© 'doubtnut

India's Number 1 Education App

CHEMISTRY

FOR IIT JEE ASPIRANTS OF CLASS 11 FOR CHEMISTRY

REDOX REACTION

Example

1. Which compound amongst the following gas the highest oxidation number of Mn ?
$\mathrm{KMnO}_{4}, \mathrm{~K}_{2} \mathrm{MnO}_{2}, \mathrm{MnO}_{2}$ and $\mathrm{Mn}_{2} \mathrm{O}_{3}$

- Watch Video Solution

2. Calculate the oxidation number of N in $\mathrm{NOCl}, \mathrm{NH}_{4}^{+}$and NO_{3}^{-}

- Watch Video Solution

3. What is the oxidation number of nitrogen in $\mathrm{HNO}_{3}, \mathrm{HNO}_{2}, \mathrm{NO}, \mathrm{N}_{2} \mathrm{O}$ and N_{2} ?

D View Text Solution

4. One mole of $N_{2} H_{4}$ loses ten moles of electrons of form a new compound Y. Assuming that all the nitrogen appears in the new compound, what is the oxidation state of nitrogen in Y ? (There is no change in the oxidation state of hydrogen.)

- Watch Video Solution

5. An element A in a compound $A B D$ has oxidation number A^{n-}. It is oxidised by $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ in acid medium. In the experiment
1.68×10^{-3} moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ were used for 3.26×10^{-3} moles of $A B D$. The new oxidation number of A after oxidation is:

- Watch Video Solution

6. Arrange the following in order of:
(a) Increasing oxidation no:
$\mathrm{MnCl}_{2}, \mathrm{MnO}_{2}, \mathrm{Mn}(\mathrm{OH})_{3}, \mathrm{KMnO}_{4}$
(b) Decreasing oxidation no:
$\mathrm{HXO}_{4}, \mathrm{HXO}_{3}, \mathrm{HXO}_{2}, \mathrm{HXO}$
(c) Increasing oxidation no.: $\mathrm{I}_{2}, \mathrm{HI}, \mathrm{HIO}_{4}, \mathrm{ICI}$

- Watch Video Solution

7. $\mathrm{FeCr}_{2} \mathrm{O}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3} \downarrow+\mathrm{Na}_{2} \mathrm{CrO}_{4}$
8. $\mathrm{AgI} \downarrow+2 N a_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Na} a_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]+\mathrm{NaI}$

- Watch Video Solution

9. Which of the following reactions is a redox reaction?
(a). $\mathrm{CuSO}_{4}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$
(b). $\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{BaCl}_{2} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{NaCl}$
(c). $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
(d). $2 \mathrm{CuSO} 4+4 \mathrm{KI} \rightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{I}_{2}$

- Watch Video Solution

10. Explain why HNO_{3} acts only as oxidising agent while HNO_{2}
can act both as a reducing agent and an oxiding agent?
11. Balance the equation by oxidation number method
$\mathrm{Mg}+\mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$

D View Text Solution

12. $\mathrm{Fe}^{2+}(a q)+.\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Fe}^{3+}(a q)+.\mathrm{Cr}^{3+}$

- Watch Video Solution

13. Balance the ionic equation in alkaline medium $\mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{IO}_{3}^{-} \rightarrow \mathrm{I}^{-}+\mathrm{CrO}_{4}^{2-}$

D View Text Solution

14. Balance the net equtation fro th reaction of potassium dichromate (VI), $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, with sodium sulphite, $\mathrm{Na}_{2} \mathrm{SO}_{3}$, in an
acid solution to give chromium (III) ion and and sulphate ion.
Strategy : Follow the seven -step proceduce, one step at a time.

- Watch Video Solution

15. In the equation
$x \mathrm{P}+\mathrm{HNO}_{3} \rightarrow \mathrm{HPO}_{3}+y \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
A. $x=5, y=5$
B. $x=5, y=3$
C. $x=3, y=5$
D. $x=3, y=3$

Answer:

16. Balance the redox reaction by half reaction method :

$$
\mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{BrO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \text { (in acidic medium) }
$$

- Watch Video Solution

17. In passing chlorine gas through a concentrated solution of alkali we get chloride and chlorate ions Obtain balanced chemical equation for this reaction.

- Watch Video Solution

18. Balance the equation by ion electron method
$\mathrm{MnO}_{4}^{-}+\mathrm{Br}^{-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Br}_{2}$ (acidic medium)
19.

$x \mathrm{H}_{2} \mathrm{~S}+y \mathrm{HNO}_{3} \rightarrow z \mathrm{NO}+\omega \mathrm{S}+\mathrm{H}_{2} \mathrm{O}$
The coefficients ω, x, y, z are
(1) $x=3, y=2, z=2, \omega=3$
(2) $x=2, y=2, z=3, \omega=3$
(3) $x=3, y=3, z=2, \omega=3$
(4) $x=3, y=2, z=3, \omega=3$

D View Text Solution

20. Balance the following equation by the oxidatoin number method.
$\mathrm{Cu}+\mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

21. $20 \mathrm{~mL} 0.2 \mathrm{MMnSO}_{4}$ are completely oxidised by 16 mL of KMnO_{4} of unknown normality each forming Mn^{4+} oxidation state. The normality and molarity of KMnO_{4} are respectively:

- Watch Video Solution

22. $K M n O_{4}$ solution is to be standardised by titration against $\mathrm{As}_{2} \mathrm{O}_{3}(\mathrm{~s})$. A 0.1097 g sample of $\mathrm{As}_{2} \mathrm{O}_{3}$ requires 26.10 mL of the KMnO_{4} solution for its titration. What are the molarity and normality of the KMnO_{4} solution (Mol. Wt. of As=75)

D View Text Solution

23. 5.5 g of a mixutre of $\mathrm{FeSO}_{4.7} \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3.9} \mathrm{H}_{2} \mathrm{O}$
requires 5.4 " mL of " $0.1 \mathrm{NKMnO}_{4}$ solution for complete
oxidation. Calculate the number of gram moles of hydrated ferric sulphate in the mixture.

- Watch Video Solution

24. 0.56 g of lime stone was treated with oxalic acid to give $\mathrm{CaC}_{2} \mathrm{O}_{4}$. The precipitate decolorized 45 ml of $0.2 \mathrm{NKMnO}_{4}$ in acid medium. Calculate $\%$ of CaO in lime stone.

- Watch Video Solution

25. What is the weight of sodium bromate and molarity of solution to prepare 85.5 mL of 0.672 N solution when half cell reaction are:
(i) $\mathrm{BrO}_{3}^{-} \rightarrow 6 \mathrm{H}^{+}+6 e^{-} \rightarrow \mathrm{Br}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
(ii) $2 \mathrm{BrO}_{3}^{-}+12 \mathrm{H}^{+}+10 e^{-} \rightarrow \mathrm{Br}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
26. $B r_{2}$ undergoes disproportionation reaction in basic medium to give $B r^{\ominus}$ ion and $B r O_{3}^{\ominus}$ (bromate) ion in reduction and oxidation reaction.

(Watch Video Solution

27. P_{4} undergoes disproportionation in basic medium to give PH_{3} (phosphine) and $\mathrm{H}_{2} \mathrm{PO}_{2}^{\ominus}$ (dihydrogen hypophoshite ion).

Atomic weight of P is 31.

- Watch Video Solution

28. 1.0 g of a metal oxide gave 0.2 g of metal. Calculate the equivalent weight of the metal.
29. 3.0 g of metal chloride gave 2.0 g of metal. Calculate the equivalent weight of the metal.

- Watch Video Solution

30. 1.0 g of metal nitrate gave 0.86 g of metal sulphate. Calculate the equivalent weight of metal.

- Watch Video Solution

31. Calculate $E_{\text {cell }}^{0}$ of given electrochemical cell:
$Z n(s)+C u^{2+} \rightarrow$ ni $^{2+}(a q)+C u(s)$
Given : $E_{Z n^{2+} / Z n}^{0}=-0.76 \mathrm{~V}$
$E_{C u^{2+} / C u}^{0}=0.34 V$
32. Calculate $E_{\text {cell }}$ of given electrochemical cell
$\mathrm{Zn}(\mathrm{S})+\mathrm{Pb}^{2+} \rightarrow \mathrm{Pb}(\mathrm{s})+\mathrm{Zn}^{2+}$
Given $E_{Z n^{2} / Z n}^{0}=-0.76 V, E_{P b^{2+} / P b}^{0}=-0.12 V$

D View Text Solution

Evaluate Yourself 1

$$
1 .
$$

The value of N and M are:
A. 5
B. 4
C. 3
D. 2

Answer: A

- Watch Video Solution

2. The oxidation state of underlined in compound $\mathrm{Ba}_{2} \mathrm{XeO}_{2}$
A. 0
B. +8
C. +6
D. 5
3. The oxidation state of underlined in compound $\underline{V}_{2} \mathrm{O}_{7}^{2-}$
A. 0
B. +8
C. +6
D. 5

Answer: C

- Watch Video Solution

Evaluate Yourself 2

1. Oxidation is a process of
A. loss of electron
B. gain of electron
C. increase in the negative valency
D. decrease in the positive valency

Answer: A

- Watch Video Solution

2. In which of the following reactions $\mathrm{H}_{2} \mathrm{O}_{2}$ is a reducing agent?
A. $2 \mathrm{FeCl}_{2}+2 \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{FeCl}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HCl}+\mathrm{O}_{2}$
C. $2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$
D. $\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

3. In the chemical reaction,
$\mathrm{Ag}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}+2 \mathrm{OH}^{-}$
A. Water is oxidised
B. Silver is oxidised
C. Silver is reduced
D. Hydrogen is reduced

Answer: C

- Watch Video Solution

1. $\mathrm{I}_{2}+\mathrm{NaOH} \rightarrow \mathrm{NaI}+\mathrm{NaOI}$

A. $3 \mathrm{I}_{2}+5 \mathrm{NaOH} \rightarrow \mathrm{NaIO}_{3}+5 \mathrm{NaI}+3 \mathrm{H}_{2} \mathrm{O}$
B. $2 \mathrm{I}_{2}+6 \mathrm{NaOH} \rightarrow \mathrm{NaIO}_{3}+5 \mathrm{NaI}+3 \mathrm{H}_{2} \mathrm{O}$
C. $3 \mathrm{I}_{2}+6 \mathrm{NaOH} \rightarrow \mathrm{NaIO}_{3}+5 \mathrm{NaI}+3 \mathrm{H}_{2} \mathrm{O}$
D. $4 \mathrm{I}_{2}+4 \mathrm{NaOH} \rightarrow \mathrm{NaIO}_{3}+4 \mathrm{NaI}+2 \mathrm{H}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

2.

In
the
reaction
$\mathrm{MnO}_{4}^{-}+\mathrm{SO}_{3}^{-2}+\mathrm{H}^{+} \rightarrow \mathrm{SO}_{4}^{-2}+\mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{O}$
A. 10,1
B. 10,2
C. 5,2
D. 5,5

Answer: B

- Watch Video Solution

3. Balance the following equation
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Cr}^{3+}+\mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \quad$ and determine the coefficient for H^{+}ion in balanced equation.
A. 14
B. 8
C. 6
D. 24

D View Text Solution

Evaluate Yourself 4

1. The number of moles of KMnO_{4} reduced by one mole of KI in neutral medium is (Hint $K I \rightarrow I O_{3}^{-}$)
A. One
B. Two
C. Five
D. One-fifth

Answer: B

2. Equivalent weight of Potassiumpermaganate in strong alkaline medium is
A. Molar mass/5
B. Molar mass/3
C. Molar mass/2
D. Molar mass/1

Answer: D

- Watch Video Solution

Evaluate Yourself 5

1. Out of $\mathrm{Cu}, \mathrm{Ag}, \mathrm{Fe}$ and Zn , the metal which can displace all others
from their salt solutions is :
A. Ag
B. Cu
C. Zn
D. Fe

Answer: C

- Watch Video Solution

2. The standard $E_{\text {Red }}^{\circ}$ values of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are $0.68 \mathrm{~V},-2.54 \mathrm{~V},-0.50 \mathrm{~V}$ respectively. The order of their reducing power is
A. $A>B>C$
B. $A>C>B$
C. $C>B>A$
D. $B>C>A$

- Watch Video Solution

3. Electrode potentials $\left(E_{\text {red }}^{\circ}\right)$ of 4 element A, B, C, D are
$-1.36,-0.32,0,-1.26 V$ respectively. The decreasing reactivity order of these elements is
A. A, D, B and C
B. C, B, D and A
C. B, D, C and A
D. C, A, D and B

Answer: B

1. In which of the following compounds iron has lowest oxidation state?
A. $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Fe}(\mathrm{CO})_{5}$
C. $F e_{0.94} O$
D. $\mathrm{Fe}_{3} \mathrm{O}_{4}$

Answer: B

- Watch Video Solution

2. Oxidation state of nitrogen is not an integer in
A. Hydroxyl amine $\left(\mathrm{NH}_{2} \mathrm{OH}\right)$
B. Ammonia $\left(\mathrm{NH}_{3}\right)$
C. Hydrazine $\left(\mathrm{NH}_{3}\right)$
D. Hydrazoic acid $\left(N_{3} H_{4}\right)$

Answer: D

- Watch Video Solution

3. The oxidation state of phosphorus is maximum is
A. Phospine $\left(\mathrm{PH}_{3}\right)$
B. Diphosphine $\left(P_{2} H_{4}\right)$
C. Metaphosphoric acid $\left(\mathrm{HPO}_{3}\right)$
D. Phosphorus acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$

Answer: C

4. The oxidation state of oxygen is maximum in
A. Bleaching powder $\left(\mathrm{CaOCl}_{2}\right)$
B. Oxygen difluoride $\left(O F_{2}\right)$
C. Dioxygen difluoride $\left(\mathrm{O}_{2} \mathrm{~F}_{2}\right)$
D. Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$

Answer: B

- Watch Video Solution

5. The oxidation number of chlorine is maximum
A. HOCl
B. $\mathrm{Cl}_{2} \mathrm{O}_{6}$
C. KClO_{4}
D. NaClO_{3}

Answer: C

- Watch Video Solution

6. One of the following element always exhibits only-1 oxidation state in all of its compounds with other elements. The element is
A. Hydrogen
B. Sodium
C. Fluorine
D. Oxygen

Answer: C

7. In one of the following compounds, the oxidation number of sulphur is not a whole number
A. $N a_{2} S_{4} O_{6}$
B. $\mathrm{H}_{2} \mathrm{SO}_{5}$
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$

Answer: A

- Watch Video Solution

8. Bromine is converted to Bromate ion. The change in oxidation number of bromine is from
A. 0 to +1
B. 0 to +3
C. 0 to +5
D. 0 to +7

Answer: C

D View Text Solution

9. Which of the following statements is wrong?
A. Oxidation number of oxygen is +1 in peroxides
B. Oxidation number of oxygen is +2 in oxygen difluoride
C. Oxidation number of oxygen is $-1 / 2$ is super oxides
D. Oxidation number of oxygen is -2 in most of its compounds

- Watch Video Solution

10. The conversion of Glucose to carbon dioxide with respect to
carbon is
A. Oxidation
B. Reduction
C. both oxidation \& recution
D. Neither oxidation nor reduction

Answer: A

- Watch Video Solution

11. $\mathrm{P}_{4}+\mathrm{NaOH} \rightarrow \mathrm{PH}_{3} \uparrow+\mathrm{NaH}_{2} \mathrm{PO}_{2}$
A. P is oxidised only
B. P is reduced only
C. Na is reduced
D. P is reduced as well as oxidised

Answer: D

- Watch Video Solution

12. Compound that acts as oxidant as well as reductant
A. SO_{2}
B. CrO_{3}
C. SO_{3}
D. $\mathrm{Al}_{2} \mathrm{O}_{3}$

Answer: A

(Watch Video Solution

13. Which of the following is comproportionation reaction :
A. $\mathrm{Cl}_{2(g)}+\mathrm{OH}_{(a q)}^{-} \rightarrow \mathrm{ClO}_{3(a q)}^{-}+\mathrm{Cl}_{(a q)}^{-}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
B. $A g_{(a q)}^{2+}+A g_{(s)} \rightarrow 2 A g_{(a q)}^{+}$
C. $\mathrm{Na} a_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(i)} \rightarrow \mathrm{NaOH}_{(a q)}+\mathrm{H}_{2(g)}$
D. $\mathrm{Zn} n_{(s)}+\mathrm{CuSO}_{4(a q)} \rightarrow \mathrm{ZnSO}_{4(a q)}+\mathrm{Cu}_{(s)}$

Answer: B

14. Which of the following is a disproportionation reaction?
A. $\left.\mathrm{P}_{4 \mathrm{~s}}\right)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{PH}_{3(g)}+\mathrm{H}_{2} \mathrm{PO}_{2}^{-}(a q)$
B. $S_{(s)}+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{S}_{a q}^{-2}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}_{(l)}$
C. $\mathrm{Cl}_{2(g)}+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{ClO}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}_{(l)}$
D. $\mathrm{F}_{2 g}+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{F}^{-}(a q)+O F_{2 g}+\mathrm{H}_{2} \mathrm{O}_{(l)}$

Answer: D

- Watch Video Solution

15. The oxidation number of Oxygen in KO_{2} is
A. -2
B. -1
C. $-1 / 2$
D. $-1 / 3$

Answer: C

D Watch Video Solution

16. The oxidation number and covalency of sulphur in the sulphur molecule (S_{8}) are respectively:
A. 6 \& 8
B. 0 \& 8
C. 0 \& 2
D. 6 \& 2

Answer: C

$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+4 \mathrm{Cl}_{2}+5 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{HCl}$, the equivalent weight of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ will be: ($\mathrm{M}=$ molecular weight of $\left.N a_{2} S_{2} O_{3}\right)$
A. $\mathrm{H}_{2} \mathrm{O}_{2}$ is bleached
B. $\mathrm{H}_{2} \mathrm{O}_{2}$ is oxidised
C. $\mathrm{H}_{2} \mathrm{O}_{2}$ is dehydrated
D. $\mathrm{H}_{2} \mathrm{O}_{2}$ is neither oxidised nor reduced

Answer: B

- Watch Video Solution

18. In which of the following compounds, sulphur atom has
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$
B. HSO_{3}^{-}
C. $\mathrm{SO}_{2} \mathrm{Cl}_{2}$
D. SO_{3}

Answer: B

- Watch Video Solution

19. What is the change in oxidation number of carbon in the following reaction?
$\mathrm{CH}_{4}(g)+4 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{CCl}_{4}(l)+4 \mathrm{HCl}(g)$
A. $\mathrm{Cu} .+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{~S}+4 \mathrm{~F}_{2} \rightarrow 2 \mathrm{HF}+S F_{6}$
C. $\mathrm{Cl}_{2}+2 \mathrm{KOH} \rightarrow \mathrm{KCl}+\mathrm{KOCl}+\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{KClO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{F}_{2} \rightarrow \mathrm{KClO}_{4}+2 \mathrm{HF}$

Answer: B

(Watch Video Solution

20. Which of the following is a redox reaction?
A. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$
B. $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Zn}+\mathrm{CuSO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{Cu}$
D. $\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}$

Answer: C

21. Which of the following are neutral oxide?
A. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
B. KMnO_{4}
C. $C l_{2}$
D. CrO_{3}

Answer: B

- Watch Video Solution

22. The oxidation state of N in HNO_{4} is
A. +7
B. +10
C. +5
D. +3

Answer: C

- Watch Video Solution

23. Which of the following can acts as a reducing agent ?
A. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
B. CaOCl_{2}
C. PbO_{2}
D. $H_{2} S$

Answer: D

24. Which of the following pairs will give displacement reactions?
A. $S_{(s)}+O_{2_{g}} \rightarrow S O_{2 g}$
B. $\mathrm{KClO}_{3_{s}} \rightarrow \mathrm{KCl}_{(s)}+\mathrm{O}_{2(g)}$
C. $\mathrm{Ca}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2_{(a q)}+\mathrm{H}_{2 g}}$
D. $\mathrm{F}_{2 g}+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{F}^{-}(a q)+O F_{2 g}+\mathrm{H}_{2} \mathrm{O}_{(l)}$

Answer: C

- Watch Video Solution

Exercise 1 C W

1. Oxidation state of iron in $\mathrm{Fe}(\mathrm{CO})_{4}$ is
A. +1
B. +2
C. 0
D. +3

Answer: B

- Watch Video Solution

2. Oxidation number of carbon in carbon suboxide $\left(\mathrm{C}_{3} \mathrm{O}_{2}\right)$ is :
A. $\frac{+2}{3}$
B. $\frac{+4}{3}$
C. +4
D. $\frac{-4}{3}$

Answer: B

3. Oxidation number of Sodium in Sodium amalgam
A. +2
B. +1
C. -2
D. +3

Answer: D

D View Text Solution
4. The oxidation number of Fe in $\mathrm{Fe}_{0.94} \mathrm{O}$ is
A. 200
B. 200/94
C. $94 / 200$
D. None

Answer: B

- Watch Video Solution

5. Oxidation number of S in $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}\right]$ is:
A. 0
B. +1
C. -2
D. +5

Answer: C

6. Oxidation number of 'Co' in $\mathrm{Hg}\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]$
A. +2
B. +1
C. +3
D. +5

Answer: A

- Watch Video Solution

7. Oxygen can show positive oxidation state in its compounds with
A. Fluroine
B. Nitrogen
C. Hydrogen
D. Sulphur

Answer: A

(Watch Video Solution

8. Which of the following is a redox reaction ?
A. $\mathrm{NaCl}+\mathrm{KNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{KCl}$
B. $\mathrm{CaC}_{2} \mathrm{O}_{4}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}(2)+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
C. $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{NH}_{4} \mathrm{OH}$
D. $Z n+2 A g C N \rightarrow 2 A g+Z n(C N)_{2}$

Answer: D

9. Which of the following is an example of disproportionation reaction?
A.

$$
3 \mathrm{Cl}_{2}(g)+6 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{ClO}_{3}^{-}(a q)+5 \mathrm{Cl}^{-}(a q)+3 \mathrm{H}_{2} \mathrm{O}(1)
$$

B. $A g^{2+}(a q)+A g(s) \rightarrow 2 A g^{-4}(a q)$
C. $\mathrm{Zn}(\mathrm{s})+\mathrm{CuSO}_{4}(a q) \rightarrow \mathrm{Cu}(s)+\mathrm{ZnSO}_{4}(a q)$
D. $2 \mathrm{KClO}_{3}(s) \rightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g)$

Answer: A

- Watch Video Solution

Exercise 1 H W

1. The oxidation state of phosphorus is minimum in
A. $P_{4} O_{6}$
B. $\mathrm{NaH} \mathrm{H}_{2} \mathrm{PO}_{2}$
C. PH_{3}
D. $\mathrm{Na}_{3} \mathrm{PO}_{4}$

Answer: C

D View Text Solution

2. Oxidation state of phosphorus in pyrophosphosphate ion $\left(\mathrm{P}_{2} \mathrm{O}_{7}^{-4}\right)$ is
A. +7
B. +3
C. +8
D. +5

Answer: D

- Watch Video Solution

3. The oxidation state of sulphur in sodium tetrathionate ($\left.N a_{2} S_{4} O_{6}\right)$ is :
A. +2
B. +4
C. +1.5
D. +2.5

Answer: D

- Watch Video Solution

4. The oxidation number of phosphorus in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ is:-
A. -3
B. +1
C. +3
D. +5

Answer: B

- Watch Video Solution

5. When Cl^{-}ions are converted to Cl_{2}, the oxidation number of chlorine changes from
A. -1 to 0
B. -1 to +1
C. -1 to +2
D. -2 to 0

Answer: A

- Watch Video Solution

6. $3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$ the wrong statement for the value
A. Cu is oxidized
B. HNO_{3} is reduced
C. Cu is reduced
D. Cu acts as reducing agent

Answer: A::B::C::D

7. KMnO_{4} reacts with oxalic acid according to the equation $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{Co}_{2}+8 \mathrm{H}_{2} \mathrm{O}$ Here, 20 mL of $1.0 \mathrm{M} \mathrm{KMnO}_{4}$ is equivalent to:
A. MnO_{4}^{-}
B. H^{+}
C. $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
D. Both 1 \& 2

Answer: A::C::D

(Watch Video Solution

8. What is the oxidation state of chlorine in hypochlorous acid?
A. +1
B. +3
C. +5
D. +7

Answer: A::C::D

- Watch Video Solution

9. In the reaction $\mathrm{NO}_{2}^{-}+\mathrm{OCl}^{-} \rightarrow \mathrm{NO}_{3}^{-}+\mathrm{Cl}^{-}$the oxidation state of chlorine
A. Does not change
B. Changes from +1 to -1
C. Changes from -2 to -1
D. Changes from 0 to -1

- Watch Video Solution

10. M^{+3} ion loses $3 e^{-}$. Its oxidation number will be
A. 0
B. +3
C. +6
D. -3

Answer: C

- Watch Video Solution

11. Oxidation state of carbon is not zero in
A. CH_{2}
B. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
C. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
D. CHCl_{3}

Answer: D

- Watch Video Solution

12. In which of the following processes is nitrogen oxidised ?
A. $\mathrm{NH}_{4}^{+} \rightarrow \mathrm{N}_{2}$
B. $\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}$
C. $\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{2}^{-}$
D. $\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NH}_{4}^{+}$

- Watch Video Solution

13. Iron exhibits +2 and +3 oxidation states. Which of the following statements about iron is incorrect?
A. $K_{4}\left[F e(C N)_{6}\right]$
B. $K_{3}\left[F e(C N)_{6}\right]$
C. $\mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} 6 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{Fe}(\mathrm{CO})_{9}$

Answer: D

- Watch Video Solution

1. The oxidation state of iron in the coordination sphere of prussain blue is
A. +2
B. 0
C. +1
D. +3

Answer: A::B

- Watch Video Solution

2. Oxidation number of carbon in SCN ion is
A. +2
B. -2
C. +4
D. -4

Answer: A::C::D

- Watch Video Solution

3. In ICl_{3} oxidation numbers of iodine and chlorine are
A. $0 \& 0$
B. $+3 \&-1$
C. $-1 \&+3$
D. $-3 \&+1$

Answer: A::B::C::D

4. Lead Nitrate is strongly heated. In this reaction the oxidation numbers of following atoms change
A. Only in Pb and N
B. Only in N and O
C. Pb, N and O
D. Only in N

Answer: B::C

- Watch Video Solution

5. The sum of the oxidation number of the carbon atoms in $\mathrm{CH}_{3} \mathrm{CHO}$ is
A. -2
B. +2
C. -4
D. -1

Answer: A::C::D

- Watch Video Solution

6. Ethylene reacts with alkaline KMnO_{4} to form-
A. -4
B. 0
C. +4
D. +6

Answer: B::C

7. One gas bleaches the colour of flowers by reduction and other by oxidation. These gases are
A. $\mathrm{CO} \& \mathrm{Cl}_{2}$
B. $H_{2} S \& B r_{2}$
C. $\mathrm{SO}_{2} \& \mathrm{Cl}_{2}$
D. $\mathrm{NH}_{3} \& \mathrm{SO}_{3}$

Answer: A::B::C::D

- Watch Video Solution

8. Why in the redox titration of KMnO_{4} vs oxalic acid, we heat oxalic acid solution before starting the titration?
A. K^{+}
B. MnO_{4}^{-}
C. $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
D. CO_{2}

Answer: B::D

- Watch Video Solution

9. Which of the following has//have been arranged in order of decreasing oxidation number of sulphur?
A. $H_{2} S_{2} O_{7}>N a_{2} S_{4} O_{6}>N a_{2} S_{2} O_{3}>S_{8}$
B. $\mathrm{SO}^{2+}>\mathrm{SO}_{4}^{2-}>\mathrm{SO}_{3}^{2-}>\mathrm{HSO}_{4}^{-}$
C. $\mathrm{H}_{2} \mathrm{~S}>\mathrm{SCl}_{2} \mathrm{H}_{2} \mathrm{SO}_{3}>\mathrm{H}_{2} \mathrm{SO}_{5}$
D. $\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{SO}_{2}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$

- Watch Video Solution

10. Arrange $\mathrm{HOCl}, \mathrm{HClO}_{2}, \mathrm{HClO}_{3}$ and HClO_{4} in order of (i) acidic strength and (ii) oxidising power. Give reason.
A. Disproportionation reaction
B. Displacement reaction
C. Chemical combination reaction
D. Decomposition reaction

Answer: A

- Watch Video Solution

11. The oxidation state of the most electronegative atom in each of the product is

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

A. $-2,-2$
B. $+1,-2$
C. $+2,-1$
D. $-1,-2$

Answer: D

- Watch Video Solution

12. Which of the following reactions involves neither oxidation nor reduction?

$$
\text { A. } \mathrm{CrO}_{4}^{-2} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}
$$

B. $\mathrm{Cr} \rightarrow \mathrm{CrCl}_{3}$
C. $\mathrm{Na} \rightarrow \mathrm{Na}^{+}$
D. $2 S_{2} O_{3}^{2-} \rightarrow S_{4} O_{6}^{2-}$

Answer: A

- Watch Video Solution

13. In the
chemical
reaction
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+x \mathrm{H}_{2} \mathrm{SO}_{4}+y \mathrm{SO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+z \mathrm{H}_{2} \mathrm{O}$

Here x, y and z are
A. 1,3,1
B. 4,1,4
C. 3,2,3
D. 2,1,2

Answer: A

D View Text Solution

14. Consider the following reaction,
$5 \mathrm{H}_{2} \mathrm{O}_{2}+x \mathrm{ClO}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Cl}^{-}+y \mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
The reaction is balanced if:
A. $x=5, y=2$
B. $x=2, y=5$
C. $x=4, y=10$
D. $x=5, y=5$

Answer: B

15. In the balanced chemical reaction
$\mathrm{IO}_{3}^{\ominus}+a I^{\ominus}+b \mathrm{H}^{\ominus} \rightarrow c \mathrm{H}_{2} \mathrm{O}+d \mathrm{I}_{2}$
a, b, c, and d, respectively, correspond to
A. 5,6,3,3
B. 5,3,6,3
C. 3,5,3,6
D. 5,6,5,5

Answer: A::B::C::D

- Watch Video Solution

16. One mole of $\mathrm{N}_{2} \mathrm{H}_{4}$ loses ten moles of electrons of form a new compound Y . Assuming that all the nitrogen appears in the new compound, what is the oxidation state of nitrogen in Y ? (There is no change in the oxidation state of hydrogen.)
A. +1
B. +2
C. +3
D. +5

Answer: C

- Watch Video Solution

17. What is the oxidation state of Fe in nitroprusside ion ?
A. +2
B. +3
C. +1
D. +6

- Watch Video Solution

18. The number of mole of oxalate ions oxidised by one mole of MnO_{4}^{-}is :
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

19. Which of the following sequence is correct with reference to the oxidation number of iodine?
A. $\mathrm{I}_{2}<\mathrm{ICl}<\mathrm{HI}<\mathrm{HIO}_{4}$
B. $\mathrm{HIO}_{4}<\mathrm{ICl}<\mathrm{I}_{2}<\mathrm{HI}$
C. $\mathrm{I}_{2}<\mathrm{HI}<\mathrm{ICl}<\mathrm{HIO}_{4}$
D. $\mathrm{HI}<\mathrm{I}_{2}<\mathrm{ICl}<\mathrm{HIO}_{4}$

Answer: D

- Watch Video Solution

20. When KMnO_{4} acts as an oxidant and ultimately forms $\left[\mathrm{MnO}_{4}\right]^{2-}, \mathrm{MnO}_{2}, \mathrm{Mn}_{2} \mathrm{O}_{3}$ and Mn^{2+} then number of electrons transferred in each case respectively is:
А. 4,3,1,5
B. 1,5,3,7
C. 1,3,4,5
D. 3,5,7,1

Answer: C

- Watch Video Solution

> 21. $\begin{aligned} & \text { In } \\ & \mathrm{XZn}+\mathrm{NO}_{3}^{-}+\mathrm{YH}^{+} \rightarrow \mathrm{XZn}^{2+}+\mathrm{NH}_{4}^{+}+\mathrm{ZH}_{2} \mathrm{O}, \mathrm{X}, \mathrm{Y} \& \mathrm{Z}\end{aligned}$ are
A. 4,10,3
B. $3,8,3$
C. 3,10,3
D. $4,3,10$

Answer: A

D View Text Solution

22. For the redox reaction,
$\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
the correct coefficients of the reactants for the balanced reaction are
A. $2,5,16$
B. 16,5,2
C. 5,16,2
D. 2,16,5

Answer: A

23. 1 mole of equimolar mixture of ferric oxalate and ferrous oxalate requres x mole of KMnO_{4} in acidic medium for complete oxidation. X is:
A. 0.5 mole
B. 0.9 mole
C. 1.2 mole
D. 4.5 mole

Answer: B

- Watch Video Solution

Exercise 2 H W

1. The element which has only one oxidation state in its compounds is
A. Fluorine
B. Oxygen
C. Nitrogen
D. Hydrogen

Answer: D

D View Text Solution
2. The oxiation number of manganese in potassium manganate is
A. +7
B. +6
C. +4
D. +2

Answer: B

- Watch Video Solution

3. Assertion: Oxygen atom in both O_{2} and O_{3} has oxidation number zero.

Reason: In $F_{2} O$, oxidation number of O is +2 .
A. Decreases from +4 to +2
B. Decreases from +2 to 0
C. Increases from -4 to -2
D. Does not change

- Watch Video Solution

4. KMnO_{4} is a strong oxidising agent in acidic medium. To provide acidic medium $\mathrm{H}_{2} \mathrm{SO}_{4}$ is used instead of HCl . This is because
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a stronger acid than HCl
B. HCl is oxidised by KMnO_{4} to Cl_{2}
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a dibasic acid
D. rate is faster in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: D

5. In the reaction,
$2 \mathrm{KMnO}_{4}+16 \mathrm{HCl} \rightarrow 5 \mathrm{Cl}_{2}+2 \mathrm{MnCl}_{2}+2 \mathrm{KCl}+8 \mathrm{H}_{2} \mathrm{O}$ the reduction product is
A. $C l_{2}$
B. MnCl_{2}
C. $\mathrm{H}_{2} \mathrm{O}$
D. KCl

Answer: B

- Watch Video Solution

6. A compound of Xe and F is found to have $53.5 \% \mathrm{Xe}$. What is the oxidation number of Xe in this comound?

$$
\text { A. }-4
$$

B. 0
C. +4
D. +6

Answer: D

- Watch Video Solution

7. In this reaction: $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{SO}_{4}^{2-}+\mathrm{I}_{2}$
A. Oxidaton of iodide into iodine takes place
B. Reduction ofiodine into iodide takes place
C. Both oxidation ane reduction of iodine takes place
D. None of the above

Answer: A

8. The oxidation states of sulphur in the anions $\mathrm{SO}_{3}^{2-}, \mathrm{S}_{2} \mathrm{O}_{4}^{2-}$, and $S_{2} O_{6}^{2-}$ follow the order
A. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
B. $\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
C. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{SO}_{3}^{2-}$
D. $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}$

Answer: A

- Watch Video Solution

9. In the coordination compound, $K_{4}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ oxidation state of nickel is

$$
\text { A. }-1
$$

B. 0
C. +1
D. +2

Answer: B

- Watch Video Solution

10. What is the oxidation number of chlorine in ClO_{3}^{-}?
A. +5
B. +3
C. +4
D. +2

- Watch Video Solution

11. In a
balanced
equation
$\mathrm{H}_{2} \mathrm{SO}_{4}+x \mathrm{HI} \rightarrow \mathrm{H}_{2} \mathrm{~S}+\mathrm{YI}_{2}+z \mathrm{H}_{2} \mathrm{O}$, the value of x, y, z are
A. $x=3, y=5, z=2$
B. $x=4, y=8, z=5$
C. $x=8, y=4, z=4$
D. $x=5, y=3, z=1$

Answer: C

- Watch Video Solution

1. Which of the following is a redox reaction?
A. $2 \mathrm{CuSO}_{4}+4 \mathrm{KI} \rightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{I}_{2}$
B. $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$
C. $\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{BaCl}_{2} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{NaCl}$
D. $\mathrm{CuSO} 4+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$

Answer: A

- Watch Video Solution

2. Which of the following oxidation states are the most characteristics for lead and tin, respectively?
A. $+4,+2$
B. $+2,+4$
C. $+4,+4$
D. $+2,+2$

Answer: B

- Watch Video Solution

3. Which of the following oxidation states is the most common among the lanthanoids ?
A. $\mathrm{Ni}(28)$
B. $\mathrm{Fe}(26)$
C. $\mathrm{Zn}(30)$
D. $\mathrm{Cu}(29)$

Answer: B

4. Oxidation state of chlorine in hypochlorous acid
A. -1
B. +1
C. +7
D. -7

Answer: C

- Watch Video Solution

5. Of the following outer electronic configurations of atoms, the highest oxidation state is achieved by which one of them ?
A. $(n-1) d^{8} n s^{2}$
B. $(n-1) d^{5} n s^{2}$
C. $(n-1) d^{3} n s^{2}$
D. $(n-1) d^{5} n s^{1}$

Answer: B

- Watch Video Solution

6. Which is the best description of the behaviour of bromine in the reaction given below
$\mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2} \rightarrow \mathrm{HOBr}+\mathrm{HBr}$
A. Proton accepted only
B. Both oxidised ad reduced
C. Oxidised only
D. Reduced only

- Watch Video Solution

7. In the ionic equation,
$\mathrm{BiO}_{3}^{-}+6 \mathrm{H}^{+}+x e^{-} \rightarrow \mathrm{Bi}^{3}+3 \mathrm{H}_{2} \mathrm{O}$, the value of x is
A. 6
B. 2
C. 4
D. 3

Answer: B

- Watch Video Solution

8. In the reaction,

$$
\mathrm{IO}_{3}^{-}+\mathrm{SO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{I}_{2}+\mathrm{SO}_{4}^{2-}+8 \mathrm{H}^{+}
$$

The coefficient of SO_{2} is
A. Three
B. Four
C. Five
D. Six

Answer: C

- Watch Video Solution

9. Which of the following molecules can act as an oxidating as well as a reducing agent?
B. SO_{3}
C. $\mathrm{H}_{2} \mathrm{O}_{2}$
D. F_{2}

Answer: C

- Watch Video Solution

10. Which of the following substances acts as an oxidising as well as a reducing agent?
A. $N a_{2} O$
B. SnCl_{2}
C. NaNO_{3}
D. $\mathrm{NaNO} \mathrm{O}_{2}$

Answer: D

- Watch Video Solution

11. In the conversion fo Br_{2} to BrO_{3}^{-}, the oxidation state of Br changes from.
A. zero to +5
B. +1 to +5
C. zero to -3
D. +2 to +5

Answer: A

- Watch Video Solution

12. The oxidation sates of iodine in $\mathrm{HIO}_{4}, \mathrm{H}_{3} \mathrm{IO}_{5}$ and $\mathrm{H}_{5} \mathrm{IO}_{6}$ are respectively :
A. $+1,+3,+7$
B. $+7,+7,+3$
C. $+7,+7,+7$
D. $+7,+5,+3$

Answer: C

- Watch Video Solution

13. Oxidation state of oxygen in $\mathrm{F}_{2} \mathrm{O}$ is
A. +1
B. -1
C. +2
D. -2

Answer: C

- Watch Video Solution

14. When sulphur dioxide is passed in an acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution, the oxidation state of sulphur is changed from
A. +4 to 0
B. +4 to +2
C. +4 to +6
D. +6 to +4

Answer: C

15. Oxidation number if iodine in $\mathrm{IO}_{3}^{-}, \mathrm{IO}_{4}^{-}, \mathrm{KI}$ and I_{2} respectively are
A. $-1,-1,0+1$
B. $+3,+5,+7,0$
C. $+5,+7,-1,0$
D. $-1,-5,-1,0$

Answer: C

(D) Watch Video Solution

16. Oxidation state of P in $H_{4} P_{2} O_{5}, H_{4} P_{2} O_{6}, H_{4} P_{2} O_{7}$ are respectively
A. $+3,+4,+5$
B. $+3,+5+,+4$
C. $+5,+3,+4$
D. $+5,+4,+3$

Answer: A

- Watch Video Solution

17. Which of the following have been arranged in the decreasing order of oxidation number of sulphur?
A. $N a_{2} S_{4} O_{6}>H_{2} S_{2} O_{7}>N a_{2} S_{2} O_{3}>S_{8}$
B. $\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{SO}_{2}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
C. $\mathrm{SO}_{2}^{2+}>\mathrm{SO}_{4}^{2-}>\mathrm{SO}_{3}^{-2}>\mathrm{HSO}_{4}^{-}$
D. $\mathrm{H}_{2} \mathrm{SO}_{5}>\mathrm{H}_{2} \mathrm{SO}_{3}>\mathrm{SCl}_{2}>\mathrm{H}_{2} \mathrm{~S}$

- Watch Video Solution

18. The highest oxidation state of $M n$ is shown by
A. KMnO_{4}
B. $\mathrm{K}_{2} \mathrm{MnO}_{4}$
C. $\mathrm{MnO}_{2} \mathrm{O}_{3}$
D. MnO_{2}

Answer: A

- Watch Video Solution

19. Chlorine is in +3 oxidation state in
A. HCl
B. HClO_{4}
C. ICI
D. $\mathrm{Cl}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

20. How many moles of iodine are liberated when one mol of potassium dichromate reacts with excess of potassium iodide in the presence of concentrated sulphuric acid?
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

21. For the redox reaction,
$\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
the correct coefficients of the reactants for the balanced reaction
are
$\begin{array}{lllll} & & & \mathrm{MnO}_{4}^{-} & \mathrm{C}_{2} \mathrm{O}_{4}^{-} \\ \text {A. } & & & \mathrm{H}^{+} \\ & 1 & 2 & 5 & \\ & & & & \end{array}$
B.
$\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{-} \quad \mathrm{H}^{+}$
216
$5 \quad 2$
$\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{-} \quad \mathrm{H}^{+}$
C.
35
16
2
D.
$\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{-} \quad \mathrm{H}^{+}$
42
16
5

D Watch Video Solution

22. An oxidation process involves
A. Oxidation number decreases.
B. Number of electrons decreases.
C. Oxygen content decreases.
D. Number of ions decreases.

Answer: B

- Watch Video Solution

23. Which of the following is the most powerful oxidising agent?
A. F_{2}
B. O_{2}
C. $B r_{2}$
D. I_{2}

Answer: A

D View Text Solution

24. Which of the following reaction involves oxidation reduction?
A. $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}$
B. $\mathrm{NaBr}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{HBr}$
C. $\mathrm{HBr}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgBr}+\mathrm{HNO}_{3}$
D. $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

Answer: A

25. In the reaction
$\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$
the substance oxidised is
A. $H_{2} S$
B. SO_{2}
C. S
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: A

- Watch Video Solution

26. The value of n in : $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+n e \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ is
A. $\frac{M}{2}$
B. $\frac{M}{3}$
C. $\frac{M}{4}$
D. $\frac{M}{5}$

Answer: D

- Watch Video Solution

27. Which can act as an oxidising as well as a reducing agent ?
A. HClO_{4}
B. HNO_{3}
C. $\mathrm{H}_{2} \mathrm{O}_{2}$
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: C

- Watch Video Solution

28. Which change requires an oxidising agent?
A. $2 S_{2} O_{3}^{2-} \Leftrightarrow S_{4} O_{6}^{2-}$
B. $Z n^{2+} \Leftrightarrow Z n$
C. $\mathrm{ClO}^{-} \Leftrightarrow \mathrm{Cl}^{-}$
D. $\mathrm{SO}_{3} \Leftrightarrow \mathrm{SO}_{4}^{2-}$

Answer:

- Watch Video Solution

29. In the reaction, $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$, oxygen is
A. Oxygen is oxidised only.
B. Oxygen is reduced only.
C. Oxygen is neither oxidised nor reduced.
D. Oxygen is both oxidised and reduced

Answer: D

- Watch Video Solution

30. In chromite ore, the oxidation number of iron and chromium are respectively.
A. $+3,+2$
B. $+3,+6$
C. $+2,+6$
D. $+2,+3$

Answer: D

- Watch Video Solution

31. In which of the following compounds, nitrogen exhibits highest oxidation state?
A. NH_{3}
B. $N_{3} H$
C. $\mathrm{NH}_{2} \mathrm{OH}$
D. $N_{2} H_{4}$

Answer: B

- Watch Video Solution

32. Which of the following species can function both as oxidizing as well as reducing agent?
A. $C l^{-}$
B. ClO_{4}^{-}
C. ClO^{-}
D. MnO_{4}^{-}

Answer: C

- Watch Video Solution

33. For the decolorization of 1 mol of KMnO_{4}, the moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ requiered are.
A. Mn^{4+} and MnO_{2}
B. $M n^{4+}$ and O_{2}
C. Mn^{2+} and O_{2}
D. Mn^{2+} and O_{3}

Answer: C

- Watch Video Solution

34. The pair of compounds that can exist together is:
A. $\mathrm{FeCl}_{3}, \mathrm{KI}$
B. $\mathrm{FeCl}_{3}, \mathrm{SnCl}_{2}$
C. $\mathrm{HgCl}_{2}, \mathrm{SnCl}_{2}$
D. $\mathrm{FeCl}_{3}, \mathrm{SnCl}_{2}$

Answer: D

35. In acidic medium, $\mathrm{H}_{2} \mathrm{O}_{2}$ changes $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ to CrO_{5} which has two (-O-O-) bonds. Oxidation state of Cr in CrO_{5} is
A. -10
B. +5
C. +3
D. +6

Answer: D

- Watch Video Solution

36. Which of the following processes does not involve oxidation of iron ?
A. Formation of $\mathrm{Fe}(\mathrm{CO})_{5}$ from Fe
B. Liberation of H_{2} from steam by iron at high temperature
C. Rusting of iron sheets
D. Decolourization of blue $\mathrm{CuSO} \mathrm{C}_{4}$ solution by iron

Answer: A

- Watch Video Solution

37. Assuming complete ionization, same moles of which of the following compounds will require the least amount of acidified KMnO_{4} for complete oxidation ?
A. $\mathrm{FeC}_{2} \mathrm{O}_{4}$
B. $\mathrm{Fe}\left(\mathrm{NO}_{2}\right)_{2}$
C. FeSO_{4}
D. FeSO_{3}

Answer: C

(Watch Video Solution

38. Hot concentrated sulpuric acis is a moderatly strong oxidizing agent. Which of the following reaction does not shwo oxidizing behaviour?
A. $\mathrm{CaF}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{HF}$
B. $\mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
C. $2 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{C}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Answer: A

Exercise 4

1. Which of the following represents a redox reaction?
A. $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl}$
C. $\mathrm{CuSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}$
D. $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$

Answer:

- Watch Video Solution

2. In the reaction
$\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$
the substance oxidised is
A. $H_{2} S$
B. SO_{2}
C. S
D. $\mathrm{H}_{2} \mathrm{O}$

Answer:

- Watch Video Solution

3. In the reaction

$3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow \mathrm{NaClO}_{3}+5 \mathrm{NaCl}+3 \mathrm{H}_{2} \mathrm{O}$
the element which loses as well as gains electrons is
A. na
B. 0
C. Cl
D. None

Answer:

- Watch Video Solution

4. The oxidation number of oxygen in $O F_{2}$ is
A. +2
B. -2
C. +1
D. -1

Answer:

5. An oxidation process involves
A. Increase in oxidation number
B. Decrease in oxidation number
C. Both decrease and increase in oxidation number
D. No change in oxidation number

Answer:

- Watch Video Solution

6. Which of the following is the strongest reducing agent in aqueous medium?
A. Mg
B. Na
C. Li
D. Ca

Answer:

- Watch Video Solution

7. Which of the following is the strongest oxidising agent?
A. I_{2}
B. F_{2}
C. $C l_{2}$
D. $B r_{2}$

Answer:

8. The oxidation number of phosphorus in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ is:-
A. +3
B. +2
C. +1
D. -1

Answer:

- Watch Video Solution

9. Which of the following reactions do not involve oxidation reduction?
I. $2 \mathrm{Cs}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{CsOH}+\mathrm{H}_{2}$
II. $2 \mathrm{CuI}_{2} \rightarrow 2 \mathrm{CuI}+\mathrm{I}_{2}$
III. $\mathrm{NH}_{4} \mathrm{Br}+\mathrm{KOH} \rightarrow \mathrm{KBr}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
IV. $4 \mathrm{KCN}+\mathrm{Fe}(C N)_{2} \rightarrow K_{4}\left[\mathrm{Fe}(C N)_{6}\right]$
A. I,II
B. I,III
C. I,III,IV
D. III,IV

Answer:

- Watch Video Solution

10. For the redox reaction

$$
\mathrm{MnO}_{4}^{\ominus}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{\oplus} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

the correct coefficients of the reactions for the balanced reaction are
A.
$\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$
12
5
16
$\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$
B.
216
5
2
$\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$
C.
$\begin{array}{lllll} & & & \mathrm{MnO}_{4}^{-} & \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \\ \mathrm{C} & 2 & \mathrm{H}^{+} \\ & & 16 & 5\end{array}$

Answer:

- Watch Video Solution

11. The oxidation state of nitrogen is correctly given for
Compound
Oxidation state
A.
$1\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \quad 0$
Compound Oxidation state
B. $2 \mathrm{NH}_{2} \mathrm{OH}-2$

Compound Oxidation state
C.
$3 \quad\left(\mathrm{~N}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SO}_{4}+2$
Compound Oxidationstate
D.
$4 \quad M g_{3} N_{2}$
-3

Answer:

- Watch Video Solution

12. The oxidation state of chromium in $\mathrm{Cr}(\mathrm{CO})_{6}$ is
A. 0
B. +2
C. -2
D. +6

Answer:

- Watch Video Solution

13. Which of the following is not a redox reaction?
A. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
B. $\mathrm{O}_{2}+2 \mathrm{H}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\frac{1}{2} \mathrm{H}_{2}$
D. $M n C l_{3} \rightarrow M n C l_{2}+(1 / 2) C l_{2}$

Answer:

- Watch Video Solution

14. In the chemical reaction,
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+x \mathrm{H}_{2} \mathrm{SO}_{4}+y \mathrm{SO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+z \mathrm{H}_{2} \mathrm{O}$
x, y, and z are
A. 1,3,1
B. $4,1,4$
C. 3,2,3
D. 2,1,2

Answer:

(Watch Video Solution

15. One mole of $N_{2} H_{4}$ loses ten moles of electrons of form a new compound Y . Assuming that all the nitrogen appears in the new compound, what is the oxidation state of nitrogen in Y ? (There is no change in the oxidation state of hydrogen.)
A. -1
B. -3
C. +3
D. +5

Answer:

- Watch Video Solution

16. When copper is treated with a certain concentration of nitric acid, nitric oxide and nitrogen dioxide are liberated in equal volumes according to the equation
$x \mathrm{Cu}+y \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
The coefficients x and y are
A. 2 and 3
B. 2 and 6
C. 1 and 3
D. 3 and 8

Answer:

17. In which of the following pairs is there the greatest difference in the oxidation numbers of the underlined elements?
A. $\mathrm{NO}_{2} \& \mathrm{~N}_{2} \mathrm{O}_{4}$
B. $P_{2} O_{5} \& P_{4} O_{10}$
C. $N_{2} \& N O$
D. $\mathrm{SO}_{2} \& \mathrm{SO}_{3}$

Answer:

- Watch Video Solution

18. In the reaction
$3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Br}^{-}+2 \mathrm{BrO}_{3}^{-}+6 \mathrm{HCO}_{3}^{-}$
A. Bromine is oxidised and carbonate is reduced
B. Bromine is reduced and water is oxidised
C. Bromine is neither reduced nor oxidised
D. Bromine is both reduced and oxidised

Answer:

- Watch Video Solution

19. In the reaction
$2 \mathrm{FeCl}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow 2 \mathrm{FeCl}_{2}+2 \mathrm{HCl}+\mathrm{S}$
A. FeCl_{3} acts as anoxidising agnet
B. Both $\mathrm{H}_{2} \mathrm{~S} \mathrm{\& FeCl} l_{3}$ are oxidised
C. FeCl_{3} is oxidised while $\mathrm{H}_{2} \mathrm{~S}$ is reduced
D. $H_{2} S$ acts as an oxidising agent.

Answer:

20. The oxidation number of cobalt in $\mathrm{K}\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$ is:
A. +1
B. +3
C. -1
D. -3

Answer:

- Watch Video Solution

21. Which of the following is not a disproprotionation reaction?
I. $\mathrm{NH}_{4} \mathrm{NO}_{3} \xrightarrow{\Delta} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
II. $\mathrm{P}_{4} \xrightarrow{\Delta} \mathrm{PH}_{3}+\mathrm{HPO}_{2}^{\ominus}$
III. $P C l_{5} \xrightarrow{\Delta} P C l_{3}+C l_{2}$
IV. $\mathrm{IO}_{3}^{\ominus}+I^{\ominus} \rightarrow I_{2}$
A. I,II
B. I,III,IV
C. IIIIV
D. I,III

Answer:

- Watch Video Solution

22. which of the following represent redox reactions?
I. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$
II. $\mathrm{Zn}+\mathrm{CuSO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{Cu}$
iii. $\mathrm{MnO}_{4}^{\ominus}+3 \mathrm{Mn}^{2+}+4 \stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow 5 \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
IV. $2 C u^{\oplus} \rightarrow C u+C u^{2+}$
A. I,II
B. I,III
C. II,IV
D. II,III,IV

Answer:

- Watch Video Solution

23. In which of the following cases is the oxidation state of N atom wrongly calculated?
A. $\mathrm{NH}_{4} \mathrm{Cl} \quad-3$
B. $\left(\mathrm{N}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SO}_{4} \quad+2$
C. $M g_{3} N_{2} \quad-3$
D. $\mathrm{NH}_{2} \mathrm{OH} \quad-1$

Answer:

- Watch Video Solution

24. Which of the following is not a disproportionation reaction ?
A. $\mathrm{KO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO} \rightarrow \mathrm{KHCO}_{3}+\mathrm{O}_{2}$
B. $\mathrm{KClO}_{3} \rightarrow \mathrm{KClO}_{4}+\mathrm{KCl}$
C. $\mathrm{PbO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PbO}+\mathrm{H}_{2} \mathrm{O}_{2}$
D.

$$
\mathrm{OHC}-\mathrm{COOH} \xrightarrow{\mathrm{O}^{-} \mathrm{H}} \mathrm{HOH}_{2} \mathrm{C}-\mathrm{COOH}+\mathrm{O}^{-} \mathrm{OC}-\mathrm{COO}^{-}
$$

Answer:

25. The number of moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reduced by 1 mol of Sn^{2+} ions is
A. $1 / 3$
B. 3
C. $1 / 6$
D. 6

Answer:

- Watch Video Solution

26. Which of the following is a redox reaction?
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$ with NaOH
B. In atmosphere, O_{3} from O_{2} by lightning
C. Nitrogen oxides from nitrogen and oxygen by
D. Evaporation of $\mathrm{H}_{2} \mathrm{O}$

Answer:

- Watch Video Solution

27. The oxidation state of Fe in $\mathrm{Fe}(\mathrm{CO})_{5}$ is
A. 0
B. +2
C. -2
D. +6

Answer:

28. In which of the following pairs is there the greatest difference in the oxidation numbers of the underlined elements?
A. $\mathrm{NO}_{2} \& \mathrm{~N}_{2} \mathrm{O}_{4}$
B. $\mathrm{SO}_{3}^{2-} \& \mathrm{SO}_{4}^{2-}$
C. $S^{2} \& S O_{3}^{2-}$
D. $S^{2} \& S O_{4}^{2-}$

Answer:

- Watch Video Solution

29. [Which of the following is not an intermolecular redox reaction?
A. $\mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}$
B. $\mathrm{O}_{2}+2 \mathrm{H}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{K}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KOH}+(1 / 2) \mathrm{H}_{2}$
D. $M n B r_{3} \rightarrow M n B r_{2}+(1 / 2) B r_{2}$

Answer:

- Watch Video Solution

30. The number of moles of KMnO_{4} required to oxidise 1 mol of
$\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$ in acidic medium is
A. 0.6
B. 0.167
C. 0.2
D. 0.4

Answer:

- Watch Video Solution

31. In the reaction
$K+O_{2} \rightarrow \mathrm{KO}_{2}$
A. O_{2} acts as oxidising agent
B. Both K and O_{2} as oxidised
C. O_{2} is oxidised with K is reduced
D. K acts as an oxidising agent

Answer:

32. Which is the best description of the behaviour of bromine in the reaction given below
$\mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2} \rightarrow \mathrm{HOBr}+\mathrm{HBr}$
A. Proton acceptor only
B. Both oxidised and reduced
C. Oxidised only
D. Reduced only

Answer:

- Watch Video Solution

33. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{X} \xrightarrow{\mathrm{H}^{\oplus}} \mathrm{Cr}^{3+}+\mathrm{H}_{2} \mathrm{O}+$ oxidised productof X, X in the above reaction cannot be
A. $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
B. $F e^{2+}$
C. SO_{4}^{2-}
D. S^{2-}

Answer:

- Watch Video Solution

34. The oxidation state of chromium in the final product formed by the reaction between KI and acidified potassium dichromate solution is :
A. +4
B. +6
C. +2
D. +3

Answer:

- Watch Video Solution

35. The number of moles of KMnO_{4} reduced by 1 mol of $K I$ in alkaline medium is
A. 1
B. 2
C. 5
D. $1 / 5$

Answer:

36. In the balanced chemical reaction
$\mathrm{IO}_{3}^{\ominus}+a I^{\ominus}+b \mathrm{H}^{\ominus} \rightarrow c \mathrm{H}_{2} \mathrm{O}+d I_{2}$
a, b, c, and d, respectively, correspond to
A. 5,6,3,3
B. 5,3,6,3
C. 3,5,3,6
D. 5,6,5,5

Answer:

(Watch Video Solution

37. For the reaction
$M^{x+}+M n O_{4}^{\ominus} \rightarrow M O_{3}^{\ominus}+\mathrm{Mn}^{2+}+(1 / 2) O_{2}$
if 1 mol of $\mathrm{MnO}_{4}^{\ominus}$ oxidises 1.67 mol of M^{x+} to $M O_{3}^{\ominus}$, then the value of x in the reaction is
A. 5
B. 3
C. 2
D. 1

Answer:

- Watch Video Solution

38.

$a \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+b \mathrm{KCl}+c \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow x \mathrm{CrO}_{2} \mathrm{Cl}_{2}+y \mathrm{KHSO}_{4}+z \mathrm{H}_{2} \mathrm{O}$
The above equation balances when
A. $a=2, b=4, c=6$ and $x=2, y-6, z=3$
B. $a=4, b=4, c=2$ and $x=6, y-2, z=3$
C. $a=6, b=4, c=2$ and $x=6, y-3, z=2$
D. $a=1, b=4, c=6$ and $x=2, y-6, z=3$

Answer:

D Watch Video Solution

39. The oxidation number of carbon in. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is .
A. 0
B. 2
C. 3
D. 5
40. Exess of KI reacts with $\mathrm{CuSO} \mathrm{C}_{4}$ solution and then $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution is added to it. Which of the following statement is incorrect for this reaction ?
A. Evolved I_{2} is reduced
B. $C-2$ is formed
C. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is oxidised
D. $C u_{2} I_{2}$ is formed

Answer:

- Watch Video Solution

41. It is found that V forms a double salt isomorphous with Mohr's salt. The oxidation number of V in this compound is:

$$
\text { A. }+8
$$

B. +6
C. +4
D. +2

Answer:

- Watch Video Solution

42. The number of peroxide bonds in perxenate ion $\left[\mathrm{XeO}_{6}\right]^{4-}$ is
A. 0
B. 2
C. 3
D. 1

Answer:

- Watch Video Solution

43. The oxidation number of Pr in $\mathrm{Pr}_{6} O_{11}$ is
A. $\frac{22}{6}$
B. $\frac{20}{6}$
C. 3
D. 4

Answer:

- Watch Video Solution

44. In which of the following is the highest oxidation state not possible?
A. $\left[\mathrm{XeO}_{6}\right]^{4-}$
B. XeF_{8}
C. OsO_{4}
D. RuO_{4}

Answer:

- Watch Video Solution

45. which of the following statements is not correct about the reaction given below?
$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \xrightarrow{\text { Oxidation }} \mathrm{Fe}^{3+}+\mathrm{CO}_{2}+\mathrm{NO}_{3}^{\ominus}$
A. Fe is oxidised from Fe^{2+} to Fe^{3+}
B. Carbon is oxidised from C^{2+} to C^{4+}
C. N is oxidised from N^{3-} to C^{4+}
D. Carbon is not oxidised

Answer:

- Watch Video Solution

46. Which of the following reactions is not a disproportination reaction?
A. $\mathrm{P}_{4}+5 \mathrm{O}^{-} \mathrm{H} \rightarrow \mathrm{H}_{2} \mathrm{PO}_{2}^{-}+\mathrm{PH}_{3}$
B. $\mathrm{Cl}_{2}+\mathrm{O}^{-} \mathrm{H} \rightarrow \mathrm{Cl}^{-}+\mathrm{ClO}^{-}$
C. $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
D. $\mathrm{PbO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PbO}+\mathrm{H}_{2} \mathrm{O}_{2}$

Answer:

- Watch Video Solution

47. Which of the following is not an intramolecular redox reaction?
A. $\mathrm{NH}_{4}+\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
B. $2 \mathrm{Mn}_{2} \mathrm{O}_{7} \rightarrow 4 \mathrm{MnO}_{2}+3 \mathrm{O}_{2}$
C. $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
D. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Answer:

- Watch Video Solution

48. In the equation $\mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{ne}^{-}$value of n is :-
A. 1
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

49. Which of the following is an intermolecular redox reaction?
A. $2 \mathrm{OCH}-\mathrm{CHO} \xrightarrow{\mathrm{O}^{-} \mathrm{H}} \mathrm{HOCH}_{2}-\mathrm{CH}_{2} \mathrm{OH}$
B. $2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} \xrightarrow{\mathrm{Al}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$
C. $4 \mathrm{CrO}_{3}+6 \mathrm{H}_{2} \mathrm{SO}_{4}+\rightarrow 2 \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2}+7 \mathrm{O}_{2}$
D. $\mathrm{Ag}_{2} \mathrm{~S}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{As} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}$

Answer:

- Watch Video Solution

50. The oxidation state of A, B, and C in a compound are $+2,+5$, and -2 , respectively. The compounds is
A. $A_{2}(B C)_{2}$
B. $A_{2}(B C)_{3}$
C. $A_{3}\left(B C_{4}\right)_{2}$
D. $A_{2}\left(B C_{4}\right)_{3}$

Answer:

51. The number of electrons lost in the following change is

$$
\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2}
$$

A. 2
B. 4
C. 6
D. 8

Answer:

D Watch Video Solution
52. The oxidation number of Pt in $\left.\left[\mathrm{Pt}\left(\mathrm{C}_{2} H_{4}\right) C l_{3}\right)\right]^{\ominus}$ is
A. +1
B. +2
C. +3
D. +4

Answer:

- Watch Video Solution

53. The oxidation number of P in $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is
A. +3
B. +2
C. +5
D. -3

Answer:

54. The oxidation number of phosphorus in $\mathrm{PO}_{4}^{3-}, P_{4} O_{10}$, and $\mathrm{P}_{2} \mathrm{O}_{7}^{4-}$ is
A. +5
B. +3
C. -3
D. +2

Answer:

- Watch Video Solution

55. which of the following leads to redox reaction ?
A. $\mathrm{AgNO}+\mathrm{HCl}$
B. $\mathrm{KOH}+\mathrm{HCl}$
C. $K I+C l_{2}$
D. $\mathrm{NH}_{3}+\mathrm{HCl}$

Answer:

- Watch Video Solution

56. The oxidation number of sulphur in $N a_{2} S_{4} O_{6}$ is .
A. +0.5
B. 2.5
C. +4
D. +6

Answer:

57. The oxidation state of iodine in $\mathrm{H}_{4} \mathrm{IO}_{6}^{-}$is:
A. +7
B. -1
C. +5
D. +1

Answer:

- Watch Video Solution

58. When iron is rusted, it is
A. Oxidised
B. Iodide ion
C. Oxidising agent
D. Reducing agent

Answer:

- Watch Video Solution

59. An element that never has a positive oxidation state in any of its compounds is
A. Boron
B. Oxygen
C. Chlorine
D. Fluorine

Answer:

60. Starch iodide paper is used to test for the presence of
A. Iodine
B. lodide ion
C. Oxidising agent
D. Reducing agent

Answer:

- Watch Video Solution

61. Which of the following acids possesses oxidising, reducing, and
complex forming properties ?
A. HNO_{3}
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. HCl
D. HNO_{2}

Answer:

- Watch Video Solution

62. In the reaction
$8 \mathrm{Al}+3 \mathrm{Fe}_{3} \mathrm{O}_{4} \rightarrow 4 \mathrm{Al}_{2} \mathrm{O}_{3}+9 \mathrm{Fe}$
the number of electrons transferred from the reductant to the oxidant is
A. 8
B. 4
C. 16
D. 24

Answer:

(Watch Video Solution

63. Which of the following examples does not represent disproportionation?
A. $\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
B. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
C. $4 \mathrm{KClO}_{3} \rightarrow 3 \mathrm{KClO}_{4}+\mathrm{KCl}$
D. $3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow 5 \mathrm{NaCl}+\mathrm{NaCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$

Answer:

64. Which of the following statements is / are correct
A. The oxidation number of S in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ is
B. The oxidation number of Os in +8
C. The oxidation number of S in is +8
D. The oxidation number of O in is $-1 / 2$

Answer:

D Watch Video Solution

65. The oxide which cannot act as reducing agent is
A. SO_{2}
B. NO_{2}
C. CO_{2}
D. ClO_{2}

Answer:

- Watch Video Solution

66. The coordination number and oxidation number of $C r$ in $K_{3}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ are, respectively,
A. 4 and 2
B. 6 and +3
C. 3 and -3
D. 3 and 0

Answer:

67. Which of the following reactions does not involve either oxidation or reduction?
A. $\mathrm{VO}^{2+} \rightarrow V_{2} \mathrm{O}_{3}$
B. $\mathrm{Na} \rightarrow \mathrm{Na}^{+}$
C. $\mathrm{CrO}_{4}^{2-} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
D. $Z n^{2+} \rightarrow Z n$

Answer:

- Watch Video Solution

68. In which of the following processess is nitrogen oxidised ?
A. $\mathrm{NH}_{4}^{+} \rightarrow \mathrm{N}_{2}$
B. $\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}$
C. $\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{2}^{-}$
D. $\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NH}_{4}^{+}$

Answer:

D Watch Video Solution

69. The oxidation number of C in $H N C$ is
A. +2
B. -3
C. +3
D. 0

Answer:

70. The oxidation number of Fe in $\mathrm{Fe}_{0.94} \mathrm{O}$ is
A. 200
B. $200 / 94$
C. $94 / 200$
D. None

Answer:

- Watch Video Solution

71. The oxidant number of Fe in $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]$ is
A. +2
B. +1
C. +3
D. -2

Answer:

- Watch Video Solution

72. The oxidation number of Cl in CaOCl_{2} is
A. -1 and +1
B. +2
C. -2
D. None

Answer:

73. The equivalent weight of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ in the change $\mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{3+}+\mathrm{CO}_{2}$ is
A. $M / 3$
B. $M / 6$
C. $M / 2$
D. $M / 1$

Answer:

- Watch Video Solution

74. The oxidation state of Fe in $\mathrm{Fe}_{3} \mathrm{O}_{8}$ is
A. $3 / 2$
B. $4 / 5$
C. $5 / 4$
D. $16 / 3$

Answer:

- Watch Video Solution

75. In which of the following compounds, the oxidation state of transition metal is zero ?
A. CrO_{5}
B. $\mathrm{Fe}_{3} \mathrm{O}_{4}$
C. FeSO_{4}
D. $\mathrm{Fe}(\mathrm{CO})_{5}$

Answer:

76. The oxidation state of S in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ is
A. +2
B. +4
C. +6
D. +7

Answer:

- Watch Video Solution

77. Oxidation reaction involves loss of electrons, and reduction reaction involves gain of electrons. The reaction in which a species disproportinates into two oxidation states (lower and higher) is
called disproportionation reaction.
Which of the following is not a dispropotional reaction?
A. $\mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cu}+\mathrm{Cu}^{+}+\mathrm{H}_{2} \mathrm{O}$
B. $2 \mathrm{CrO}_{4}^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{CaCO}_{3}+2 \mathrm{H}^{+} \rightarrow \mathrm{Ca}^{2+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
D. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$

Answer:

- Watch Video Solution

78. When KMnO_{4} acts as an oxidising agnet and ultimetely from $\mathrm{MnO}_{4}^{2-}, \mathrm{MnO}_{2}, \mathrm{Mn}_{2} \mathrm{O}_{3}$, and Mn^{2+}, then the number of electrons transferred in each case, respectively, are
A. 4,3,1,5
B. 1,5,3,7
C. 1,3,4,5
D. 3,5,7,1

Answer:

- Watch Video Solution

79. Which of the following is a redox reaction?
A. $\mathrm{NaCl}+\mathrm{KNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{KCl}$
B. $\mathrm{CaC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
C. $\mathrm{Mg}(\mathrm{OH})_{3}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{NH}_{4} \mathrm{OH}$
D. $Z n+2 A g C N \rightarrow 2 A g+Z n(C N)_{2}$

Answer:

80. The oxidation states of sulphur in the anions $\mathrm{SO}_{3}^{2-}, \mathrm{S}_{2} \mathrm{O}_{4}^{2-}$, and $S_{2} O_{6}^{2-}$ follow the order
A. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
B. $\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
C. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{SO}_{3}^{2-}$
D. $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}$

Answer:

- Watch Video Solution

81. For decolourisation of 1 mol of KMnO_{4}, the moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ required is
A. $1 / 2$
B. $3 / 2$
C. $5 / 2$
D. $7 / 2$

Answer:

- Watch Video Solution

82. A metal ion M^{3+} loses three electrons, its oxidation number will be
A. +3
B. +6
C. 0
D. -3

Answer:

- Watch Video Solution

83. To an acidic solution of an anion, a few drops of Kmno_{4} solution are added. Which of the following, if present, will not decolourise the KMnO_{4} solution?
A. CO_{3}^{2-}
B. NO_{2}^{-}
C. S^{2-}
D. Cl^{-}

Answer:

84. The number of moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reduced by 1 mol of Sn^{2+} ions is
A. $1 / 6$
B. $1 / 3$
C. $2 / 3$
D. 1

Answer:

- Watch Video Solution

85. Which of the following is not a reducing agent ?
A. SO_{2}
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. CO_{2}
D. NO_{2}

Answer:

- Watch Video Solution

86. The oxidation state of chromium is $\left[\mathrm{Cr}\left(\mathrm{PPh}_{3}\right)_{3}(\mathrm{CO})_{3}\right]$ is
A. +3
B. +8
C. 0
D. +5

Answer:

87. The values of the x and y in the following redox reaction.
$x \mathrm{Cl}_{2}+6 \stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow \mathrm{ClO}_{3}^{\ominus}+y \mathrm{Cl}^{\ominus}+3 \mathrm{H}_{2} \mathrm{O}$
A. $x=2, y=4$
B. $x=5, y=3$
C. $x=3, y=5$
D. $x=4, y=2$

Answer:

- Watch Video Solution

88. Which gas is evolved when PbO_{2} is treated with conc HNO_{3} ?
A. NO_{2}
B. O_{2}
C. N_{2}
D. $\mathrm{N}_{2} \mathrm{O}$

Answer:

- Watch Video Solution

89. The equivalent mass of oxidising agent in the following
reaction is
$\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$
A. 32
B. 64
C. 16
D. 8

D Watch Video Solution

90. In alkaline medium, ClO_{2} oxidises $\mathrm{H}_{2} \mathrm{O}_{2}$ to O_{2} and is itself reduced to Cl^{\ominus}. How many moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ are oxidised by 1 mol of ClO_{2} ?
A. 1
B. $3 / 2$
C. $5 / 2$
D. $7 / 2$

Answer:

91. Match the reaction in column I with average number given in

	Column - I Reaction		Column - II Average oxidation
a	$\begin{aligned} & \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3} \\ & \text { (Ferri-ferrocyanide) (Prussian blue) } \end{aligned}$	p	$\frac{12}{5}$
b	$\begin{aligned} & \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \\ & \text { (Ferro ferri cyanide) (Turnbull's blue) } \end{aligned}$	q	2
c	$\begin{aligned} & \mathrm{Fe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2} \\ & \text { (Ferri - Ferricyanide) } \end{aligned}$	r	$\frac{18}{7}$
d	$\begin{aligned} & \mathrm{Fe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \\ & \text { (Ferri - ferricyanide) } \end{aligned}$	s	1
e	$\begin{aligned} & \mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right] \\ & \text { (Sodium nitrorusside) } \end{aligned}$	t	3
f	$\left[\mathrm{Fe}(\mathrm{NO})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{SO}_{4}$	u	$\frac{8}{3}$
g	$\mathrm{Fe}_{3} \mathrm{O}_{4}$		

column II.
A. a-r, b-c, c-q, d-t, e-q,t, f-s, g-u
B. a-r, b-q, c-p, d-t, e-q, f-s, g-u
C. a-u, b-q, c-p, d-t, e-q, f-s, g-r
D. a-r, b-q, c-p, d-t, e-s, f-q, g-u

Answer:

- Watch Video Solution

92. Assertion (A): $\mathrm{H}_{2} \mathrm{O}_{2}$ acts only as an oxidising agnet.
$\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}$
Reason (R): All peroxides behave as oxidising agnets only.
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

93. Assertion (A): KMnO_{4} is a stronger oxidising agent than $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.

Reason (R): This is due to increasing stability of the lower species to which they are reduced.
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

94. Assertion (A): $S O_{2}$ and Cl_{2} are both bleaching agents.

Reason (R): Both are reducing agents.
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

- Watch Video Solution

95. Assertion (A): F_{2} undergoes disproportionation reaction.

Reason (R): Fluorine shows both positive and negative oxidation states.
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

- Watch Video Solution

96. Assertion (A): Sn reacts with HCl to produce H_{2} gas.

Reason (R): $S n$ is a better reducing agent than H_{2} gas.
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

- Watch Video Solution

97. Assertion (A): In aqueous solution, SO_{2} reacts with $\mathrm{H}_{2} \mathrm{~S}$ liberating sulphur

Reason (R): $S O_{2}$ is an effective reducing agent.
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

- Watch Video Solution

98. Assertion (A): PbCl_{2} is more stable than PbCl_{4}.

Reason (R): PbCl_{4} is a powerful oxidising agent.
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

99. Assertion (A): F_{2} is stronger reducing agent than O_{2}

Reason (R): O_{2} is more electronegative.
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

- Watch Video Solution

100. Assertion (A): The two Fe atoms in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ have different oxidation numbers.

Reason (R): Fe^{2+} ions decolourise KMnO_{4} solution.
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

- Watch Video Solution

101. Assertion (A): HNO_{3} acts only as an oxidising agent, while HNO_{2} acts both as an oxidising agnet and a reducing agent. Reason (R): The oxidation number of N in HNO_{3} is maximum.
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

- Watch Video Solution

102. Assertion (A): O_{3} can act as an oxidising agent as wll as a reducing agent, but SO_{2} can act only as an oxidant.

Reason (R): The oxidation number of O in O_{3} is zero, and the oxidiation number of S in $S O_{2}$ is +4 .
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

- Watch Video Solution

103. Assertion (A): Sodium perxenate $\left(\mathrm{Na}_{4} \mathrm{XeO}_{6}\right)$ reacts with NaF in acidic medium to give XeO_{3} and F_{2}

Reason (R): XeO_{6}^{4-} is a stronger oxidant than F_{2}.
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

- Watch Video Solution

104. Assertion (A): In the process of drying dishes with a towel, the wetting agent is the dish and the drying agent is the towel.

Reason (R): The wetting agent gets wet during the process.
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

105. Assertion (A): A reaction between $F e$ and I_{2} occurs, but a reaction between Fe^{2+} and I^{\ominus} does not occur.

Reason (R): Fe is a better reducing agent than I^{\ominus}.
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

106. Assertion: (A): The reactions between NH_{3} and $\mathrm{MnO}_{4}^{\ominus}$ occurs in an acidic medium.
$\mathrm{NH}_{3}+\mathrm{MnO}_{4}^{\ominus} \rightarrow \mathrm{MnO}_{2}+\mathrm{NO}_{2}$
Reason (R): $\mathrm{MnO}_{4}^{\ominus}$ is reduced to MnO_{2} in acidic medium.
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

- Watch Video Solution

107. Oxidation number of nickel in $\mathrm{Ni}(\mathrm{CI})_{4}$
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

D Watch Video Solution

108. Assertion :- $\mathrm{H}_{2} \mathrm{~S}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}+\mathrm{S}$

In the above reaction, Cl has been oxidised to Cl^{-}while S^{-2} has been reduced to S

Reason :- In a reaction the element whose oxidation number decreases is reduced and the element whose oxidation number increases is oxidised
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

- Watch Video Solution

109. Oxidation number of sulphur in $\mathrm{H}_{2} \mathrm{SO}_{5}$ is
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

(Watch Video Solution

110. In $K_{4} \mathrm{Fe}(C N)_{6}$
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

111. Assertion (A) Among halogens fluorine is the best oxidation.

Reason (R) Fluorine is the most electronegative atom
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

- Watch Video Solution

112. Assertion: Nitrous acid $\left(\mathrm{HNO}_{2}\right)$ may act as an oxidising as well as a reducing agent.

Reason: The oxidation number of nitrogen remains same in all the compounds.
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

- Watch Video Solution

113. Assertion : The oxidation numbers are artificial, they are useful as a book keeping device of elements in reactions

Reason : The oxidation numbers do not usually represent real
charge on atoms, they are simply conventions that indicate what the maximum charge could possibly be on an atom in a molecule.
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

- Watch Video Solution

114. Assertion : In the reaction
$Z n(s)+C u^{2+}(a q) \rightarrow Z n^{2+}(a q)+C u(s) C u^{2+}$ ions acts as oxidising agent and Zn atoms act as a reducing agent

Reason : A substance (atom, ion, or molecule) which readily gain
electrons from other substances is an oxidising agent while reducing agent is a substance (atom, ion or molecule) which can lose electrons to other substances.
A. If Both A and R are correct but R is the not correct explanation of A
B. If A is correct but R is incorrect
C. If A is incorrect but R is correct
D. If both A and R are incorrect

Answer:

