びdoubtnut

India's Number 1 Education App

CHEMISTRY

FOR IIT JEE ASPIRANTS OF CLASS 11 FOR CHEMISTRY

CHEMICAL EQUILIBRIUM

Example -1

1. 8.5 grams of ammonia are dissolved to form 4 L aqueous solution.

Calculate the active mass.

- Watch Video Solution

2. Number of molecules in V litre of a gas at NTP is
3. The equilibrium constant for the reaction $2 x+y \Leftrightarrow x_{2} y$ is $10 L^{2} \mathrm{~mol}^{-2}$. The rate constant for the back ward reaction $2.8 s^{-1}$. What is the rate constant of the forward reaction?

- Watch Video Solution

4. For the cyclic trimerisation of acetylene to give one mole of benzene, $K_{C}=4 L^{2} \mathrm{~mol}^{-2}$. If the equilibrium concentration of benzene is $0.5 \mathrm{~mol} \mathrm{~L}^{-1}$, calculate the equilibrium concentration of acetylene.

(Watch Video Solution

5. K_{p} for the reaction, $N H_{4} H S(s) \Leftrightarrow N H_{3}(g)+H_{2} S(g)$, at certain temperature is $4 \mathrm{bar}^{2}$. Calculate the equilibrium perssure.

- View Text Solution

6. $P C l_{5}$ was taken 2 atm in a closed vessel at $154^{0} C$. Keeping the temperature constant, $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$ equilibrium is estabilished when 50% of $P C l_{5}$ decomposes. Calculate the K_{p} for the equilibrium.

- Watch Video Solution

7. For the equilibrium
$2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$, the partial pressure of $\mathrm{SO}_{y} \mathrm{SO}_{2}$ and O_{2} gases at 650 K are respectively $0.2,0.6 \mathrm{bar}$ and 0.4 bar. If the moles of both the oxides of sulphur are so adjusted as equal, what will be the partial pressure of O_{2}.

- Watch Video Solution

8. Calculate the ratio of pressure of CO_{2} gas and CO gas at equilibrium in the reaction, $\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 \mathrm{CO}(g)$, If K_{p} is 3 bar at 900 K and initial pressure of CO_{2} is 0.48 bar.
9. At 500K, $K_{P}=2.4 \times 10^{-2}$ atm for the reaction, $2 \mathrm{NOCl}(g) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g)$. Calculate K_{C} at the same temperature.

- View Text Solution

10. At $1065^{\circ} C, K_{p}=0.118$ atm for the reaction $2 H_{2} S(g) \Leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$ The enthalpy of the reaction is $177.3 \mathrm{~kJ} / \mathrm{mol}$. Calculate the given equilibrium constant at $1200^{\circ} \mathrm{C}$ Given $\mathrm{R}=8.314$ J

- Watch Video Solution

11. Equilibrium constant, K_{c} the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ is $2 \times 10^{-2} \mathrm{~mol}^{-2} l i t^{2}$. What is the value of K_{c} for the reaction $2 \mathrm{NH}_{3}(g) \Leftrightarrow N_{2}(g)+3 H_{2}(g)$?

- View Text Solution

12. Equilibrium constant K_{X}, for the reaction $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$, is 49. What is the value of K_{C} for the reaction $\frac{1}{2} H_{2}(g)+\frac{1}{2} I_{2}(g) \Leftrightarrow H I(g)$ and $2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g) ?$

- View Text Solution

13. K_{C} values respectively for the reaction, $\mathrm{H}_{2} \mathrm{SO}_{3} \Leftrightarrow \mathrm{H}^{+}+\mathrm{HSO}_{3}^{-}$and $\mathrm{HSO}_{3}^{-} \Leftrightarrow \mathrm{H}^{+}+\mathrm{SO}_{3}^{2-}$ are $2 \times 10^{-2} \mathrm{mo}$
. Calculate the K_{C} for the reaction $H_{S} S O_{3} \Leftrightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{3}^{2-}$

- Watch Video Solution

14. The equilibrium constant of the reaction, $\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ is 5×10^{-2} atm. The equilibrium constant of the reaction, $2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

- Watch Video Solution

15. If the equilibrium constant for the reaction, $H_{2}(g)+I_{2} \Leftrightarrow 2 H I(g)$ is K. What is the equilibrium constant of $H I(g) \Leftrightarrow \frac{1}{2} H_{2}(g)+\frac{1}{2} I_{2}(g)$?

- View Text Solution

16. The K_{c} for the equilirbium $2 \mathrm{CO}_{2(g)} \Leftrightarrow 2 \mathrm{CO}_{(g)}+O_{2(g)}$ is 6.4×10^{-7} Predict whether reaction will take place to the left or to the right to reach equilibrium or remains or equilibrium
(a) $\left[\mathrm{CO}_{2}\right]=5.3 \times 10^{-2},[\mathrm{CO}]=3.6 \times 10^{-4},\left[O_{2}\right]=2.4 \times 10^{-3}$
(b) $\left[\mathrm{CO}_{2}\right]=1.78 \times 10^{-1},[\mathrm{CO}]=2.1 \times 10^{-2},\left[O_{2}\right]=5.7 \times 10^{-5}$
(c) $\left[\mathrm{CO}_{2}\right]=1.03 \times 10^{-1},[\mathrm{CO}]=2.4 \times 10^{-2},\left[O_{2}\right]=1.18 \times 10^{-5}$

- Watch Video Solution

17. The reaction was started with 0.1 M each of CO and $\mathrm{H}_{2} \mathrm{O}$ at 800 K . K_{C} for the reaction,
$\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$ at 800K, 4.24. What is the equilibrium concentration of CO_{2} gas?

- Watch Video Solution

18. The standard free energy of the reaction at 298 K is $-125.52 \mathrm{~kJ} / \mathrm{mole}$.

Calculate the equilibrium constnat K_{p}.

- Watch Video Solution

19. Vapour density of the equilibrium mixture of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is found to be 40 for the equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$
Calculate
A. 0.1
B. 0.05
C. 0.2608
D. None of these

D Watch Video Solution

20. $P C l_{5}$ is 10% dissociated at 1 atm . What is $\%$ dissociation at 4 atm .
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$

- Watch Video Solution

21. Two solid compounds X and Y dissociates at a certain temperature as follows

$$
X(s) \Leftrightarrow A(g)+2 B(g), K_{p_{1}}=9 \times 10^{-3} a t m^{3}
$$

$$
Y(s) \Leftrightarrow 2 B(g)+C(g), K_{p_{2}}=4.5 \times 10^{-3} a t m^{3}
$$

The total pressure of gases over a mixture of X and Y is :
A. 4.5 atm
B. 0.85 atm
C. 0.6 atm
D. 0.45 atm

- Watch Video Solution

Evaluate Yourself -I

1. The active mass of 5.6 litres of O_{2} at STP is
A. 5.6/22.4
B. 8/5.6
C. 32/5.6
D. $0.25 / 5.6$

Answer: D

View Text Solution
2. A reaction $C a F_{2} \Leftrightarrow C a^{2+}+2 F^{-}$is at equilibrium. If the concentration of Ca^{2+} is increased four times, what will be the change in F^{-}concentration as compared to the initial concentration of F^{-}?
A. One half of its initial value
B. Twice the initial value
C. $1 / 4$ th of its initial value
D. Thrice of its initial value

Answer: A

- Watch Video Solution

3. For the reaction: $C u(s)+2 A g_{(a q)}^{+} \Leftrightarrow C u_{(a q)}^{2+}+2 A g_{(s)}$, the equilibrium constant is given by
A. $\frac{\left[\mathrm{Cu}^{2+}\right][\mathrm{Ag}]^{2+}}{[\mathrm{Cu}]\left[\mathrm{Ag}^{+}\right]^{2}}$
B. $\frac{\left[\mathrm{Cu}^{2+}\right][\mathrm{Ag}]^{2}}{[\mathrm{Cu}]\left[\mathrm{Ag}^{+}\right]^{2}}$
c. $\frac{\left[\mathrm{Cu}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}}$
D. $\frac{\left[\mathrm{Ag}^{+}\right]^{2}}{\left[\mathrm{Cu}^{2+}\right]}$

Answer: C

- Watch Video Solution

4. In a reversible reaction $A \underset{K_{2}}{\stackrel{K_{1}}{\Longleftrightarrow}} B$ the initial concentration of A and B are a and b in moles per litre and the equilibrium concentrations are $(a-\mathrm{x})$ and ($\mathrm{b}+\mathrm{x}$) respectively, Express x in terms of K_{1}, K_{2}, a and b.
A. $\frac{k_{1} a-k_{2} b}{k_{1}+k_{2}}$
B. $\frac{k_{1} a-k_{2} b}{k_{1}-k_{2}}$
C. $\frac{k_{1} a-k_{2} b}{k_{1} k_{2}}$
D. $\frac{k_{1} a+k_{2} b}{k_{1}+k_{2}}$

Answer: A

5. If the equilibrium constant for the reaction $2 A B \Leftrightarrow A_{2}+B_{2}$ is 36 . What is the equilibrium constant for $A B \Leftrightarrow \frac{1}{2} A_{2}+\frac{1}{2} B_{2}$
A. 49
B. 24
C. 6
D. 2

Answer: C

- Watch Video Solution

6. The equilibrium constant of the reaction $\left(K_{c}\right)$ when the reaction is conducted in a one litre vessel was found to be 2.5×10^{-3}. If the reaction is conducted at the same temperature in a 2 litre vessel then the value of K_{c} is

$$
\text { A. } 6.25 \times 100^{-4}
$$

B. 1.25×10^{-3}
C. 2.5×10^{-3}
D. 5×10^{-3}

Answer: C

- Watch Video Solution

7. According to law of mass action, for $\left.\mathrm{CaCO}_{3(s)} \Leftrightarrow \mathrm{CaO}+\mathrm{CO}_{2}\right)\left(R_{r}=\right.$ Rate of forward and $R_{b}=$ Rate of backw

Which of the following is true at equilibrium?
A. $R_{b}=K_{b}\left[\mathrm{CaCO}_{3}\right]^{2}$
B. $R_{f}=K_{f}\left[\mathrm{CaO}_{3}\right]^{2}$
C. $R_{f}=K_{b}\left[\mathrm{CO}_{2}\right]$
D. $\frac{R_{f}}{R_{b}}=\left[\mathrm{CO}_{2}\right]^{1}$

Answer: C

8. In which of the following reactions, the concentration of rectant is equal to concentration of product at equilibrium ($\mathrm{K}=$ equilibrium constant)
A. $A \Leftrightarrow B, K=0.01$
B. $R \Leftrightarrow P, K=1$
C. $X \Leftrightarrow Y, K=10$
D. $L \Leftrightarrow J, K=0.025$

Answer: C

- Watch Video Solution

9. The following concentration were obtained for the formation of NH_{3} from $\quad N_{2}$ and H_{2} at equilibrium for the reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
$\left[N_{2}\right]=1.5 \times 10^{-2} M$
$\left[H_{2}\right]=3.0 \times 10^{-2} M$
$\left[N H_{3}\right]=1.2 \times 10^{-2} \mathrm{M}$
Calculate equilibrium constant.
A. $8.83 \times 10^{-1} M$
B. $1.65 \times 10^{3} \mathrm{M}$
C. $1.13 \times 10^{3} \mathrm{M}$
D. $2.09 \times 10^{3} \mathrm{M}$

Answer: B

- Watch Video Solution

10. $A B_{2}$ dissociates as $A B_{2(g)} \Leftrightarrow A B_{(g)}+B_{(g)}$. Whwn the initial pressure of $A B_{2}$ is 600 mm of Hg , the total equilibrium pressure is 800 mm of Hg . Calculate K_{p} for the reaction, assuming that the volume of the system remains unchanged
A. 50
B. 100
C. 166.8
D. 400

Answer: A

- View Text Solution

11. $\mathrm{NH}_{4} \mathrm{COONH}_{2}(\mathrm{~s}) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g)$ If equilibrium pressure is 3 atm for the above reaction, then K_{p} for the reaction is
A. 4
B. 20
C. 25
D. 15
12. For the equilibrium $A B(g) \Leftrightarrow A(g)+B(g)$ at a given temperature, the pressure at which one-third of $A B$ is dissociated is numerically equal to
A. 8 times K_{p}
B. 16 times K_{p}
C. 4 times K_{p}
D. 9 times K_{p}

Answer: A

Watch Video Solution

13. 2 mol of N_{2} is mixed with 6 mol of H_{2} in a closed vessel of one litre capacity. If $50 \% N_{2}$ is converted into NH_{3} at equilibrium, the value of K_{c}
for the reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$
A. $4 / 27$
B. $27 / 4$
C. $2 / 27$
D. 20

- Watch Video Solution

Evaluate Yourself -II

1. For which of the reversible reaction $K_{p}=K_{c}$
A. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
B. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
C. $P C l_{3}(g)+C l_{2}(g) \Leftrightarrow \mathrm{PCl}_{3}(g)$
D. $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O(g)$

Answer: D

- Watch Video Solution

2. For the reaction $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$ at 741 K , the value of equlibrium constant, K_{c} is 50 . The value of K_{p} under the same conditions will be
A. 0.02
B. 0.2
C. 50
D. 50/RT

Answer: C

- Watch Video Solution

3. For the reaction
$C O(g)+C I_{2}(g) \Leftrightarrow C O C I_{2}(g)$
K_{p} / K_{c} is equal to
A. 1/RT
B. RT
C. $\sqrt{R} T$
D. $(R T)^{2}$

Answer: A

- Watch Video Solution

4. A reaction $S_{8}(g) \Leftrightarrow 4 S_{2}(g)$ is carried out by taking 2 mol of $S_{g(g)}$ and 0.2 mol of $S_{2(g)}$ is a reaction vessel of 1 L and $K=6.30 \times 10^{-6}$ then
(a) Reaction qutient is 8×10^{-4}
b) Reaction proceeds in backward direction
c) Reaction proceeds in forward direction

The correct options are
A. a, b
B. b,c
C. a,c
D. All

Answer: A

- Watch Video Solution

5. At constant temperature, the equilibrium constant $\left(K_{p}\right)$ for the decomposition reaction
$N_{2} O_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$
is expressed by $K_{p}=4 x^{2} p /\left(1-x^{2}\right)$, where $\mathrm{p}=\mathrm{pressure} \mathrm{x}=$ extent of decomposition. Which of the following statements is true?
A. K_{p} increases with increase of P
B. K_{p} increases with increase of x
C. K_{p} increases with decrease of x
D. K_{p} remains constant with change in P or x

Answer: A

- Watch Video Solution

6. The equilibrium constant for the reaction
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
at temperature T is 4×10^{-4}.
The value of K_{c} for the reaction
$N O(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g)$
at the same temperature is
A. 25×10^{2}
B. 50
C. 4×10^{-4}
D. 10

Answer: B

(D) Watch Video Solution

Evaluate Yourself -III

1. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+$ heat. What is the effect of the increase of temperature on the equilibrium of the reaction?
A. Equilibrium is shifted to the right
B. Equilibrium is unaffected
C. Equilibrium is shifted to the left
D. Equilibrium is shifted first to right then to left

Answer: C

- Watch Video Solution

2. Consider the reactions
$(i) P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
$(i i) \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
The addition of an inert gas at constant volume
A. Will incease the dissociation of PCI_{5} as well as $\mathrm{N}_{2} \mathrm{O}_{4}$
B. will reduce the dissociation of PCl_{5} as well as $\mathrm{N}_{2} \mathrm{O}_{4}$
C. Will increase the dissociation of $P C I_{5}$ and step up the formation of $\mathrm{N}_{2} \mathrm{O}_{4}$
D. Will not distrub the equilibrium of the reactions

Answer: D

- Watch Video Solution

3. For the following reaction, the value of K change with

$$
N_{2}(g)+O_{2}(g) \ll 2 N O(g), \Delta H=+180 \mathrm{kJmol}^{-1}
$$

A. Change in pressure at constant volume does not effect the equilibrium
B. $\mathrm{Dn}=0$
C. The formation of NO is increased at higher temperature
D. The formation of NO is decreased at higher temperature

Answer: D

- Watch Video Solution

4. The reaction
$3 \mathrm{Fe}(s)+4 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(s)+4 \mathrm{H}_{2}(g)$ is reversible if it is carried out
A. Increasing the pressure
B. Passing more steam
C. Increasing the mass of iron
D. Decreasing the pressure

Answer: B

5. For a reaction if $K_{p}>K_{c}$, the forward reaction is favoured by $(T>15 K)$
A. The backward reaction
B. No reaction
C. The forward reaction
D. Both forward and backward reaction equally

Answer: C

- Watch Video Solution

6. For the reaction,

$$
\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \Leftrightarrow \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)}
$$

at a given temperature, the equilibrium amount of $C O_{2(g)}$ can be increased by:
A. I \& IV
B. II, III \& IV
C. I \& II
D. I, II \& III

Answer: C

- Watch Video Solution

7. In the reaction, $2 \mathrm{SO}_{2}(s)+O_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)+$ Xcal, most favourable conditions of temperature and pressure for greater yield of SO_{3} are
A. Low temperature and low pressure
B. High temperature and low pressure
C. High temperature and high pressure
D. Low temperature and high pressure

Answer: D

- Watch Video Solution

C.U.Q.

1. The following is a reversible reaction
A. KCIO_{3} heated in a sealed tube
B. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ heated in a closed vessel
C. CaCO_{3} heated in a closed vessel
D. CH_{4} heated with excessofo, in a closed vessel

Answer: C

2. The experimental curve obtained when the rate of a reaction is plotted against the concentration of the reactant, appeared parallel to the concentration axis after sometime in a reaction. This indicates that
A. the reaction is stopped
B. equilibrium is established
C. concentration of the reactant is negligible
D. the reaction is reomplex

Answer: A: B

- Watch Video Solution

3. Which of the following is an irreversible reaction?
A. $\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
B. $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$
C. $\mathrm{N}_{2}+3 \mathrm{H}_{20 \rightarrow 2 \mathrm{NH}_{3}}$
D. $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

Answer: A::B::C::D

- Watch Video Solution

4. Which of the following behaves as an irreversible reaction when conducted in a closed vessel
A. synthesis of ammonia
B. decomposition of $P C I_{5}$ solid
C. formation of SO_{2} from $\mathrm{SO}_{2} \& \mathrm{O}_{2}$
D. precipitation of Cl^{-}by AgNO_{3}

Answer: A::C::D

- Watch Video Solution

5. An example of a reversible reaction is
A. $\mathrm{AgNO}_{3(a q)}+\mathrm{NaCl}_{(a q)} \rightarrow \mathrm{AgCl}_{(s)}+\mathrm{NaNO}_{3(a q)}$
B. $2 \mathrm{Na}_{(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 2 \mathrm{NaOH}_{(a q)}+\mathrm{H}_{2(g)}$
C. $2 \mathrm{KClO}_{3(s)} \rightarrow 2 \mathrm{KCl}_{(s)}+3 \mathrm{O}_{2}(\mathrm{~g})$
D. $\mathrm{NH}_{4} \mathrm{HS}_{(s)} \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} S_{(g)}$

Answer: A::B::C::D

- Watch Video Solution

6. Which of the following is a characteristic of a reversible reaction ?
A. Number of moles ofreactants and products are equal
B. It can be influenced by a catalyst
C. It can never proceed to completion
D. It can be attained in open vessel

Answer: C

- Watch Video Solution

7. A reversible chemical reaction is said to be at equilibrium when
A. Equal amounts of reactants and products are formed
B. Reactants are completely converted to products
C. The rate of forward reaction is equal to the rate of backward reaction
D. The concentration of the reactants and products is the same

Answer: B::C

- Watch Video Solution

8. The equilibrium constant in a reversible reaction at given temperature
A. Colour
B. Density
C. Pressure
D. All the above

Answer: B::D

- Watch Video Solution

9. In line kilns, the following reaction,

$$
\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)
$$

proceeds to completion because of
A. High temperature
B. CaO is more stable than the CaCO_{3}
C. CaO is not dissociated
D. CO_{2} escapes continuously

Answer: D

- Watch Video Solution

10. Chemical equilibrium is a dynamic equilibrium because
A. The equilibrium attained quickly
B. The concentration of the reactants and products become same at equilibrium
C. The concentration of reactants and products are constant but different
D. Both forward and backward reactions occur at all time with the same speed

Answer: D

- Watch Video Solution

11. Which of the following reagent(s) can show colour change when SO_{2} gas is passed through it?
A. $S O_{2}(g)+1 / 2 O_{2}(g) \Leftrightarrow S O_{3}(g)$
B. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
C. $2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$
D. C (graphite) $+\mathrm{CO}_{2}(g) \Leftrightarrow 2 \mathrm{CO}(g)$

Answer: B::C::D

- Watch Video Solution

12. A gas bulb is filled with NO_{2} gas and immersed in an ice bath at $0^{\circ} \mathrm{C}$, which becomes colourless after sometime. This colourless gas will be:
A. NO_{2}
B. $\mathrm{N}_{2} \mathrm{O}$
C. $\mathrm{N}_{2} \mathrm{O}_{4}$
D. $\mathrm{N}_{2} \mathrm{O}_{5}$

Answer: C

- Watch Video Solution

13. Law of mass action cannot be applied to
A. Decomposition of gaseous HI
B. Decomposition of gaseous $P C I_{5}$
C. Transition of Rhombic Sulphur to Monoclicnic sulphur
D. Decomposition of Calcium Carbonate

Answer: A::B::C

- Watch Video Solution

14. Under a given set of experiemental condition, with increase in the concentration of the reactants, the reate of a chemical reaction
A. Decreases
B. Increases
C. Remains constant
D. First decreases and increases

Answer: A::B::C::D

- Watch Video Solution

15. The active mass for any pure liquid or pure solid
A. A and B
B. B and C
C. A and C
D. A, B, C

- Watch Video Solution

16. For a reversible reaction, if the concentrations of the reactants are doubled, then the equilibrium constant value
A. Gets doubled
B. Gets halved
C. Remains the same
D. increases four times

Answer: A::C::D

- Watch Video Solution

17. For reactions involving gaseous reactants and products the equilibrium constant K, is written in terms of
A. The pressure of the gases
B. The molar volumes of the gases
C. The partial pressures of the gases
D. The mole fraction of the gases

Answer: A::C

- Watch Video Solution

18. In the case of gaseous homogeneous reaction, the active mass of the reaction is obtained by the expression.
A. $\frac{P V}{R T}$
B. $\frac{P}{R T}$
C. $\frac{R T}{P}$
D. $\frac{n}{V} R T$
19. The molar concentration of 64 g of SO_{2} in a four litre flask would be
A. 2
B. 1
C. 5
D. 0.25

Answer: A::C::D

- Watch Video Solution

20. The equilibrium constant of a reaction is 300 , if the volume of the reaction flask is tripled, the equilibrium constant will be
A. Which has only numerical value and carries no units
B. With (or) without units depending upon the stoichiometric coefficients of the species involved in a chemical equation
C. Whose value always depends upon the units in which the concentrations of species involved in chemical reaction
D. Whose value change if the concentration of all the species involves in the chemical reaction are doubled

Answer: A::B::D

- Watch Video Solution

21. With increase in temperature, the value of equilibrium constant
A. Increases
B. Decreases
C. May inerease or decrease
D. Remains constant

D Watch Video Solution

22. If different quantities of ethyl alcohol and acetic acid are used in the reversible reaction

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(a q)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(a q)} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}
$$

then the equilibrium constant at constant temperature will have the values
A. Same in all cases
B. Different in all cases
C. higher in cases when higher concentration of ethyl alcohol is used
D. Higher in cases when higher concentration of acetic acid is used

Answer: A::C::D

- Watch Video Solution

23. The value of K_{c} for the reaction $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 N H_{3(g)}$ depends on
A. Temperature
B. Pressure
C. Collision
D. Concentration

Answer: A

- Watch Video Solution

24. Which of the following is/are correct about chemical equilibrium?
A. There is not change in the concentrations of reactants and products with time
B. Equilibrium can be attained by starting with either reactants (or)
C. Equilibrium is dynamic
D. Position of equilibrium cannot be disturbed by changing the concentrations of reactants (or) products

Answer: D

- Watch Video Solution

25. When a catalyst is introduced into a reversible reaction
A. Increases rate of forward reaction only
B. Increases rate of backward reaction only
C. Equilibrium is not changed
D. Attains equilibrium quickly

Answer: D

26. For a system in equilibrium, $\Delta G=0$, under conditions of constant
A. Temperature and pressure
B. Temperature and volume
C. Energy and volume
D. Pressure and volume

Answer: A

- Watch Video Solution

27. The unit of equilibrium constant $\left(K_{c}\right)$ in general is
A. (mol/lit)
B. (lit/mol)
C. $(\mathrm{mol} / \mathrm{lit})^{\triangle n}$
D. $(\mathrm{lit} / \mathrm{mol})^{\triangle n}$

- Watch Video Solution

28. According to van 't Hoff equation, K varies with temperature as:
A. $\log \frac{K_{2}}{K_{1}}=\frac{\triangle H}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
B. $\log \frac{K_{1}}{K_{2}}=+\frac{\triangle H}{2.303 R}\left[\frac{1}{T_{2}}+\frac{1}{T}\right]$
C. $\log \frac{K_{1}}{K_{2}}=-\frac{\triangle H}{2.303 R}\left[\frac{1}{T_{2}}+\frac{1}{T_{2}}\right]$
D. $\log \frac{K_{2}}{K_{1}}=+\frac{\triangle H}{2.303 R}\left[\frac{1}{T_{1}}+\frac{1}{T_{2}}\right]$

Answer: A::C::D

Watch Video Solution

29. A vessel contains 1 mole of O_{2} and 1 mole of He . The value of γ of the mixture is
A. K_{1} for $N_{2}+O_{2} \Leftrightarrow 2 N O$ in A and B are in the ratio 1:2
B. K_{p} for $N_{2}+O_{2} \Leftrightarrow$ in A and B are in the ratio 1:2
C. K_{2} for $N_{2}+O_{2} \Leftrightarrow N O$ in A and B are equal
D. K_{P} for $N_{2}+O_{2} \Leftrightarrow=2 N O$ in A and B are in the ratio 2:1

Answer: A::B::C

- Watch Video Solution

30. In the equilibrium, $A B(s) \rightarrow A(g)+B(g)$, if the equilibrium concentration of A is doubled, the equilibrium concentration of B would become
A. Reduced to half its initial value
B. Increases by two times
C. Remains unchanged
D. Increases by four times

D Watch Video Solution

31. In which of the following equilibrium reactions, the equilibrium reactions, the equilibrium would shift to the right, if total pressure is increased
A. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
B. $I_{2}(g)+H_{2}(g) \Leftrightarrow 2 H I(g)$
C. $N_{2}(g)+O_{2} \Leftrightarrow 2 N O(g)$
D. $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

Answer: A

- Watch Video Solution

32. The degree of dissociation of PCl_{5}
A. Increases with increasing pressure
B. Decreases with increasing pressure
C. No effect on change in pressure
D. Decreases with decreasing pressure

Answer: B

- Watch Video Solution

33. The reaction in which an increase in pressure would favour the forward reaction is
A. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
B. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
C. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
D. $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
34. When NaNO_{3} is heated in a closed vessel, oxygen is liberated and NaNO 2 is left behind. At equilibrium
A. Addition of NaNO_{2} favours forward reaction
B. Addition of NaNO_{3} favours forward reaction
C. Increasing of temperature favours forvard reaction
D. Both addition of NaNO_{3} and increasing of

Answer: A:C::D

- Watch Video Solution

35. For the reaction :
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
A. Temperature is increased
B. Temperature is decreased
C. Volume of vessel is increased
D. Amount of CaCO_{3} is decreased

Answer: A::C::D

- Watch Video Solution

36. Le-Chatelier principle is not applicable to
A. $2 S O_{2}(g)+O_{2}(g) \Leftrightarrow 2 S O_{3}(g)$
B. $F e(s)+S(s) \Leftrightarrow F e S(s)$
C. $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
D. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$

Answer: A::B::C::D

37. $\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\text { Pyridine }} \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{HCl}$

The function pyridine in the above reaction is:
A. Increasing the temperature
B. Sudden cooling of the reaction mixture
C. Conducting the reaction in presence of a small quantity of NaOH
D. Taking excess of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}$

Answer: A::C::D

- Watch Video Solution

38. In the equilibrium reaction $N_{2}+3 H_{2} \Leftrightarrow 2 N H_{3}$, the sign of $\triangle H$ accompanying the reaction is
A. Positive
B. Negative
C. May be positive or negative
D. Cannot be predicted

Answer: A::B::C

- Watch Video Solution

39. For which of the following equilibria does decrease in pressure not favour the forward reaction?
A. $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 N H_{3(g)}, \triangle H=-Q_{1}$
B. $C a C O_{3(s)} \Leftrightarrow C a O_{(s)}+C O_{2(g)}, \triangle H=+Q_{2}$
C. $3 O_{2(g)} \Leftrightarrow 2 O_{3(g)}, \triangle H=+Q_{3}$
D. $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}, \triangle H=+Q_{4}$

Answer: C

- Watch Video Solution

40. Given the following reaction at equilibrium $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$. Some inert gas at constant pressure is added to the system. Predict which of the following facts:
A. The formation of more amount of SO_{3}
B. The formation of less amount of SO_{3}
C. No effect on the equilibrium concentration of SO_{3}
D. The system to move to a new equilibrium position which cannot be theoritcally predicted.

Answer: B::C::D

- Watch Video Solution

41. Under what conditions of temperature and pressure the formation of atomic hydrogen from molecular hydrogen will be favoured most ?
A. High temperature and high pressure
B. Low temperature and low pressure
C. High temperature and low pressure
D. Low temperature and high pressure

Answer: B::C::D

- Watch Video Solution

42. Changing the volume of the system does not after the number of moles in which of the following equilibrium.
A. $N_{2}+O_{2} \Leftrightarrow 2 N O$
B. $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$
C. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$
D. $\mathrm{SO}_{2} \mathrm{Cl}_{2} \Leftrightarrow \mathrm{SO}_{2}+\mathrm{Cl}_{2}$

Answer: A

43. $\mathrm{H}_{4} \underline{\mathrm{P}_{2} \mathrm{O}_{6}}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}+\mathrm{H}_{3} \mathrm{PO}_{4}$
A. $\mathrm{H}_{3} \mathrm{O}^{+}$
B. PO_{4}^{3-}
C. $\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{3} \mathrm{PO}_{4}$

Answer: A::C::D

Watch Video Solution

44. Assertion: The dissociation of $P C 1_{5}$ decreases on increasing pressure.

Reason: An increase in pressure favours the forward reaction.
A. $2 \mathrm{SO}_{2(g)}+O_{2(g)} \Leftrightarrow 2 \mathrm{SO}_{3(g)}$
B. $2 O_{3(g)} \Leftrightarrow 3 O_{2(g)}$
C. $C_{\text {graphite }} \Leftrightarrow C_{\text {diamond }}$
D. $H_{2(g)}+\frac{1}{2} O_{2(g)} \Leftrightarrow H_{2} O_{(g)}$

Answer: C

- Watch Video Solution

45. The reaction $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}+$ heat . The equilibrium reaction proceeds in forward direction by :
A. By adding more of C
B. By adding more of D
C. By raising the tempearture of the system
D. By lowering the temperature

Answer: A::C::D

- Watch Video Solution

46. For conversion C (graphite) $\rightarrow C$ (diamond) the ΔS is
A. High temperature, low pressure
B. Low temperature, high pressure
C. High temperature, high pressure
D. Low temperature, low pressure

- Watch Video Solution

47. The dissociation of CaCO_{3} is suppressed at high pressure
A. The equilibrium shifts to the right
B. The equilibrium shifts to the left
C. The pressure of CO_{2} increases
D. The position of equilibrium remains unchanged

Watch Video Solution

48. The exothermic formation of ClF_{3} is represented by thr equation:
$C l_{2}(g)+3 F_{2}(g) \Leftrightarrow 2 C l F_{3}(g), \Delta H=-329 k J$
Which of the following will increase the quantity of ClF_{3} in an equilibrium mixture of $C l_{2}, F_{2}$, and $C l F_{3}$?
A. Increasing temperature
B. Removing Cl_{2}
C. Increasing volume of vessel
D. Adding F_{2}

Answer: A::C::D

- Watch Video Solution

49. When $\mathrm{CH}_{3} \mathrm{COONa}$ is added to an aqueous solution of $\mathrm{CH}_{3} \mathrm{COOH}$
A. The acid dissociates further
B. The H^{+}ion concentration increases
C. The acid dissociation is suppressed
D. The equilibrium is unaffected

Answer: C

- Watch Video Solution

50. The catalyst and promoter respectively used in the Haber's process of industrial synthesis of ammonia are
A. $\mathrm{Mv}, \mathrm{V}_{2} \mathrm{O}_{5}$
B. $\mathrm{V}_{2} \mathrm{O}_{5}, \mathrm{Fe}$
C. Fe, Mo
D. Mo, Fe

Answer: C

Watch Video Solution

Exercise -I (C.W.)

1. What is the equilibrium expression for the reaction $P_{4}(s)+50_{2}(g) \Leftrightarrow P_{4} O_{10}(s)$
A. $K_{C}=\frac{\left[P_{4} O_{10}\right]}{\left[P_{4}\right]\left[O_{2}\right]^{5}}$
B. $K_{C}=\frac{1}{\left[O_{2}\right]^{5}}$
C. $K_{C}=\left[O_{2}\right]^{5}$
D. $K_{C}=\frac{\left[P_{4} O_{10}\right]}{5\left[P_{4}\right]\left[O_{2}\right]}$

Answer: B

- Watch Video Solution

2. The equilibrium constant Kp for the reaction
$\mathrm{NH}_{4} H S_{(s)} \Leftrightarrow N H_{3(g)}+H_{2} S_{(g)}$ is
A. $K_{P}=\frac{P_{N H_{3} \times P_{H_{2} S}}}{P_{N H_{4} H S}}$
B. $K_{P}=\frac{P_{N H_{4} \mathrm{HS}}}{P_{N H_{3}} \times P_{H_{2} S}}$
C. $K_{P}=P_{N H_{4} H S}$
D. $K_{P}=P_{N H_{3}} \times P_{H_{2} S}$

Answer: D

- Watch Video Solution

3. In the process $N_{2}+3 H \Leftrightarrow 2 N H_{3}$, the initial concentration of Nitrogen and Hydrogen are one mole per litre and 3 moles per litre respectively. The equilibrium constant of the reaction is x. Then K_{C} for $2 \mathrm{NH}_{3} \Leftrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$ is
A. x
B. $2 x$
C. $1 / x$
D. $3 x$

Answer: C

- Watch Video Solution

4. The equilibrium constant of a reaction at 298 K is 5×10^{-3} and at 1000 K is 2×10^{-5} What is the sign of $\triangle H$ for the reaction.
A. DH is +ve
B. DH is -ve
C. $\mathrm{DH}=0$
D. DH is +ve

Answer: B

- Watch Video Solution

5. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ in this equilibrium system if the pressure is increased at $25^{\circ} \mathrm{C}$ then the value of K will
A. Increases
B. Decreases
C. Remains the same
D. Depends on the nature of the reactants

Answer: C

- Watch Video Solution

6. $A_{(s)}+B_{(g)}+$ heat $\Leftrightarrow 2 C_{(s)}+2 D_{(g)}$. At equilibrium the concentration of B is doubled. By what factor the concentration of D should change to retain the equilibrium
A. $\sqrt{2}$
B. 2
C. 3
D. $\sqrt{3}$

D View Text Solution

7.

For
$A_{2(g)}+B_{2(g)} \underset{K_{b}=15}{\stackrel{K_{f}=5}{\rightleftharpoons}} 2 A B_{(g)}, K_{C}$ for $2 A B_{(g)} \Leftrightarrow A_{2(g)}+B_{2(g)}$, is
A. 3
B. 75
C. $\sqrt{3}$
D. $\frac{1}{\sqrt{3}}$

Answer: A: B

- Watch Video Solution

8. The equilibrium constant for a reaction
$A+2 B \Leftrightarrow 2 C$ is 40 . The equilibrium constant for reaction
$C \Leftrightarrow B+1 / 2 A$ is
A. $1 / 40$
B. $1 /(40)^{1 / 2}$
C. $(1 / 40)^{2}$
D. 40

Answer: A::B

- Watch Video Solution

9. The equilibrium constant for the reaction $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}$ at 2000 K is 4 * $10^{\wedge}-4 \operatorname{In}$ presence of a catalyst the equilibrium is attained three times faster. The equilibrium constant in presence of the catalyst at 2000 K
A. $40 \cdot 10^{-4}$
B. $4 \cdot 10^{-4}$
C. $4 \cdot 10^{-3}$
D. $4 \cdot 10^{-8}$

Answer: B

- Watch Video Solution

10. In a reversible reaction, if the concentration of reactants are doubles, the equilibrium constant K will:
A. Change to $1 / 4 \mathrm{~K}$
B. Change to $1 / 2 \mathrm{~K}$
C. Change to 2 K
D. Remain the same

Answer: D

- Watch Video Solution

11. The unit for the equilibrium constant of the reaction
A. $[\text { mole } / \mathrm{lit}]^{-}$
B. $[\text { mole } / \mathrm{lit}]^{-2}$
C. Mole/lit
D. $[\mathrm{mole} / \mathrm{lit}]^{2}$

Answer: B

- Watch Video Solution

12. For the equilibrium $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ at $1000^{\circ} \mathrm{C}$ the equilibrium constant is very low, then which of the following is correct at equilibrium ?
A. [H_{2}] is very high but not $\left[N_{2}\right]$
B. $\left[H_{2}\right]$ is low
C. $\left[\mathrm{NH}_{3}\right]$ is very low
D. $\left[N_{2}\right]$ is low

Answer: C

- Watch Video Solution

13. In which of the following reactions, will the equilibrium mixture contain an appreciable concentration of both reactants and products.
A. $C l_{2}(g) \Leftrightarrow 2 C l(g), K_{c}=6.4 \times 10^{-39}$
B. $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NOCl}(\mathrm{g}) \mathrm{K}_{c}=3.7 \times 10^{8}$
C. $\mathrm{Cl}_{2}(g)+2 \mathrm{NO}_{2}(g) \Leftrightarrow 2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}), \mathrm{K}_{\mathrm{C}}=1.8$
D. $H_{2}(g)+S(s) \Leftrightarrow H_{2} S(g), K=7.8 \times 10^{5}$

Answer: C

- Watch Video Solution

14. The unit of equilibrium constant, K for the reaction, $A+B \rightarrow C$, would be
A. $[C][D]=[A][B]$
B. $[A]=[B]=[C]=[D]=10.0 \mathrm{M}$
C. $[A][B]=0.10[C][D]$
D. $[A][B]=10.0[C][D]$

Answer: 3

- Watch Video Solution

15. The equilibrium constant for the reversible reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ is K and for the reaction $\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \Leftrightarrow N H_{3}$, the equilibrium constant is $K^{\prime}, . K$ and K^{\prime} will be related as
A. K
B. 2 K
C. $1 / K$
D. K^{2}

Answer: A::B::C

- Watch Video Solution

16. The active mass of 64 g of HI In a 2 Lit flask would be
A. 2
B. 1
C. 5
D. 0.25

Answer: A::B::C::D

17. $A B_{3}(g)$ is dissociation as $A B_{2}(g) \Leftrightarrow A B_{2}(g)+\frac{1}{2} B_{2}(g)$, When the initial pressure of $A B_{2}$ is 800 torr and the total pressure developed at equilibrium is 900 torr.

What fraction of $A B_{3}(g)$ is dissociated ?
A. 0.1
B. 0.2
C. 0.25
D. 0.3

Answer: C

- Watch Video Solution

18. In which one of the following gaseous equilibrium, K_{p} is less than K_{c} ?
A. $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$
B. $2 H I_{(g)} \Leftrightarrow H_{2(g)}+I_{2(g)}$
C. $2 \mathrm{SO}_{2(g)}+O_{2(g)} \Leftrightarrow 2 \mathrm{SO}_{3(g)}$
D. $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}$

Answer: C

- Watch Video Solution

19. In the reaction $H_{2(g)}+l_{2(g)} \Leftrightarrow 2 H I_{(g)}$
A. $K_{p}=K_{c}$
B. $K_{p} \neq K_{c}$
C. $K_{p}>K_{c}$
D. $K_{p}<K_{c}$

Answer: A

20. The equilibrium of the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ will be shifted to the right when:
A. $K_{p}>1$
B. $Q<K_{p}$
C. $Q=K_{p}$
D. $Q>K_{p}$

Answer: B

- Watch Video Solution

21. Consider the following equilibrium $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$ in a closed container. At a fixed temperature, the volume of the reaction container is halved. For this change, which of the following statements holds true regarding the equilibrium constant (K) and degree of dissociation (a) ?
A. Neighter K_{p} nor a changes
B. Both K_{p} and a change
C. K_{p} changes, but a does not change
D. K_{p} does not change, but α changes

Answer: D

- Watch Video Solution

22. One mole of $\mathrm{A}(\mathrm{g})$ is heated to $200^{\circ} \mathrm{C}$ in a one litre closed flask, till the following equilibrium is reached.
$A(g) \leftrightarrow B(g)$
The rate of forward reaction, at equilibrium, is $0.02 \mathrm{molL}^{-1} \mathrm{~min}^{-1}$. What is the rate (in $\mathrm{molL}^{-1} \mathrm{~min}^{-1}$) of the backward reaction at equilibrium?
A. 0.2
B. 0.6
C. 0.8
D. 0.1

Answer: A::B::C

- Watch Video Solution

23. Consider the following reaction equilibrium
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
Initially, 1 mole of N_{2} and 3 moles of H_{2} are taken in a 2 L flask. At equilibrium state if, the number of moles of N_{2} is 0.6 , what is the total number of moles of all gases present in the flask?
A. 0.8
B. 1.6
C. 2.8
D. 3.2

Answer: D

24. $\mathrm{NH}_{4} H S(s) \Leftrightarrow \mathrm{NH}_{3}(g)+\mathrm{H}_{2} S(g)$

The3equilibriumpressureat25^(@)Cis0.660atm.WîsK_(p) for the reaction ?
A. 0.5
B. 2
C. 1
D. 1.5

Answer: C

Watch Video Solution

25. One mole of A and 2 moles of B are allowed to react in a 0.5 lit flask. What is the value of K if at equilibirum, 0.4 moles of C is formed in the reaction $A+2 B \Leftrightarrow C+2 D$
A. $4 / 9$
B. $9 / 4$
C. $8 / 27$
D. $27 / 8$

Answer: C

- Watch Video Solution

26. K_{p} / K_{c} for the reaction
$C O(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow \mathrm{CO}_{2}(g)$ is
A. RT
B. $(R T)^{1 / 2}$
C. $\frac{1}{(R T)^{3}}$
D. $\frac{1}{\sqrt{R T}}$
27. K_{1} and K_{2} are equilibrium constants for reaction (i) and (ii)
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g) \ldots($ (i)
$N O(g) \Leftrightarrow 1 / 2 N_{2}(g)+1 / 2 O_{2}(g) \ldots($ (ii)
then,
A. $K_{1}=\left(1 / K_{2}\right)^{2}$
B. $K_{1}=K_{2}^{2}$
C. $K_{1}=1 / K_{2}$
D. $K_{1}=\left(K_{2}\right)^{0}$

Answer: A: B

- Watch Video Solution

28. For the reaction $N_{2} O_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$, the degree of dissociation at equilibrium is 0.2 at 1 atm pressure. The equilibrium constant K_{p} will be
A. $1 / 2$
B. $1 / 4$
C. $1 / 6$
D. $1 / 8$

Answer: C

- Watch Video Solution

29. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+$ heat.What is the effect of the increase of temperature on the equilibrium of the reaction?
A. Increase the rate of forward reaction
B. Increase the rate of backward reaction
C. Produces no change in the reaction
D. Results an increase in the volume
30. Inert gas has been added to the following equilibrium system at constant volume
$S O_{2}(g)+1 / 2 O_{2}(g) \Leftrightarrow S O_{3}(g)$
To which direction will the equilibrium shift?
A. Forward
B. Backward
C. No effect
D. Unpredictable

Answer: C

- Watch Video Solution

31. For a hypothetical reaction of kind
$A B_{2}(g)+\frac{1}{2} B_{2}(g) \Leftrightarrow A B_{3}(g), \Delta H=-x k J$

More $A B_{3}$ could be produceed at equilibrium by
A. Using a catalyst
B. Removing some of B_{2}
C. Increasing the temperature
D. Increasing the pressure

Answer: D

- Watch Video Solution

32. The equilibrium concentration of $C_{2} H_{4}$ in the following gas phase reaction can be increased by

$$
C_{2} H_{4}(g)+H_{2}(g) \Leftrightarrow C_{2} H_{6}(g), \Delta H=-32.7 \mathrm{kcal}
$$

A. Removal of $C_{2} H_{6}$
B. Addition of H_{2}
C. Increase in temperature
D. Increase in pressure

Answer: C

- Watch Video Solution

33. Assertion (A) : The value of K increases with increase in temperature in case of endothermic reaction

Reason (R) : The increase in temperature shifts the equilibrium in the backward direction in case of exothermic reaction.
A. $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$
B. $N_{2}+O_{2} \Leftrightarrow 2 N O$
C. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$
D. $P C l_{5} \Leftrightarrow P C l_{5}+C l_{2}$

Answer: D

34. $\mathrm{H}_{2} \mathrm{O}_{2}$ is obtained by which of the following
A. The pressure changes do not affect the equilibrium
B. More of ice melts if pressure on the system is increased
C. More of liquid freezes if pressure on the system is increased
D. At low pressure, the nature of equilibrium changes to forward direction

Answer: A::B::C

- Watch Video Solution

35. In the melting of ice, which one of the conditions will be more favourable?
A. High pressure and low temperature
B. High pressure and high temperature
C. Low pressure and low temperature
D. Low pressure and high temperature

Answer: A::B::C

- Watch Video Solution

Exercise -I (H.W.)

1. Which one of the following has greater active mass
A. 200 g of lime stone in 2 L vessel
B. 90 g of $C S_{2}$ liquid in 100 ml vessel
C. 50 g of N_{2} gas in 0.5 L vessel
D. 1mole of O_{2} gas at STP

Answer: 3

2. The following one is example to physical equilibrium
A. solid \Leftrightarrow liquid
B. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
C. $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
D. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

Answer: A

- Watch Video Solution

3. Law of mass action can not be applied to
A. $2 \mathrm{HI} \Leftrightarrow H_{2}+I_{2}$
B. $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$
C. Water \Leftrightarrow Ice
D. $\mathrm{CaCO}_{3} \Leftrightarrow \mathrm{CaO}+\mathrm{CO}_{2}$

D Watch Video Solution

4. In which of the following reaction is almost completed:-
A. $K_{c}=1$
B. $K_{c}=10^{10}$
C. $K_{c}=10^{-10}$
D. $K_{c}=10$

Answer: B::C

Watch Video Solution

5. Consider the equilibrium reactions,
$\mathrm{H}_{3} \mathrm{PO}_{4} \stackrel{K_{1}}{\Longleftrightarrow} \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
$\mathrm{H}_{3} \mathrm{PO}_{4}^{-} \stackrel{K_{2}}{\Longleftrightarrow} \mathrm{H}^{+}+\mathrm{HPO}_{4}^{-2}$

$\mathrm{HPO}_{4}^{-2} \stackrel{K_{3}}{\Longleftrightarrow} \mathrm{H}^{+}+\mathrm{PO}_{4}^{-3}$

The equilibrium constant K for the following dissociation

$$
\mathrm{H}_{3} \mathrm{PO}_{4} \Leftrightarrow 3 \mathrm{H}^{+}+\mathrm{PO}_{4}^{-} \text {is }
$$

A. $K_{1}=K_{2}+K_{3}$
B. $\sqrt{K_{1} K_{2} K_{3}}$
C. $K_{1} x K_{2} x K_{3}$
D. $\frac{1}{K_{1} K_{2} K_{3}}$

Answer: C::D

- Watch Video Solution

6. If K_{1} and K_{2} are the equilibrium constants of the equilibria (a) and (b) respectivel, what is the relationship between the two constants ?
(a) $\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g}), K_{1}$
(b) $2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{2}$

$$
\text { A. } K_{1}=K_{2}
$$

B. $K_{1}=\frac{1}{K_{2}}$
C. $K_{2}=K_{1}^{2}$
D. $K_{1}^{2}=\frac{1}{K_{2}}$

Answer: D

- Watch Video Solution

7. For an exothermic reaction, equilibrium constant at T_{1} and T_{2} are respectively K_{1} and K_{2} If $K_{1}<K_{2}$ then :-
A. Increases with increase of temperature
B. Decreases with increase of temperature
C. Decreases with increase of temperature
D. Decreases with increase of pressure

Answer: B

8. Ammonium chloride dissolves in water with absorption of heat. The solubility of ammonium chloride increases with \qquad in temperature.
A. The solubility of ammonium chloride decreases with increase in temperature
B. The solubility of ammoniurn chloride increases with increase in temperature
C. At higher temperature, ammonium chloride in solution exists as ammonia and hydrochloric acid
D. At lower temperature ammonium chloride in solution is present in the molecular form

Answer: B::C::D

- Watch Video Solution

9. Equilibrium constants (K) for the reaction
$2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \Leftrightarrow 2 \mathrm{NOCl}(g)$ is correctly given by the expression
A. $K=\frac{[2 \mathrm{NOCl}]}{[2 \mathrm{NO}]\left[\mathrm{Cl}_{2}\right]}$
B. $K=\frac{[2 \mathrm{NOCl}]^{2}}{\left[\mathrm{NO}^{2}\right]\left[\mathrm{Cl}_{2}\right]}$
c. $K=\frac{\left(\mathrm{NOCl}^{2}\right.}{\left[\mathrm{NO}_{2}\right]^{2}\left[\mathrm{Cl}_{2}\right]}$
D. $K=\frac{[\mathrm{NOCl}]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]}$

Answer: D

- Watch Video Solution

10. In a chemical equilibrium $A+B \Leftrightarrow \mathrm{C}+\mathrm{D}$, when one mole each of the two reactants are mixed, 0.6 mole each of the products are formed. The equilibrium constant calculated is
A. 1
B. 0.3
C. 2.25
D. $4 / 9$

Answer: C

- Watch Video Solution

11. K_{c} for $N_{2} O_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$ is 0.00466 at 298 K . If a $1-L$ container initially contained 0.8 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$, what would be the concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at equilibrium? Also calculate the equilibrium concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} if the volume is halved at the same temperature.
A. $9 a \mathrm{~atm}^{-1}$
B. 9 atm
C. $4.5 \mathrm{~atm}^{2}$
D. 10 atm

Answer: B

(D) Watch Video Solution

12. For the

reaction,

$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}), K_{c}=1.8 \times 10^{-6}$ at $185^{\circ} \mathrm{C}$, the value of K_{c} for the reaction $\mathrm{NO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{NO}_{2}(g)$ is
A. $2<1<4<3$
B. $3<4<2<1$
C. $1<3<4<2$
D. $4<3<1<2$

Answer: A: $: B:: C:: D$

- Watch Video Solution

13. The equilibrium constant K of a reversible reaction is 10 . The rate constant for the reverse reaction is 2.8 . What is the rate constant for the forward reaction
A. 0.28
B. 28
C. 0.028
D. 280

Answer: B::C

- Watch Video Solution

14. Finding equilibrium concentrations: A mixture of $0.50 \mathrm{~mol} \mathrm{H}_{2}$ and 0.50 $\mathrm{mol} I_{2}$ is placed in a 1.00 L stainless steel container at $400^{\circ} \mathrm{C}$. The equilibrium constant K_{c} for the reaction
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
is 54.3 at this temperature. Calculate the equilibrium concentrations of H_{2}, I_{2}, and $H I$.
A. $\left[H_{2}\right][M] \quad\left[I_{2}\right][M] \quad[H I][M]$ $10.200 \quad 0.200 \quad 0.0200$ $\left[H_{2}\right][M] \quad\left[I_{2}\right][M] \quad[H I][M]$
B. 20.004270 .004270 .0315
C.
$\left[H_{2}\right][M] \quad\left[I_{2}\right][M] \quad[H I][M]$
30.31500 .031500 .00850

$$
\left[H_{2}\right][M] \quad\left[I_{2}\right][M] \quad[H I][M]
$$

D.
$40.00478 \quad 0.004780 .0352$

Answer: B

- Watch Video Solution

15. 4.5 moles each of hydrogen and iodine heated in a sealed 10 litrevesel.

At equilibrium, 3 moles of HI was foun. The equilibrium constant for
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ is
A. 1
B. 10
C. 5
D. 0.33

Answer: A
16. 1 mole of $A_{(g)}$ is heated to $200^{\circ} C$ in a one litre closed flask, till the following equilibrium is reached. $A_{(g)} \Leftrightarrow B_{g}$). The rate of forward reaction at equilibrium is $0.02 \mathrm{~mol} \mathrm{lit}{ }^{-1} \mathrm{~min}^{-1}$. What is the rate (mol. $\mathrm{Lit}^{-1} \min ^{-1}$) of the backward reaction at equilibrium?
A. 0.04
B. 0.01
C. 0.02
D. 1

Answer: A::B::C

- Watch Video Solution

17. The equilibrium constant for the reaction is $\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{CO}_{(g)} \Leftrightarrow \mathrm{H}_{2(g)}+\mathrm{CO}_{2(g)}$ is 64 . If the rate constant for the forward reaction is 160 , the rate constant for the backward reaction is
A. 0.4
B. 2.5
C. 6.2
D. 10.24×10^{3}

Answer: B::C

- Watch Video Solution

> 18. At equilibrium, the concentrations of $N_{2}=3.0 \times 10^{-3} M, O_{2}=4.2 \times 10^{-3} M$, and $N O=2.8 \times 10^{-3} \mathrm{M}$ in a sealed vessel at 800 K . What will be K_{c} for the reaction $N_{2}(g)+O_{2}(g) N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g) 2 N O(g)$
A. 0.622
B. 6.22
C. 1.244
D. 2.488

- Watch Video Solution

19. The equilibrium constant for the reaction, $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ is 64 at a certain temperature. The equilibrium concentrations of H_{2} and HI are $2 \mathrm{~mol} / L$ and $16 \mathrm{~mol} / L$ respectively. What is the equilibrium concentration (in $\mathrm{mol} / \mathrm{L}$) of I_{2} ?
A. 16
B. 4
C. 8
D. 2

Answer: B::C::D

20. If K_{1} and K_{2} are respective equilibrium constants for two reactions :
$\mathrm{XeF}_{6}(g)+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{XeOF}_{4}(g)+2 H F_{g}$
$\mathrm{XeO}_{4}(g)+\mathrm{XeF}_{6}(g) \Leftrightarrow \mathrm{XeOF}_{4}(g)+\mathrm{XeO}_{3} \mathrm{~F}_{2}(g)$
Then equilibrium constant for the reaction
$\mathrm{XeO}_{4}(g)+2 \mathrm{HF}(g) \Leftrightarrow \mathrm{XeO}_{3} \mathrm{~F}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ will be
A. $K_{1} \cdot K_{2}$
B. K_{2} / K_{1}
C. $K_{1} /\left(K_{2}\right)^{2}$
D. K_{1} / K_{2}

Answer: A::B::D

- Watch Video Solution

21. A mixture of 0.3 mole of H_{2} and 0.3 mole of I_{2} is allowed to react in a 10 litre evacuated flask at $500^{\circ} \mathrm{C}$. The reaction is $H_{2}+I_{2} \Leftrightarrow 2 H I$, the K is found to be 64. The amount of unreacted I_{2} at equilibrium is
A. 0.15 mole
B. 0.06 mole
C. 0.03 mole
D. 0.2 mole

Answer: B

- Watch Video Solution

22. If the equilibrium constant for the reaction $2 A B \Leftrightarrow A_{2}+B_{2}$ is 49 , what is the value of equilibrium constant for
$A B \Leftrightarrow \frac{1}{2} A_{2}+\frac{1}{2} B_{2}$
A. 49
B. 4
C. 7
D. 0.02

D Watch Video Solution

23. At a certain temperature, the following reactions have the equilibrium constants as shown below:
$S(s)+O_{2}(g) \Leftrightarrow S O_{2}(g), K_{c}=5 \times 10^{52}$
$2 S(s)+3 O_{2}(g) \Leftrightarrow 2 S O_{3}(g), K_{c}=5 \times 10^{29}$
what is the equilibrium constant K_{c} for the reaction at tahea same temperature?
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)$
A. 2.5×10^{76}
B. 4×10^{23}
C. 4×10^{-77}
D. 2×10^{7}
24. The equilibrium constant of a reaction is 300 , if the volume of the reaction flask is tripled, the equilibrium constant will be
A. 100
B. 300
C. 250
D. 150

Answer: A::B::C::D

- Watch Video Solution

25. When 1 mole of $H_{2(g)}$ is heated with one mole of $I_{2(g)}$, it was found that 1.48 moles of $H I_{(g)}$ is formed at equilibrium. Its K_{c} is
A. 16
B. 32
C. 8
D. 24

Answer: B

- Watch Video Solution

26. The K_{p} of the reaction is $N H_{4} H S_{(s)} \Leftrightarrow N H_{3(g)}+H_{2} S_{(g)}$. If the total pressure at equilibrium is 30 atm .
A. $15 a t m^{2}$
B. $225 \mathrm{~atm}^{2}$
C. $30 \mathrm{~atm}^{2}$
D. 15 atm

Answer: B

27. The equilibrium constant K_{p} for the reaction $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$ is $2.5 \mathrm{~atm}^{-1}$. What would be the partial pressure of O_{2} at equilibrium. If the equilibrium pressures of SO_{2} and SO_{3} are equal
A. 304 mm
B. 30.4 mm
C. 0.04 mm
D. 760 mm

Answer: A: B

- Watch Video Solution

28. $H I$ was heated in a sealed tube at $400^{\circ} \mathrm{C}$ till the equilibrium was reached. HI was found to be 22% decomposed. The equilibrium constant for dissociation is
A. 0.282
B. 0.0796
C. 0.0199
D. 1.99

Answer: C

- Watch Video Solution

29. A reaction, $A(g)+2 B(g) \Leftrightarrow 2 C(g)+D(g)$ was studied using an initial concentraction of B which was 1.5 times that of A. But the equilibrium concentrations of A and B were found to be equal. The vlue of K_{p} for the equilibrium is
A. 4
B. 8
C. 6
D. 2

D Watch Video Solution

30.1 mol of $H_{2}, 2 \mathrm{~mol}$ of I_{2} and 3 mol of HI were taken in a $1-L$ flask. If the value of K_{c} for the equation $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ is 50 at $440^{\circ} C$, what will be the concentration of each specie at equilibrium?
A. 0.3
B. 1.3
C. 4.4
D. 2.7

Answer: C

31. NO_{2} is involved in the information of smog and acid rain.a reaction that is improtant in the formation of NO_{2} is $O_{3}(g)+N O(g) \Leftrightarrow O_{2}(g)+N O_{2}(g), K_{c}=6 \times 10^{34}$, if the air over KOTA contained $1 \times 10^{-6} M_{3}, 1 \times 10^{-5} M N O, 2.5 \times 10^{-4} M N O_{2}$ and $8.2 \times 10^{-3} M_{2}$, what can we conclude?
A. There will be a tendency to form more NO and O_{3}.
B. There will be a tendency to form more NO_{2} and O_{2}
C. There wil be a tendency to form more NO_{2} and O_{3}
D. There will be a tendency to form more NO and O_{2}.

Answer: B

- Watch Video Solution

32. If $\mathrm{mol} \cdot L^{-1}$ and 'atm' be the units of concentration and pressure respectively, then what will be the value of K_{p} / K_{c} for the reaction,
'N_2O_4(g)
A. 1,2
B. 3,2
C. 2,3
D. All

Answer: D

- Watch Video Solution

33. For the reaction $A+B \Leftrightarrow 3 . C$ at $25^{\circ} C$, a $3 L$ vessel contains 1,2 , and 4 moles of A, B and C respectively. Predict the direction of reaction if:
a. K_{c} for the reaction is 10 .
b. K_{c} for the reaction is 15 .
c. K_{c} for the reaction is 10.66
A. Backward
B. Forward
C. Equilibrium
D. Any direction

Answer: A::C

- Watch Video Solution

34. One mole of SO_{3} was placed in a litre reaction vessel at a certain temperature. The following equilibrium was established $2 \mathrm{SO}_{3}(g) \Leftrightarrow 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)$ At equilibrium 0.6 moles of $S O_{2}$ were formed. The equilibrium constant of the reaction will be
A. 0.36
B. 0.45
C. 0.54
D. 0.675

Answer: D
35.9.2 grams of $N_{2} O_{4(g)}$ is taken in a closed one litre vessel and heated till the following equilibrium is reached $N_{2} O_{4(g)} \Leftrightarrow 2 N O_{2(g)}$. At equilibrium, $50 \% \mathrm{~N}_{2} \mathrm{O}_{4(g)}$ is dissociated. What is the equilibrium constant (in mol litre $^{-1}$) (Molecular weight of $\mathrm{N}_{2} \mathrm{O}_{4}=92$)?
A. 0.1
B. 0.2
C. 0.4
D. 2

Answer: B

- Watch Video Solution

36. An equilibrium mixture for the reaction
$2 H_{2} S(g) \Leftrightarrow 2 H_{2}(g)+S_{2}(g)$
had 1 mole of $H_{2} S, 0.2$ mole of H_{2} and 0.8 mole of S_{2} in a 2 litre flask. The value of K_{c} in $\mathrm{mol} L^{-1}$ is
A. 0.004
B. 0.08
C. 0.016
D. 0.16

Answer: B::C

- Watch Video Solution

37. When CO_{2} dissolves in water, the following equilibrium is established.
$\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{3}^{-}$
for which the equilibrium constant is 3.8×10^{-6} and pH 6.0 . What would be the ratio of concentration of bicarbonate ion to carbon dioxide
i.e. $\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{CO}_{2}\right]$
A. 3×10^{-1}
B. 3.8×10^{-13}
C. 13.4
D. 6

Answer: A

- Watch Video Solution

38. At $27^{\circ} \mathrm{C}$ and 1 atmosphere pressure $\mathrm{N}_{2} \mathrm{O}_{4}$ is 20% dissociated into NO_{2} find K_{P}
A. 0.2
B. 0.166
C. 0.15
D. 0.1

Answer: B

39. 28 g of N_{2} and 6 g of H_{2} were mixed. At equilibrium 17 g of NH_{3} was formed. The weight of N_{2} and H_{2} at equilibrium are respectively
A. 11 g \& zero
B. $19 \& 3 \mathrm{~g}$
C. $14 \mathrm{~g} \& 3 \mathrm{~g}$
D. $11 \mathrm{~g} \& 3 \mathrm{~g}$

Answer: A::B::C::D

- Watch Video Solution

40. Find the value of K_{p} for the reaction : $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$, if the partial pressures of $\mathrm{SO}_{2}, \mathrm{O}_{2}$, and SO_{3} are $0.559 \mathrm{~atm}, 0.101 \mathrm{~atm}$ and 0.331 atm respectively. What will be the partial pressure of O_{2} gas if at equilibrium, equal amounts (in moles) of SO_{2} and SO_{3} are observed?
A. 0.5 atm
B. 0.3 atm
C. 0.2 atm
D. 0.1 atm

Answer: C

- Watch Video Solution

41. The value of ΔG^{\ominus} for the phosphorylation of glycose in glycolysis is $13.8 \mathrm{kJmol}^{-1}$. Find the value of K_{c} at $298 \mathrm{~K}^{\prime}$
A. 5.8×10^{-5}
B. 5.8×10^{5}
C. 3.8×10^{3}
D. 3.8×10^{-3}
42. The value of $\left(K_{p} / K_{c}\right)$ for the reversible reaction $S O_{2(g)}+1 / 2 O_{2(g)} \Leftrightarrow S O_{3(g)}$ at constant temperature T is
A. $(R T)^{1 / 2}$
B. RT
C. $(R T)^{-1 / 2}$
D. 1/RT

Answer: A::B::C

- Watch Video Solution

43. For the equilibrium
$2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
the value of the equilibrium constant, K_{c} is 3.75×10^{-6} at 1069 K .
Calcualate the K_{p} for the reaction at this temperature?
A. 0.066
B. 3.33
C. 0.33
D. 0.033

Answer: A::C::D

- Watch Video Solution

44. At $27^{\circ} C, K_{p}$ value for the reversible reaction $P C l_{5}(g) \leftrightarrow P C l_{3}(g)+C l_{2}(g)$ is 0.65 , calculate K_{c}.
A. 1
B. 0.65
C. 0.2
D. 0.026
45. The reaction,
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{NaHCO}_{3}$
suggests that :
A. Exposing the system to light
B. Adding an alkali
C. Adding an acid
D. Adding $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$

Answer: C

- Watch Video Solution

46. In which reaction will an increase in the volume of the container favor the formation of products?
A. Increases
B. Decreases
C. Remains same
D. Data insufficient

Answer: A

- Watch Video Solution

47. The dissociation of CaCO_{3} is suppressed at high pressure
A. Adding of more CaCO_{3}
B. Removal of some Cao
C. Increasing the pressure
D. Decreasing the pressure by removing some CO_{2} from the equilibrium mixture

- Watch Video Solution

48. At constant pressure, the addition of argon to
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
A. Reduces the formation of ammonia from nitrogen and hydrogen
B. Increases the formation of ammonia from nitrogen and hydrogen
C. Does not effect the equilibrium of the reaction in which ammonia is
formed from nitrogen and dasan
D. Reuces the dissociation of ammonia

Answer: A

- Watch Video Solution

49. For which of the following reaction is product formation favoured by law pressure and high temperature?
A. $2 N F_{3}(g) \rightarrow N_{2}(g)+3 F_{2}(g)-54.40$ k.cals
B. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)+22.08 \mathrm{k}$.cals
C. $\mathrm{Cl}_{2}(g)+2 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{ClO}_{2}(g)-49.4 \mathrm{k} . \mathrm{cals}$
D. $2 \mathrm{Cl}_{2} \mathrm{O}_{7}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}_{2}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g})-126.8 \mathrm{k} . \mathrm{cals}$

Answer: C

- Watch Video Solution

50. The reaction
$1 / 2 H 2(g)+A g C l(s) \rightarrow H^{\oplus}(a q)+C l^{c-}(a q)+A g(s)$ occurs in the galvanic cell.
A. Decreases as the amount of $\mathrm{AgCl}_{(s)}$ decreases
B. Decreases as the amount of $\mathrm{AgCl}_{(s)}$ increases
C. Increases as the amount of $A g C l(s)$ decreases
D. Increases as the amount of $A g C l_{(s)}$ increases

Answer: B::C

- Watch Video Solution

51. When $P C l_{5}$ is heated

Watch Video Solution

Exercise -II (C.W.)

1. Active mass of 56 g of N_{2} contained in 2 ltr . flask is
A. 16 Mole. lit $^{-1}$
B. 32 Mole. lit $^{-1}$
C. 1.00 Mole. lit $^{-1}$
D. 0.1 Mole. lit $^{-1}$
2. α - sulphur $\Leftrightarrow \beta$ - sulphur is an example to
A. Physical equilibrium
B. chemical equilibrium
C. Irreversible reaction
D. Both physical and chemical equilibrium

Answer: A

- Watch Video Solution

3. Law of mass action is applicable to
A. Homogeneous chemical equilibria only
B. Heterogeneous chemical equilibria only
C. Physical equilibria
D. Both homogeneous and heterogeneous chemical equilibrium

Answer: D

- Watch Video Solution

4. In which of the following case does the reaction go farthest to completion?
A. $K=10^{4}$
B. $K=10^{-2}$
C. $K=10$
D. $\mathrm{K}=1$

Answer: A

- Watch Video Solution

5. Consider the following gaseous equilibria with equilibrium constant $K_{1} \operatorname{and} K_{2}$ respectively.
$\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g}), 2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
The equilibrium constant are related as :
A. 0.9
B. $400 / 9$
C. $9 / 400$
D. $1 / 9$

Answer: A

- Watch Video Solution

6. The equilibrium constants for the following reactions

$$
\begin{aligned}
& N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N_{3}(g) N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g) \\
& \quad \text { and } H_{2}(g)+1 / 2 O_{2}(g) \Leftrightarrow H_{2} O(I g) \text { are } K_{1}, K_{2} \text { and } K_{3}
\end{aligned}
$$

respectively.

The equilibrium constant (K) for the reaction
$\left.2 \mathrm{NH}_{3}(\mathrm{~g})+2^{1} / 2\right) \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ is
A. $\frac{K_{1}}{K_{2}}$
B. $K_{1}^{2}-K_{2}^{2}$
C. $K_{1} \times K_{2}^{2}$
D. $K_{1}^{2}-K_{2}$

Answer: C

- Watch Video Solution

7. For the equilibrium, $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}, K_{c}=\alpha^{2} /(1-\alpha) V$, temperature remaining constant
A. K_{c} will increase with increase in volume
B. K_{c} will increase with decrease in volume
C. K_{c} will not change with the change in volume
D. K_{c} may increase or decrease with the change in volume depending upon its numerical value

Answer: C

- Watch Video Solution

8. Solubility of a substance which dissolves with a decrease in volume and absorption of heat will be favoured by
A. High P and high T
B. Low P and low T
C. High P and low T
D. Low P and high T

Answer: A

9. The equilibrium constant for the reaction
$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ is correctly given by
A. $\frac{\left[N H_{3}\right]\left[H_{2} S\right]}{\left[N H_{4} H S\right]}$
B. $\frac{\left[\mathrm{NH}_{4} \mathrm{HS}\right]}{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{2} S\right]}$
C. $\left[N H_{3}\right]\left[H_{2} S\right]$
D. $\frac{\left[N H_{3}\right]+\left[H_{2} S\right]}{N H_{4} H S}$

Answer: C

- Watch Video Solution

10. The decomposition of $N_{2} O_{4}$ to $N O_{2}$ is carried out at $280^{\circ} \mathrm{C}$ in chloroform. When equilibrium is reached, 0.2 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$ and 2×10^{-3} mol of NO_{2} are present in a 2 L solution. The equilibrium constant for the reaction
$\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$ is
A. 1×10^{-2}
B. 2×10^{-3}
C. 1×10^{-5}
D. 2×10^{-5}

Answer: C

- Watch Video Solution

11. For the reaction $C(s)+\mathrm{CO}_{2}(g) \Leftrightarrow 2 \mathrm{CO}(g)$, the partial pressure of CO_{2} and CO is 2.0 and 4.0 atm , respectively, at equilibrium. The K_{p} of the reaction is
A. 0.5
B. 3
C. 4
D. 3.2
12. In which of the following reactions, the concentration of product is higher than the concentration of reactant at equilibrium? ($\mathrm{K}=$ equilibrium constant)
A. $A \Leftrightarrow B, K=0.001$
B. $M \Leftrightarrow N, K=10$
C. $X \Leftrightarrow Y, K=0.005$
D. $R \Leftrightarrow P, K=0.01$

Answer: A::B::C::D

- Watch Video Solution

13. Equilibrium constant for an equilibrium reaction is 100 . Its forward reaction rate constant $K_{f}=10^{5}$. Its backward reaction rate constant K_{b}
A. 10^{2}
B. 10
C. 10^{-3}
D. 10^{3}

Answer: B::C::D

- Watch Video Solution

14. In the reaction
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$, the equilibrium concentrations of $P C l_{5}$ and PCl_{3} are 0.4 and 0.2 mole / litre respectively. If the value of K_{c} is 0.5 , what is the concentration of Cl_{2} in moles / litre?
A. 0.5
B. 0.1
C. 1.5
D. 0.75

- Watch Video Solution

15. For the reaction, $A(g)+2 B(g) \Leftrightarrow 2 C(g)$ one mole of A and 1.5 mol of B are taken in a 2.0 L vessel. At equilibrium, the concentration of C was found to be 0.35 M . The equilibrium constant (K_{c}) of the reaction would be
A. 4
B. 0.5
C. 2
D. 0.25

Answer: D

16. Which of the following is not the characteristic of chemical equilibrium ?
A. Rate of forward reaction is equal to rate of backward reaction at equilibrium.
B. After reaching the chemical equilibrium, the concentrations of reactants and prouducts remain unchanged with time.
C. For $A(g) \Leftrightarrow B(g), K_{c}$ is 10^{-2}. If this reaction is carried out in the presence of catalyst, the value of K_{C} decreases
D. After reaching the equilibrium, both forward and backward reactions continue to take place

Answer: C

- Watch Video Solution

$\mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{CO}_{(g)} \Leftrightarrow \mathrm{H}_{2(g)}+\mathrm{CO}_{2(g)}$ is 81 . If the rate constant of the forward reaction is 162 lit $\mathrm{mol}^{-1}, \mathrm{sec}^{-1}$, what is the velocity constnat (in lit. $m o \leq^{-1} \sec ^{-1}$) for the backward reaction?
A. 131
B. 2
C. 261
D. 243

Answer: B

- Watch Video Solution

18. $P C l_{3}, P C l_{3}$ and $C l_{2}$ are at eqilibrium at 500 K and above have concentration 1.59 M for $\mathrm{PCl}_{3}, 1.59 \mathrm{M}$ for Cl_{2} and 1.41 M for PCl_{5}. Calculate K_{c} for the reaction :
$P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$
A. 1.79
B. 17.9
C. 3.58
D. 0.895

Answer: A

- Watch Video Solution

19. $A+B \rightarrow C+D$

Initially moles of A and B are equal. At equilibrium, moles of C are three times of A. The equilibrium constant of the reaction will be
A. $P_{A}<P_{B} \& P_{D}<P_{C}$
B. $P_{C}=2 P_{D} \& P_{A}=3 P_{B} / 4$
C. $P_{A}=P_{C} \& P_{B}=P_{D}$
D. $P_{A}>P_{D} \& P_{A}>P_{C}$

Answer: C

D Watch Video Solution

20. The K_{c} for the reaction $A+B \Leftrightarrow C$ is 4 and K . for $2 A+D \Leftrightarrow C 6$. The value of K_{c} for $C+D \Leftrightarrow 2 B$ is
A. 0.67
B. 0.375
C. 2.7
D. 1.5

Answer: A::B::C

- Watch Video Solution

21. 1.50 moles each of hydrogen and iodine is p[laced in a sealed 10 litre container maintained at 717 K . At equilibrium 1.25 moles each of
hydrogen and iodine were left behind. The equilibrium constant K_{c} for the reaction $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g) a t 717 \mathrm{~K}$ is
A. 12.2
B. 1.67
C. 731
D. 13.4

Answer: D

- Watch Video Solution

22. At a given temperature the equilibrium constant for the reaction $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ is 2.4×10^{-3}. At the same temperature the equilibrium constant for the reaction $\mathrm{PCl}_{3}(g)+C l_{2}(g) \Leftrightarrow P C l_{5}(g)$
A. $2.4 x 10^{-3}$
B. -2.4×10^{-3}
C. 4.2×10^{2}
D. 4.8×10^{-2}

Answer: C

- Watch Video Solution

23. In alkaline solution, the following equilibria exist
a. $S^{2-}+S \rightarrow S_{2}^{2-}$ equilibrium constant K_{1}
b. $S_{2}^{2-}+S \rightarrow S_{3}^{2-}$ equilibrium constant K_{2}
K_{1} and K_{2} have values 12 and 11, respectively.
$S_{3}^{2-} \rightarrow S^{2-}+2 S$. What is equilibrium constant for the reaction
A. 23
B. 132
C. $1 / 132$
D. $1 / 32$

Answer: A::B::C
24. The equilibrium constant $\left(K_{p}\right)$ for the reaction, $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$ is 16 . If the volume of the container is reduced to half of its original volume, the value of K_{p} for the reaction at the same temperature will be:
A. 32
B. 64
C. 16
D. 4

Answer: C

- Watch Video Solution

25. The rate constant of the reaction $A \rightarrow 2 B$ is $1.0 \times 10^{-3} \mathrm{~mol}$ lit $^{-1} \mathrm{~min}^{-1}$, if the initial concentration of A is 1.0 mole lit ${ }^{-1}$. What would be the concentration of B after 100 minutes.
A. 0.9
B. 0.81
C. 81
D. 8.1

Answer: C

- Watch Video Solution

26. For a reaction at equilibrium which of the following is correct ?
A. $\log K=\log a+\log b+\log c$
B. $K=a+b+c$
C. $\frac{1}{K}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$
D. $K=\frac{1}{a} \times \frac{1}{b} \times \frac{1}{c}$

Answer: A

27. The equilibrium constant, K_{p} for the reaction
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
is $44.0 \mathrm{~atm}^{-1}$ at 1000 K . What would be the partial pressure of O_{2} if at equilibrium the amound of SO_{2} and SO_{3} is the same?
A. 0.2 atm
B. 0.3 atm
C. 0.4 atm
D. 0.1 atm

Answer: A::B::C

- Watch Video Solution

28. In the dissociation of PCl_{5} as
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$

If the degree of dissociation is α at equilibrium pressure P, then the equilibrium constant for the reaction is
A. 0.25
B. 0.3
C. 0.5
D. 1

Answer: C

- Watch Video Solution

29. In an equilibrium $A+B \Leftrightarrow C+D$, A and B are mixed in vessel at temperature T . The initial concentration of A was twice the initial concentration of B. After the equilibrium has reaches, concentration of C was thrice the equilibrium concentration of B. Calculate K_{c}.
A. 4.5
B. 9
C. 1.8
D. 0.9

Answer: C

- Watch Video Solution

30. At 550 K , the Kc for the following reaction is $10^{4} \mathrm{~mol}^{-1} L . X(g)+Y(g) \rightarrow Z(g)$ At equilibrium, it was observed that $[X]=\frac{1}{2}[Y]=\frac{1}{2}[Z]$. What is the value of $[Z]\left(\right.$ in mol $\left.^{-1} L\right)$ at equilibrium ?
A. 2×10^{-4}
B. 10^{-4}
C. 2×10^{4}
D. 10^{4}

Answer: A::B::C

31. The equilibrium constant for the given reaction is 100.
$\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
What is the equilibrium constant for the reaction ?
$N O_{2}(g) \Leftrightarrow 1 / 2 N_{2}(g)+O_{2}(g)$
A. 10
B. 1
C. 0.1
D. 0.01

Answer: A::B::C

- Watch Video Solution

32. For the reaction, $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ -
B. 12×10^{-2}
C. 3
D. 27

Answer: B

- Watch Video Solution

33. The value of K_{c} for the reaction $2 A \Leftrightarrow B+C$ is 2.0×10^{-3}. At a given time, the composition of reaction mixture is $[A]=[B]=[C]=3 \times 10^{-4} M$. In which direction the reaction will proceed?
A. Forward
B. Backward
C. At equilibrium
D. Forward or Backward

- Watch Video Solution

34. In a 500 mL falsk, the degree of dissociation of $P C I_{5}$ at equilibrium is 40% and the initial amount is 5 moles. The value of equilibrium constant in $\mathrm{mol} L^{-1}$ for the decomposition of $P C I_{5}$ is
A. 2.33
B. 2.66
C. 5.32
D. 4.66

Answer: B

35. One mole of H_{2} and 2 moles of I_{2} are taken initially in a two litre vessel. The number of moles of H_{2} at equilibrium is 0.2 . Then the number of moles of I_{2} and $H I$ at equilibrium is
A. 3.2 M
B. 4 M
C. 1.6 M
D. 1 M

Answer: C

- Watch Video Solution

36. In a 500 ml capacity vessel CO and Cl_{2} are mixed to form COCl_{2}. At equilibrium, it contains 0.2 moles of COCl_{2} and 0.1 mole of each of CO and $C l_{2}$. The equilibrium constant K_{c} for the reaction $\mathrm{CO}+\mathrm{Cl}_{2} \Leftrightarrow \mathrm{COCl}_{2}$ is
A. 20
B. 15
C. 10
D. 5

Answer: C

- Watch Video Solution

37. The following concentrations were obtained for the formation of NH_{3} from N_{2} and H_{2} at equilibrium at $500 K$.
$\left[N_{2}\right]=1.5 \times 10^{-2} M,\left[H_{2}\right]=3.0 \times 10^{-2} M$, and
$\left[N H_{3}\right]=1.2 \times 10^{-2} \mathrm{M}$. Calculate the equilibrium constant.
A. 3.55×10^{2}
B. 1.06×10^{-3}
C. 2.12×10^{-3}
D. 2.12×10^{3}

Watch Video Solution

38. In the dissociation of $\mathrm{HI}, 20 \%$ of HI is dissociated at equilibrium.

Calculate K_{p} for
$H I(g) \Leftrightarrow 1 / 2 H_{2}(g)+1 / 2 I_{2}(g)$
A. 1.25
B. 0.125
C. 12.5
D. 0.0125

Answer: B

39. If 340 g of a mixture of N_{2} and H_{2} in the correct ratio gas a 20% yield of NH_{3}. The mass produced would be:
A. 16 g
B. 17 g
C. 20 g
D. 68 g

Answer: B::C::D

- Watch Video Solution

40. At $600^{\circ} C, K_{P}$ for the following reaction is 1 atm.
$X(g) \rightarrow Y(g)+Z(g)$
At equilibrium, 50% of $\mathrm{X}(\mathrm{g})$ is dissociated. The total pressure of the equilibrium system is p atm. What is the partial pressure (in atm) of at equilibrium ?
A. 1
B. 4
C. 2
D. 0.5

Answer: A

- Watch Video Solution

41. Hydrolysis of sucrose gives

Sucrose $+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow$ Glucose + Fructose
Equilibrium constant K_{c} for the reaction is 2×10^{13} at $300 K$. Calculate ΔG^{\ominus} at $300 K$.
A. $7.64 \times 10^{4} \quad \mathrm{~J} \mathrm{Mol}^{-1}$
B. $7.64 \times 10^{-4} \mathrm{~J} \mathrm{Mole}^{-1}$
C. $-7.64 \times 10^{-4} \quad \mathrm{~J} \mathrm{Mole}^{-1}$
D. $-7.64 \times 10^{4} \quad \mathrm{~J} \mathrm{Mole}^{-1}$

Answer: D

- Watch Video Solution

42. For the process
$\mathrm{NH}_{3}(g)+\mathrm{HCI}(g) \rightarrow \mathrm{NH}_{4} \mathrm{CI}(s)$
A. $K_{p}=K_{c}$
B. $K_{p}=K_{c} x(R T)$
C. $K_{p}=K_{c} x(R T)^{-2}$
D. $K_{p}=K_{c} x(R T)^{-1}$

Answer: A::B::C

- Watch Video Solution

43. For the reversible reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ At $500^{\circ} \mathrm{C}$, the value of Kp is 1.44×10^{-5} when partial pressure is measured in
atmosphere. The corresponding value of Kc with concentration in mol / L is:
A. $1.44 \times 10^{-5} /(0.082 \times 500)^{-2}$
B. $1.44 \times 10^{-5} /(8.314 \times 773)^{-2}$
C. $1.44 \times 10^{-5} /(0.082 \times 773)^{2}$
D. $1.44 \times 10^{-5} /(0.082 \times 773)^{-2}$

Answer: B::C::D

- Watch Video Solution

44. For reaction,
$P C l_{3}(g)+C l_{2}(g) \Leftrightarrow P C l_{5}(g)$
the value of K_{c} at $250^{\circ} C$ is 26 . The value of K_{p} at this temperature will be .
A. 0.0006
B. 0.57
C. 0.61
D. 0.83

Answer: A::B::C

- Watch Video Solution

45. $N_{2}(g)+3 H_{2}(g) \rightarrow 2 N H_{3}(g)+$ heat.What is the effect of the increase of temperature on the equilibrium of the reaction?
A. Equilibrium shifts towards left
B. Equilibrium shifts towards right
C. Concentration of H_{2} increases
D. The equilibrium is not affected

Answer: B

- Watch Video Solution

46. When a bottle of cold drink is opened, the gas comes out with a fizzle due to:
A. Decreases in temperature
B. Increase in pressure
C. Decrease in pressure suddenly which results in decrease of solubility of CO_{3}, gas in water
D. None of the above

Answer: A: C

- Watch Video Solution

47. 5.1 g of solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced in a 16.4 lit. vessel \& heated upto $500 \mathrm{~K} K_{B}$ for equilibrium $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(g)+\mathrm{H}_{2} S(g)$ is 0.16

The maximum pressure developed in the vessel will be :
A. Adding some more $\mathrm{NH}_{4} H S$
B. Adding some more NH_{3}
C. Removing some NH_{3} from the reaction mixture
D. Adding some more $\mathrm{H}_{2} \mathrm{~S}$

Answer: C

- Watch Video Solution

48. Assertion: To a system at equilibrium addition of inert gas at constant pressure and temperature drive the reaction to the side where larger number of active species is present.

Reason: Addition of inert gas at constant temperature and pressure increases the equilibrium volume.
A. Reduces the dissociation of PCl_{5}
B. Increase the dissociation of PCI_{5}
C. Does not affect the degree of dissociation of PCl_{5}
D. Steps up the formation of PCl_{5}

Answer: B

- Watch Video Solution

49. In a reaction $A_{2}(g)+4 B_{2}(g) \Leftrightarrow 2 A B_{4}(g), \Delta H<0$. The formation of $A B_{4}$ is not favoured by
A. Low temperature and high pressure
B. High temperature and low pressure
C. Low pressure and low temperature
D. High temperature and high pressure

Answer: A

- Watch Video Solution

50. CO_{3}^{2-} and $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ can be distinguished by:
A. Amount of $\mathrm{AgCl}(s)$ increases
B. System cannot achieve equilibrium
C. Concentration of $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}(a q)$ decreases
D. Concentration of $\mathrm{Cl}^{-}(a q)$ increases

Answer: D

- Watch Video Solution

51. Two samples of HCl having 1 M and 0.25 M are mixed. Find the volumes of these samples respectively taken in order to prepare 0.75 M HCl solution.
A. More than 5 lit vessel
B. More in 10 lit vessel
C. Equal in both vessels
D. Cannot be said

Answer: C

- Watch Video Solution

Exercise -II (H.W.)

1. v36.3
A. $1 / 2$
B. 2
C. 1
D. $1 / 4$

Answer: B

Watch Video Solution
2. 2mole of PCl_{5} were heated in a closed vessel of 2litre capacity. At equilibrium 40% of PCl_{5} dissociated into PCl_{3} and Cl_{2}. The value of the equilibrium constant is:
A. 0.25 lit/mole
B. 1.31 lit/mole
C. 0.76 lit/mole
D. $2.6 \mathrm{lit} / \mathrm{mole}$

Answer: C

- Watch Video Solution

3. How much PCl_{5} must be added to a one little vessel at $250^{\circ} \mathrm{C}$ in order to obtain a concentration of 0.1 mole of $C l_{2}$ at equilibrium. K_{c} for $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ is 0.0414
A. 3.415 mole
B. 34.15 mole
C. 0.03415 mole
D. 0.3415 mole

Answer: D

- Watch Video Solution

4. Phosphorus pentachloride dissociates as follows in a closed reaction vessel.

$$
P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)
$$

If total pressure at equilibrium of the reactions mixture is P and degree of dissociation of $P C l_{5}$ is x , the partial pressure of PCl_{3} will be:
A. $\left(\frac{x}{x+1}\right) P$
B. $\left(\frac{2 x}{1-x}\right)$
C. $\left(\frac{x}{x-1}\right) P$
D. $\left(\frac{x}{1-x}\right) P$

- Watch Video Solution

5. An amount of solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in a flask already containing ammonia gas at a certain temperature and 0.50 atm pressure.Ammonium hydrogen sulphide decomposes to yield NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ gases in the flask.When the decomposition reaction reaches equilibrium, the total pressure in the flask rises to 0.84 atm ? The equilibrium constant for $\mathrm{NH}_{4} \mathrm{HS}$ decomposition at this temperature is :
A. 0.11
B. 0.17
C. 0.18
D. 0.3

Answer: A

- Watch Video Solution

6. A mixture of $\mathrm{SO}_{3}, \mathrm{SO}_{2}$ and O_{2} gases is maintained in a 10 L flask at a temperature at which the equilibrium constant for the reaction is 100 :
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
a. If the number of moles of $S O_{2}$ and $S O_{3}$ in the flask are equal. How many moles of O_{2} are present?
b. If the number of moles of SO_{3} in flask is twice the number of moles of SO_{2}, how many moles of oxygen are present?
A. 0.1 and 0.4
B. 0.5 and 0.7
C. 0.8 and 0.4
D. 0.1 and 4

Answer: A

- Watch Video Solution

7. What percent of CO_{2} in air is just sufficient to prevent loss in weight when CaCO_{3} is heated at $100^{\circ} \mathrm{C}$?
(Equilibrium contant K for $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$ is 0.0095 atm at $100^{\circ} \mathrm{C}$)
A. Greater than 0.95%
B. Greater than 0.29%
C. Greater than 0.71%
D. Greater than 0.05%

Answer: A

- Watch Video Solution

8. For the reaction, $A B(g) \Leftrightarrow A(g)+B(g), A B$ is 33% dissociated at a total pressure of ' p ' Therefore, ' p ' is related to K_{p} by one of the following options
A. $P=K_{p}$
B. $P=3 K_{p}$
C. $P=4 K_{p}$
D. $P=8 K_{p}$

Answer: D

- Watch Video Solution

9. When 20 g of CaCO_{3} were put into 10 litre flask and heated to $800^{\circ} \mathrm{C}$, 35% of CaCO_{3} remained unreacted at equilibrium. K_{p} for decomposition of CaCO_{3} is :
A. $25 \mathrm{~g}, 14 \mathrm{~g}, 1 / 22.4 \mathrm{~mol} / \mathrm{lit}$
B. 1,1 1/89.6 mol/lit
C. $25,14,1 / 89.6 \mathrm{~mol} / \mathrm{lit}$
D. 1, 1, 1

- Watch Video Solution

10. For the reaction
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)+I_{2}(g)$
The degree of dissociation (α) of $H I(g)$ is related to equilibrium constant K_{p} by the expression
a. $\frac{1+2 \sqrt{K_{p}}}{2}$, b. $\sqrt{\frac{1+2 K_{p}}{2}}$
c. $\sqrt{\frac{2 K_{p}}{1+2 K_{p}}}$, d. $\frac{2 \sqrt{K_{p}}}{1+2 \sqrt{K_{p}}}$
A. $\left(1+2 \frac{\sqrt{K_{p}}}{2 \sqrt{K_{p}}}\right.$
B. $\sqrt{\left(1+2 \frac{K_{0}}{2}\right)}$
C. $\sqrt{\frac{2 K_{p}}{1+2 K_{p}}}$
D. $\frac{2 \sqrt{K_{p}}}{1+2 \sqrt{K_{p}}}$
11. For the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(g)$ the degree of dissociation at equilibrium is 0.2 at 1 atmospheric pressure. The equilibrium constant K_{p} will be
A. 50
B. 100
C. 166.8
D. 600

Answer: B

- Watch Video Solution

12. For the reaction $N_{2} O_{4} \Leftrightarrow 2 \mathrm{NO}_{2(g)}$, the degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 0.2 at 1 atm. Then the K_{p} of $2 \mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$ is
A. 0.53
B. 1.06
C. 0.265
D. 2

Answer: A

- Watch Video Solution

13. 3.00 mol of $P \mathrm{Pl}_{5}$ kept in 1 L closed reaction vessel was allowed to attain equilibrium at 380 K . Calculate the composition of the mixture at equilibrium. $K_{c}=1.80$.
A. $\left[\mathrm{PCl}_{5}\right]=1.41 \mathrm{M},\left[\mathrm{PCl}_{3}\right]=\left[\mathrm{Cl}_{2}\right]=2.59 \mathrm{M}$
B. $\left[P C l_{5}\right]=1.41 \mathrm{M},\left[\mathrm{PCl}_{3}\right]=\left[C l_{2}\right]=1.5 \mathrm{M}$
C. $\left[P C l_{5}\right]=1.41 \mathrm{M},\left[\mathrm{PCl}_{3}\right]=\left[\mathrm{Cl}_{2}\right]=5.59 \mathrm{M}$
D. $\left[P C l_{5}\right]=1.41 \mathrm{M},\left[\mathrm{PCl}_{3}\right]=\left[\mathrm{Cl}_{2}\right]=9.59 \mathrm{M}$

- Watch Video Solution

14. Gram (+) and Gram (-) forms of bacteria are differentible through staining with
A. 44 g
B. 20.33 g
C. 22 g
D. 58.66 g

Answer: D

- Watch Video Solution

15. The dissociation equilibrium of a gas $A B$, can be represented as The degree of dissociation is x and is small compared to 1 . The expression
relating the degree of dissociation (x) with equilibrium constant K , and total pressure p is
A. $\left(2 K_{P} / P\right)^{1 / 2}$
B. K_{P} / P
C. $2 K_{p} / P$
D. $\left(2 K_{p} / P\right)^{1 / 3}$

Answer: D

- Watch Video Solution

16. If the concentration of OH^{-}ions in the reaction
$\mathrm{Fe}(\mathrm{OH})_{3}(s) \Leftrightarrow \mathrm{Fe}^{3+}(a q)+.3 \mathrm{OH}^{-}(a q$.
is decreased by $1 / 4$ times, then the equilibrium concentration of Fe^{3+} will increase by
A. 4 times
B. 8 times
C. 16 times
D. 64 times

Answer: D

- Watch Video Solution

17. When a mixture of 10 moles of $S O_{2}$ and 15 moles of O_{2} was passed over catalyst, 8 moles of SO_{3} was formed. How many moles of SO_{2} and O_{2} did not enter into combination?
A. 375
B. 187
C. 360
D. 150

Answer: D

18. The concentration of reactants is increased by x , then equilibrium constant K becomes
A. K
B. 2 xK
c. $\frac{K}{2 x}$
D. uncertain

Answer: A

Watch Video Solution

19. The active mass of water at $4^{0} C$ is
A. 5.55
B. 55.5
C. 0.55
D. Data in sufficient

Answer: B

- Watch Video Solution

20.1 mol of N_{2} and 4 mol of H_{2} are allowed to react in a vessel and after reaction, $\mathrm{H}_{2} \mathrm{O}$ is added. Aqueous solution required 1 mol of HCl for neutralization. Mol fraction of H_{2} in the mixture after reaction is :
A. 8
B. 12
C. 16
D. 20

Answer: C

D Watch Video Solution

21. At a certain temperature and a total pressure of $10^{5} \mathrm{~Pa}$, iodine vapour contains 40% by volume of Iatoms, Calculate K_{p} for the equilibrium.
$I_{2(g)} \Leftrightarrow 2 I_{(g)}$
A. 0.67
B. 1.5
C. 2.67×10^{4}
D. 9.0×10^{4}

Answer: C

- Watch Video Solution

22. The degree of ionization of 0.10 M lactic acid is 4.0%

The value of K_{C}
A. 1.66×10^{-5}
B. 1.66×10^{-4}
C. 1.66×10^{-3}
D. 1.66×10^{-2}

Answer: B

- Watch Video Solution

23. The reaction of dimerisation of NO_{2} in $\mathrm{N}_{2} \mathrm{O}_{4}$ is $2 \mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$. The reaction is carried out by taking 1 mole each of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ in a closed vessel of 1 litre at 400 K . The equilibrium pressure was found to be $77 a t m$.

The ratio of partial pressures of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ at equilibrium is:
A. 0.16 bar
B. 0.32 bar
C. 0.48 bar
D. 0.64 bar

Answer: D

- Watch Video Solution

24. A vessel at 1000 K contains carbon dioxide with a pressure of 0.5 atm .

Some of the carbon dioxide is converted to carbon monoxide on addition of graphite. Calculate the value of K_{p} if total pressure at equilibrium is 0.8 atm .
A. 1.8 atm
B. 3 atm
C. 0.3 atm
D. 0.18 atm

Answer: A

25. For an equilibrium reaction, $N_{2} O_{4}(g) \Leftrightarrow 2 N O_{2}(g)$, the concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at equilibrium are 4.8×10^{-2} and $1.2 \times 10^{-2} \mathrm{~mol} / L$ respectively. The value of K_{c} for the reaction is
A. $3.3 \times 10^{2} \mathrm{~mol} \mathrm{~L}^{-1}$
B. $3.3 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$
C. $3.3 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
D. $3.3 \times 10^{3} \mathrm{~mol} \mathrm{~L}^{-1}$

Answer: C

- Watch Video Solution

26. In the dissociation of PCl_{5} as
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
If the degree of dissociation is α at equilibrium pressure P , then the equilibrium constant for the reaction is
A. $K_{p}=\frac{\alpha^{2}}{1+\alpha^{2} P}$
B. $K_{P}=\frac{\alpha^{2} P^{2}}{1+\alpha^{2}}$
C. $K_{p}=\frac{p^{2}}{1-\alpha^{2}}$
D. $K_{p}=\frac{\alpha^{2} P}{1-\alpha^{2}}$

Answer: D

- Watch Video Solution

27. $\mathrm{Ag}^{+}+\mathrm{NH}_{3}<\Rightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}, k_{1}=6.8 \times 10^{-5}$
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}+\mathrm{NH}_{3}<\Rightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$,
$k_{2}=1.6 \times 10^{-3}$
The formation constant of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is :
A. 10^{-6}
B. 2×10^{-2}
C. 2×10^{-8}
D. 2×10^{4}

D Watch Video Solution

28. The most stable oxides of nitrogen will be :
A. $2 \mathrm{NO}_{2}(g) \Leftrightarrow N_{2}(g)+2 O_{2}(g), K=6.7 \times 10^{16} \mathrm{~mol} \mathrm{~L}^{-1}$
B. $2 N_{2} O_{5}(g) \Leftrightarrow 2 N_{2}(g)+5 O_{2}(g), K=1.2 \times 10^{24} \mathrm{~mol}^{5} L^{-5}$
C. $2 N O(g) \Leftrightarrow N_{2}(g)+O_{2}(g), K=2.2 \times 10^{30}$
D. $2 N_{2} O(g) \Leftrightarrow 2 N_{2}(g)+O_{2}(g), K=3.5 \times 10^{33} \mathrm{molL} L^{-1}$

Answer: A

- Watch Video Solution

29. In the reaction
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$, the equilibrium concentrations of $P C l_{5}$
and PCl_{3} are 0.4 and 0.2 mole / litre respectively. If the value of K_{c} is 0.5 , what is the concentration of Cl_{2} in moles / litre?
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

30. The equilibrium constant for the given reaction:
$S O_{3(g)} \Leftrightarrow S O_{2(g)}+1 / 2 O_{2(g)},\left(K_{c}=4.9 \times 10^{-2}\right)$
The value of K_{c} for the reaction:
$2 \mathrm{SO}_{2(g)}+O_{2(g)} \Leftrightarrow 2 \mathrm{SO}_{3(g)}$, will be :
A. 9.8×10^{-2}
B. 4.9×10^{-2}
C. 416
D. 2.40×10^{-3}

Answer: A::B::C::D

- Watch Video Solution

31. K_{c} for $3 / 2 H_{2}+1 / 2 N_{2} \Leftrightarrow N H_{3}$ are 0.0266 and $0.0129 \mathrm{~atm}^{-1}$, respectively, at $350^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$. Calculate the heat of formation of NH_{3}.
A. 12.140 k.cal
B. 1.214 k.cal
C. -12.140 k. cal
D. $-1.214 \mathrm{~K} . \mathrm{cal}$

Answer: C

32. For the following reactions (1), (2) and (3) equilibrium constants are given
$(1) \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}), \mathrm{K}_{1}$
$(2) \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}), \mathrm{K}_{2}$
$(3) \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}), \mathrm{K}_{3}$
Which of the following relation is correct ?
A. $K_{2} K_{3}=K_{1}$
B. $K_{3}=K_{1} K_{2}$
c. $K_{3} \cdot K_{2}^{3}=K_{1}^{2}$
D. $K_{1} \sqrt{K_{2}}=K_{3}$

Answer: B

- Watch Video Solution

33. For the reaction $2 \mathrm{NO}_{2}(g) \Leftrightarrow 2 \mathrm{NO}(g)+O_{2}(g)$
$K_{c}=1.8 \times 10^{-6}$ at $184^{\circ} C, R=0.00831 \mathrm{~kJ} /$ (mol.K) when K_{p} and K_{c} are compared at $184^{\circ} \mathrm{C}$, it is found
A. Whether K_{p} is greater than, less than or equal to K_{c} depends upon the total gas pressure
B. $K_{p}=K_{c}$
C. K_{p} is less than K_{c}
D. k_{p} is greater than K_{c}

Answer: D

- Watch Video Solution

34. The vapour pressure of water at $25^{\circ} \mathrm{C}$ is 0.0313 atm. Calculate the values of K_{p} and Kc at $25^{\circ} \mathrm{C}$ for the equilibrium $\mathrm{H}_{2} \mathrm{O}(1) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.
A. 1.28×10^{-3} and 0.0313 atm respectively
B. 0.0313 and 1.28×10^{-3} atm respectively
C. 1.28×10^{-3} and 1.28×10^{-3} atm respectively
D. 0.0313 and 0.0313 atm respectively

Answer: B

- Watch Video Solution

35. One $d m^{3}$ of hydrogen is present in a flask at a pressure of 10^{-12} bar of Hg and at $0^{\circ} \mathrm{C}$. Calculate the number of oxygen molecules in the flask.
A. $230 \mathrm{KJ} / \mathrm{mole}$
B. $460 \mathrm{KJ} / \mathrm{mole}$
C. $23 \mathrm{KJ} / \mathrm{mole}$
D. $200 \mathrm{KJ} / \mathrm{mole}$

Answer: A

36. For the reaction at $25^{\circ} \mathrm{C}$,
$C_{2} H_{4}(g)+H_{2}(g) \Leftrightarrow C_{2} H_{6}(g), K_{p}=308.08$
What is ΔG° for this reaction in $k J \times \mathrm{mol}^{-1}$?
A. $11.19 \mathrm{kj} \mathrm{mol}^{-1}$
B. $22.40 \mathrm{kj} \mathrm{mol}^{-1}$
C. $33.57 \mathrm{kj} \mathrm{mol}^{-1}$
D. $27.98 \mathrm{kj} \mathrm{mol}^{-1}$

Answer: B

- Watch Video Solution

37. In the dissociation of $N_{2} \mathrm{O}_{4}$ into $\mathrm{NO}_{2},(1+\alpha)$ values with the vapour densities ratio $\left(\frac{D}{d}\right)$ is given by: [α degree of dissociation, D-vapour density before dissociation, d -vapour density after dissociation]

Answer: A

Watch Video Solution
38. The degree of dissociation of $P C l_{5}$ will be more at pressure.

Answer: B
39. Before equilibrium is set-up for the chemical reaction, $\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$, vapour density of the gaseous mixture was measured. If D is the theoretical value of vapour density, variation of x with D / d is by the graph.

A. 0
B. 0.5
C. 1

D. 1.5

Answer: C

- Watch Video Solution

40. For reacrtion $2 N O C 1(g) \Leftrightarrow 2 N O(g)+C 1_{2}(g), K_{c}$ at $427^{\circ} C$ is $3 \times 10^{-6} \mathrm{~L} \mathrm{~mol}^{-1}$. The value of K_{p} is nearly
A. 7.5×10^{-5}
B. 2.50×10^{-5}
C. 2.5×10^{-4}
D. 1.72×10^{-4}

Answer: D

- Watch Video Solution

41. $\mathrm{N}_{2} \mathrm{O}_{4}$ is dissociated to 33% and 50% at total pressure P_{1} and $P_{2} a t m$ respectively. The ratio of P_{1} / P_{2} is:
A. $P_{1}: P_{2}=7: 4$
B. $P_{1}: P_{2}=7: 2$
C. $P_{1}: P_{2}=4: 7$
D. $P_{1}: P_{2}=3: 4$

Answer: C

- Watch Video Solution

42. The following equilibrium constants are given :
$N_{2}+3 H_{3} \Leftrightarrow 2 \mathrm{NH}_{3}, K_{1}$

$$
N_{2}+O_{2} \Leftrightarrow 2 N O, K_{2}
$$

$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}, \mathrm{K}_{3}$
The equilibrium constant for the oxidation of NH_{3} by oxygen to give NO is :
A. $\frac{K_{2} K_{3}^{2}}{K_{1}}$
B. $\frac{K_{2}^{2} K_{3}}{K_{1}}$
C. $\frac{K_{1} K_{2}}{K_{3}}$
D. $\frac{K_{2} K_{3}^{3}}{K_{1}}$

Answer: D

- Watch Video Solution

43. For
the
reaction,
$\mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \Leftrightarrow \mathrm{PCl}_{5}(\mathrm{~g})$ at $27^{\circ} C, K_{p}$ is $0.41 \mathrm{~atm}^{-1}$. Then K_{c} is :
A. $6 \mathrm{Lmol}^{-1}$
B. $60 \mathrm{Lmol}^{-1}$
C. $10.08 \mathrm{Lmol}^{-1}$
D. $1.008 \times 10^{2} \mathrm{Lmol}^{-1}$

Answer: C

- Watch Video Solution

44. The equilibrium constant $K_{p_{1}}$ and $K_{p_{2}}$ for the reactions $X \Leftrightarrow 2 Y$ and $Z \Leftrightarrow P+Q$, respectively are in the ratio of $1: 9$. If the degree of dissociation of X and Z be equal, then the ratio of total pressure at these equilibrium is:
A. $1: 36$
B. 1:1
C. 1: 3
D. 1:9

Answer: A

45. Rate of diffucion of ozonized oxygen is $0.4 \sqrt{5}$ times that of pure oxygen what is the per cent degreeof association of oxygen assuming pure O_{2} in the sample initially ?
A. 20
B. 40
C. 60
D. 80

Answer: C

- Watch Video Solution

46. For the reaction, $\mathrm{SO}_{2}(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow S O_{3}(g)$, If $K_{p}=K_{c}(R T)^{x}$ where the symbols have usual meaning then, the value of x is (assuming ideality).
A. -1
B. $\frac{1}{2}$
C. $-\frac{1}{2}$
D. 1

Answer: B

- Watch Video Solution

47. For the reaction,
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
the reaction connecting the degree of dissociation (α) of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ with eqilibrium constant K_{p} is
where P_{τ} is the total equilibrium pressure.
A. $\alpha=\frac{K_{p} / P}{4+K_{P} / P}$
B. $\alpha=\frac{K_{p}}{4+k_{P}}$
C. $\alpha=\frac{K_{p} / P}{\left(4+K_{p} / P\right)^{1 / 2}}$
D. $\alpha=\frac{K_{P}}{\left(4+K_{P}\right)^{\frac{1}{2}}}$

Answer: C

- Watch Video Solution

48. The prepation of $\mathrm{SO}_{3}(g)$ by reaction $\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(g)$ is an exothermic reaction .If the preparation follows the following temperature -pressure relationship for \% yield , then for temperatures
T_{1}, T_{2} and T_{3} the correct option is:

A. $T_{3}>T_{2}>T_{1}{ }^{`}$
B. T_(1)
C. $T_{1}=T_{2}=T_{3}$
D. Nothing could be predicted about temperature through given

- Watch Video Solution

49. For a reaction at equilibrium $P C l_{5(g)} \Leftrightarrow p c L_{3(G)}+C l_{2(g)}$, the degree of dissociation of $P C l_{5}$ at 2 atm is 0.02 . Then the degree of dissociation at 4 atm is
A. 1.41×10^{-1}
B. 2×10^{-2}
C. 1.41×10^{-4}
D. 2×10^{-4}

- Watch Video Solution

1. The following equilibrium constants are given :
$\mathrm{N}_{2}+3 \mathrm{H}_{3} \Leftrightarrow 2 \mathrm{NH}_{3}, \mathrm{~K}_{1}$
$\mathrm{N}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}, \mathrm{K}_{2}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}, \mathrm{K}_{3}$
The equilibrium constant for the oxidation of NH_{3} by oxygen to give NO is:
A. $K_{1} K_{2} / K_{3}$
B. $K_{2} K_{3}^{3} / K_{1}$
C. $K_{2} K_{3}^{2} / K_{1}$
D. $K_{2}^{2} K_{3} / K_{1}$

- Watch Video Solution

2. On doubling P and V at constant temperature, the equilibrium constant will
A. Remain constan
B. Become double
C. Become one-fourth
D. None of these

- Watch Video Solution

3. At temperature T , a compound $A B_{2}(g)$ dissociation according to the reaction, $2 A B_{2}(g) \Leftrightarrow 2 A B(g)+B_{2}(g)$ with degree of dissociation, α, which is small compared to unity. Deduce the expression for α in terms of the equilibrium constant K_{p} and the total pressure P.
A. $\left(2 K_{P} / P\right)^{1 / 2}$
B. K_{P} / P
C. $2 K_{P} / P$
D. $\left(2 K_{P} / P\right)^{1 / 3}$
4. In which of the following reactions, the concentration of product is higher than the concentration of reactant at equilibrium? ($\mathrm{K}=$ equilibrium constant)
A. $A \Leftrightarrow B, K=0.001$
B. $M \Leftrightarrow N, K=10$
C. $X \Leftrightarrow Y, K=0.005$
D. $R \Leftrightarrow P, K=0.01$

(Watch Video Solution

5. If the concentration of OH^{-}ions in the reaction
$\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{Fe}^{3+}(a q)+.3 \mathrm{OH}^{-}(a q$.
is decreased by $1 / 4$ times, then the equilibrium concentration of Fe^{3+} will increase by
A. 64 times
B. 4 times
C. 8 times
D. 16 times

Watch Video Solution

6. At equilibrium of the reaction
$2 X(g)+Y(g) \Leftrightarrow X_{2} Y(g)$
the number of moles of $X_{2} Y$ at equilibrium is affected by the
A. Temperature and pressure
B. temperature only
C. pressure only
D. Temperature, pressure and catalyst used
7. The dissociation constants for acetic acid and HCN at $25^{\circ} \mathrm{C}$ are 1.5×10^{-5} and 4.5×10^{-10}, respectively. The equilibrium constant for the equilibirum $\mathrm{CN}^{-}+\mathrm{CH}_{3} \mathrm{COOH} \Leftrightarrow \mathrm{HCN}+\mathrm{CH}_{3} \mathrm{COO}^{-}$would be
A. 3×10^{4}
B. 3×10^{5}
C. 3×10^{-5}
D. 3×10^{-4}

- Watch Video Solution

8. K_{p} and K_{p}^{*} are the equilibrium constants of the two reactions, given below

$$
\frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2}(g) \Leftrightarrow N H_{3}(g)
$$

$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$

Therefore, K_{p} and K_{p}^{*} are related by
A. $K_{p}=K_{p}^{\prime 2}$
B. ${ }^{\prime}$ _(p) $=$ sqrtK_(p) ${ }^{\wedge}\left({ }^{\prime}\right)$
C. $K_{p}=2 K_{p}^{\prime}$
D. $K_{p}=K_{p}^{\prime}$

- Watch Video Solution

9. $3.1 \mathrm{~mol} \mathrm{Fe}^{3+}$ and $3.2{\mathrm{~mol} \mathrm{SCN}^{\Theta}}^{\text {p }}$ present in 1 L solution. At equilibrium $3 \mathrm{~mol} \mathrm{FeSCN}{ }^{2+}$ are formed The equilibrium constant K_{c} for the reaction $\mathrm{Fe}^{3+}+S C N^{\Theta} \Leftrightarrow \mathrm{FeSCN}^{2+}$ will
A. 6.66×10^{-3}
B. 0.3
C. 3.3
D. 150

- Watch Video Solution

10. In which of the following equilibrium K_{c} and K_{p} are not equal?
A. $2 N O(g) \Leftrightarrow N_{2}(g)+O_{2}(g)$
B. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
C. $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
D. $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$

- Watch Video Solution

11. At 3000 K the equilibrium pressures of $\mathrm{CO}_{2} \mathrm{CO}$ and O_{2} are $0.6,0.4$ and 0.2 atmospheres respectively. K_{p} for the reaction, $2 \mathrm{CO}_{2} \Leftrightarrow 2 \mathrm{CO}+\mathrm{O}_{2}$ is
A. 0.088
B. 0.533
C. 0.133
D. 0.177
12. For the reaction, $A B(g) \Leftrightarrow A(g)+B(g), A B$ is 33% dissociated at a total pressure of ' p ' Therefore, ' p ' is related to K_{p} by one of the following options
A. $P=K_{p}$
B. $P=3 K_{p}$
C. $P=4 K_{p}$
D. $P=8 K_{p}$
13. In which of the following equilibrium K_{c} and K_{p} are not equal?
A. $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$
B. $2 C_{(s)}+O_{2}(g) \Leftrightarrow 2 C O_{2(g)}$
C. $2 N O_{(g)} \Leftrightarrow N_{2(g)}+O_{2(g)}$
D. $\mathrm{SO}_{2(g)}+\mathrm{NO}_{2(g)} \Leftrightarrow N_{2(g)}+O_{2((g))}$

- Watch Video Solution

14. The reaction,
$2 A(g)+B(g) \Leftrightarrow 3 C(g)+D(g)$
is begun with the concentration of A and B both at an intial value of 1.00
M. When equilibrium is reached, the concentration of D is measured and found to be 0.25 M . The value for the equilibrium constant for this reaction is given by the expression:
A. $\left[(0.75)^{3}(0.25)\right] \div\left[(0.50)^{2}(0.25)\right]$
B. $\left[(0.75)^{3}(0.25)\right] \div\left[(0.75)^{2}(0.25)\right]$
c. $\left[(0.75)^{3}(0.25)\right] \div\left[(0.75)^{2(0.25)}\right]$
D. $\left[(0.75)^{3}(0.25)\right] \div\left[(1.00)^{2}(1.00)\right]$

Answer: B::C::D

- Watch Video Solution

15. The value of ΔH for the reaction $\left.X_{2}(g)+4 Y_{2} 9 g\right) \Leftrightarrow 2 X Y_{4}(g)$ is less than zero. Formation of $X Y_{4}(g)$ will be favoured at :
A. High temperature and low pressure
B. High pressure and low temperature
C. High temperature and high pressure
D. Low pressure and low temperature
16. For the reaction $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$, the equilibrium constant is K_{1}. The equilibrium constant is K_{2} for the reaction
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
What is K for the reaction

$$
N O_{2}(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+O_{2}(g) ?
$$

A. $\left[1 / K_{1} K_{2}\right]^{1 / 2}$
B. $1 /\left(K_{1} K_{2}\right)$
C. $1 /\left(2 K_{1} K_{2}\right)$
D. $1 /\left(4 K_{1} K_{2}\right)$

- Watch Video Solution

17. The value of ΔH for the reaction $\left.X_{2}(g)+4 Y_{2} 9 g\right) \Leftrightarrow 2 X Y_{4}(g)$ is less than zero. Formation of $X Y_{4}(g)$ will be favoured at :
A. High temperature and low pressure
B. High temperature and high pressure
C. low pressure and low temperature
D. high temperature and low pressure

- Watch Video Solution

18. For the reaction $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$, the equilibrium constant is K_{1}. The equilibrium constant is K_{2} for the reaction
$2 \mathrm{NO}(g)+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}_{2}(g)$
What is K for the reaction

$$
N O_{2}(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+O_{2}(g) ?
$$

A. $\frac{1}{K_{1} K_{2}}$
B. $\frac{1}{2 K_{1} K_{2}}$
C. $\frac{1}{4 K_{1} K_{2}}$
D. $\left[\frac{1}{K_{1} K_{2}}\right]^{1 / 2}$

- Watch Video Solution

19. Given that equilibrium constant for the reaction $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature ? $\mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
A. 1.8×10^{-3}
B. 3.6×10^{-3}
C. 6.0×10^{-2}
D. 1.3×10^{-5}
20. Given the reaction between 2 gases represented by A_{2} and B_{2} to given the compound $\mathrm{AB}(\mathrm{g}) . A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$

At equilibrium, the concentrtation
of $A_{2}=3.0 \times 10^{-3} M$
of $B_{2}=4.2 \times 10^{-3} M$
of $A B=2.8 \times 10^{-3} M$
If the reaction takes place in a sealed vessel at $527^{\circ} \mathrm{C}$. then the value of K_{c} will be
A. 2
B. 1.9
C. 0.62
D. 4.5
21. For a given exothermic reaction, K_{p} and k_{p}^{\prime} are the equilibrium constants at temperatures T_{1} and T_{2} respectively. Assuming that heat of reaction is constant in temperature range between T_{1} and T_{2}, it is readily observed that
A. $K_{p}=\frac{1}{K_{P}^{\prime}}$
B. $K_{p}>K_{p}^{\prime}$
C. $K_{p}<K_{p}^{\prime}$
D. $K_{p}=K_{p}^{\prime}$

- Watch Video Solution

22. For the reversible reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+$ Heat
The equilibrium shifts in forward direction
A. by increasing pressure and decreasing temperature
B. by increasing the concentration of $\mathrm{NH}_{3}(g)$
C. by decreasing pressure
D. by decreasing the concentration $N_{2}(g)$ and $H_{2}(g)$

- Watch Video Solution

23. If the equilibrium constant for
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$ is K , the equilibrium constant for $\frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow N O(g)$ will be
A. K
B. K^{2}
C. $K^{1 / 2}$
D. $\frac{1}{2} K$
24. If the value of equilibrium constant for a particular reaction is 1.6×10^{12}, then art equilibrium the system will contain
A. mostly products
B. similar amounts of reactants and product
C. all reactants
D. mostly reactants

- Watch Video Solution

Exercise -IV

1. We know that the relationship between K_{c} and K_{p} is
$K_{p}=K_{c}(R T)^{\Delta n g}$
What would be the value of $\Delta^{n g}$ for the reaction
$\mathrm{NH}_{4} \mathrm{CI}_{(s)} \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCI}(g)$
A. 1
B. 0.5
C. 1.5
D. 2

Answer: D

- Watch Video Solution

2. For the reaction $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$, the standard free energy is $\Delta G^{\Theta}>0$. the equilibrium constant (k) would be.
A. $K=0$
B. $K>1$
C. $\mathrm{K}=1$
D. $K<1$

Answer: D

3. Which of the following is not a general characteristic of equilibrium involving physical processes ?
A. Equilibrium is possible only in a closed system at a given temperature.
B. All measurable properties of the system remain constant.
C. All the physical processes stop at equilibrium.
D. The opposing processes occur at the same rate and there is dynamic but stable condition.

Answer: C

- Watch Video Solution

4. $P C I_{5}, P C I_{3}$ and $C I_{2}$ are in equilibrium at 500 K in a closed container
and their concentration are
$0.8>10^{-3} \mathrm{~mol} L^{-1}$ and $1.2 \times 10^{-3} \mathrm{~mol} L^{-1}$ and $1.2 \times 10^{-3} \mathrm{~mol} L^{-1}$
respectively. The value of K_{c} for the reaction
$P C I_{5}(g) \Leftrightarrow P C I_{3}(g)+C I_{2}(g)$ will be
A. $1.8 \times 10^{3} \mathrm{~mol} \mathrm{~L}^{-1}$
B.
C.
D.

Answer: B

- Watch Video Solution

5. Which of the following statements is incorrect
A. In equilibrium mixture office and water kept in perfectly insulated
flask mass ofice and water does not change with time.
B. The intensity of red colour increases when oxalic acid is added to a solution containing iron (III) nitrate and potassium thiocyanate.
C. On addition of catalyst the equilibrium constant value is not affected.
D. Equilibrium constant for a reaction with negative $\triangle H$ value decreases as the temperature increases.

Answer: B

D Watch Video Solution

6. When hydrochloric aicd is addded to cobalt and nitrate solution at room temperautre, the following reaction takes place and the reaction mixture becomes blue. On cooling the mixture it becomes pink. On the basis of this information mark the corect ansewer.

$$
\left[\underset{\text { pink }}{\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(a q)+4 \mathrm{CI}^{-} \Leftrightarrow} \Leftrightarrow\right.
$$

$\mathrm{CoCI}_{4}{ }^{2-}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(l)$
blue
A. $\triangle H>0$ for the reaction
B. $\triangle H<0$ for the reaction
C. $\triangle H=0$ for the reaction
D. The sign of $\triangle H$ cannot be predicted on the basis of this information.

Answer: A

- Watch Video Solution

7. Which of the following options will be correct for the stage of half competiton of the reaction $A \rightarrow B$?
A. $\triangle H^{\circ}=0$
B. $\triangle H^{\circ}>0$
C. $\triangle H^{\circ}<0$
D. $\triangle H^{\circ}=-R T \ln K$

Answer: A

- Watch Video Solution

8. What will be the correct order of vapour pressure of water, acetone and ether at $30 .{ }^{\circ} \mathrm{C}$. Given that among these compounds, water has maximum boiling point and ether has minimum boiling point ?
A. Water $<$ ether $<$ aceton
B. Water $<$ acetone $<$ ether
C. Ether < acetone < water
D. Acetone < ether < water

Answer: B

9. At 500 K , equlibrium constant, K_{c} for the following reaction is 5 .
$1 / 2 H_{2}(g)+1 / 2(g) \Leftrightarrow H I(g)$
What would be the equilibrium constant K_{c} for the reaction
$2 h i(g) \Leftrightarrow H_{2}(g)+l_{2}(g)$
A. 0.04
B. 0.4
C. 25
D. 2.5

Answer: A

- Watch Video Solution

10. On increasing the pressure, in which dirction will the gas phase reaction proceed to re-establish equilibrium, is predicated by applying the Le Chatelier's principle. Consider the reaction.
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
Which of the following is correct, if the total pressure at which the equlibrium is established, is increased without changing the temperature ?
A. K will remain same
B. K will decrease
C. K will increase
D. K will increase initially and decrease when pressure is very high

Answer: A

- Watch Video Solution

11. In which of the following reactions, the equilibrium reamins unaffected on addition of small amount of argon at constant volume?
A. $H_{2(g)}+I_{2}(g) \Leftrightarrow 2 H I(g)$
B. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
C. $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
D. The equilibrium will remain unaffected in all the three cases

Answer: D

- Watch Video Solution

12. For the reaction $N_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, the value of K is 50 at 400 K and 1700 at 500 K . Which of the following options is correct?
A. The reaction is endothermic
B. The react is exothermic
C. If $\mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ are mixed at 400 K at partial pressures 20 bar and 2 bar respectively, more $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ will be formed
D. The entropy of the system increases ans (a,c,d)

Answer: A::C::D

13. The value of K_{c} for the reaction $2 H I(g) \Leftrightarrow H_{2}+I_{2}(g)$ is 1×10^{-4}. At a given time, t he composition of reaction mixture is $[H I]=2 \times 10^{-5} \mathrm{~mol},\left[H_{2}\right]=1 \times 10^{-5} \mathrm{~mol}$ and $\left[l_{2}\right]=1 \times 10^{-5} \mathrm{~mol}$ In which direction will the reaction proceed ?
A. forward
B. backward
C. equilibrium
D. none

Answer: B

- Watch Video Solution

14. For a reaction,
$\mathrm{CaCO}_{3(s)} \rightarrow \mathrm{CaO}_{(s)}+\mathrm{CO}_{2(g)}$
$\Delta_{f} H^{\circ}(C a O)=-631.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{f} H^{\circ}\left(C O_{2}\right)=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and
$\Delta_{f} H^{\circ}\left(\mathrm{CaCO}_{3}\right)=-1206.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Which of the following is a correct statement?
A. Increase
B. decreases
C. no effect
D. both a \& b

Answer: A

- Watch Video Solution

15. Reaction $2 \mathrm{BaO}_{2}(s) \Leftrightarrow 2 \mathrm{BaO}(s)+O_{2}(g), \Delta H=+v e$ At equilibrium condition, pressure of O_{2} is depended on:
A. increased mass of BaO_{2}
B. increased mass of BaO
C. increased temperature of equilibrium
D. increased mass of BaO_{2}

Answer: C

- Watch Video Solution

16. The reaction quotient (Q) for the reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ is given by $\mathrm{Q}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$. The reaction
will proceed towards right side if
where K_{c} is the equilibrium constant.
A. $Q>K_{c}$
B. $Q=0$
C. $Q=K_{c}$
D. $Q<K_{c}$

Answer: A

17. Equilibrium constants K_{1} and K_{2} for the following equilibria $\mathrm{NO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \stackrel{K_{1}}{\Longleftrightarrow} \mathrm{NO}_{2}(\mathrm{~g}) \quad$ and $\quad 2 \mathrm{NO}_{-}(2)(\mathrm{g}) \quad$ overset(K_(2)) (hArr)2NO(g)+O_(2)(g)
are related as
A. $K_{2}=\frac{1}{K_{1}^{2}}$
B. $K_{2}=\frac{1}{K_{1}}$
C. $K_{2}=K_{1}^{2}$
D. $K_{2}=\frac{K_{1}}{2}$

Answer: A

- Watch Video Solution

18. For the reaction
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\Delta_{r} H=-170.8 \mathrm{kJmol}^{-1}$
Which of the following statements is not true?
A. Addition of $\mathrm{CH}_{4}(g)$ or O_{2} at equilibrium will cause a shift to the right
B. The reaction is exothermic
C. At equilibrium the concentration of $\mathrm{CO}_{2}(g)$ and $\mathrm{H}_{2} \mathrm{O}(l)$ are not equall.
D. The equilibrium constant for the reaction is given by,

$$
K_{p}=\frac{\left|C O_{2}\right|}{\left[C H_{4}\right]\left[O_{2}\right]}
$$

Answer: D

Watch Video Solution

19. The following equilibria are given by :
$N_{2}+3 H_{2} \Leftrightarrow 2 \mathrm{NH}_{3}, K_{1}$
$N_{2}+O_{2} \Leftrightarrow 2 N O, K_{2}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}, K_{3}$
The equilibrium constant of the reaction
$2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$ in terms of $\mathrm{K}_{1}, \mathrm{~K}_{2}$ and K_{3} is
A. $K=\frac{K_{2} \times K_{3}^{2}}{K_{1}}$
B. $K=\frac{K_{2}^{2} \times K_{3}}{K_{1}}$
C. $K_{1}=\frac{K_{1} \times K_{2}}{K_{3}}$
D. $K_{1}=\frac{K_{1} \times K_{3}^{3}}{K_{1}}$

Answer: D

- Watch Video Solution

20. The dissociation equilibrium of a gas $A B$, can be represented as The degree of dissociation is x and is small compared to 1 . The expression relating the degree of dissociation (x) with equilibrium constant K , and total pressure p is
A. $\left(2 K_{P} / P\right)^{1 / 3}$
B. $\left(2 K_{P} / P\right)^{1 / 2}$
C. $\left(K_{P} / P\right)$
D. $\left(2 K_{P} / P\right)$

Answer: A

- Watch Video Solution

21. If the concentration of OH^{-}ions in the reaction $\mathrm{Fe}(\mathrm{OH})_{3}(s) \Leftrightarrow \mathrm{Fe}^{3+}(a q)+.3 \mathrm{OH}^{-}(a q$.
is decreased by $1 / 4$ times, then the equilibrium concentration of Fe^{3+} will increase by
A. 16 times
B. 64 times
C. 4 times
D. 8 times

Answer: B

- Watch Video Solution

22. the value of equilibrium constant for the reaction
$H I(g) \Leftrightarrow 1 / 2 H_{2}(g)+1 / 2 I_{2}(g)$ is 8.0
The equilibrium constant for the reaction
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ will be
A. $\frac{1}{64}$
B. 16
C. $\frac{1}{8}$
D. $\frac{1}{16}$

Answer: A

23. The dissociation constants for acetic acid and HCN at $25^{\circ} \mathrm{C}$ are 1.5×10^{-5} and 4.5×10^{-10}, respectively. The equilibrium constant for the equilibirum $\mathrm{CN}^{-}+\mathrm{CH}_{3} \mathrm{COOH} \Leftrightarrow \mathrm{HCN}+\mathrm{CH}_{3} \mathrm{COO}^{-}$would be
A. 3.0×10^{5}
B. 3.0×10^{-5}
C. 3.0×10^{-4}
D. 3.0×10^{4}

Answer: D

- Watch Video Solution

24. For which reaction $K_{p} \neq K_{c}$?
A. $2 \mathrm{NO}_{2}(g) \Leftrightarrow N_{2}(g)+O_{2}(g)$
B. $\mathrm{SO}_{2}(g)+\mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
C. $I_{2}(g)+H_{2}(g) \Leftrightarrow 2 H I(g)$
D. $2 C(s)+O_{2}(g) \rightarrow 2 C O(g)$

Answer: D

- Watch Video Solution

25. The reaction,
$2 A(g)+B(g) \Leftrightarrow 3 C(g)+D(g)$
is begun with the concentration of A and B both at an intial value of 1.00
M. When equilibrium is reached, the concentration of D is measured and found to be 0.25 M . The value for the equilibrium constant for this reaction is given by the expression:
A. $\left[(0.75)^{3}(0.25)\right] \div\left[(1.00)^{2}(1.00)\right]$
B. $\left[(0.75)^{3}(0.25)\right] \div\left[(0.50)^{2}(0.75)\right]$
c. $\left[(0.75)^{3}(0.25)\right] \div\left[(0.50)^{2}(0.25)\right]$
D. $\left[(0.75)^{3}(0.25)\right] \div\left[(0.75)^{2}(0.25)\right]$
26. For the reaction $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$, the equilibrium constant is K_{1}. The equilibrium constant is K_{2} for the reaction
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
What is K for the reaction

$$
N O_{2}(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+O_{2}(g) ?
$$

A. $\frac{1}{\left(K_{1} K_{2}\right)}$
B. $\frac{1}{\left(2 K_{1} K_{2}\right)}$
C. $\frac{1}{\left(4 K_{1} K_{2}\right)}$
D. $\left(\frac{1}{K_{1} K_{2}}\right)^{1 / 2}$

Answer: D

- Watch Video Solution

27. Given that equilibrium constant for the reaction $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature ? $\mathrm{SO}_{3}(g) \Leftrightarrow \mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)$
A. 1.8×10^{-3}
B. 3.6×10^{-3}
C. 6.0×10^{-2}
D. 1.3×10^{-5}

Answer: C

- Watch Video Solution

28. Given the reaction between 2 gases represented by A_{2} and B_{2} to given the compound $\mathrm{AB}(\mathrm{g}) . A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$

At equilibrium, the concentrtation
of $A_{2}=3.0 \times 10^{-3} M$
of $B_{2}=4.2 \times 10^{-3} \mathrm{M}$
of $A B=2.8 \times 10^{-3} M$
If the reaction takes place in a sealed vessel at $527^{\circ} \mathrm{C}$. then the value of K_{c} will be
A. 2
B. 1.9
C. 0.62
D. 4.5

Answer: C

- Watch Video Solution

29. For the reversible reaction, $\mathrm{N}_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+$ heat.

The equilibrium shifts in forward direction
(1) (1) By increasing the concentration of $\mathrm{NH}_{3}(\mathrm{~g})$
(2) By decreasing the pressure
(3) By decreasing concentration of $N_{2}(g)$ and $H_{2}(g)$
(4) By increasing the pressure and decreasing temperature

- Watch Video Solution

30. For a given exothermic reaction, K_{p} and k_{p}^{\prime} are the equilibrium constants at temperatures T_{1} and T_{2} respectively. Assuming that heat of reaction is constant in temperature range between T_{1} and T_{2}, it is readily observed that
A. $K_{p}>K_{P}$
B. $K_{p}<K_{p}$
C. $K p=K_{p}^{\prime}$
D. $K_{p}=\frac{1}{K_{p}}$

Answer: A

- Watch Video Solution

31. Which of the following statements is correct for a reversible process in a state of equilibrium ?
A. $\triangle G^{0}=-2.30 \quad \mathrm{RT} \log \mathrm{K}$
B. $\triangle G^{0}=2.30 \quad \mathrm{RT} \log \mathrm{K}$
C. $\triangle G=-2.30 \mathrm{RT} \log \mathrm{K}$
D. $\triangle G=2.30 \mathrm{RT} \log \mathrm{K}$

Answer: A

- Watch Video Solution

32. If the value of equilibrium constant for a particular reaction is 1.6×10^{12}, then art equilibrium the system will contain
A. mostly products
B. similar amounts of reactants and product
C. all reactants
D. mostly reactants

Answer: A

- Watch Video Solution

33. If the equilibrium constant for
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$ is K , the equilibrium
constant for $\frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow N O(g)$ will be
A. K
B. K^{2}
C. $K^{1 / 2}$
D. $\frac{1}{2} K$

Answer: C

- Watch Video Solution

