©゙"doubtnut

India's Number 1 Education App

PHYSICS

AIMED AT STUDENTS PREPARING FOR

IIT JEE EXAMS

FRICTION

Single Answer Questions

1. Two block of masses $m 1$ and $m 2$ are connected with a massless unstretched spring
and placed over a plank moving with an acceleration ' a ' as shown in figure. The coefficient of friction between the blocks and platform is μ

A. spring will be stretched if $a>\mu g$
B. spring will be commpressed if $a \leq \mu g$
C. spring will neither be compressed nor be stretched for $a<\mu g$ only.

D. spring will be in its natural length under

 all conditions.
Answer: D

D Watch Video Solution

2. Two blocks with masses M_{1} and M_{2} of 10 kg and 20 kg respectively are placed as in fig.
$\mu_{s}=0.2$ between all surfaces, then tension in
string and acceleration of M_{2} block will be:

A. $250 N, 3 m / s^{2}$
B. $200 N, 6 m / s^{2}$
C. $306 N, 4.7 m / s^{2}$
D. $400 \mathrm{~N}, 6.5 \mathrm{~m} / \mathrm{s}^{2}$

Answer: C

Watch Video Solution

3. Two thin roads are moving perpendicularly as shown in the figure. If the friction acting between them is F_{R} then the unit vector in the direction of friction force acting on the rod lying along x-axis is

A. $\frac{(-\hat{i}-2 \hat{j})}{\sqrt{5}}$
B. $\frac{(\hat{i}+2 \hat{j})}{\sqrt{5}}$
C. $\frac{(3 \hat{i}+2 \hat{j})}{\sqrt{3}}$
D. none of these

Answer: A

- Watch Video Solution

4. In a figure shown mass of A and B is equal
to M each. Friction between B and lowermost
surface is negligible. Initially both the blocks
are at rest. The dimensions of the block A are
very small. A constant horizontal force F is applied on the blocks B and both the blocks start moving together without any relative motion. Suddenly, the block B encounters a fixed obstacle and comes to rest. The block A continues to slide on the block B. The block A
just manages to reach the opposite end of the bolck B. What is the coefficient of friction between the two blocks? (Required length are

shown in figure)

A. $F / M g$
B. $2 F / M g$
C. $F / 2 M g$
D. none

Answer: A
(Watch Video Solution
5. A block of mass m is gradually released so
that at position shown it is in equilibrium with spring extended by 10 cm . The static and kinetic coefficients of friction differ by 0.1.

When the spring is cut, m slide down with acceleration (i nos ${ }^{-2}$)

A. 0.8
B. 1
C. 1.8
D. 2.1

Answer: B

D Watch Video Solution

6. Wedge is fixed on horizontal surface. Block
A is pulled upward by applying a force F as
shown in figure and there is no friction between the wedge and the block A while coefficient of friction between A and B is μ. If
there is no relative motion between the block
A and B then frictional force developed between A and B is

A. $\left[\frac{F+(m-M) g \sin \theta}{(m+M)}\right] m \cos \theta$
B. $\mu m g$
C. $\left[\frac{F-(m+M) g \sin \theta}{(m+M)}\right] m \cos \theta$
D. $\mu m g / 2$

Answer: C

D Watch Video Solution

7. Two blocks $A \& B$ attached to each other by a mass-less spring, are kept on a rough horizontal surface $\mu=0.1$. A constant force $F=200 N$ is applied on blcok B horizon tally as shown below. If a some instant the acceleration of 10 kg mass is $12 \mathrm{~m} / \mathrm{s}^{2}$, then the
acceleration of 20 kg mass is

A. $2.5 m / s^{2}$ or $15.5 m / s^{2}$
B. $4 m / s^{2}$ or $10 m / s^{2}$
C. $3.6 m / s^{2}$ or $4.1 m / s^{2}$
D. $1.2 m / s^{2}$ or $1.3 m / s^{2}$

Answer: A
8. In the shown arrangement if f_{1}, f_{2} and T be the frictional forces on 2 kg block, 3 kg block \& tension in the string respectively, then their values are:

A. $2 N, 6 N, 3.2 N$
B. $2 N, 6 N, 0 N$
C. $1 N, 6 N, 2 N$
D. data insufficient to calculate the required values.

Answer: C

D Watch Video Solution

9. Coefficient of friction between pulley and
light string is μ_{1}. Calculate minimum coefficient of friction between block A and
ground such that system can be in equibrium.

A. $\mu=2$
B. $\mu=2 e^{\frac{-\mu \pi}{2}}$
C. $\mu=e^{\frac{\mu_{1} \pi}{2}}$
D. $\mu=\frac{3}{2}$

Answer: B

D Watch Video Solution

10. Calculate angle of friction between wedge
and block system is at rest M coefficient of
friction between wedge and block.

A. $\tan ^{-1} \mu$
B. 2θ
C. θ
D. $\frac{\theta}{2}$

Answer: C

- Watch Video Solution

11. Cube of mass m kept on rough horizontal
surface. Two insects each mass m. Moving in
the cube with equal acceleration. a_{0} from D to
E and H to F what is the frictional force by ground on the tube.

A. $(m+2 m) a_{0}$
B. $\frac{\sqrt{5}}{\sqrt{2}} m a_{0}$
C. $2 m a_{0}$
D. $M a_{0} \sqrt{2}$

Answer: B

D Watch Video Solution

12. Chain of mass M length L kept on rough
sphere. μ is coefficient if friction between
sphere and chain F is minimum force required
to slide chain

A. $\frac{2 \mu M g}{\pi}$
B. $\mu M g$
C. $<\frac{2 \mu M g}{\pi}$
D. $2 \mu M g$

Answer: C

D Watch Video Solution

13. The coefficient of friction between the
block A of mass $m \&$ block B of mass $2 m$ is μ.

There is no friction between $A \& B$ is released
from rest \& there is no slipping between $A \& B$
then:

A. $2 \theta \leq \sin ^{-1}(2 \mu)$
B. $\theta \leq \tan ^{-1}(\mu)$
C. $2 \theta \leq \cos ^{-1}(2 \mu)$
D. $2 \theta \leq \tan ^{-1}(\mu / 2)$

Answer: B

D Watch Video Solution
14. A long chain of mass of mass M length L is being pulled with constant velocity on a rough incline with coefficient of friction μ. What rate frictional force on chain is increasing

A. $\frac{3}{10} \mu \frac{M}{L} g v$
B. $\frac{5}{6} \mu \frac{M}{L} g v$
C. zero

$$
\text { D. } \mu \frac{M}{L} g v
$$

Answer: A

D Watch Video Solution

15. A block A is placed over a long rough plank
B of same mass shown below. The plank is placed over a smooth horizontal surface. At
time $t=0$, block A is given a velocity v_{o} in horizontal direction. Let v_{1} and v_{2} be the
velocity of $A \& B$ at time ' t '. Then choose the

correct graph between v_{1} or v_{2} and t :

A.

C.

D.

Answer: B

D Watch Video Solution

16. The force acting on the block of mass 1 kg
is given by $F=5-2 t$. The frictional force acting on the block after time $t=2$ seconds
will be: $(\mu=0.2)$

$$
\begin{aligned}
& \mu=0.2 \\
& \pi 1 \pi \pi \pi 1 \pi \pi 1 \pi \pi \pi 7
\end{aligned}
$$

A. $2 N$
B. $3 N$
C. $1 N$
D. zero

Answer: A
17. A block of mass 2 kg is placed on the floor of an elevator. The elevator is moving with an
acceleration of
$6 \hat{i}+7 \hat{j} m / s^{2}$. If $\bullet=0.5, g=10 m s^{-2}$
and horizontal, vertically upward direactions
are taken as $+v e x, y$ axes, find frictional force actiong on the block.
A. $12 N$
B. 16 N
C. $10 N$

D. $17 N$

Answer: A

D Watch Video Solution

18. In the figure, $m_{1}=m_{2}=10 \mathrm{~kg}$. The coefficients of friction between A, B and B,
surface are 0.2 . Find the maximum value of m_{3}
so that no block slips (All the pullies are ideal
and strings are massless).

A. 16 kg
B. 10 kg
C. 18 kg
D. 14 kg

Answer: D

D Watch Video Solution
19. A composite inclined plane has three different inclined surfaces $A B, B C$ and $C D$ of heights $1 m$ each and coefficients of friction $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{8}}$ and $\frac{1}{\sqrt{15}}$ respectively. A particle given an initial velocity at A along $A B$ transverses the inclined surfaces with uniform speed, reaches D in $5 s$. The initial speed given is $(\mathrm{in} m / s)$

A. 1.6
B. 1.8
C. 2.4
D. 3

Answer: B

D Watch Video Solution

20. A stationary body mass m is slowly
lowered onto a rough massive plat from moving at a constant velocity $v_{o}=4 m / s$. On
smooth surface. The distance the body will
slide with respect to the plat from $(\mu=0.2)$
is:

A. $4 m$
B. $6 m$
C. $12 m$
D. $8 m$

Watch Video Solution

21. In the diagram shown the ground is smooth and $F_{1} \& F_{2}$ are both horizontal forces. The mass of the upper blocks is 10 kg while that of lower block is 15 kg . The correct statement is:

A. m_{1} experiences frictional force towards
B. If $F_{1} \neq F_{2}$ then it is possible to keep the system in equilibrium for certain suitable values of $F_{1} \& F_{2}$
C. If the system is to remain in equilibrium
then F_{1} must be equal to
$F_{2} \& F_{2}<10 N$
D. If $\frac{F_{1}}{m_{1}}=\frac{F_{2}}{m_{2}}$, then frictional force between the blocks is zero

Answer: C

Multiple Answer Question

1. Initially the blocks are at rest with $F=0 . F$
is gradually increased.

From $F=0$ till $F=F_{1}$, no motion

From $F>F_{1}$ till $F=2 F_{1}$, motion with relative acceleration $=0$

From $F>2 F_{1}$, relative acceleration non-zero

At $F=3 F_{1}$, relative acceleration $=2 m s^{-2}$

Then,
A. $m=2 K g$
B. $\mu_{1}=0.4$
C. $F_{1}=6 N$
D. At $F=4 F_{1}$, relative acceleration is

$$
4 m s^{-2}
$$

Answer: A::D

2. 1 kg and 4 kg blocks lie on a rough horizontal
surface. The coefficient of friction between 4 kg blocks and surface is 0.2 while the coefficient of firction between 1 kg blocks and the surface is 0.6 . All the pulley shown in the figure are massless and frictionless and all strings are massless and frictionless and all strings are massless.

A. The frictional force acting on 1 kg blocks is $2 N$.
B. The frictional force acting on 1 kg block
is $6 N$
C. The tension in the string connecting $4 k g$
block and 1 kg blocks is 1 N
D. The tension in the string connecting 1 kg
block and $4 k g$ blocks is zero.

Answer: C::D

3. The force F_{1} that is necessary to move a body up an inclined plane is double the force
F_{2} that is necessary to just prevent it form sliding down, then:
A. $F_{2}=w \sin (\theta-\phi) \sec \phi$
B. $F_{1}=w \sin (\theta-\phi) \sec \phi$
C. $\tan \phi=3 \tan \theta$
D. $\tan \theta=3 \tan \phi$ Where $\phi=$ angle of friction $\theta=$ angle of inclined plane
$w=$ weight of the body

Answer: A::D

D Watch Video Solution

4. A block of mass 1 kg is stationary with respect to a conveyer belt that is accelerating with $1 \mathrm{~m} / \mathrm{s}^{2}$ upwards at an angle of 30° as shown in figure. Which of the following is / are

correct?

A. Force of friction on block is $6 N$ upwards.
B. Force of friction on block is $1.5 N$
upwards.
C. Contract force between the block \& belt is 10.5 N .

D. Contact force between the block \& belt

$$
\text { is } 5 \sqrt{3} N \text {. }
$$

Answer: A::C

D Watch Video Solution

5. A block A of mass m is over a plank B of mass $2 m$. Plank B si placed over a smooth
horizontal surface. The coefficient of friction between A and B is $\frac{1}{2}$. Blocks A is given a
velocity V_{0} towards right. Then

A. Acceleration of A is $\frac{g}{2}$
B. Acceleration of A is g
C. Acceleration of B relative to A is $\frac{3}{4} g$
D. Acceleration of A is zero

Answer: A::C

6. In the situration shown in the figure the friction coefficient between M and the horizontal surface is μ. The force F is applied at an angle θ with vertical. The correct statements are

A. If $\theta>\tan ^{-1} \mu$ the block cannot be pushed forward for any value of F
B. If $\theta<\tan ^{-1} \mu$ the block cannot be pushed forwards for any value of F
C. As θ decreases the magnitude of force needed to just push the block M forward increases
D. None of these

Answer: B::C

D Watch Video Solution

7. A block resting on a rough horizontal surface. A sharp horizontal impulse is applied on the block at $t=0$. If at an instant t, its velocity be v and displacement up to this instant be s, then which of the following graphs is / are correct?

B.

Answer: C::D

D Watch Video Solution

8. A triangular block of mass m rests on a fixed rough inclined plane having friction coefficient μ with the block. A horizontal forces F is
applied to it as shown in figure below, then the correct statements is:

A. Friction force is zero when
$F \cos \theta=m g \sin \theta$
B. The value of limiting friction is
$\mu(m g \sin \theta+F \cos \theta)$
C. Normal reaction on the block is

$F \sin \theta+m g \cos \theta$

D. The value of limiting friction is

$$
\mu(m g \sin \theta-F \cos \theta)
$$

Answer: A::C

D Watch Video Solution

9. System is in equilibrium

A. Minimum coefficent of friction required
between 6 kg block and ground $\mu=2$
such that system is in equilibrium.
B. Compression of vertical spring is $\frac{2 g}{K_{1}}$
C. Elongation of vertical spring is $\frac{6 g}{K_{1}}$ D. for $\mu=1$ system can be in equilibrium

Answer: A::B

D Watch Video Solution

10. A small object is kept on a groove on rough
incline plane of inclination θ. Groove wakes an
angle α as shown in diagram. μ coefficient of
friction. Which of the following is correct

A. Normal force by incline plane.

$$
N=m g \cos \theta
$$

B. Normal force by incline is

$$
N=m g \sqrt{\cos ^{2} \theta+\sin ^{2} \theta \sin ^{2} \alpha}
$$

C. maximum frictional force that can
develop is $f_{\max }=\mu m g \cos \theta$

D. If $\mu=0$ then acceleration of blocks is

$g \sin \theta \cos \alpha$

Answer: B::D

D Watch Video Solution

11. As shown in figure, A and B are two blocks of mass 5 kg and 10 kg connected by inextensible and massless strings. Pulleys
$1,2,3$ are massless, no frction exists between pully and strings. The coefficient of friction
between blocks B and the surface is $\mu=0.1$
Take $g=10 m / s^{2}$. Choose the correct statements.

A. The acceleration of block A is $0.06 \mathrm{~ms}^{-2}$
B. The acceleration of block B is $0.24 \mathrm{~ms}^{-2}$
C. The tension in the string connecting pulley 1 and block A is $24.7 N$
D. The tension in the string connecting pulley 3 and block B is $6.175 N$

Answer: A::B

D Watch Video Solution

12. A uniform rod is made to lean between rough vertical wall and the ground. Friction coefficient between rod and walls is $\mu_{1}=\frac{1}{2}$
and between the rod and the ground is
$\mu_{2}=\frac{1}{4}$. The rod is about to slip at contact
surfaces. The correct options are:

A. The normal reaction between rod and

$$
\text { wall is } \frac{\mu_{2} W}{1+\mu_{1} \mu_{2}}
$$

B. Normal reaction between rod and
ground is $\frac{W}{1+\mu_{1} \mu_{2}}$
C. $N_{2}>N_{1}$
D. $N_{1}>N_{2}$

Answer: A::B::C

D Watch Video Solution
13. Two blocks of masses m_{1} and m_{2} are connected by a string of negligible mass which pass over a frictionless pulley fixed on the top
of an inclined plane as shown in figure. The coefficient of friction between m_{1} and plane is
μ.

A. If $m_{1}=m_{2}$, the mass m_{1} first begin to
move up inclined plane when the angle of inclination θ, then $\mu=\sec \theta-\tan \theta$
B. If $m_{1}=m_{2}$, then mass m_{1} first begin to
side down the plane if $\mu=\sec \theta-\tan \theta$.
C. If $m_{1}=2 m_{2}$, then mass m_{1} first begins to slide down the plane if $\mu=2 \tan \theta$.
D. If $m_{1}=2 m_{2}$, then mass m_{1} first begins

$$
\begin{aligned}
& \text { to slide down the plane if } \\
& \mu=\tan \theta-\frac{1}{2} \sec \theta
\end{aligned}
$$

Answer: A::D

D Watch Video Solution

14. A plank $1 m$ long is fixed with one end,

28 cm above the level of other end. The top
half of the plank is smooth and the bottom half is rough. When a small block of mass m is released at the top, it just reaches the bottom.
A. The coefficient of friction between the block and the part of plank is $1 / 2$.
B. On the rough part, the normal reaction
on the block is $\frac{24}{25} m g$

C. Coefficient of friction between the block

and the rough part of plank is $7 / 12$
D. On the rough part, the retardation of the block is $\frac{28}{100} g$

Answer: B::C::D

D Watch Video Solution

15. Let F, F_{N} and f denote the magnitudes
of the contact force, normal force and the
friction exerted by one surface on the other kept in contact. If none of these is zero,
A. $F>f$
B. $F_{N}>f$
C. $F>F_{N}$
D. $F_{N}-f<f<F_{N}+f$

Answer: A::C

- Watch Video Solution

16. The friction coefficient between plank and
flooe is μ. The man applies, the maximum possible foce on the string and the system remains at rest. Then

A. frictional force between plank and
surface is $\frac{2 \mu m g}{1+\mu}$
B. frcitional force on man is zero
C. tension is the string is $\frac{2 \mu m g}{1+\mu}$
D. net force on man is zero

Answer: A::B::C::D

D Watch Video Solution

17. In the figure shown, friction exists between
wedge and block and also between wedge and
floor. The system is in equilibrium in the
shown position.

A. frictional force between wedge and
surface is $\mu(M+m) g$
B. frictional force between wedge and
surface is $m g$
C. frictional force between wedge and
block is 0

D. minimum coefficient of friction required

to hold the system in equilibrium is

$$
\frac{m}{M+m}
$$

Answer: B::C::D

D Watch Video Solution

18. When person cycling on rough horizontal surface then which of the following are correct
A. Friction on front wheel is towards left

B. Friction on front wheel is towards right

C. Friction on rear wheel towards right
D. Friction on rear wheel towards left

Answer: A::C

D Watch Video Solution

19. A body is moving down a long inclined plane in inclination 45° with horizontal. The coefficient of friction between the body and the plane varies as $\mu=x / 2$, where x is the
distance moved down the plane. Initially

$$
x=0 \& v=0
$$

A. When $x=2$ the velocity of the body is
$\sqrt{g \sqrt{2}} m / s$
B. The velocity of the body increases all the
time
C. At an instant when $v \neq 0$ the instantaneous acceleration of the body
down the plane is
$\frac{g(2-x)}{2 \sqrt{2}}$
D. The body first accelerates and then decelerates

Answer: A::C::D

- Watch Video Solution

20. A small block of mass of 0.1 kg lies on a fixed inclined plane $P Q$ which makes an angle
θ with the horizontal. A horizontal force of $1 N$ acts on the block through its centre of mass as shown in the figure. The block remains
stationary if (take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

A. $\theta=45^{\circ}$
B. $\theta>45^{\circ}$ and frictional force acts on the
block towards P.
C. $\theta>45^{\circ}$ and frictional force acts on the
block towards Q.

D. $\theta<45^{\circ}$ and frictional force acts on the

 block towards Q.Answer: A::C

D Watch Video Solution

Passage Type Of Questions

1. Consider the situation shown in figure in
which a book ' A ' of mass $2 k g$ is placed over a
block ' B ' of mass 4 kg . The combination of
the placed on a inclined plane of inclination
37° with horizontal. The coefficient of friction
between blocks B and inclined plane is μ_{2} and in between the two bolcks is μ_{1}, The system is released from rest.
(Take $g=10 \mathrm{~m} / \mathrm{sec}^{2}$)

If $\mu_{1}=0.8, \mu_{2}=0.8$ then:
A. Both block will move together
B. Only block A will move and blocks B
remains at rest
C. Only block B will move and block A
remains at rest
D. None of the blocks will move

Answer: D

- Watch Video Solution

2. Consider the situation shown in figure in which a book ' A ' of mass $2 k g$ is placed over a block ' B ' of mass 4 kg . The combination of the placed on a inclined plane of inclination 37° with horizontal. The coefficient of friction between blocks B and inclined plane is μ_{2} and in between the two bolcks is μ_{1}, The system is released from rest.
(Take $g=10 \mathrm{~m} / \mathrm{sec}^{2}$)

In the previous question the frictional force between block B and plane is:
A. $36 N$
B. $24 N$
C. $12 N$
D. $48 N$

Answer: A
(Watch Video Solution
3. Consider the situation shown in figure in which a book ' A ' of mass $2 k g$ is placed over a block ' B ' of mass 4 kg . The combination of the placed on a inclined plane of inclination 37° with horizontal. The coefficient of friction between blocks B and inclined plane is μ_{2} and in between the two bolcks is μ_{1}, The system is released from rest.
(Take $g=10 \mathrm{~m} / \mathrm{sec}^{2}$)

If $\mu_{1}=0.5, \mu_{2}=0.5$, then:
A. Both blocks will move but with different accelerations
B. Both blocks will move together
C. Only block A will move
D. Only block B will have

- Watch Video Solution

4. In the given figure, the blocks of mass 2 kg and 3 kg are placed one over the other as shown. The surface are rough with coefficient of friction $\mu_{1}=0.2, \mu_{2}=0.06$. A force $F=0.5 t($ where ' t ' in sec) is applied on upper block in the direction shown. Based on above data answer the following questions.
$\left(g=10 \mathrm{~m} / \mathrm{sec}^{2}\right)$

The motion of blocks $2 k g$ and $3 k g$ will begin at
time $t=-,-$ respectively
A. $8,8 \mathrm{sec}$
B. $6,8 \mathrm{sec}$
C. $8,6 \mathrm{sec}$
D. $6,6 \mathrm{sec}$

Answer: D
5. In the given figure, the blocks of mass $2 k g$ and $3 k g$ are placed one over the other as shown. The surface are rough with coefficient of friction $\quad \mu_{1}=0.2, \mu_{2}=0.06$. A force $F=0.5 t$ (where ' t 'in sec) is applied on upper block in the direction shown. Based on above data answer the following questions.
$\left(g=10 m / \sec ^{2}\right)$

The relative slipping between the blocks occurs at $t=$
A. 6 sec
B. 8 sec
C. $\frac{28}{3} \mathrm{sec}$
D. Never

Answer: C
(Watch Video Solution
6. In the given figure, the blocks of mass 2 kg and 3 kg are placed one over the other as
shown. The surface are rough with coefficient of friction $\mu_{1}=0.2, \mu_{2}=0.06$. A force $F=0.5 t$ (where ' t ' in sec) is applied on upper block in the direction shown. Based on above data answer the following questions.

$$
\left(g=10 \mathrm{~m} / \mathrm{sec}^{2}\right)
$$

The frictional force acting between the two blocks at $t=8 \mathrm{sec}$.
A. $4 N$
B. $3 N$
C. $3.6 N$
D. $3.2 N$

Answer: C

D Watch Video Solution

1. A 6 kg blocks is kept over a rough surface with coefficients of friction $\mu_{s}=0.6$ and $\mu_{k}=0.4$ as shown in figure. A time varying force $F=4 t$ (F in newton and t in second) is applied on the block as shown. Find the acceleration of block at $t=5 \mathrm{sec}$. (Taking $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

2. Two blocks A and B of mass 2 kg and 4 kg are placed one over the others as shown in figure. A time vaying horizontal force $F=2 t$ is applied on the upper blocks as shown in figure. Here t is in second and F is in newton. Coefficient of friction between A and B is $\mu=\frac{1}{2}$ and the horizontal surface over which
B is placed is smmoth. $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$. If acceleration of blocks A as a function of time
is given by $a_{A}=t / c$ then find value of c.
$(t \leq 7.5 s)$

D Watch Video Solution

3. Block B of mass $2 k g$ is placed on smooth horizontal plane. Block A to mass 1 kg is placed on block B. The coefficient of friction between A and B is 0.40 . The block A is imparted a velocity $16 m / s$ "at" $t=0$. Find the
time at which momentum of the twoblocks are
equal (in seconds). $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

- Watch Video Solution

4. In the above diagram calculate frictional
force acting on 6 kg block

$\mu=0.2$
 $$
\mu=0.2 \sqrt{\frac{\sqrt{3}}{\frac{1}{3}}} \rightarrow 10 \mathrm{~N}
$$

D Watch Video Solution

5. Calculate F such that frictional force acting on all blocks zero.

$$
\xrightarrow[\mu=0]{\substack{\mu=0.1 \\ \mu=0.3 \\ \mu=0.2 \\ \sqrt{2} \sqrt{2} \sqrt{2}}} \rightarrow 2 \mathrm{~F} \rightarrow 2 \mathrm{~F}
$$

D Watch Video Solution
6. Two plates A and B kept on horizontal
surface. Force F is applied as shown. If minimum coefficient of friction between them is $\frac{n}{4}$ to keep them in equilibrium. Calculate n.

7. Two small blcok $m=2 k g$ each kept on wedge of mass 12 kg . There is no friction between blocks and wedge coefficient of friction between wedge and ground in $\mu=0.3$. Calculate frictional force by ground on wedge.

8. In the figure, the distance
$B Q=3 m, B P=14 m$ at time $t=0$. The
system of blocks is released from rest at time
$t=0$. The string connecting B and C is suddenly cut at time $t=2 s$. Calculate the velocity of B at the instant when it hits the pulley Q. The coefficient of friction between B and the horizontal surface is $\mu_{s}=\mu_{k}=0.25$.

Take $g=9.8 m / s^{2}$

- Watch Video Solution

9. A 20 kg block is originally at rest on a horizontal surface for which the coefficient of friction is 0.6 . A horizontal force F is applied such that it varies with time as shown in the figure (a) \& (b). If the speed of the block after
$10 s$ is $8 v$ then find v. (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
(b)

D Watch Video Solution

10. A block A of mass 10 kg rests on a second block B of mass 8 kg . The coefficients of friction at various surfaces are shown in figure.

A horizontal force of 100 N is applied on upper block at $t=0$. Determine the velocity of block
A relative to block B after $0.01 s$ of application of force. The system is initially at rest. Express
your answer in cm / s. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

$$
\begin{array}{l|c|}
\mu_{2}=0.5 & \mathrm{~A} \\
\mu_{1}=0.1 & \mathrm{~B} \\
\hline 717777777777777777
\end{array}
$$

A. ${ }^{`}$
B.
C.
D.

- Watch Video Solution

11. Block B is placed on a smooth surface.

Block A is placed on rough surface of bolck B with coefficient of friction 0.60 . The mass of A and B are $2 k g$ and 4 kg respectively. Find the frictional force between A and B (in N)

12. In the fig. as shown mass of each block is same. The surface are rough with coefficient of friction μ. The block B moves with acceleration a. The frictional force on the block C is $k \times \mu m a$. Calculate the value of K

D Watch Video Solution

13. μ is coefficient of friction between all surface. Block A is kept of over block B on inclined plane. The minimum force required such that ' A ' block can accelerate along applied force is $m g \sin \theta+n \mu g \cos \theta$ calculate n.

14. If friction develop between 2 kg block and surface is K. Calculate the value of K

- Watch Video Solution

1. In the adjacent figure, x-axis has been taken
down the inclined plane. The coefficient of
friction varies with x as $\mu=k x$, where $k=\tan \theta$. A block is released at O.

The maximum velocity of block will be:
A. \sqrt{g}
B. $\sqrt{g \sin \theta}$
C. $\sqrt{g \cos \theta}$
D. $\sqrt{g \tan \theta}$

Answer: B

D Watch Video Solution

2. In the adjacent figure, x-axis has been taken
down the inclined plane. The coefficient of
friction varies with x as $\mu=k x$, where $k=\tan \theta$. A block is released at O

Maximum distance traveled by block:
A. $1 m$
B. $2 m$
C. $3 m$
D. $\frac{1}{2} m$

Answer: B

D Watch Video Solution
3. In the adjacent figure, x-axis has been taken down the inclined plane. The coefficient of friction varies with x as $\mu=k x$, where $k=\tan \theta$. A block is released at O

Frictional force acting on the block after it comes to rest:
A. $m g \sin \theta$
B. $2 m g \sin \theta$
C. $\frac{m g \sin \theta}{2}$
D. $2 m g \cos \theta$

Answer: A

D Watch Video Solution

4. In the shown figure, four blocks A, B, C and D are connected by three ideal strings.

Coefficient of friction between A, B and
surface is 0.2 . The mass A, B and D are of 5 kg
and C is of $m k g . f_{A}$ and f_{B} are the frictional
forces action on A and B respectively. The system is allowed to move. Based on the above data answer
the following questions. (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

If $m=5 k g$, then

$$
\begin{aligned}
& \text { А. } T_{2}=50 N, f_{A}=f_{B}=10 N \\
& \text { B. } T_{2}=40 N, f_{A}=f_{B}=10 N
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } T_{2}=50 N, f_{A}=f_{B}=0 \\
& \text { D. } T_{2}=40 N, f_{A}=f_{B}=0
\end{aligned}
$$

Answer: C

D Watch Video Solution

5. In the shown figure, four blocks A, B, C and
D are connected by three ideal strings.
Coefficient of friction between A, B and surface is 0.2 . The mass A, B and D are of 5 kg and C is of $m k g . f_{A}$ and f_{B} are the frictional
forces action on A and B respectively. The system is allowed to move. Based on the above data answer
the following questions. (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

If $m=6 \mathrm{~kg}$, then:

$$
\begin{aligned}
& \text { А. } T_{2}=40 N, f_{A}=10 N, f_{B}=0 \\
& \text { В. } T_{2}=40 N, f_{A}=20 N, f_{B}=10 N \\
& \text { С. } T_{2}=40 N, f_{A}=20 N, f_{B}=10 N
\end{aligned}
$$

$$
\text { D. } T_{2}=50 N, f_{A}=10 N, f_{B}=0
$$

Answer: D

D Watch Video Solution

6. In the shown figure, four blocks A, B, C and
D are connected by three ideal strings.

Coefficient of friction between A, B and surface is 0.2 . The mass A, B and D are of $5 k g$ and C is of $m k g . f_{A}$ and f_{B} are the frictional
forces action on A and B respectively. The
system is allowed to move. Based on the above data answer
the following questions. (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

If $m=4 k g$ then :

$$
\begin{aligned}
& \text { A. } T_{2}=40 N, f_{A}=0, f_{B}=10 N \\
& \text { В. } T_{2}=0, f_{A}=10 N, f_{B}=10 N \\
& \text { C. } T_{2}=30 n, f_{A}=10 N, f_{B}=20 N \\
& \text { D. } T_{2}=30 N, f_{A}=10 N, f_{B}=10 N
\end{aligned}
$$

Answer: A
(Watch Video Solution

