in bonding
A. Are those that lie closest to the nucleus
B. Are those for which the ionization energies are small
C. Belongs to inner shells
D. Are free electrons

Answer: B

Watch Video Solution

- 10. Most energetic species among the following is
 - $A.H_2$
 - B. Ne
 - C. F
 - $D.F_2$

Answer: C

Watch Video Solution

11. Which of the following covalent molecule is an exception to octet rule

?

B. CO₂ $C.H_2O$ D. CH_{4} **Answer: A Watch Video Solution** 12. Odd electron bond is present in A. NO $B.NO_2$ C. CIO₂ D. All **Answer: D** Watch Video Solution

A. BeCl₂

Exercise I C W Covalent Bond

- 1. Covalent bond is present in
 - **A.** *Na*₂*S*
 - $B.AlCl_3$
 - C. NaH
 - $D.K_2O$

Answer: B

View Text Solution

- 2. Molecule having maximum number of covalent bonds is
 - A. NH_4OH

B. NH₄Cl

 $C.CO(NH_2)_2$

 $\mathsf{D.}\,\mathit{CH}_3\mathit{OH}$

Answer: C

3. Number of bonded electrons in ethane molecule are

A. 7

B. 12

C. 10

D. 14

Answer: D

4. Number of lone pairs of electrons in 9 gms. Of water are [N= Avogadro
Number]
A. 2N
B. N/2
C. N
D. N/4
A
Answer: C
Watch Video Solution
Watch Video Solution
Watch Video Solution
Watch Video Solution5. The number of electron pairs involved in the formation of hydrogen
5. The number of electron pairs involved in the formation of hydrogen
5. The number of electron pairs involved in the formation of hydrogen cyanide molecule are

Watch Video Solution

Exercise I C W Ionic Bond And Lattice Energy

- **1.** The electronegativities of two elements are 0.7 and 3.0. The bond formed between them would be
 - A. Ionic
 - B. Covalent
 - C. Co-ordinate covalent
 - D. Metallic

Answer: A

2. An ionic compound will be formed by the combination of one of the
following pairs of elements. This pair of element is :
A. I A group and VII A group
B. II A group VI A group
C. III A group and V A group
D. O' group and VIII A group
Answer: A
Watch Video Solution
3. Which of the following are not ionic compounds?
A. <i>CaC</i> ₂
B. <i>NaH</i>
C. <i>BaF</i> ₂

D.	BF_3
----	--------

Watch Video Solution

- **4.** Which of the following is a favorable factor for cation formation?
 - A. Low ionisation potential
 - B. High electron affinity
 - C. High electronegativity
 - D. Small atmic size

Answer: A

Watch Video Solution

5. Lattice energy of an ionic compound depedns upon :

- A. Only radius of cation
- B. Only radius of anion
- C. Cation to anion radius ratio
- D. Sum of the radii of cationand anion

- **6.** Which of the following is not a correct statement about an ionic compound
 - A. The higher the temperature, the more the solubility
 - B. The higher the dielectric constant of the solvent, the more the solubility
 - C. the higher the dipole moment of the solvent, the more the solubility

D. The higher the lattice energy, the more the solubility
Answer: D
Watch Video Solution
7. Which one of the following material conducts electricity?
A. Crystalline NaCl
B. Fused NaCl
C. Molten sulphur
D. Diamond
Answer: B
Watch Video Solution
8. Melting point is low for

A. Calcium fluoride B. Calcium iodide C. Calcium Chloride D. Calcium bromide **Answer: B Watch Video Solution** Exercise I C W Fajan S Rules 1. According to Fazan rule, the covalent bond is favoured by: A. Small cation and large anion B. Small cation and small anion C. Large cation and large anion

D. Large cation and small anion

Answer: A

- **2.** Polarization is the distortion of the anion by an adjacenty placed cation. Which of the following statement is correct?
 - A. Maximum polarisation is brough about by cation of high charge
 - B. Maximum polarisation is brought about by Cation of Low charge
 - C. A large cation is likely to bring about a large degree of polarisation
 - D. A small anion is likely undergo a large degree of polarisation

Answer: A

Watch Video Solution

3. Polarizing power is

- A. Charge on the cation increases
 - B. Size of the cation increase
 - C. Charge on the cation decreases
- D. Has no relation to its size or charge

Answer: A

Watch Video Solution

- **4.** AICI₃ is covalent while AIF₃ is ionic This can be justified on the basic of.
 - A. Molecular orbital theory
 - B. Valence bond theory
 - C. Fajan's rule
 - D. Lattice energy

Answer: C

5. Among LiCI, $BeCI_2$ and CCI_4 the covalent bond character varies as .

$$\mathsf{A.}\ \mathit{LiCl} > \mathit{BeCl}_2 > \mathit{BCl}_3 > \mathit{CCl}_4$$

$$B. LiCl < BeCl_2 < BCl_3 < CCl_4$$

$$C. LiCl > BeCl_2 > CCl_4 > BCl_3$$

$$D. LiCl > BeCl_2 > BCl_3 > CCl_4$$

Answer: B

Exercise I C W Bond Parameters

1. The correct order in which the O-O bond length increases in the following is

- A. $H_2O_2 < O_2 < O_3$
- B. $O_3 < H_2 O_2 < O_2$
- C. $O_2 < H_2 O_2 < O_3$ D. $O_2 > O_3 > H_2 O_2$

Answer: D

2.

The

 H_2S , NH_3 , BF_3 and SiH_4 is

correct

order of bond angles (smallest first)

in

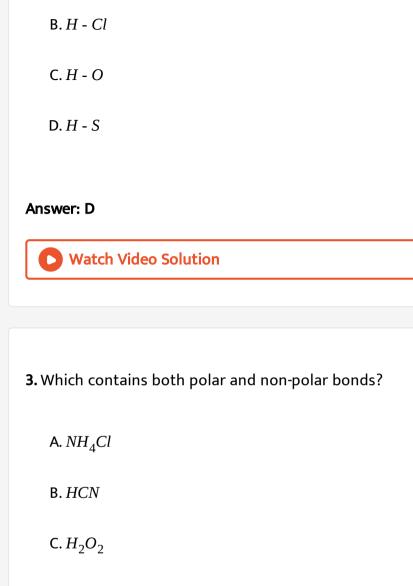
- $A.H_2S < NH_3 < SiH_4 < BF_3$
 - 2 3 4
 - B. $NH_3 < H_2S < SiH_4 < BF_3$ s
 - $C. H_2 S < SiH_4 < NH_3 < BF_3$
 - D. $H_2S < NH_3 < BF_3 < SiH_4$

Answer: A

Watch Video Solution

Exercise I C W Polarity And Dipole Moment

- 1. Pure covalent double bond is present in
 - A. Acetylene
 - B. Carbon dioxide
 - C. Ethylene
 - D. Ethane


Answer: C

Watch Video Solution

2. Which of the following is most polar bond?

A. H - F

D. CH_4

Answer: C

4. If the electron pair forming a bond between two atoms and B is not in the center then the bond is ?

A. Single bond

B. Polar covalent bond

C. Non-polar bond

D. p - bond s

Answer: B

5. Which of the following is non-polar

 $A.\,H_2S$

 $B.\,NaCl$

 $C. Cl_2$

Answer: C

Watch Video Solution

Exercise I C W Valence Bond Theory

1. The orbital overlapping is maximum		
	n ın	۱
"The orbital overlapping is maximal		•

A. *Cl*₂

B. HI

C. HCl

D. HBr

Answer: A

View Text Solution

2. The number of sigma and Pi bonds in a molecule of cyanogen are
A. 4,3
B. 3,4
C. 5,2
D. 3,5
Answer: B
Watch Video Solution
3. Linear combination of two hybridised orbitals belonging to the two atoms, each having one electron leads to a
A. Sigma bond
A. Sigma bond B. Double bond

Answer: A

Watch Video Solution

- 4. s p overlapping is present in
 - A. Br_2
 - $B.H_2$
 - $C.O_2$
 - D. HF

Answer: D

Watch Video Solution

5. Which one of the following is an incorrect statement?

A. A p bond is formed when a sigma already exists

- B. A p bond may be formed by the overlapping of 'p' or 'd' orbitals
- C. A p bond is formed by the overlapping of hybrid orbitals
- D. A p bond is formed by the lateral overlapping of atomic orbitals

Answer: C

Watch Video Solution

- **6.** How many σ and π bonds are present in tetra cyanoethylene ?
 - A. 9simga and 9π
 - **B.** 5σ and 9π
 - C. 9σ and 7π
 - D. 8σ and 8π

Answer: A

Exercise I C W Vsepr Theory

1. CO₂ is iso-structural with

- A. HgCl₂
- B. SnCl₂
- $C. C_2H_2$
- D. ZnCl₂

Answer: B

- **2.** In NO_3^- ion, the number of bond pairs and lone pairs of electrons on nitrogen atom are:
 - A. 2,2
 - B. 3,1

C. 1,3

D. 3,0

Answer: D

Watch Video Solution

- 3. In ${\it OF}_2$, the number of bond pairs and lone pairs of electrons are respectively,
 - A. 2,6
 - B. 2,8
 - C. 2,10
 - D. 2,9

Answer: B

4. The geometry of ClO_3^- ion according to valence shell electron pair
repulsion (VSEPR) theory will be :
A. Planar triangular
B. Pyramidal
C. Tetrahedral
D. Square planar
Answer: B
Watch Video Solution
5. VSEPR Theory
A. Linear
B. Planar triangle

C. Pyramid

D. Tetrahedon
Answer: B
Watch Video Solution
6. Which of the following molecule is linear?
A. SO ₂
B. NO ₂ ⁺
C. NO 2
D. SCl ₂
Answer: B

Exercise I C W Hybridisation

1. The number of hybrid orbitals in a molecule of decane are
A. 36
B. 40
C. 38
D. 8
Answer: B
Watch Video Solution
2. The hybridisation of Nitrogen in Nitrate ion is
2. The hybridisation of Nitrogen in Nitrate ion is A. sp
A. sp
A. sp $B. sp^2$

Answer: B

Watch Video Solution

- 3. Hybridisation of iodine hepta fluoride molecule is
 - A. sp^3d^3
 - B. sp^3d
 - $C. sp^3d^2$
 - D. dsp^2

Answer: A

- **4.** A molecule is formed by sp^3d^2 hybridisation. Bond angle in it is :
 - A. PCl_5

- B. BrF_5
- C. ClF_3
- D. *IF* 7

Answer: B

Watch Video Solution

- **5.** The molecule which contains $\sigma_{sp^3-sp^3}$ and σ_{sp^3-p} bonds in it is
 - A. CH_3CH_3
 - $\mathsf{B.}\mathit{CH}_{3}\mathit{CHO}$
 - $C. CH_3CH_2Cl$
 - D. CHCl₃

Answer: C

View Text Solution

6. The C - H bond in propane is

A. σ_{sp-s}

B. σ_{sp^2-s}

 $\mathsf{C.}\,\sigma_{p-s}$

D. σ_{sp}^3 -s

Answer: D

- 7. Number of hybrid orbitals present in a molecule of propene are
 - A. 12
 - B. 10
 - C. 9
 - D. 8

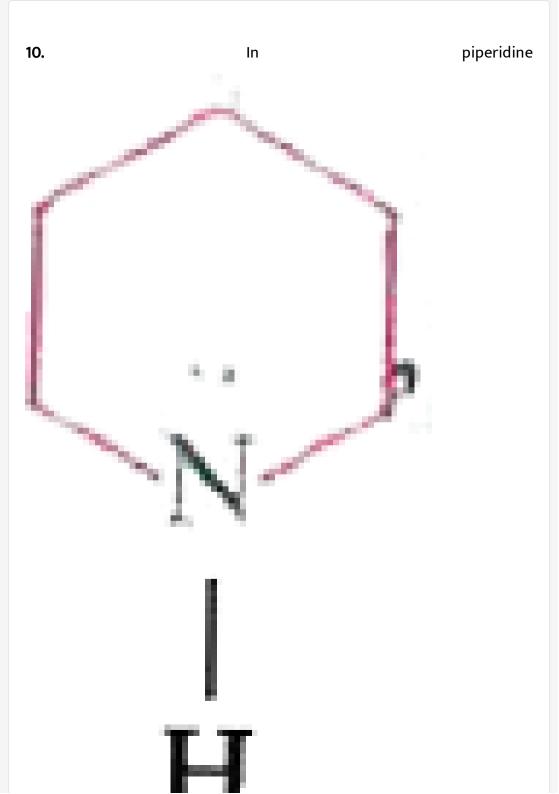
Answer: B

Watch Video Solution

- **8.** Hybridization of carbon in C_3O_2 is :
 - A. sp
 - $B. sp^2$
 - $\mathsf{C.}\,\mathsf{sp}^3$
 - D. None

Answer: A

Watch Video Solution


9. The type of hybrid orbitals used by the oxygen atom in ${\it Cl}_2{\it O}$ molecule

is

- A. sp^3
- B. sp^2
- C. sp
- D. None

Answer: A

state assumed by N is

- A. sp
- $B. sp^2$
- $\mathsf{C.}\,\mathsf{sp}^3$
- D. dsp^2

Answer: C

- **11.** In which of the following sepcies , is the underlined carbon has sp^3 -hybridisation ?
 - A. CH_3 COOH
 - B. $CH_3\underline{C}H_2OH$
 - $C.CH_3COCH_3$

D.
$$CH_2 = \underline{C}H - CH_3$$

Answer: B

Watch Video Solution

- **12.** Carbon atoms in $C_2(CN)_4$ are :
 - A. sp hybridized
 - B. sp^2 hybridized
 - C. sp and sp^2 hybridized
 - D. sp, sp^2 and sp^3 hybridized

Answer: C

Watch Video Solution

13. H-B- H bond angle in BH_4^- is :

- **A.** 180 °
- B. 120°
- C. 109°
- D. 90°

Answer: C

orbitals?

Watch Video Solution

14. A square planar complex is formed by hybridization of which atomic

- A. s, p_x, p_y, p_z, d_{yz}
- B. s, p_x , p_y , $d_{x^2-y^2}$
- C. s, p_x, p_y, d_{z^2}
- D. s, p_x , p_z , d_{xy}

Answer: B

Exercise I C W Dative Bond

1. When	а	cation	gets	hydrated,	normally	the	bond	formed	between
cation ar	nd '	water n	noleci	ule is					

- A. Dative bond
- B. Ionic bond
- C. Covalent bond
- D. Hydrogen bond

Answer: A

Watch Video Solution

2. Molecule having maximum number of dative bonds is

 $A.H_2O_2$

 $B.NH_4^+$

 $C.Al_2Cl_6$

 $D.B_3N_3H_6$

Answer: D

Watch Video Solution

- - A. A co-ordinate covalent bond

3. NH_3 and BF_3 from adduct readily because they from

- B. A covalent bond
- C. An ionic bond
- D. A hydrogen bond

Answer: A

4.
$$CuSO_4$$
. $5H_2O$ is represented as :

A.
$$\left[Cu \left(H_2 O \right)_4 \right] SO_4$$

$$\mathsf{B.}\left[\mathit{Cu}\Big(H_2O\Big)_3\mathit{SO}_4\right].2H_2O$$

C.
$$\left[Cu\left(H_2O\right)_4\right]SO_4$$
. H_2O

$$D. \left[Cu \left(H_2 O \right)_5 \right] SO_4$$

Answer: C

Watch Video Solution

5. Dative bonds are not present in :

A. NH_{Δ}^{+}

B. N_2O

 $\mathsf{C}.\mathit{BCl}_3$

D. $B_2N_3H_6$

Answer: C

Watch Video Solution

- **6.** NH_4CN contans
 - A. Ionic bond
 - B. Covalent bond
 - C. Dative bond
 - D. All

Answer: D

Watch Video Solution

Exercise I C W Molecular Orbital Theory

1. Which of the following cannot be formed?

A. He^{2+}

B. *He* +

C. He

D. He_2

Answer: D

- 2. Which of the following pairs have identical bond order?
 - A. $N_2O_2^{2+}$
 - $B. N_2 O_2^{-1}$
 - $C. N_2^-, O_2$
 - D. O^{2+} , N_2

Answer: A

Watch Video Solution

- **3.** The number of antibonding electron pairs in $O_2^{2^-}$ molecular ion on the basic of molecular orbital theory is
 - A. 2
 - B. 3
 - C. 4
 - D. 5

Answer: C

Watch Video Solution

4. Which of the following has fractional bond order

A.
$$O_2^{2+}$$

B. O_2^{2-}

 $C.F_2^{2-}$

 $D.H_2^-$

Answer: D

Watch Video Solution

5. The molecular electronic configuration of H_2^- ion is

A. $(\sigma 1s)^2$

B. $(\sigma 1s)^2 (\sigma \cdot 1s)^3$

 $C. (\sigma 1s)^2 (\sigma \cdot 1s)^1$

D. $(\sigma 1s)^3$

Answer: C

6. Which of the following molecules/ins does not contain unpaired electrons?

- A. N_2^+
- $B.O_2$
- $C. O_2^{2-}$
- $D.B_2$

Answer: C

Watch Video Solution

7. In O_2^- , O_2 and O_2^{-2} molecular species, the total number of antibonding electrons respectively are

A. 7,6,8

- B. 1,0,2
- C. 6,6,6
- D. 8,6,8

Answer: A

Watch Video Solution

8. Match List I (Molecules) with List II (Bond order)and select the correct answer using the codes.

List - I

I. Li_2

 $\mathbf{H}.\ \mathbf{N}_{2}$

III. Be₂

IV.O,

List - II

A. 3

B. 1.5

C. 1.0

D. 0

E. 2

A. I - B, II - C, III - A, IV - E

B. I - C, II - A, III - D, IV - E

C. I - D, II -A, III - E, IV -C

D. I - C,II - B, III - E, IV -A

Answer: B

View Text Solution

- **9.** Number of paired electrons in O_2 molecules is :
 - **A.** 7
 - B. 8
 - C. 16
 - D. 14

Answer: D

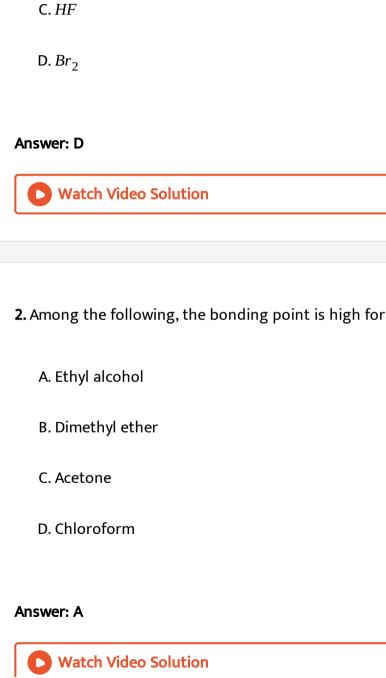
10. The ground state electronic configuration of valence shell electrons

in nitrogen molecule $\left(N_2\right)$ is written as

$$KK, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_x^2, \pi 2p_y^2 \approx \pi 2p_z^2$$

Bond order in nitrogen molecule is

- A. 2
- B. 3
- C. 0
- D. 1


Answer: B

Watch Video Solution

Exercise I C W Hydrogen Bonding

1. Which of the following is a normal liquid

A. NH_3

 $B.H_2O$

3. Strongest hydrogen bonding is present in
A. Ammonia
B. Water
C. Hydrogen fluoride
D. Ethyl alcohol
Answer: C Watch Video Solution
4. Intermolecular hydrogen bonding is not present in:
A. Ammonia
B. Water

Answer: D
Watch Video Solution
5. Which of the following is steam volatile
A. Phenol
B. o-Nitrophenol
C. m - Nitrophenol
D. p - Nitrophenol

D. Salicylaldehyde

Answer: B

6. Which of the following compounds shows evidence of the strongest
hydrogen bonding?
A. Propane -1-ol
B. Propane - 2- ol

C. Propane - 1,2 - diol

D. Propane -1,2,3 - triol

Answer: D

7. The compound containing hydrogen bond is-

A. NH_3

 $\mathsf{B.}\,H_2S$

C. HCl

Answer: A
Watch Video Solution
8. Intramolecular hydrogen bonding is not present in :-
A. o-Fluoro phenol
B. Salicylaldehyde
C. o-Nitro phenol
D. p-Nitro phenol

Watch Video Solution

 $D.PH_3$

Answer: D

1. An element A is tetravalent and another element B is divalent. The formula of the compound formed from these elements will be:

- $\mathsf{A.}\,A_2B$
- B.AB
- $C.AB_2$
- $D.A_{2}B_{3}$

Answer: C

Watch Video Solution

2. An element A belongs to IIA group and another element B belongs to

VIA group. The compound formed between A and B contains

- A. A^{2+} , B^{-} ions,
- B. A^{2+} , B^{-2} ions
- $C.A^{-2}, B^{+2}$ ion

$$D.A^+, B^{-2}$$
 ions

Answer: B

Watch Video Solution

- **3.** $Cl + Cl \rightarrow Cl_2$, this is an example for
 - A. Endothermic reaction
 - B. Exothermic reaction
 - C. Either exothermic or endothermic
 - D. Neither exothermic nor endothermic

Answer: B

Watch Video Solution

4. The compound in which cation is isoelectronic with anion is.

C. Lithium fluoride D. Rubidium bromide **Answer: D Watch Video Solution** 5. Ammonium ion is A. 2 B. 3 C. 4 D. 5 **Answer: C** Watch Video Solution

A. Sodium chloride

B. Potassium Bromide

Exercise I H W Kossel Lewis Theory And Octet Rule

- 1. Valence of the metal atom with respect to oxygen is maximum in
 - A. Mn_2O_7
 - B. OsO_4
 - $C. MnO_2$
 - D. CrO_3

Answer: B

- **2.** The maximum number of valency electrons possible for atom in the second period of the periodic table is :
 - A. 2

Β. δ
C. 18
D. 32
Answer: B
Watch Video Solution
3. Which of the following molecule does NOT obey octet rule?
A. PCl ₃
$B.\mathit{BeCl}_2$
C. MgO
$D.\mathit{NH}_3$
Answer: D
Watch Video Solution

4. Nucleus of an element contains 9 protons Its valency would be :
A. 1
B. 3
C. 2
D. 5
Answer: A
Watch Video Solution
5. Which of the following molecule does NOT obey octet rule?
A. NaCl
$B.\mathit{BeCl}_2$
C. MgO
C. MgO ${\rm D.}{\it NH}_3$

Answer: B

Watch Video Solution

- **6.** How many electrons are present in the valence shells of the central atoms in the molecules of $BeCl_2$, BF_3 and PCl_5 ?
 - A. NH_3
 - B. CH_4
 - $C.PCl_5$
 - D. $BeCl_2$

Answer: C

Watch Video Solution

Exercise I H W Covalent Bond

1. Triple bond is not present in
A. Cyanogen
B. Propyne
C. Nitrous Oxide
D. Nitrogen dioxide
Answer: D
Watch Video Solution
2. Molecule which contains only bonded pairs of electrons on the central
atom is
A. <i>H</i> ₂ <i>O</i>
$B.\mathit{NH}_3$
$C.\mathit{BeCl}_2$

Answer: C

Watch Video Solution

- **3.** Compound having maximum number of bonded pairs of electrons in its molecule is
 - A. Ethane
 - B. Ammonia
 - C. Sulphur hexafluoride
 - D. Bromine Pentafluoride

Answer: A

4. Which species has the maximum number of lone pair of electrons on the central atom ? .

A. *PH*₃

 $B.\,H_2S$

C. *CH*₄

D. *BrF* ₅

Answer: B

5. A solid substance is soft, has a low melting point and is a poor conductor of electricity it is

A. An ionic solid

B. A net work solid

C. A metallic solid

D. A molecular solid

Answer: D

Watch Video Solution

Exercise I H W Ionic Bond And Lattice Energy

- **1.** Most favourable conditions for electrovalent bonding are
 - A. Low charge on ions, large cation and small anion
 - B. High charge on ions, small cation and large anion
 - C. High charge on ions, large cation and small anion
 - D. Low charge on ions, small cation and large anion

Answer: A

2. In which of the following ionic bond is present
A. LiH
B. HF
C. CsH
D. HI
Answer: C
Watch Video Solution
3. Sodium chloride is an ionic compound whereas hydrogen chloride is
Mainly covalent because
A. Sodium is less reactive
B. Hydrogen is non-metal
C. Hydrogen chloride is a gas

D. Electronegativity difference in the case of Hydrogen and chlorine is more than 2.1

Answer: B

- **4.** Lattice energy of an ionic compound depedns upon :
 - A. Charge on the ion and size of the ion
 - B. Packing of ions only
 - C. Size of the ion only
 - D. Charge on the ion only

Answer: A

5. Least ionic compound among the following is
A. NaCl
B. KCl
C. Csl
D. Lil
Answer: D
Watch Video Solution
6. The compound with high lattice energy is
A. KBr
A. KBr B. NaBr
B. NaBr

Answer: C

- **7.** Among the following cations, the one present in a least ionic halide salt is
 - A. Calcium ion
 - B. Barium ion
 - C. Caesium ion
 - D. Potassium ion

Answer: A

Watch Video Solution

8. For the ionic solids, CaO and Kl. Identify the wrong statement among the following

- A. Lattice energy of CaO is much larger than that of Kl
- B. KI is soluble in benzene
- C. CaO has higher melting point
- D. KI has lower melting point

Answer: B

Watch Video Solution

- 9. As compared to covalent compounds, electrovalent compounds, generally have
 - A. Low melting points and low boiling points
 - B. Low melting points and high boiling points
 - C. High melting points and low boiling points
 - D. High melting points and high boiling points

Answer: D

10. Melting point is very high for

A. KCl

B. KBr

C. KI

D. KF

Answer: D

Watch Video Solution

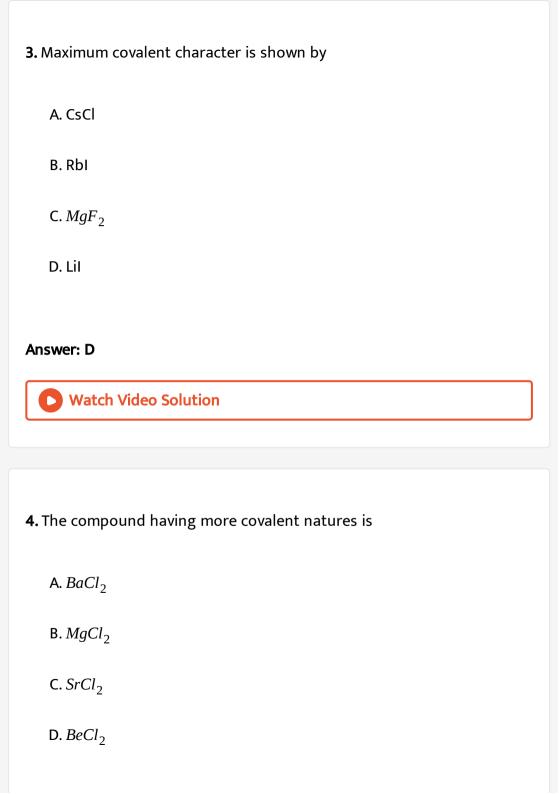
Exercise I H W Fajan S Rules

1. Which of the following factor generally favours electrovalence

A. Cation with pseudo inert gas configuration

- B. High charge on ions

 C. Large cation and small anion


 D. Small cation and large anion

 Answer: C

 Watch Video Solution
- **2.** Covalent nature of a compound increases with
 - A. Decrease in cation size
 - B. Increase in cation size
 - C. Decrease in anion size
 - D. Decrease in both cation and anion size

Answer: A

Answer: D

Watch Video Solution

5. The correct order of decreasing polarisability of ion is

A.
$$Cl^{-}$$
, Br^{-} , I^{-} , F^{-}

$$B.F^-, I^-, Br^-, Cl^-$$

$$C. F^-, Cl^-, Br^-, I^-$$

Answer: D

Watch Video Solution

6. The polaarsation power is maximum of which of the following ion

A.
$$Mg^{+2}$$

- $B.K^+$
- C. *Cs* +
- D. Al^{3+}

Answer: D

Watch Video Solution

Exercise I H W Bond Parameters

- 1. The bond length in LiF will be
- A. Less than that of NaF

B. Equal to that of KF

- C. More than that of KF
- D. Equal to that of NaF

Answer: A

2. Which of the following compounds has the samallest bond angle in its molecule?

A. OH_2

 $B.SH_2$

 $C.NH_3$

 $D.SO_2$

Answer: B

Watch Video Solution

Exercise I H W Polarity And Dipole Moment

1. Which of the following bonds has the most polar character?

A. C -O B. C-Br C. C-F D. C-S **Answer: C** Watch Video Solution 2. The electronegativity values of C,H,O,N and S are 2.5, 2.1, 3.5, 3.0 and 2.5 respectively. Which of the following is the most polar? A. S - H B. O - H C. N-H D. C - H **Answer: B**

- 3. Dipole moment of CO_2 is zero which implies that
 - A. Carbon and oxygen have equal electronegativities
 - B. Carbon has no polar bond
 - $C. CO_2$ is a linear molecule
 - D. Carbon has bond moments of zero value.

Answer: C

4. The molecule having non-zero dipole moment is

 $\mathsf{A.}\,H_2O_2$

 $\operatorname{B.}\mathit{CH}_4$

 $C. C_2H_6$

D. BF_4^-

Answer: A

Watch Video Solution

- 5. Dipolemoment is not zero for
 - A. PCl_5
 - B. ClF_3
 - $C. XeF_4$
 - $D. C_2 H_5 C = C C_2 H_5$

Answer: B

Exercise I H W Valence Bond Theory

1. Molecule which contains only sigma bonds in it is

A. Pentene

B. Pentane

C. Pentadiene

D. Pentyne

Answer: B

Watch Video Solution

2. Pi (π) bond is formed by the overlap of

A. p - p orbitals along their axis

B. s-p orbitals anlong the axis of p - orbital

C. p - p orbitals perpendicular to their axis

D. s - s orbitals

Answer: C

Watch Video Solution

- 3. Which of the following is not correct?
 - A. A sigma bond is weaker than pi bond
 - B. A sigma bond is stronger than pi bond
 - C. A double bond is stronger that a single bond
 - D. A double bond between two atoms is shorter than a single bond between the same atoms.

Answer: A

4. The strongest covalent bond is formed by the overlap of A. 2s and 2p orbitals B. 2p and 2p orbitals C. 2s and 2s orbitals D. All of these **Answer: B Watch Video Solution Exercise I H W Vsepr Theory** 1. The hydronium ion Is A. Thtrehedron B. Square planar

C. Planar triangle
D. Pyramidal
Answer: D
Watch Video Solution
2. Which of the following molecule does not have
of atoms ?

ave a linear arrangement

A. H_2S

B. C_2H_2

 $C. BeH_2$

D. *CO*₂

Answer: A

3. Which of the following has distorted tetrahedron shape
A. SiH_4
$B.\mathit{CCl}_4$
C. H ₂ O
D. CHCl ₃
Answer: D
Watch Video Solution
4. Ammonium ion is
A. Tetrahedron
B. Pyramid
C. Square planar
D. Square pyramid

Answer: A

Watch Video Solution

- 5. Which of the following species are pyramidal in shape?
 - A. NH_3
 - $B.H_3O^+$
 - $C.PH_3$
 - D. NH_4^+

Answer: D

- 6. Which of the following set of species have planar structure?
 - A. NH_{Δ}^{+}

 $\mathsf{C}.\mathit{XeF}_4$

 $\mathsf{D.}\,\mathit{CCl}_4$

Answer: C

Watch Video Solution

7. Which of the following is not a planar molecule?

A. BF_3

 $\mathsf{B.}\,C_2\!H_4$

 $C. XeF_4$

D. NH_3

Answer: D

1. In which of the following molecules, the central atom does not have

A. PCl₅

 sp^3 hybridization?

B. CIF_3

 $\mathsf{C.}\,\mathit{SeF}_6$

D. XeF_2

Answer: C

Watch Video Solution

2. A molecule is formed by sp^3d^2 hybridisation. Bond angle in it is :

A. 90 °

B. 109 ° 28¹

C.	120°
D.	. 72 °

Answer: A

Watch Video Solution

- **3.** Which of the following molecule contain sp^2 hybrid carbon atom?
 - A. $BeCl_2$
 - **B.** *CO*₂
 - C. HCHO
 - D. NH_3

Answer: C

4. N- H Bond in Ammonia molecule is

A. σ_{s-s}

B. σ_{p-s}

 $\mathsf{C.}\,\sigma_{sp^3-s}$

D. σ_{sp^3-p}

Answer: C

Watch Video Solution

5. σ_{sp^2-s} bond is present in

A. CH_4

 $B.NH_3$

C. $SiCl_4$

 $D. CH_2 = CHCl$

Answer: D

Watch Video Solution

6. The type of overlapping in Br-F bond in BrF_3 molecule is

A. $sp^3 - p$

 $B. sp^2 - p$

 $C. sp^3d - p$

D. $sp^{3} - d^{2} - p$

Answer: C

Watch Video Solution

7. Beryllium atom in beryllium fluoride is

A. sp^3 hybridised

- B. sp^2 hybridised
- C. sp hybridised
- D. Unhybridised

Answer: C

Watch Video Solution

- **8.** Hybridisation in SO_2 molecule is
 - A. sp
 - $B. sp^2$
 - $\mathsf{C}.\,\mathsf{sp}^3$
 - D. sp^3d

Answer: B

9. In which of the following the central atoms does not use sp^3 hybrid orbitals in its bonding

- A. BeF_2
- $\mathsf{B.}\mathit{OH}_3^{^+}$
- $C.NH_4^+$
- D. NF_3

Answer: A

- **10.** Which of the following does not exhibit sp^3 hybridisation ?
- A. C_6H_6
 - B. C_2H_4
 - $\mathsf{C}.\mathit{BCl}_3$

D. NF_3

Answer: D

Watch Video Solution

11. Which of the following has been arranged in increasing order of size of the hybrid orbitals ?

A. sp, sp^2 , sp^3

 $B. sp^3, sp^2, sp$

 $C. sp^2, sp^3, sp$

D. sp^2 , sp, sp^3

Answer: A

12. The structural formula of a compound is CH_3 - $CH = C = CH_2$. The type of hybridization at the four carbons from left to right are

$$A. sp^3, sp, sp^2, sp^3$$

$$B. sp^2, sp^3, sp^2, sp$$

$$C. sp^3, sp^2, sp, sp^2$$

$$D. sp^3, sp^2, sp^2, sp^2$$

Answer: C

- **13.** The shape of gaseous $SnCl_2$ is
 - A. Tetrahedral
 - B. Linear
 - C. Angular

D. T - shape	
Answer: C	
Watch Video Solution	
exercise I H W Dative Bond	
1. Dative bond is present in :-	
A. Carbon monoxide	
B. Carbon dioxide	
C. Nitric oxide	

D. Chlorine monoxide

2. The bond present in NaNC are	
A. Ionic bond	
B. Covalent bond	
C. Co-ordinate covalent bond	
D. All	
Answer: D	
View Text Solution	
3. Potassium ferrocyanide is a	
A. Ionic Bond	
B. Covalent Bond	
C. Dative bond	
D. Polar Bond	

Answer: C

Watch Video Solution

- 4. The compound which contains both ionic and covalent bonds is
 - A. CH_4
 - $B.H_2O$
 - C. KCN
 - D. KCl

Answer: C

- **5.** The compound containing coordinate bond is
 - $\mathsf{A.}\,H_2\mathsf{SO}_4$

B. <i>O</i> ₃	
C. <i>SO</i> ₃	
D. All	
Answer: D	
Watch Video Solution	n
6. Which of the following o	lo

6. Which of the following does not contain coordinate bond?

A. BH_4^-

 $\mathrm{B.}\, \mathrm{NH}_{4}^{^{+}}$

c. CO_3^{2}

 $\mathsf{D.}\,H_3O^{\,+}$

Answer: C

Exercise I H W Molecular Orbital Theroy

1. Which of the following molecular species has unpaired electrons(s)?.

A. N_2

 $B.F_2$

 $C. O_2^{-}$

D. O_2^{2-}

Answer: C

Watch Video Solution

2. The bond order in O_2^+ is

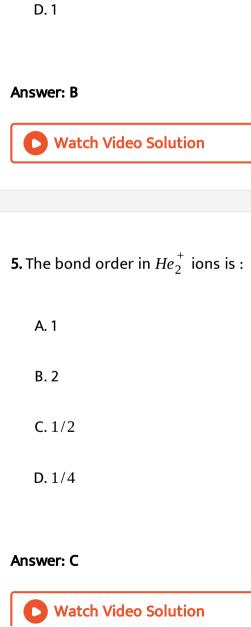
A. 1

B. 1.5

C. 2.5

Answer: C

Watch Video Solution


- 3. Which of the following species exhibits the diamagnetic behaviour?
 - A. NO
 - B. O_2^{2-}
 - C. O_2^+
 - $D.O_2$

Answer: B

Watch Video Solution

4. The calculated bond order in H_2^- ion is

A. 1

B. 43832

C. - 1/2

6. The bond order is of three for

- A. N_2^+
- B. O_2^{2+}
- $C. N_2$
- D. $O_2^{2^-}$

Answer: A

Watch Video Solution

7. Which of the following species have maximum number of unpaired electrons ?

- A. *O*₂
- B. O_2^+

$C.O_2^-$
D. O_2^{2-}
Answer: A
Watch Video Solution
8. The higher number of unpaired electrons are in
A. 16
B. 12
C. 2
D. 8
Answer: C
Watch Video Solution

9. The species having bond order different from that in <i>CO</i> is	
A. <i>NO</i> -	
B. NO^+	
C. <i>CN</i> -	
D. <i>N</i> ₂	
Answer: A Watch Video Solution	
Watch Video Solution	
Exercise I H W Hydrogen Bond	
1. The pair of molecules forming strongest hydrogen bonds are	
A. SiH_4 and SiF_6	
B. CH_3COOH and $CHCl_3$	

 $\mathsf{C}.HCOOH$ and CH_3COOH

 $D.H_2O$ and H_2

Answer: C

Watch Video Solution

- 2. Strongest hydrogen bonding is present in
 - A. H_2O
 - $\mathsf{B.}\, \mathit{NH}_3$
 - $C. H_2S$
 - $\mathsf{D.}\,C_2H_5OH$

Answer: A

3. Hydrogen bond

A. H - F.....H - F

B. *H* - *O*...... *H* - *O*

C. *H* - *S*...... *H* - *S*

D. *H* - *N*...... *H* - *N*

Answer: C

- **4.** Of the following hydrides the boiling point is very low for
 - A. NH_3
 - В. *РН*₃
 - $\mathsf{C}.\mathit{SbH}_3$
 - D. AsH_3

Answer: B

- 5. In which of the following compounds does hydrogen bonding occur
 - A. SiH_4
 - B. LiH
 - $C. SbH_3$
 - $D.NH_3$

Answer: D

- **6.** Bond energy of covalent *O H* bond in water is
 - A. Greater than bond energy of hydrogen bond

- B. Equal to bond energy of hydrogen bond
- C. Less than bond energy of hydrogen bond
- D. Half of the bond energy of hydrogen bond

Answer: A

- **7.** The boiling point of ethanol is higher as compared to the boiling of diethyl ether though both have the same molecular formula. This is due to ,
 - A. Hydrogen bonding
 - B. Ionic bonding
 - C. Co-ordinate covalent bonding
 - D. Resonance

Answer: A

0	Watch Video Solution	
---	----------------------	--

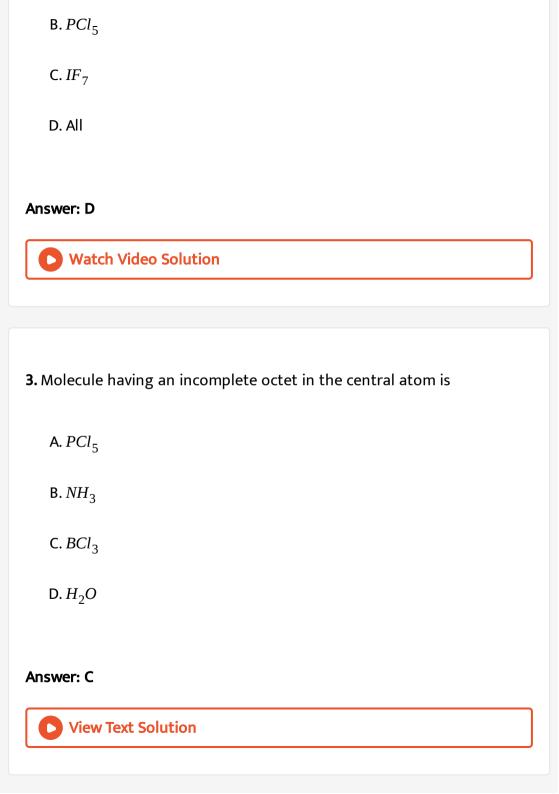
Exercise Ii C W Octet Rule Formal Charge

A. 1

B. 2

C. 3

D. 4


Answer: B

View Text Solution

2. Example of super octet molecule is :

A. ClF_3

- 4. Octet rule mostly violated in the compounds formed by
 - A. Alkali metals
 - B. Alkaline earth metals
 - C. p block elements
 - D. transition elements

Answer: D

View Text Solution

- 5. The formal charges on the three O atoms in the O_3 molecule are
 - A. 0,0,0
 - B. 0,0,-1
 - C. 0,0+1
 - D. 0, + 1, -1

Answer: D Watch Video Solution **Exercise Ii C W Ionic Bond And Lattice Energy** 1. Number of electrons transferred from one atom to another during bond formation in SrS (Strontium Sulphide) A. 1 B. 2 C. 3 D. 4

Answer: B

2HCl is bad conductor of electricity but HCl is good
conductor
A. Soild, aqueous
B. Aqueous, Solid
C. Anhydrous, Solid
D. Anhydrous, aqueous
Answer: D
View Text Solution
3. NaCl does not exhibit space isomerism due to
A. Presence of ions
B. High melting point
C. Strong electrostatic forces between the constituent ions

D. Non directional nature of electrovalent bond.

Answer: D

View Text Solution

- **4.** If Na^+ ion is larger than Mg^{2^+} ion and S^{2^-} ion is larger than Cl^- ion, which of the following will be least soluble in water?
 - A. NaCl
 - $B.\,Na_2S$
 - C. MgCl₂
 - D. MgS

Answer: D

5. How many unit cell are present in a cubic-shaped ideal crystal of *NaCl*

of mass 1.0*g*?

A. 1.7×10^{21} unit cell

B. 2.5×10^{21} unit cell

C. 5.14×10^{21} unit cell

D. 1.28×10^{21} unit cell

Answer: B

Watch Video Solution

6. Which of the following has the lowest Lattice energy?

A. LiF

B. LiCl

C. LiBr

D. Lil

Answer: D

View Text Solution

Exercise Ii C W Bond Parameters

1. The correct order of increasig C - O bond length of CO, CO_3^{2-} , CO_2 is

A.
$$CO_3^{2-} < CO_2 < CO$$

$$B. CO_2 < CO_3^{2-} < CO$$

$$C. CO < CO_3^{2-} < CO_2$$

D.
$$CO < CO_2 < CO_3^2$$

Answer: D

2. The *H* - *O* - *H* bond angle in water is

 $A_{\cdot} < xA^0$

 $B. xA^0$

 $C. > \chi A^0$

D. 2*x*

Answer: B

Watch Video Solution

3. $C_2H_5Br + Q_1 \rightarrow C_2H_5 + Br$

 $C_2H_5Br+Q_2 \rightarrow C_2H_5^{(+)}+Br^{(-)}$, then relation between Q_1 and Q_2 is

A.
$$Q_1 > Q_2$$

B.
$$Q_1 < Q_2$$

 $C. Q_1 = Q_2$

D.
$$Q_1 + Q_2 = 0$$

Answer: B

View Text Solution

Exercise li C W Resonance

1. Which of the following resonating structures is not correct for CO_2 ?

$$: O ... - CI \equiv O: \leftrightarrow : O ... - CII \equiv O ... \leftrightarrow$$

$$O.. = CIII = O.. \Leftrightarrow :O = CIV - O..: \Leftrightarrow$$

A. :
$$O = C = O$$
 :

B. :
$$O \cdot \cdot \cdot - C \equiv O$$
:

$$C.:O\cdots - C \equiv O\cdots$$
:

$$\mathsf{D.}: O \equiv C - O \cdots$$

Answer: C

2. In PO_4^{3-} the formal charge on each O-atom and P - O bond order respectively are .

A. -0.75, 0.6

B. -0.75, 1.0

C. -0.75, 1.25

D. -3, 1.25

Answer: C

Watch Video Solution

3. In the anion $HCOO^-$, the two carbon-oxygen bonds are found to be of equal length. What is the reason for it ?

A. Electronic orbitals of carbon atom are hybridised.

B. The C = O bond is weaker than the C- O bond

C. The anion $HCOO^-$ has two resonating sturctures

D. The anion is obtained by removal of a proton from the acid

Answer: C

molecule.

Exercise Ii C W Bond Polarity And Dipole Moment

- 1. The dipole moment of hydrogen chloride with bond distance 127 pm is
- 1.03 D. The precentage ionic character of its bond is
 - A. 15
 - B. 17
 - C. 19
 - D. 21

Answer: B

2. Which bond angle, θ would result in the maximum dipole moment for the triatomic molecule XY_2 ?

A. =
$$90^{\circ}$$

B. =
$$120^{\circ}$$

$$C. = 150^{\circ}$$

D. =
$$180^{\circ}$$

Answer: A

Watch Video Solution

3. The electronegaivity difference between N and F is greater than that between N and H yet the dipole moment of NH_2 (1.5 D) is larger than

that of $NF_3(0.2D)$. This is because :

A. In $N\!H_3$ as well as $N\!F_3$, the atomic dipole and bond dipole are in opposite direaction

B. In $N\!H_3$, the atomic dipole and bond dipole are in the opposite direaction, where as in $N\!F_3$ these aer in same direaction

C. In $N\!H_3$, as well as in $N\!F_3$ the atomic dipole and bond dipole are in same direction.

D. In $N\!H_3$, the atomic dipole and bond dipole are is same direaction where as in $N\!F_3$ these are in opposite direaction.

Answer: D

Watch Video Solution

4. Which of the following hydrocarbons has the lowest dipole moment?

$$CH_3$$
 $C = C$ H

$$B. CH_3C \equiv CCH_3$$

$$C. CH_3CH_2C = CH$$

D.
$$CH_2 = CH - C \equiv CH$$

Answer: B

Watch Video Solution

5. Dipole moment is shown by

- A. 1,4-dichlorobenzene
 - B. C is 1,2- dichlorobenzene
 - C. Trans 1,3- dichlorobenzene
 - D. Trans 2, 3 decholoro 2 butene

Answer: B

6. Statement : The dipole moment of $N\!H_3$ is less than $N\!F_3$.

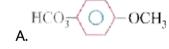
Explanation: The lone pair present on N shows additive nature to N - H vector whereas it is subtractive to N - F vector.

- A. Less than dipolemoment of NCl_3
- B. higher than dipole moment of NCl_3
- C. Eqaul to the diplemoment of NCl₃
- D. None of these

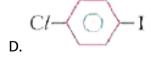
Answer: C

Watch Video Solution

7. The critical temperature of water is higher than that of O_2 because the H_2O molecule has


- A. Fewer electron than O_2
- B. Two covalent bond
- C. V shape
- D. Dipole moment & H bonding

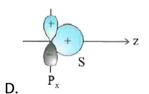
Answer: D



Watch Video Solution

8. In which of the following bonds are polar but molecule is non-polar

- $B.SF_6$
- C. CHCl₃


Exercise Ii C W Valence Bond Theory

1. Which of the following is a zero overlap which leads to non-bonding?

Answer: D

2. VALENCE BOND THEORY

A. Directional

B. Ionic

C. Stregth

D. Hybrid

Answer: A

- **3.** The shape of water molecule is same as that of
 - A. Sigma bonds
 - B. pi bonds
 - C. Both sigma and pi bonds
 - D. Neither sigma nor pi bonds

Answer: A

Watch Video Solution

- 4. The strength of bonds by 2s -2s, 2p2p and 2p-2s overlap has the order
 - A. 1s-1s gt 2p -2p gt 2s 2p gt 2s 2s
 - B. 2p 2p gt 2s 2p gt 2s 2s gt 1s -1s
 - C. 2s 2s gt 1s 1s gt 2s 2p gt 2p 2p
 - D. 2s 2p gt 2s 2s gt 2p 2p gt 1s 1s

Answer: A

- **5.** For compounds ,
- A: Tetracynoethene
- B : Carbon dioxide

C: Benzene

D:1,3-Butaidene.

Ratio of σ and π bonds is in order :

A.
$$A = B < C < D$$

$$B.A = B < D < C$$

$$C. A = B = C = D$$

D. C < D < A < B

Answer: A

Watch Video Solution

6. VALENCE BOND THEORY

A. 90 °

B. 109°28

C. 107 ° 18

Answer: A

Watch Video Solution

7. According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be half-filled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ -bond (b) π -bond (c) δ -bond: The combination of orbital that can not produce non-bonding molecular orbital is (internuclear axis is z-axis):

- A. 1σs s, 3σs p
- B. 1*o*s *p*, 3*o*s *s*
- C. 2\sigmas s, 2\sigmas p
- D. $4\sigma sp^{23} s$

- 8. The bond between chlorine and bromine in BrCl is
 - A. Ionic
 - B. Non-polar
 - C. Polar with negative end on Br
 - D. Polar with negative end on Cl

Answer: D

Exercise Ii C W Vsepr Theory

1. In which of the following orientation of electron pairs and shape of the ion is similar

- A. 0 B. 1 C. 2 D. 3 **Answer: B**
- **View Text Solution**

A. ClO_4^-

B. ClO_3

 $C.ClO_2^-$

D. ClO

Answer: A

- **2.** Total number of lone pair of electrons in $XeOF_4$ is :

3. Which of the following is planar?

A. XeO_4

 $\mathsf{B.}\mathit{XeO}_{3}F$

 $C. XeO_2F_2$

D. XeF_4

Answer: D

Watch Video Solution

4. H_2O and Cl_2O have different bond angles due to

A. Number of lone pairs on cental atom in $H_2{\cal O}$ and ${\it Cl}_2{\cal O}$ are

different

B. Hybridisation is different

C. Repulsions are more among bulky chlorine atoms in ${\it Cl}_2{\it O}$

D. DEN between central atom and bonded atoms is different .

Answer: C

View Text Solution

- 5. Which one of the following is a correct set?
 - A. H_2O , sp^3 , angular
 - B. H_2O , sp^2 linear
 - C. NH_4^+ , dsp^2 , square planar
 - D. CH_{4} , dsp^{2} , tetrahedral

Answer: A

6. Which of the following is a correct set with respect to molecule,

hybridization, and shape?

- A. CO_2 , sp^2 , bent
- B. H_2O , sp^2 , bent
- C. BeCl₂, sp, linear
- D. H_2O , sp^3 , linear

Answer: C

Watch Video Solution

7. The shape of AB_3E molecule (B = bond pair, E = lonepair)

A. Tetrahedral

B. pyramidal

C. Angular

D. T - shape

Answer: B

View Text Solution

Exercise Ii C W Hybridisation

1. What is the hybridisation state of the central atom in the conjugate

base of NH_4^+ ion?

A. sp

B. sp^3

 $C. sp^2$

D. dsp^2

Answer: B

2. For which hybridization, there are two unequal bond angles

A. sp^3

B. sp^2

C. sp

D. sp^3d

Answer: D

View Text Solution

- **3.** The shape of CH_4 , SO_4^{2-} , PO_4^{-3} is
- A. Trigonal planar
 - B. Angular
 - C. Tetrahedral
 - D. Trigonal bipyramidal

Answer: C

View Text Solution

- 4. In which of the following molecules /ions , are all the bonds not equal
- ?
- A. XeF_4
- $B.BF_4^-$
- $\mathsf{C}.\mathit{SF}_4$
- $\mathsf{D.}\,\mathit{SiF}_4$

Answer: C

Watch Video Solution

5. The compounds in which C uses its sp^3 - hybrid orbitals for bond formation are:

A. H - COOH

 $B. \left(NH_2 \right)_2 C = O$

C. H - CHO

D. CH₃CH₂OH

Answer: D

Watch Video Solution

- 6. On catalytic hydrogenation, ethylene gives ethane during this reaction
 - A. Hybridization of carbon atoms changes from sp^2 to sp^3
 - B. Bond angle decreases from 120 $^{\circ}$ to 109.5 $^{\circ}$
 - C. C C bond length increases from $1.34A^0$ to $1.54A^0$
 - D. All of these

Answer: D

7. The ration of pure orbitals to hybridized orbitals in ethylene is

A. 2:3

B. 3:1

C. 1:1

D.1:3

Answer: C

View Text Solution

8. Which of the following represents the given mode of hybridisation $sp^2 - sp^2 - sp - sp$ from left to right ?

$$A. H_2C = CH - C \equiv N$$

$$\mathsf{B}.\,HC\equiv C\text{-}C\equiv CH$$

$$C. H_2C = C = C = CH_2$$

D. H₂C

Answer: A

Watch Video Solution

Exercise Ii C W Dative Bond

1. LEWIS ACID AND BASE

A. ionic bond

B. covalent bond

C. Dative bond

D. hydrogen bond

Answer: C

2. Dative bond is present in :-

A. H_3O^+

B. NH_4^+

 $\mathsf{C.}\mathit{Al}_{2}\mathit{Cl}_{6}$

 $D.N_2H_4$

Answer: D

Watch Video Solution

Exercise Ii C W Molecular Orbital Theory

1. Which of the following atoms has the lowest ionization potential?

A. O_2^2

C. O_2^+
$D.O_2$
Answer: D
Watch Video Solution
2. The diamagnetic molecules are :
A. Super oxide ion
B. Oxygen molecule
C. Carbon molecule
D. Uni positive ion of nitrogen molecule
Answer: C
Watch Video Solution

B. *O*₂

3. What is the correct sequence of bond order?

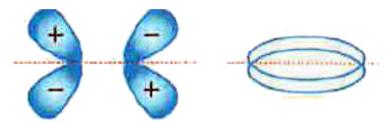
A.
$$O_2^+ > O_2^- > O_2$$

B.
$$O_2^+ > O_2 > O_2^-$$

$$C. O_2 > O_2^- > O_2^+$$

$$D.O_2^- > O_2^+ > O_2$$

Answer: B



- **4.** Which of the following species is paramagnetic?
 - A. CO
 - B. NO
 - $C. O_2^{2-}$
 - D. *CN*

Answer: B

5. The molecular orbital shown below can be described respectively as

- A. σ , σ *
- B. π , π *
- $\mathsf{C}.\,\pi^*$, π
- $D.\pi^*,\sigma^*$

Answer: C

6. Which statement is correct about O_2^+ ?

A. Paramagnetic and bond order $< O_2$

B. Paramagnetic and bond order $> O_2$

C. Diamagnetic and bond order $< O_2$

D. Diamagnetic and bond order $> O_2$

Answer: B

Watch Video Solution

7. While filling electrons in $\pi 2px$ and $\pi 2py$ the electronic configuration rules that one to be followed is

A. Pauli's exclusion principle

B. Aufbau principle

C. Both Pauli's and Hund's

D. All

Answer: C

8. In the formation of homo diatomic neutral molecule, if 'N' atomic orbitals combine, then the total number of bonding molecular orbitals formaed is

A. 2N

B. N

C.N/2

D. *N*/4

Answer: C

View Text Solution

9. The wavelength of the wave function of a bonding molecular orbital formed by LCAO is

A. Equal to the wave function of atomic orbital

B. Less than the wave function of atomic orbital

C. Greater than the wave function of atomic orbital

D. Double the wave function of atomic orbital

Answer: A

10. Which of the following molecular orbitals has two nodal planes?

A. _{2s}

B. _{2py}

C. *_{2py}

D. *_{2px}

Answer: C

Watch Video Solution

11. N_2 and O_2 are converted into monoanions N_2^- and O_2^- respectively.

Which of the following statements in wrong?

- A. In N_2 , N N bond weakens
- B. O_2 , O Obond order increases
- C. IN O_2 , O O bond order decreases
- $D. N_2^-$ becomes paramagnetic

Answer: B

12. Atomic orbitals of bonded atoms combine to form molecular orbitals. The number of molecular orbitals formed is equal to the number of atomic orbitals taking part in the bond formation. When two atomic orbitals combine, two molecular orbitals are formed one of which has lower energy than the combining orbitals and is called bonding Molecular Orbital (MO). Whereas the other having higher energy than the two combining atomic orbitals is called Anti Bonding Molecular orbitals (ABMO) The two combining atomic orbitals must have comparable energies and should be properly oriented to allow considerable overlapping. If the overlapping is end to end along internuclear axis, the molecular orbital is called sigma and if the overlapping is lateral 1.e., sidewise the molecular orbital is called pie. Just like atomic orbitals, the molecular orbitals also have varying energy levels. Filling of electrons in molecular orbitals takes place following the same rules as followed for filing of atomic orbitals. The order of filling may not be same for all the molecules or their ions. Bond order is a useful parameter for comparing the various characteristics of molecules.

In which of the following ionization processes, the bond order has increased and the magnetic behaviour has changed?

A.
$$N_2 \to N_2^+$$

$$B. C_2 \rightarrow C_2^+$$

$$C. NO \rightarrow NO^+$$

$$D. O_2 \rightarrow O_2^+$$

Answer: C

Exercise Ii C W Hydrogen Bonding

- 1. Hydrogen bond
 - A. Cander Waal forces and covalent bond
 - B. Ionic bond and covalent bond

C. Ionic bond and metallic bonding

D. Resonance

Answer: A

Watch Video Solution

- **2.** $N\!H_3$ has a much higher b.p. than $P\!H_3$ because
 - A. $N\!H_3$ has a larger molecular weight
 - B. $N\!H_3$ undergoes umbrella incersion
 - ${\it C.\,NH}_3$ contains hydrogen bonds
 - D. NH_3 contains ionic bonds where as PH_3 contains covalent bonds

Answer: C

3. The maximum possible number of hydrogen bonds a water molecule
can form is
A. 2
B. 4
C. 6
D. 8
Answer: B
Watch Video Solution
4. The high density of water compared to ice is due to
A. H - bonding interactions
B. Dipole - dipole interactions
C. Dipole - inuced dipole interactions

D. Induced dipole- induced dipole interactions

Answer: A

Watch Video Solution

- **5.** The force responsible for the union of two ice blocks as a single block is
 - A. Vanderwaals force
 - B. Hydrogen bonds
 - C. dipole interaction
 - D. vanderwaals repulsion

Answer: B

View Text Solution

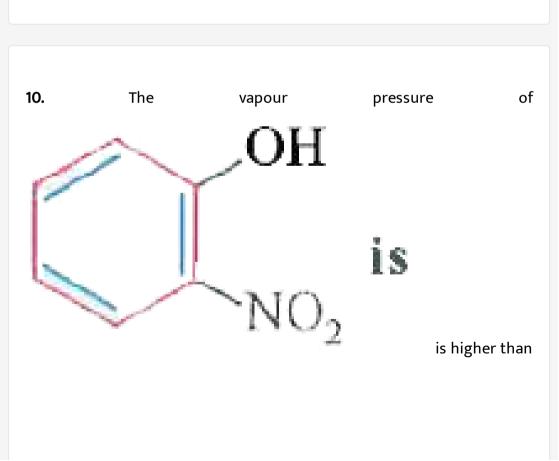
D. Both O, O & N,N

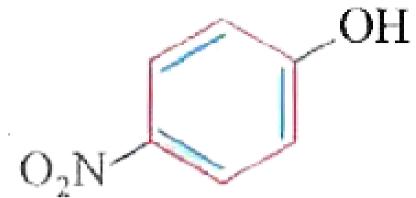
Answer: C

Watch Video Solution

- 8. Ionic, covalent, dative and hydrogen bonds are present in
 - A. Ice
 - B. $BeSO_4$, $4H_2O$
 - C. $CuSO_45H_2O$
 - $\mathsf{D.}\,BaCl_{2.2}H_2O$

Answer: C

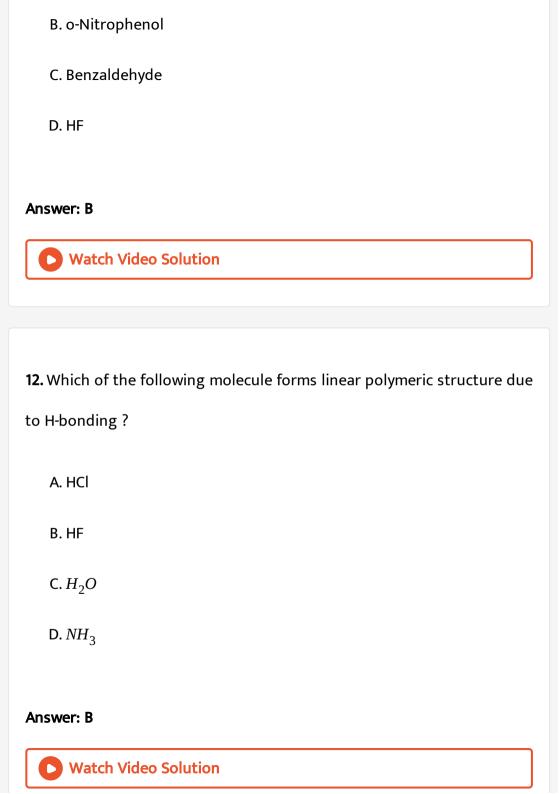

View Text Solution


9. Which of the following exists?

- A. KHCl₂
- B. $KHBr_2$
- $C. KHF_2$
- D. KHI₂

Answer: C

due to


- A. Dipole moment
- B. Dipole dipole interactions
- C. Intra molecular hydrogen bonding
- D. Inter molecular hydrogen bonding

Answer: C

View Text Solution

- 11. Chelates are used in
 - A. p-nitrophenol

Exercise Ii H W Octet Rule

_				
1. Among the	following ele	ectrons-def	ficient com	pound is .

- A. CCl_4
- $\mathsf{B.}\mathit{PCl}_5$
- $\mathsf{C.}\,\mathit{SiF}_4$
- $\mathsf{D}.\,\mathit{BCl}_3$

Answer: D

Watch Video Solution

2. The octer rule is not valid for the molecule.

A. *CO*₂

 ${\sf B.}\,N_2$

D. BF_3

Answer: D

Watch Video Solution

3. Which of the following molecule deviates from Octet rule with respect to central atom

A. SF_6

 $\mathsf{B.}\, PCl_5$

 $\mathsf{C.}\mathit{BrCl}_5$

D. All

Answer: D

View Text Solution

Exercise Ii H W Ionic Bond And Lattice Energy

1. When sodium and chlorine react energy is

A. Released and ionic bond is formed

B. Released and covalent bond is formed

C. Absorbed and covalent bond is formed

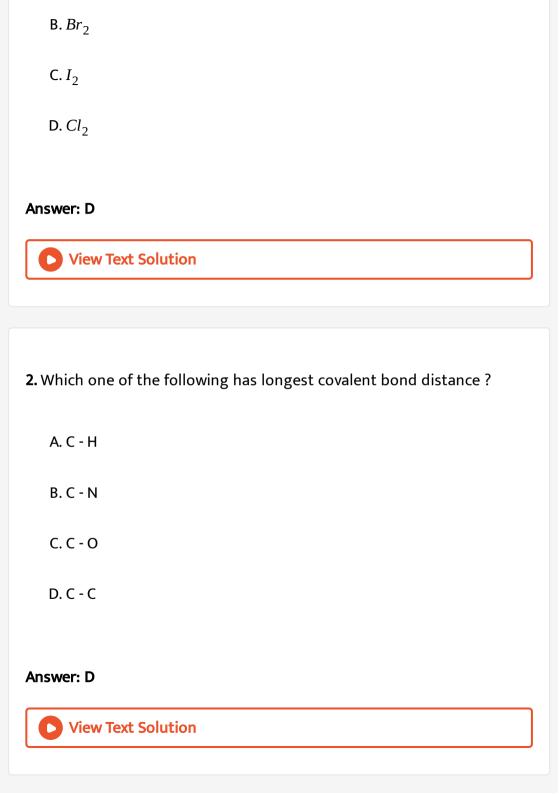
D. Absorbed and ionic bond is formed

Answer: A

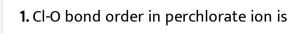
- **2.** Coordinating number of Na^+ in NaCl is
- A. IP of Cs is less thant Na
 - B. size of Na^+ is less than Cs^+
 - C. Attraction of Na^+ is higher than Cs^+

Watch Video Solution	
. Among NaF, RbF, CsF more ionic and	strong ionic are
A. CsF, CsF	
B. CsF, NaF	
C. NaF, NaF	
D. KF, CsF	
nswer: B	

4. The compound with high lattice energy is


D. None

B. MgO C. NaCl D. KF **Answer: B Watch Video Solution** 5. Water acts as a powerful ionizing solvent due to its high A. Polar nature B. Ionic nature C. Dielectric constant D. Covalent nature **Answer: C** View Text Solution


A. LiCl

6. Ionic reactions takes place in
A. Liquid state
B. Solid state
C. Solution state
D. Gaseous state
Answer: C View Text Solution
Exercise Ii H W Bond Parameters
1. Bond energy is highest in the molecule

A. F_2

Exercise Ii H W Resonance

- A. 1
- B. 2
- C. 1.75
- D. 2.5

Answer: C

- 2. Resonance in a molecule results in
 - A. Bond length
 - B. Bond Stregth
 - C. Bond polarity

Answer: D

Watch Video Solution

- **3.** Which of the following conditions is not correct for resonating structures?
 - A. Contributing structures should have similar energy
 - B. Position of atomic unclei is similar in all resonating structures
 - C. The number of bonding and non-bonding pairs of electrons in canonical structures should be similar
 - D. Resonance hybrid has more energy than cononical form

Answer: D

4. Write the resonance structure of CO_3^{2-} and HCO_3^{Θ} .
A. 2
B. 3
C. 6
D. 9
Answer: B
Watch Video Solution
Exercise Ii H W Bond Polarity And Dipole Moment
1. The bond length of HCl molecule is 1.275 Å and its dipole moment is
1.03 D. The ionic character of the molecule (in per cent) is
(Charge of the electron = 4.8×10^{-10} esu)
A. 100% ionic

B. 83% covalent
C. 50% covalent

D. 40% ionic

Answer: B

Watch Video Solution

2. The geometry of H_2S and its dipole moment are :

- A. Angular and non zero
- B. Angular and zero
- C. Linear and non zero
- D. Linear and zero

Answer: A

3. Which of the following has the highest dipolemoment?

A. AsH_3

 $\mathsf{B}.\mathit{SbH}_3$

 $\mathsf{C}.PH_3$

D. *NH*₃

Answer: D

4. The dipole moment of HBr is 0.78×10^{-18} esu cm. The bond length of

HBr is 1.41 Å. The % ionic character is

A. 7.5

B. 11.52

C. 15

Answer: B

Watch Video Solution

- 5. Which of the following has zero dipole moment?
 - A. CIF
 - $B.PCl_3$
 - $\mathsf{C.}\,\mathit{SiF}_{\mathtt{\Delta}}$
 - D. CFCl₃

Answer: C

6. A diatomic molecule has dipole moment of 1.2D. If the bond distance is 1\AA what parcentage of covalent in the molecule is

A. 25% of e

B. 29% of e

C. 19% of e

D. 12% of e

Answer: A

Exercise Ii H W Valence Bond Theory

1. Pi (π) bond is formed by the overlap of

A. s-s orbitals

B. p-p orbitals

- C. d-d orbitals
- D. both 2 and 3

Answer: D

Watch Video Solution

- 2. Which is not the characteristic of Pi-bond
 - A. pi bond are formed when a sigma bond already exists
 - B. pi bonds are formed from hybrid orbitals
 - C. pi bond may be formed by the overlapping fo p-orbitals
 - D. pi bond results from lateral overlap of atomic orbitals

Answer: B

View Text Solution

3. In the ethylene molecule the two carbon atoms have the oxidation numbers:

A. One s and two p

B. One s and one p

C. Two s and one p

D. Two s and no p

Answer: A

- **4.** The number of sigma bonds formed in ethane by the overlapping of sp^3 sp^3 orbitals
 - A. 5
 - В. 6
 - C. 7

Answer: B

Watch Video Solution

- 5. The carbon-carbon link in acetylene contains
 - A. One sigma, two pi bonds
 - B. Two sigma ,three pi bonds
 - C. two sigma, two pi bonds
 - D. Three sigma bonds

Answer: A

Watch Video Solution

Exercise Ii H W Vsepr Theory

1. Molecule which contains 4 bond pairs and 2 lone pairs of electrons on the central atom is

- A. XeF_2
- $\mathsf{B.}\,\mathit{CO}_2$
- $C. XeF_4$
- D. SF_6

Answer: C

- **2.** The effect of repulsion between the two lone pairs of electrons present on oxygen in water molecule is
 - A. No Change in H O H bond angle
 - B. Decrease in H O H bond angle
 - C. Increase in H O H bond angle

D. All atoms will be in one plane.

Answer: A

View Text Solution

- **3.** BCl_3 molecule is planar while NCl_3 is pyramidal because
 - $\operatorname{A.}\mathit{BCl}_3$ does not have lone pair on B but NCl_3 has one lone pair on

N.

- B. B Cl bond is more polar than N Cl bond
- C. N atom is samller than B
- D. N-Cl bond is more covalent than B Cl bond

Answer: A

- 4. A molecule having 3 bond pairs and 2 lone pairs will have?
 - A. T shape geometry
 - B. Trigonal planar geometry
 - C. Linear geometry
 - D. Square pyramidal geometry

Answer: A

- 5. The pair of species having identical shape is:
 - A. XeF_2 , CO_2
 - B. BF_3 , PCl_3
 - $C.PF_5, IF_5$
 - D. CF_{Δ} , SF_{Δ}

Answer: A

Watch Video Solution

- **6.** The shape of IF_7 molecule is
 - A. Pentagonal bipyramidal
 - B. Trigonal bipyramidal
 - C. Octagonal
 - D. T shape

Answer: A

Watch Video Solution

7. Molecular shape of SF_4 , CF_4 and XeF_4 are :

A. different with 1,0 and 2 lone pairs of electrons on the central atom,

respectively

B. different with 0,1 and 2 lone pairs of electrons on the central atom,

respectively

C. same with 1,1 and 1 lonepair of electrons on the central atom,

respectively

D. same with 2,0 and 1 lone pair of electrons on the central atom, respectively

Answer: A

Watch Video Solution

8. Which of the following is a planar molecule?

A. NH_3

 $B.H_3O^+$

$C.\mathit{BCl}_3$

 $\mathsf{D.}\,\mathit{PCl}_3$

Answer: C

Watch Video Solution

- **9.** The shape of $[OH_3]^+$ is
 - A. Tetrahedral
 - B. Angular
 - C. Pyramidal
 - D. Trigonal planar

Answer: C

View Text Solution

1. Which of the following is a correct set with respect to molecule, hybridization, and shape?

A. $BeCl_2$, sp^2 , linear

B. $BeCl_2$, sp^2 , triangular planar

 $C. BCl_3, sp^2$ triangular planar

D. BCl_3 , sp^3 , tetrahedral

Answer: C

Watch Video Solution

2. Which of the following statement is true?

A. Hybridisation of the central atom in $N\!H_3$ and $C\!H_4$ is $S\!P^2$

B. $BeCl_2$ has "V" shape while SO_2 is linear

C. SF_6 is octahedral and F - S - F bond angle is 90 $^\circ$

D. CO₂ has dipole moment

Answer: C

View Text Solution

- 3. Which of the following statement is correct?
 - hybridization.

A. Energy difference should be more between orbitals which undergo

- B. Number of hybrid orbitals formed should be same as the number of atomic orbitals involved in hybridization
- C. Hybrid orbitals arrange around the centrer of the atom
- unsymmertrically
- D. Hybrid orbitals can form π bond

Answer: B

4. Which of the following will provide the most efficient overlap?

A. $sp^3 - sp^3$

B. *sp* - *sp*

 $C. sp^3 - sp^2$

D. All

Answer: A

Watch Video Solution

5. Hybridisation noticed in CO_2 and CO is

A. sp^3

 $B. dsp^2$

 $D. sp^2$

Answer: C

View Text Solution

- **6.** The maximum number of 90 $^{\circ}$ angles between bond pair-bond pair of electrons is observed in
 - A. dsp^2
 - B. sp^3d
 - C. dsp^3
 - D. sp^3d^2

Answer: D

7. Ratio of pure and hybrid orbitals in benzene

- A.3:2
- B.1:1
- C. 3:1
- D. 1:3

Answer: A

- **8.** The AsF_5 molecule is trigonal bipyramidal. The orbitals used by As for hybridisation are
 - A. $d_{x^2-y^2}$, d_z^2 , s, p_x , p_y
 - $B. d_{xy}, s, p_x, p_y, p_z$
 - C. s, p_x, p_y, p_z, d_z^2

D. $d_{x^2-y^2}$, s, p_x , p_y

Answer: C

Watch Video Solution

- 9. A square planar complex is formed by hybridization of which atomic orbitals?
 - B. $s, p_x, p_y, dx^2 y^2$

A. s, p_x , p_y , d_{yz}

- C. s, p_x , p_y , d_{z^2}
- D. s, p_x , p_z , d_{xy}

Answer: B

1. Substances which can donate lone pairs of electrons to form a						
coordinate covalent bonds are called						
A. Acids						
B. Bases						
5. 5 d 5 d 5 d 5 d 5 d 5 d 5 d 5 d 5 d 5						
C. Non-polar						
D. Amphiprotic						
Answer: B						
View Text Solution						
2. Co-ordinate covalent compounds dissolve more in						
·						
A. Polar solvents						

C. Both 1 and 2

D. Water only

Answer: B

View Text Solution

Exercise Ii H W Molecular Orbital Throry

1. In which of the following paris of molecules/ions, both the species are not likely to exist?

A.
$$H_2^+$$
, He_2^{2-}

$$B. H_2^-, He_2^{2-}$$

$$\mathsf{C.}\,H_2^{2^+}$$
, He_2

$$D.H_2^-, He_2^{2+}$$

Answer: C

2. The ground state electronic configuration of valence shell electrons in nitrogen molecule $\left(N_2\right)$ is written as

KK,
$$\sigma 2s^2$$
, $\sigma^* 2s^2$, $\sigma 2p_x^2$, $\pi 2p_y^2 \approx \pi 2p_z^2$

Bond order in nitrogen molecule is

- A. 2
- B. 3
- C. 0
- D. 1

Answer: B

Watch Video Solution

3. N_2 and O_2 are converted into monoanions N_2^- and O_2^- respectively.

Which of the following statements in wrong?

A. In N_2 , N - N bond weakens

B. In O_2^+ , the O - O bond order increases

C. IN O_2^+ , paramagenetism decrease

D. N_2^+ becomes diamagnetic

Answer: B

Watch Video Solution

- 4. Which among the following have bond order 2.5?
 - A. O_2^{-}
 - B. O_2^+
 - $C. N_2^+$
 - D. N_2^- becomes paramagnetic

Answer: A

5. N_2 and O_2 are converted into monoanions N_2^- and O_2^- respectively.

Which of the following statements in wrong?

- A. In N_2^+ , N N bond weakens
- B. In O_2^+ , the O O bond order in creases
- C. In O_2^+ , paramagnetism decreases
- $D.N_2^+$ becomes diamagnetic

Answer: D

Watch Video Solution

6. Which among the following compounds is paramagnetic?

A. He_2

 $B.O_2$

 $C. O_2^{2-}$

 $D.N_2^+$ becomes diamagnetic

Answer: B

Watch Video Solution

7. If x-axis is the molecular axis, the π -molecular orbitals are formed by the overlap of

A. s-atomic orbital

B. s and $p_{\scriptscriptstyle X}$ atomic orbitals

 $C. p_v$ and p_v - atomic orbitals

D. p_x and p_z - atomic orbitals

Answer: C

8. The bond order in NO is 2.5 while that in NO^{\oplus} is 3 Which of the following statement is true for these two species?

A. Bond length in NO^+ is equal to that in NO

B. Bond length in NO is greater than in NO^+

C. Bond length in NO^+ is greater than in NO

D. Bond length is unpredictable

Answer: B

Exercise li H W Hydrogen Bonding

1. Hydrogen bond energy is equal to

A. 10 K. cal

B. 10 Joules

C. 10 ergs

D. 10 e.v.

Answer: A

Watch Video Solution

- 2. Which of the following is soluble in water?
 - $\mathsf{A.}\ C_2H_5OC_2H_5$
 - B. C_2H_5OH
 - $\mathsf{C.}\,C_2H_5COOC_2H_5$
 - D. C_2H_6

Answer: B

- 3. Acetic acids exists in dimer state in benzene due to A. Condensation reaction B. hydrogen bonding C. presence of carboxyl group D. presence of hydrogen atom at α carbon Answer: B **Watch Video Solution**
 - **4.** Even though electronegativity of chlorine is equal to that of nitrogen, chlorine is unable to form hydrogen bonds. It is due to
 - A. CI has three lone pairs on it
 - B. Atomic size of Chlorine is comparatively large.
 - C. Atomic size of nitrogen is comparatively large

D. Electron affinity of chlorine is highest

Answer: B

View Text Solution

- **5.** Which of the following does not exhibit hydrogen bonding in liquid phase
 - A. Phenol
 - B. liq. *NH*₃
 - C. water
 - D. liq. HCl

Answer: D

View Text Solution

6. In which of the following substance, hydrogen bonding is absent ?

A. HF

 $\mathsf{B.}\,H_2O$

 $\mathsf{C.}\,\mathit{CCl}_4$

D. Salicylaldehyde

Answer: C

7. Which of the following property is not related to the hydrogen bonding?

A. High boiling point of water

B. Solubility of NH_3 in H_2O

C. Polar nature of halogen acid

D. High viscosity of H_3PO_4

Answer: C

Watch Video Solution

- **8.** In which of the following compounds H bonding is strogest in the liquid phase
 - A. HF
 - $\operatorname{B.}\mathit{CH}_4$
 - C. HI
 - D. *PH*₃

Answer: A

View Text Solution

9. Which of the following pair of compounds is expected to exhibit same colour in aqueous solution?

A. CH_3OH , C_2H_5OH

 $B. CH_3 COOH, HCOOH$

 $C. CH_3NH_2, C_2H_5NH_2$

D. CH_3OH , CH_3OCH_3

Answer: D

Exercise 3

- 1. In which of the following molecules are all the bonds not equal?
 - A. NF_3
 - B. CIF_3

 $C.BF_3$

 $D.AIF_3$

Answer: B

Watch Video Solution

2. The charge/size ratio of a cation determines its polarizing power. Which one of the following sequences represents the increasing order of the polarizing power of the cationic species, K^+ , Ca^{2+} , Mg^{2+} , Be^{2+}

A.
$$Be^{2+} < K^+ < Ca^{2+} < Mg^{2+}$$

B.
$$K^+ < Ca^{2+} < Mg^{2+} < Be^{2+}$$

$$C. Ca^{2+} < Mg^{2+} < Be^{2+} < Ca^{2+}$$

D.
$$Mg^{2+} < Be^{2+} < K^+ < Ca^{2+}$$

Answer: B

3. Which of the following species exhibits the diamagnetic behaviour?

A. O_2^+

 $\mathsf{B.}\,O_2$

C. NO

D. O_2^{2-}

Answer: D

Watch Video Solution

4. Which one of the following pairs of species have the same bond order ?

A. CN^- and NO^+

B. CN^- and CN^+

 $C. O_2^-$ and CN^-

D. <i>NO</i> +	and	CN^+
	alla	O1 1

Answer: A

Watch Video Solution

- **5.** The angular shape of none molecule (O_3) consists of
 - A. 2 sigma and 1 pi bonds
 - B. 1 sigma and 2pi bonds
 - C. 2 sigma and 2 pi bonds
 - D. 1 sigma and 1 pi bonds

Answer: A

6. The correct order of increasing bond angles in the following triatomic species is

A.
$$NO_2^+ < NO_2^- < NO_2$$

B.
$$NO_2^- < NO_2^+ < NO_2$$

$$C. NO_2^- < NO_2 < NO_2^+$$

$$D.NO_2^+ < NO_2 < NO_2^-$$

Answer: C

7. Four diatomic species are listed below in different sequences. Which of these represents the correct order of their increasing bond order?

A.
$$He_2^+ < O_2^- < NO < C_2^{2-}$$

B.
$$O_2^- < NO < C_2^{2-} < He_2^+$$

$$C. NO < C_2^{2-} < O_2^{-} < He_2^{+}$$

D.
$$C_2^{2-} < H_2^+ < NO < O_2^-$$

Answer: A

Watch Video Solution

- **8.** Using *MO* theory predict which of the following sepcies has the shortest bond length?
 - A. O_2^+
 - B. O_2^{-}
 - $C. O_2^{2-}$
 - D. O_2^{2+}

Answer: D

9. According to MO theory which of thhe following lists makes the nitrogen species in terms of increasing bond order?

A.
$$N_2^- < N_2 < N_2^2^-$$

$$B. N_2^2 < N_2^- < N_2$$

$$C. N_2^- < N_2^2^- < N_2^-$$

D.
$$N_2^- < N_2^{2-} < N_2$$

Answer: B

10. The state of hybridization of C_2 , C_3 , C_5 , and C_6 of the hydrocarbon

$$CH_3$$
 CH_3 $|$ $|$ $CH_3 - C |$ $6CH_3 - C5H = C4H - C3H - C2 = C1H$

is in the following sequence:

A.
$$sp$$
, sp^3 , sp^2 and sp^3

B. sp^3 , sp^2 , sp^2 and sp

C. sp, sp^2 , sp^2 and sp^3

D. sp, sp^2 , sp^3 and sp^2

Answer: A

11. In the case of alkali metals, the covalent character decreases in the order.

A. MCl > MI > MBr > MF

B.MF > MCl > MBr > MI

C.MF > MCl > MI > MBr

D.MI > MBr > MCl > MF

Answer: D

12. In which of the following molecules/ions BF_3 , NO_2^- , NH_2^- and H_2O , the central atom is sp^2 hybrized ?

- A. NO_2^- and NH_2^-
- $B.NH_2^-$ and H_2O
- $C. NO_2$ and H_2O
- D. BF_3 and NO_2

Answer: D

View Text Solution

13. The values of electronegativity of atom A and B are 1.20 and 4.0 respectively. The percentage of ionic character of A-B bond is nearly

- A. 0.5
- B. 0.7224

C.	0.553

D. 0.43

Answer: B

Watch Video Solution

- **14.** The common features among the species CN^- , CO and NO^+
 - A. Bond order is three and are iso-electronic
 - B. Bond order three and weak-field ligands
 - C. Bond order two and p-acceptor
 - D. Iso-electronic and weak -field ligands

Answer: A

15. If I_2 is dissolved in aqueous KI, the intense yellow species I_3 is formed. The structure of I_3^- ion is

A. Square pyrmaidal

B. Trigonal bipyramidal

C. Octahedral

D. Pentagonal bipyramidal

Answer: B

Watch Video Solution

16. During change of $NO^+ \rightarrow NO$, the electron is added to

A. s orbital

B. p orbital

C. s*orbital

D. p* orbital

Answer: D

Watch Video Solution

17. When two ice cubes are pressed over each other, they unite to form one cube. Which of the following forces is responsible to hold them together?

- A. Dipole forces
- B. van der Waal forces
- C. Covalent forces
- D. Hydrogen bond forces

Answer: D

18. In which of the following pairs of molecules/ ions, the central atoms have sp^2 -hybridization?

A. NH_2^- and H_2O

 $B.BF_3$ and NH_2

 $C. NO_2$ and NH_3

D. BF_3 and NO_2

Answer: D

19. In which one of the following species , the central atom has the tuype of hybdridiztion which is not the same as that present in other three?

A. $SbCl_5^2$

 $\mathsf{B.}\mathit{PCl}_5$

 $\mathsf{C.}\,\mathit{SF}_4$

D.	I_3
	٠.٦

Answer: A

Watch Video Solution

- **20.** Which of the following species does not exist under normal condition?
 - A. B_2
 - $\mathsf{B.}\mathit{PCl}_5$
 - $\mathsf{C.}\,SF_4$
 - D. I_3^-

Answer: D

21. Some of the properties of the two species, NO_3^- and H_3O^+ are described below. Which one of them is correct?

A. Isostructural with different hybridization for the central atom

B. Similar in hybridization for the central atom with different structures

C. Dissimilar in hybridization for the central atom with different structures.

D. Isostructuural with same hybridization for the central atom

Answer: C

Watch Video Solution

22. In which of the following molecules the central atom does not have sp^3 hybridization?

A. BF_{Λ}

 $B.NH_4^+$

C. CH_4

D. SF_{4}

Answer: D

Watch Video Solution

23. The hybridization in $\left[CO(NH_3)_6\right]^{3+}$ is :

A. dsp^2

B. sp^3d^2

 $\mathsf{C.}\,\mathsf{sp}^3$

D. d^2sp^3

Answer: D

24. The polarity of the covalent bond among the following is maximum in

B. O - F

C. N - F

D. *C* - *F*

Answer: D

25. The bond angle formed by different hybrid orbitals are in the order

A. $sp^2 > sp > sp^3$

 $B. sp^3 < sp^2 > sp$

 $\mathsf{C.}\, sp^3 > sp^2 > sp$

D.
$$sp > sp^2 > sp^3$$

Answer: D

Watch Video Solution

26. Choose the correct order regarding the bond order :

A.
$$O_2^{2-} > O_2^+ > O_2^- > O_2$$

$$B.O_2^+ > O_2^2^- > O_2^- > O_2$$

$$C. O_2^+ > O_2 > O_2^- > O_2^{2-}$$

$$D.O_2 > O_2^- > O_2^{2-} > O_2^+$$

Answer: C

View Text Solution

27. How many bridging oxygen atom are present in P_4O_{10} ?

- A. 4
- B. 2
- C. 5
- D. 6

Answer: D

= C is

Watch Video Solution

- - A. C H It C = C It C OIt C -C

B. C - C < C = C < C - O < C - H

28. The correct order of increasing bond length of C - H, C - O, C - C and C

- C. C O < C H < C C < C = C
- D. C H < C O < C C < C = C

Answer: A

29. Among the following the maximum covalent character is shown by the compound

A. MgCl₂

B. FeCl₂

C. AlCl₃

D. SnCl₂

Answer: C

Watch Video Solution

30. The shape of IF_7 molecule is

A. Trigonal bipyramid

B. Hexagonal pyramid

- C. Pentagonal bipyramid
- D. Square bipyramid

Answer: C

Watch Video Solution

31. The hybridisation of atomic orbitals of nitrogen in NO_2^+ , NO_3^- and

 NH_4^+ are:

- A. sp^2 , sp^3 and sp^2 respectively
- B. sp, sp^2 and sp^3 respectively
- C. sp^2 , sp and sp^3 respectively
- D. sp^2 , sp^3 and sp respectively

Answer: B

32. In which of the following pairs, the two species are not isostructural?

A. PF_5 and BrF_5

 $B.PCl_4^+$ and $SiCl_4$

 $C. CO_2^2$ and NO_3

 $D.AlF_6^{3}$ and SF_6

Answer: A

Watch Video Solution

33. Considering the state of hybridization of carbon atoms, find out the molecule among the following which is linear?

A.
$$CH_3$$
 - CH_2 - CH_2 - CH_3

$$B. CH_3 - CH = CH - CH_3$$

$$C. CH_3 - C \equiv C - CH_3$$

$$D. CH_2 = CH - CH_2 - C \equiv CH$$

Answer: C

Watch Video Solution

- **34.** The correct order of increasing bond length of C H ,C O, C C and C
- = C is
 - A. C H < C O < C C < C = C
 - B. C H < C = C < C O < C C
 - C. C C < C = C < C O < C H
 - D. C O < C H < C C < C = C

Answer: B

35. The pair of species with the same bond order is:

- A. O_2^+ , NO^+
- B. NO, CO
- $C. N_2, O_2$
- D. $O_2^{2^-}$, B_2

Answer: D

- 36. Bond order of 1.5 is shown by:
 - A. O_2^{-}
 - B. $O_2^{2^-}$

 - C. O₂
 - $D.O_2^+$

Answer: A

Watch Video Solution

37. In O_2^- , O_2^- and $O_2^{-2}^-$ molecular species, the total number of antibonding electrons respectively are

- A. 6
- B. 8
- C. 4
- D. 2

Answer: A

Watch Video Solution

38. In $CuSO_{4.5}H_2O$ all Cu- O bond length are not equal. The total number of shorter Cu - O bonds will be

- A. 4
- B. 1
- C. 2
- D. 3

Answer: A

View Text Solution

39. Stability of the species Li_2 , Li_2^- , Li_2^+ increases in the order of

- A. $Li_{2}^{-} < Li_{2}^{+} < Li$
- B. $Li_2 < Li_2^- < Li_2^+$
- $C. Li_{2}^{-} < Li_{2} < Li_{2}^{+}$
- D. $Li_2 < Li_2^+ < Li_2^-$

Answer: A

40. Which of the following molecule is polar?

A. XeF_4

 ${\rm B.}\,{\it IF}_5$

 $\mathsf{C.}\,\mathit{SbF}_{5}$

D. *CF*₄

Answer: B

Watch Video Solution

41. Which one of the following molecules contains no π - bond ?

 $\mathsf{A.}\,H_2O$

 $\mathsf{B.}\,SO_2$

 $\mathsf{C}.\,NO_2$

Answer: A

Watch Video Solution

- **42.** Which of the following is a polar molecule
 - A. SF_4
 - $B. SiF_4$
 - $\mathsf{C}.XeF_{\Lambda}$
 - D. BF_3

Answer: A

Watch Video Solution

43. Which of the following is paramagnetic

44. XeF_2 is isostructural with A. Icl_3 $B.SbCl_3$ $\mathsf{C.}\,BaCl_2$ D. TeF_2 Answer: A Watch Video Solution

Watch Video Solution

A. O_2^{-}

B. *CN* -

C. *NO* +

D. CO

Answer: A

45. Dipole-induced dipole interaction are present in which of the following pairs

A. Cl_2 and CCl_4

B. HCl and He atoms

C. SiF_4 and He atoms

D. H_2O and alcohol

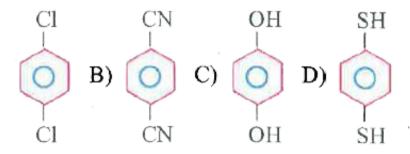
Answer: B

Watch Video Solution

46. The correct statement for the molecule CsI_3 is

A. It contains Cs^+ and I_3^- ions

B. It contains Cs^{3+} and I^{-} ions


- C. It contains Cs^+ , I^- and lattice I_2 molecule
- D. It is covalent molecule

Answer: A

Watch Video Solution

47. For which of the following molecule significant $\mu \neq 0$?

- A. A and B
- B. Only C
- C. C and D
- D. Only A

Answer: C Watch Video Solution

- 48. Which of the following molecules has the maximum dipole moment?
 - A. NF_3
 - B. CO_2
 - $C. CH_4$
 - $D.NH_3$

Answer: D

- 49. Which of the following species has plane tringular shape?
 - A. CO_2

 $B.N_3$

 $C.NO_3$

 $D. NO_2$

Answer: C

Watch Video Solution

50. Which of the following organic compounds has same hybridization

as its combustion product (CO_2) ?

A. Ethanol

B. Ethane

D. Ethene

C. Ethyne

Answer: C

51. The bond length in O_2^+ , O_2 , O_2^- and O_2^{2-} follows the order:

A.
$$O_2 > O_2^+ > O_2^{2-} > O_2^-$$

$$B.O_2^- > O_2^{2-} > O_2^+ > O_2$$

$$C.O_2^+ > O_2 > O_2^- > O_2^2$$

D.
$$O_2^{2-} > O_2^- > O_2^+$$

Answer: C

Watch Video Solution

52. In which of the following pairs, both the species are not isostructural?

A. NH_3 , PH_3

B. XeF_4 , XeO_4

C. $SiCl_4$, PCl_4^+

D. diamond, silicon carbide

Answer: B

Watch Video Solution

53. Which of the following pairs of ions are isoelectronic and isostructural?

A. $SO_3^{2^-}$, NO_3^{-}

B. CIO_3^- , SO_3^{2-}

 $C. CO_3^{2-}, SO_3^{2-}$

D. CIO_3 , CO_3^2

Answer: B

54. Which of the following options represents the correct bond order?

- A. $O_2^- > O_2 < O_2^+$
- $B.O_2^- < O_2 > O_2^+$
- $C. O_2^- > O_2^- > O_2^+$
- $D.O_2^- < O_2 < O_2^+$

Answer: D

Watch Video Solution

55. Which of the following species contains equal number of pi and pi

- bonds?
 - A. $(CN)_2$
 - B. $CH_2(CN)_2$
 - $C.HCO_3$

D. XeO_4	
------------	--

Answer: D

Watch Video Solution

56. Maximum bond angle at nitrogen is present in which of the following

?

- A. NO_2^+
- $B.NO_3$
- $\mathsf{C}.\,\mathit{NO}_2$
- D. NO_2

Answer: A

57. Which one of the following compounds shows the presence of intramolecular hydrogen bond ?

A. Concentrated acetic acid

 $B. H_2 O_2$

C. HCN

D. Cellulose

Answer: D

58. AIF_3 is soluble in HF only in presence of KF. It is due to the formation of

A. $K[AIF_3H]$

 $\mathsf{B.}\, K_3 \Big[AIF_3 H_3 \Big]$

 $C.K_3[AIF_6]$

 $D.AIH_3$

Answer: C

Watch Video Solution

59. The hybridisation of atomic orbitals of nitrogen in NO_2^+ , NO_3^- and NH_4^+ are :

A. sp^2 , sp and sp^3

B. sp, sp^3 and sp^2

 $C. sp^2, sp^3$ and sp

D. sp, sp^2 and sp^3

Answer: D

60. Consider the molecules CH_4 , NH_3 and H_2O which of the given statement is false ?

A. The H- C -H bond angle in CH_4 , the H - N - H bond angle in NH_3 , and H- O - H bond angle in H_2O are all greter than 90 $^\circ$

B. The H - O - H bond angle in $H_2{\cal O}$ is larger than the H- C- H bond

C. The H - O- H bond angle in $H_2{\rm O}$ is smaller than the H - N - H bond

angle in NH_3 .

angle in CH_{Λ}

D. the H - C - H bond angle in $C\!H_4$ is larger than the H - N - H bond angle in $N\!H_3$

Answer: B

A. lone pair - lone pair gt lone pair - bond pair gt bond pair - bond

pair

B. lone pair - lone pair gt bond pair - bond pair gt lone pair - bond pair

C. bond pair - bond pair gt lone pair -bond pair gt lone pair gt lone

pair

D. lone pair - bond pair gt bond pair - bond pair gt lone pair - lone pair

Answer: A

Watch Video Solution

62. The species in which the N-atom is in a state of sp hybridisation is

A. NO_2

B. NO_3

 $C.NO_2$

 $D.NO_2^+$

Answer: D

Watch Video Solution

Exercise 4

1. Among the following ions the p π - d π overlap could be present in

A. NO_3

B. PO_4^{3} $C.CO_3^{2}$

D. NO_2^-

Answer: B

2. Nitrogen forms N_2 but phosphorous when forms P_2 gets readily converted into P_4 because

A. Triple bond present between phosphorous atom

B. p_{π} = p_{π} bonding is weak

C. p_π - p_π bonding is strong

D. Multiple bond form easily

Answer: B

Watch Video Solution

3. The correct sequence of increasing covalent character is represented by

 $A. \ BeCl_2 < NaCl < LiCl$

 $B. \, NaCl < LiCl < BeCl_2$

 $C. BeCl_2 < LiCl < NaCl$

 $D. LiCl < NaCl < BeCl_2$

Answer: B

Watch Video Solution

- **4.** Which of the following will no give a precipate with $AgNO_3$?
 - A. KI
 - $\mathsf{B.}\,K_2\mathsf{SO}_4$
 - C. CHCl₃
 - D. KCl

Answer: C

5. $AlCl_3$ anhydrous is covalent but $AlCl_3$. $6H_2O$ is ionic because

A. AlCl₃dissolves in CS₂

B. AlCl₃ has planar structure

C. IE of Al is low

D. Hydration energy of Al compensates the IE

Answer: D

Watch Video Solution

6. The correct stability order of the following resonance structures is

$$(I)H_2C = N = N$$
 $(II)H_2C - N = N$

$$(III)H_2C - N = N$$
 $(IV)H_2C - N = N$

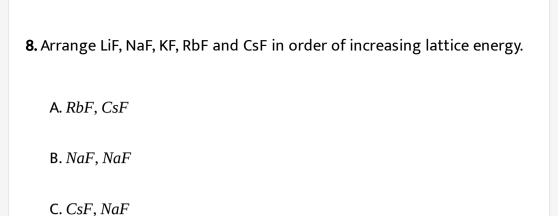
A. i gt ii gt iv gt iii

B. i gt iii gt ii gt iv

C. i gt ii gt iiigt iv

D. iii gt i gt iv gt ii

Answer: B



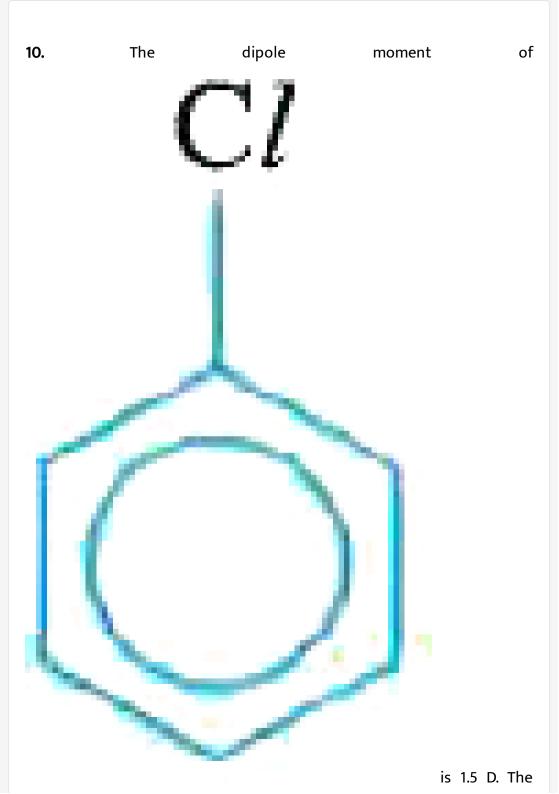
Watch Video Solution

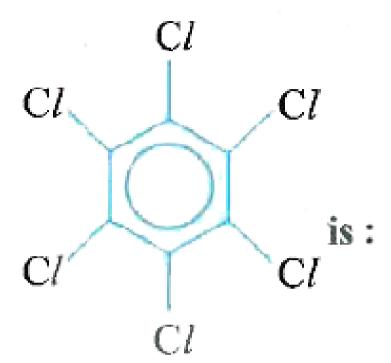
- 7. In PO_4^{3-} ion the formal charge on the oxygen atom of P-O bond is
 - A. + 1
 - **B.** -1
 - **C.** -0.75
 - D. + 0.75

Answer: B

D. CsF, CsF

Answer: C




- **9.** Which of the following are arranged in the decreasing order of dipole moment ?
 - A. CH₃Cl, CH₃Br, CH₃F
 - $\mathsf{B.}\ \mathit{CH}_{3}\mathit{Cl}, \mathit{CH}_{3}\mathit{F}, \mathit{CH}_{3}\mathit{Br}$
 - ${\sf C.}\ CH_3Br,\ CH_3Cl,\ CH_3F$

 $\mathsf{D}.\,\mathit{CH}_3\mathit{Br},\,\mathit{CH}_3\mathit{F},\,\mathit{CH}_3\mathit{Cl}$

Answer: B

is:

- A. 0 D
- B. 1.5 D
- C. 2.86 D
- D. 2.25 D

Answer: A

11. The bond angle in H_2S is

A. 0.51 D

B. 1.24 D

C. 0.72 D

D. 1.44 D

Answer: C

Watch Video Solution

12. If H - X bond length is 2Å and H - X has dipole moment 5.12×10^{-30} coloumb.calculate the % of covalent character of molecule is

A. 1

B. 16

C. 18

Answer: D

Watch Video Solution

13. Arrange the following compounds in order of increasing dipole moment .

Toluene (I) m-dichlorobenzene (II)

o-dichlorobenzene (\emph{III}) . P-dichlorobenzene (\emph{IV}) .

$$A. I < IV < II < III$$

$$B. IV < I < II < III$$

$$D. IV < II < I < III$$

Answer: B

14. Which one of the following arrangements of molecules is correct on the basic of their dipole moments?

A.
$$BF_3 > NF_3 > NH_3$$

B.
$$NF_3 > BF_3 > NH_3$$

$$C. NH_3 > BF_3 > NF_3$$

D.
$$NH_3 > NF_3 > BF_3$$

Answer: D

Watch Video Solution

15. Which of the following molecule has highest bond energy?

A. F - F

B. N - N

C. C - C

D.	O	_	O
D .	$\mathbf{\circ}$		\sim

Answer: C

Watch Video Solution

- **16.** In NO_3^- ion, the number of bond pair and lone pair of electrons on nitrogen atom are:
 - A. 2,2
 - B. 3,1
 - C. 1,3
 - D. 4,0

Answer: D

17. Among the following the pair in which the two species are not isostructural is

A. PF_6^- and SF_6

B. SiF_4 and SF_4

 $C. IO_3^-$ and XeO_3

D. BH_4^- and NH_4^+

Answer: B

Watch Video Solution

18. In a regular octahedral molecule MX_6 the number of X - M - X bonds at $180\degree$ is

A. Four

B. Three

C. Two

_	-•
ח	Civ
υ.	\mathcal{I}

Answer: B

Watch Video Solution

- **19.** In an octahedral structure, the pair of d orbitals involved in d^2sp^2 hybridization is
 - A. d_{xy} , d_{yz}
 - B. $d_{x^2-y^2}$, d_{z^2}
 - C. d_{xz} , $d_{x^2-y^2}$
 - D. d_{x^2} , d_{xz}

Answer: B

20. In correct statement about the structure of PCl_5

A. axial P - Cl bonds have more bondlength than equtorial P -Cl bonds

 $\operatorname{B.} \operatorname{d}^2_{\operatorname{z}}$ orbital is involved in $\operatorname{Sp}^3\operatorname{d}$ hybridization.

C. The no. of planar atoms in PCl_5 is 4

D. Phosphorous is in 2nd excited state.

Answer: D

- **21.** Which statement is incorrect for OSF_4 ?
 - A. S atom has sp^3d hybridization
 - B. OsF_4 have distorted trigonal pyramidal geometry
 - C. O atom at one of the two axial positions having S = O bond
 - D. O atom at one of the equatorial position having S = O bond

Answer: C

Watch Video Solution

22. Which of the following statement is/are true

- 1) PH_5 and $BiCl_5$ donot exist
- 2) p d bond is present in SO_2
- 3) I_3^+ has geometry
- 4) SeF_4 and CH_4 have same shape
 - A. 1,2,3
 - B. 1,3
 - C. 1 and 2
 - D. 1,2,4

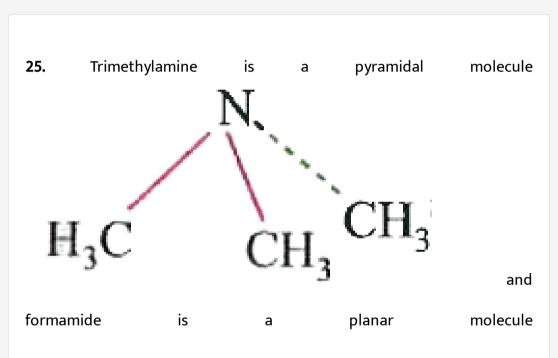
Answer: A

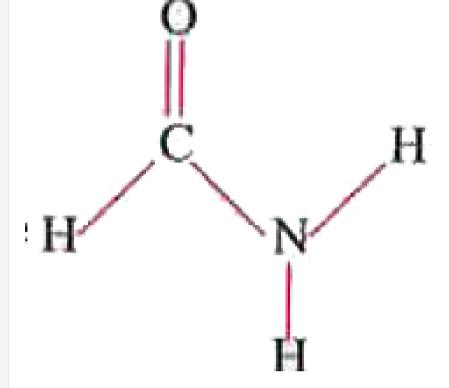
View Text Solution

23. The states of hybridisation of boron and oxygen atoms in boric acid $\left(H_3BO_3\right)$ are respecitivelty :

- A. sp^3 and sp^2
- $B. sp^2$ and sp^3
- $C. sp^2$ and sp^2
- D. sp^3 and sp^3

Answer: B


Watch Video Solution


24. The d-orbital involved in sp^3d hybridisation is

- A. $3d_{x^2-y^2}$
- B. $3d_{z^2}$
- $C.3d_{xy}$

Answer: B

the

hybridisation of Nitrogen in both is

A. sp^2 , sp^2

B. sp^3 , sp^2

 $C. sp^3, sp^3$

D. sp^2 , sp

Answer: B

26. Which statement is correct about *HCHO*?

A. It has sp^2 hybridized carbon

B. The bond angles $\angle HCH$ and $\angle HCO$ are 116 ° and 122 ° respectively

C. It involves multiple bond pair - Bond pair repulsion

D. All of these

Answer: D

Watch Video Solution

27. The correct order of hybridization of the central atom in the following species NH_3 , $\left[PtCl_4\right]^{2-}$, PCl_5 , and BCl_3 is

A. dsp^2 , dsp^3 , sp^2 and sp^3

B. sp^3 , dsp^2 , sp^3d , sp^2

C. dsp^2 , sp^2 , sp^3 , dsp^3

D. dsp^2 , sp^3 , dsp^3

Answer: B

Watch Video Solution

28. Specify the coordination geometry around and the hybridisation of N and B atoms in 1:1 complex of BF_3 and NH_3 .

A. N : tetrahedral, sp^3 , B , tetrahedral, sp^3

 ${\rm B.\ N:pyramidal}, sp^3\,, {\rm B:pyramidal}, sp^3$

C. N : pyramidal sp^3 , B : planar, sp^3

D. N : pyramidal, sp^3 , B : tetrahedral, sp^3

Answer: A

29. Which of the following is paramagnetic?
A. <i>NO</i> ₂
$B.N_2O$
$C.N_2O_3$
$D.N_2O_5$
Answer: A
Watch Video Solution
30. The least stable ion among the following is
30. The least stable ion among the following is $A. Li^{-}$
A. Li^-
A. <i>Li</i> - B. <i>Be</i> -

Answer: B

Watch Video Solution

31. Which of the following molecular orbital has two nodal planes perpendicular to each other?

- A. $\sigma 2P_z$
- Β. σΙS
- $C. \pi 2P_x$
 - *
- D. *σ IS*

Answer: D

Watch Video Solution

32. The O - O bond length in O_2 , $O_2[AsF_4]$ and $K[O_2]$ is :

$$A. O_2 \Big[As F_4 \Big] < O_2 < K \Big[O_2 \Big]$$

$$C. O_2 < O_2 \left[AsF_4 \right] < K \left[O_2 \right]$$

 $B. O_2 \left[AsF_4 \right] < K \left[O_2 \right] < O_2$

$$D. K[O_2] < O_2 < O_2[AsF_4]$$

Answer: A

species

Watch Video Solution

33. KF combines with HF to form KHF_2 . The compound contains the

$$A.K^+,F^-$$
 and H^+

$$B.K^+,F^-$$
 and HF

$$C.K^+$$
, and $\left[HF_2\right]^-$

D.
$$[KHF]^+$$
 and F_2

Answer: C

34. Among the following mixiture dipole-dipole as the mojor interaction is present is

A. KCl and water

B. benzene and carbon tetrachloride

C. benzene and ethanol

D. acetonitrile and acetone

Answer: D

Watch Video Solution

35. The nodal plane in the π -bond of ethene is located in:

A. The molecular plane

B. A plane parallel to the molecular plane

C. A plane perpendicular to the molecular plane which besects the

carbon - carbon sigma bond at right angle

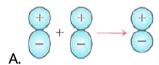
D. A plane perpendicular to the molecular plane which contains the carbon - bond.

Answer: A

36. In the dichromate dianion,

A. 4 Cr - O bonds are equivalent

B. 6Cr - O bonds are equivalent


C. All Cr - O bond are equivalent

D. All Cr - O bonds are non equivalent

Answer: B

37. Which of the following overlap is correct?

- D. None of these

Answer: A

Watch Video Solution

38. The values of electronegativity of atom A and B are 1.20 and 4.0 respectively. The percentage of ionic character of A-B bond is nearly

- A. 0.5
- B. 0.7224

\boldsymbol{c}	0	5	5	1
┖.	v.	·J	J	_

D. 0.42

Answer: B

Watch Video Solution

39. Isostructrual species are those which have the same shape and hybridisation. Among the given identify the isostructural pairs.

A. NF_3 and BF_3

B. BF_4^- and NH_4^+

C. BCl₃ and BrCl₃

D. NH_3 and NO_3

Answer: B

Watch Video Solution

40. Polarity in a molecule and hence the dipole moment depends primarily on electronegativity of the constituent atoms and shape of a molecule. Which of the following has the highest dipole moment?

- A. CO_2
- B. HI
- $C.H_2O$
- $D.SO_2$

Answer: C

Watch Video Solution

41. Hydrogen bonds are formed in many compounds e.g. H_2O , HF, NH_3 . The boiling point of such compounds depends to a extent on the strength of hydrogen bond and the number of hydrogen bonds. The correct decreasing order of the boiling points above compounds is

- A. $HF > H_2O > NH_3$
- $C. NH_3 > HF > H_2O$

B. $H_2O > HF > NH_3$

- - D. $NH_3 > H_2O > HF$

Answer: B

Watch Video Solution

42. Which molecule/ion out of the following does not contain unpaired

- electrons?
 - A. N_2^+
- $B.O_2$
 - $C. O_2^{2-}$

 $D.B_2$

43. In which of the following molecule/ion, all the bonds are not equal?

A. XeF_4

 $B.BF_4$

C. C_2H_4

D. SiF_{Δ}

Answer: C

44. In which of the following substances will hydrogen bond be strongest?

A. HCl

B. *H*₂*O*

C. HI

 $\mathsf{D}.\,H_2S$

Answer: B

Watch Video Solution

45. Which of the following order f energies of molecular orbitals of N_2 is correct?

A.
$$\left(\pi 2p_y\right) < \left(\sigma 2p_z\right) < \left(\pi * 2p_x\right) \approx \left(\pi * 2p_y\right)$$

B.
$$\left(\pi 2p_y\right) > \left(\sigma 2p_z\right) > \left(\pi * 2p_x\right) \approx \left(\pi * 2p_y\right)$$

C.
$$\left(\pi 2p_y\right) < \left(\sigma 2p_z\right) > \left(\pi * 2p_x\right) \approx \left(\pi * 2p_y\right)$$

D.
$$\left(\pi 2p_y\right) > \left(\sigma 2p_z\right) < \left(\pi * 2p_x\right) \approx \left(\pi * 2p_y\right)$$

Answer: A

Watch Video Solution

46. Which of the following statement is not correct from the view point of molecular orbital theory?

A. Be_2 is not a stable molecule

B. He_2 si not stable but He_2^+ is expected to exist.

C. Bond stregth of N_2 is maximum amongst the homonuclear diatomic molecules belonging to the second period.

D. The order of energies of molecular orbital in ${\cal N}_2$ molecule is

$$\sigma 2s < \sigma * 2s < \sigma 2p_z < (\pi 2p_x = \pi 2p_y) < (\pi * 2p_x = \pi * 2p_y) < \sigma * 2p_z$$

Answer: D

Watch Video Solution

47. Which of the following statements are correct about CO_3^2 ?

A. The hybridisation of central atom is sp^2 .

B. Its resonance structure has one C - O single bond and two C = O

double bonds.

C. The average formal charge on each oxygen atom is 0.67 units.

D. All C - O bond lengths are equal.

Answer: B

48. Which of the following statement is not correct?

A. NaCl being an ionic compound is a good conductor electricity in the solid state.

B. In canonical structures there is no difference in the arrangement

of atoms.

C. Hybrid form stronger bonds than pure orbitals.

D. VSEPR Theory can explain the square planar geometry of XeF_4

Watch Video Solution

- 49. Which of the following molecular orbitals has two nodal planes?
 - A. $\sigma * 1s$
 - B. $\sigma 2p_z$
 - C. $\pi 2p_x$
 - $D. \pi * 2p_y$

Answer: B

Watch Video Solution

50. Molecular axis is Z axis , then which of the following combination of orbitals will result in formation of σ molecular orbitals ?

- **A.** *O*₂
- $B. Ne_2$
- $C. N_2$
- $D.F_2$

Answer: C

Watch Video Solution

51. Match the species in Column I with the type of hybrid orbitals in Column II.

C	olumn I	C	olumn II	·········
A.	SF ₄	1.	sp^3d^2	
B.	\mathbf{IF}_{5}	2.	d^2sp^3	
C.	NO_2^+	3.	sp^3d	
D.	NH_4^+	4.	sp^3	
***************************************		5.	sp	And Andrew

- A. i-c, ii-a,iii-e, iv-d
- B. i-a,ii-b,iii-c,iv-d
- C. i-a,ii-b,iii-d,iv-c
- D. i-a,ii-c,iii-e,iv-d

52. Match the species in Column I with the geometry/shape in Column II.

North Marine States	Column I	**************************************	Column II
Α.	H ₃ O ⁺	1.	Linear
В.	HC≡ CH	2.	Angular
C.	ClO_2^-	3.	Tetrahedral
D.	NH_4^+	4.	Trigonal bipyramidal
		5.	Pyramidal

A. i-e,ii-a,iii-b,iv-c

B. i-a,ii-b,iii-c,iv-d

- C. i-a,ii-b,iii-d,iv-c
- D. i-a,ii-c,iii-e,iv-d

Watch Video Solution

53. Match the species in Column I with the bond order in Column II.

Column I	Column II
i) NO	a) 1.5
ii) CO	b) 2.0°
iii) O ₂	c) 2.5
iv) O ₂	d) 3.0
A. i-c,ii-d,iii-a,iv-b	

B. i-a,ii-b,iii-c,iv-d

C. i-a,ii-b,iii-d,iv-c

D. i-a,ii-c,iii-e,iv-d

Answer: A

View Text Solution

54. Match the items given in column i with example given in Column II

	Column I	(Column II
Α.	Hydrogen bond	1.	С
В.	Resonance	2.	LiF
C.	lonic solid	3.	H_2
D.	Covalent solid	4.	HF
		5.	O_3

A. i-d,ii-e,iii-b,iv-a

B. i-a,ii-b,iii-c,iv-d

C. i-a,ii-b,iii-d,iv-c

D. i-a,ii-c,iii-e,iv-d

Watch Video Solution