© 'doubtnut

India's Number 1 Education App

PHYSICS

AIMED AT STUDENTS PREPARING FOR

IIT JEE EXAMS

MOTION IN A PLANE

Example

1. $A B C D E F$ is a regular hexagon with point O as
centre. The value of $A B+A C+A D+A E+A F$

- Watch Video Solution

2. A paricle is moving eastwards with a velocity of $5 \mathrm{~m} / \mathrm{s}$. In 10 s the velocity changes to $5 \mathrm{~m} / \mathrm{s}$ northwards. Find the average acceleration in this time.

D Watch Video Solution
3. Two vectors \vec{A} and \vec{B} have precisely equal magnitudes. For the magnitude of $\vec{A}+\vec{B}$ to be larger than the magnitude of $\vec{A}-\vec{B}$ by a factor of n, what must be the angle between them?

- Watch Video Solution

4. Two forces whose magnitudes are in the ratio $3: 5$ give a resultant of 28 N . If the angle of their inclination is 60°, find the magnitude of each force.

Watch Video Solution

5. What is the displacement of the point of a wheel initially in contact with the ground when the wheel rolls forward half a revolution? Take the radius of the wheel as R and the x-axis as the forward direction?

- Watch Video Solution

6. An aircraft is flying at a height of 3400 m above the ground, If the angle subtended at a
ground observation point by the aircraft positions 10 s apart is 30°, what is the speed of the aircraft ?

D Watch Video Solution

A frictionless wire is fixed between A and B inside a circle of radius R. A small bead slips
along the wire. Find the time taken by the bead to slip from A to B.

D Watch Video Solution

8. Two particles 1 and 2 are allowed to descend on the two frictionless chord $O A$ and $O B$ of a vertical circle, at the same instant from point
O. The ratio of the velocities of the particles 1 and 2 respectively, when they reach on the circumference will be (OB is the diameter).
9. Velocity and acceleration of a particle at time $t=0$ are
$u=(2 \hat{i}+3 \hat{j}) \mathrm{m} / \mathrm{s}$ and $a=(4 \hat{i}+3 \hat{j}) \mathrm{m} / \mathrm{s}^{2}$ respectively. Find the velocity and displacement if particle at $t=2 \mathrm{~s}$.

- Watch Video Solution

10. A paarticle starts from origin at $t=0$ with a velocity $5.0 \hat{i} / \mathrm{m} / \mathrm{s}$ and moves in $x-y$ plane under action of a force which produces a constant
acceleration of $(3.0 \hat{i}+2.0 j) \mathrm{m} / \mathrm{s}^{2}$.
(a) What is the y-cordinate of the particle at the instant its x-coordinate is ' 84 m ? (b) What is the speed of the particle at this time?

D Watch Video Solution

11. The coordinates of a body moving in a plane at any instant of time t are $x=\alpha t^{2}$ and $y=\beta t^{2}$. The speed of the body is.
12. Figure shows a rod of length I resting on a wall and the floor. Its lower end A is pulled towards left with a constant velocity u. As a result of this, end A starts moving down along the wall. Find the velocity of the other end B downward when the rod makes an angle θ
with the horizontal.

- Watch Video Solution

13. When two objects move uniformly towards each other, they get 4 metres closer each second and when they move uniformly in the
same direction with original speed, they get 4
metres closer each 5s. Find their individual
speeds.

D Watch Video Solution

14. A person walks up a stationary escalator in
time t_{1}. If he remains stationary on the escalator, then it can take him up in time t_{2}. How much time would it take for him to walk up the moving escalator?
15. Two ships A and B are 10 km apart on a line running south to north. Ship A farther north is streaming west at $20 \mathrm{~km} / \mathrm{h}$ and ship B is streaming north at $20 \mathrm{~km} / \mathrm{h}$. What is their distance of closest approach and how long do they take to reach it?

D Watch Video Solution

16. Rain is falling vertically with a speed of $20 \mathrm{~ms}^{-1}$., A person is running in the rain with a
velocity of $5 \mathrm{~ms}^{-1}$ and a wind is also blowing with a speed of $15 \mathrm{~ms}^{-1}$ (both from the west)

The angle with the vertical at which the person should hold his umbrella so that he may not get drenched is:

D Watch Video Solution

17. To a man walking at the rate of $3 \mathrm{~km} / \mathrm{h}$ the rain appear to fall vetically douwnwards. When he increases his speed $6 \mathrm{~km} / \mathrm{h}$ it appears to
meet him at an angle of 45° with vertically.

Find the speed of rain.

D Watch Video Solution

18. Rain is falling, vertically with a speed of $1 \mathrm{~m} / \mathrm{s}$.Wind starts blowing after sometime with a speed of $1.732 \mathrm{~m} / \mathrm{s}$ in east to west direction. In which direction should a boy waiting at a
bus stop hold his umbrella?

D Watch Video Solution

19. Rain is falling vertically with a speed of
$1 \mathrm{~m} / \mathrm{s}$. A woman rides a bicycle with a speed of
$1.732 \mathrm{~m} / \mathrm{s}$ in east to west direction. What is the direction in which she should hold her umbrella?

- Watch Video Solution

20. A boat is moving with a velocity $v_{b w}=5 \mathrm{~km} / \mathrm{hr}$ relative to water. At time $t=0$
.the boat passes through a piece of cork floating in water while moving down stream.If it turns back at time $t_{1}=30 \mathrm{~min}$.
a) when the boat meet the cork again?
b) The distance travelled by the boat during
this time.

- Watch Video Solution

21. A swimmer crosses a flowing stream of width d to and fro normal to the flow of the river at time t_{1}. The time taken to cover the same distance up and down the stream is t_{2}. If t_{3} is the time the swimmer would take to swim
a distance $2 d$ in still water, then relation between $t_{1}, t_{2} \& t_{3}$.

D Watch Video Solution

22. Two persons P and Q crosses the river starting the point A on one side to exactly opposite point B on the other bank of the river. The person P crosses the river in the shortest path. The person Q crosses the river
in shortest time and walks back to point B
.Velocity of river is 3 kmph and speed of each
person is $5 k m p h$ w.r.t river. If the two persons reach the point B in the same time, then the speed of walk of Q is .

D Watch Video Solution

23. A bullet fired at an angle of 30° with the
horizontal hits the ground 3.0 km away. By adjusting its angle of projection, can one hope to hit a target 5.0 km away? Assume the muzzle speed to be fixed and neglect air resistance.

Watch Video Solution

24. A cannon and a target are 5.10 km apart and located at the same level. How soon will the shell launched with the initial velocity $240 \mathrm{~m} / \mathrm{s}$ reach the target in the absence of air drag?

- Watch Video Solution

25. The ceiling of a long hall is 20 m high. What
is the maximum horizontal distance that a ball
thrown with a speed of 40 m can go without
hitting the ceiling of hall $\left(g=10 \mathrm{~ms}^{-2}\right)$?

- Watch Video Solution

26. A ball projected with a velocity of $10 \mathrm{~m} / \mathrm{s}$ at angle of 30° with horizontal just clears two vertical poles each of height 1 m . Find
separation between the poles.

- Watch Video Solution

27. A body is projected with velocity u at an angle of projection θ with the horizontal. The direction of velocity of the body makes angle
30° with the horizontal at $t=2 \mathrm{~s}$ and then after $1 s$ it reaches the maximum height. Then

D Watch Video Solution

28. A particle is thrown over a triangle from one end of a horizontal base and after grazing
the vertex falls on the other end of the base. If
α and β be the base angles and θ the angle of projection, prove that $\tan \theta=\tan \alpha+\tan \beta$.
29. The velocity of a projectile when it is at the greatest height is $(\sqrt{2 / 5})$ times its velocity when it is at half of its greatest height. Determine its angle of projection.

D Watch Video Solution

30. A foot ball is kicked off with an initial speed
of $19.6 \mathrm{~m} / \mathrm{s}$ to have maximum range. Goal keeper standing on the goal line $67.4 m$ away in the direction of the kick starts running opposite to the direction of kick to meet the
ball at that instant. What must his speed be if
he is to catch the ball before it hits the ground?

- Watch Video Solution

31. A body projected from a point O at an angle θ, just crosses a wall $y \mathrm{~m}$ high at a distance. $x \mathrm{~m}$ from the point of projection and strikes the ground at Q beyond the wall as
shown, then find height of the wall

D Watch Video Solution

32. A particle is projected with a velocity of $10 \sqrt{2} \mathrm{~m} / \mathrm{s}$ at an angle of 45° with the horizontal. Find the interval between the
$\sqrt{125} m / s\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

- Watch Video Solution

33. A projectile of 2 kg has velocities $3 \mathrm{~m} / \mathrm{s}$ and
$4 \mathrm{~m} / \mathrm{s}$ at two points during its flight in the uniform gravitational field of the earth. If these two velocities are \perp to each other then the minimum $K E$ of the particle during its flight is
34. In the absence of wind the range and maximum height of a projectile were R and H.

If wind imparts a horizontal acceleration
$a=g / 4$ to the projectile then find the maximum range and maximum height.

D Watch Video Solution

35. A particle is projected from the ground with an initial speed v at an angle θ with horizontal. The average velocity of the particle
between its point of projection and highest point of trajectory is [EAM2013]

D Watch Video Solution

36. A ball is thrown from the top of a tower of $61 m$ high with a velocity $24.4 m s^{-1}$ at an elevation of 30° above the horizontal. What is
the distance from the foot of the tower to the point where the ball hits the ground?
37. A particle is projected from a tower as
shown in figure, then find the distance from
the foot of the tower where it will strike the
ground. ($g=10 \mathrm{~m} / \mathrm{s}^{2}$)

- Watch Video Solution

38. A golfer standing on the ground hits a ball with a velocity of $52 \mathrm{~m} / \mathrm{s}$ at an angle θ above
the horizontal if $\tan \theta=\frac{5}{12}$ find the time for which the ball is at least 15 m above the ground?
$\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

- Watch Video Solution

39. Two paper screens A and B are separated by a distance of 100 m . A bullet pierces A and B.

The hole in B is 10 cm below the hole in A. If the bullet is travelling horizontally at the time of hitting the screen A, calculate the velocity of the bullet when it hits the screen A. Neglect resistance of paper and air.

- Watch Video Solution

40. A boy aims a gun at a bird from a point, at
a horizontal distance of 100 m . If the gun can
impart a velocity of $500 \mathrm{~m} / \mathrm{sec}$ to the bullet, at
what height above the bird must he aim his gun in order to hit it?

D Watch Video Solution

41. An enemy plane is flying horizontally at an
altitude of 2 km with a speed of $300 \mathrm{~ms}^{-1}$.An army man with an anti-aircraft gun on the ground sights enemy plane when it is directly overhead and fires a shell with a muzzle speed of $600 \mathrm{~ms}^{-1}$.At what angle with the vertical should the gun be fired so as to hit the plane?

Watch Video Solution

42. From the top of a tower, two balls are thrown horizontally with velocities u_{1} and u_{2} in opposite directions. If their velocities are perpendicular to each other just before they strike the ground, find the height of tower.

D Watch Video Solution

43. From points A and B, at the respective heights of $2 m$ and $6 m$, two bodies are thrown
simultaneously towards each other, one is
thrown horizontally with a velocity of $8 \mathrm{~m} / \mathrm{s}$ and the other, downward at an angle 45° to
the horizontal at an initial velocity v_{0} such
that the bodies collide in flight. This horizontal
distance between points A and B equal to $8 m$
.Then find
a)The initial velocity V_{0} of the body thrown at an angle 45°
b)The time of flight t of the bodies before colliding
c) The coordinate (x, y) of the point of collision
(consider the bottom of the tower A as origin
)is

D Watch Video Solution

44. A particle is projected horizontally with a
speed u from the top of plane inclined at an angle θ with the horizontal. How far from the
point of projection will the particle strike the plane?

D Watch Video Solution

45. A projectile has the maximum range of 500 m . If the projectile is now thrown up on an inclined plane of 30° with the same speed,
what is the distance covered by it along the inclined plane?

D Watch Video Solution

46. When a motor cyclist takes a U-turn in $4 s$ what is the average angular velocity of the motor cyclist.

D Watch Video Solution
47. What is the linear velocity of a person at equator of the earth due to its spinning motion? (Radius of the earth $=6400 \mathrm{~km}$)

- Watch Video Solution

Level-I(C.W)

1. The maximum resultant of two concurrent
forces is 10 N and their minimum resultant is
$4 N$. The magnitude of large force is
A. 5 N
B. 7 N
C. 3 N
D. $14 N$

Answer: B

- Watch Video Solution

2. The resultant of two vectors of magnitudes

3 units and 5 units is perpendicular to 3 units.The angle between the vectors is
A. 127°
B. 120°
C. 75°
D. 150°

Answer: A

D Watch Video Solution

3. If the sum of two unit vectors is a unit vector,then find the magnitude of their differences.
A. 1 unit
B. 2 unit
C. $\sqrt{3}$ unit
D. zero

Answer: C

- Watch Video Solution

4. Which of the following sets of forces acting simultaneously on a particle keep it in equilibrium?
A. $3 N, 5 N, 10 N$
B. $4 N, 5 N, 12 N$
C. $2 N, 6 N, 5 N$
D. $5 N, 8 N, 1 N$

Answer: C

D Watch Video Solution

5. The magnitude of two vectors \vec{P} and \vec{Q} differ by 1 . The magnitude of their resultant makes
an angle of $\tan ^{-1}\left(\frac{3}{4}\right)$ with \vec{P}. The angle between \vec{P} and \vec{Q} is
A. 45°
B. 0°
C. 180°
D. 90°

Answer: D
(Watch Video Solution
6. Two vectors inclined at angle θ have magnitude $3 N$ and $5 N$ and their resultant is of magnitude $4 N$. The angle θ is
A. 90°
B. $\cos ^{-1}\left(\frac{4}{5}\right)$
C. $\cos ^{-1}\left(\frac{3}{5}\right)$
D. $\cos ^{-1}\left(-\frac{3}{5}\right)$

Answer: D

7. The plane which can be formed with the

vectors
$\bar{a}=3 \bar{i}-4 \bar{j}+2 \bar{k}, \bar{b}=2 \bar{i}-\bar{j}+6 \bar{k}, \bar{c}=5 \bar{i}-5 \bar{j}+4 \bar{k}$
,is.
A. Quadrilateral
B. Triangle
C. Circle
D. Hyperbola
8. Five equal forces each of 20 N are acting at a point in the same plane. If the angles between them are same, the resultant of these forces is
A. 0
B. 40 N
C. 20 N
D. $20 \sqrt{2} N$
9. A boy is hanging from a horizontal branch of a tree. The tension in the arms will be maximum when the angle between the arms is
A. 0°
B. 30°
C. 60°
D. 120°
10. A 10 kg body is suspended by a rope is
pulled by means of a horizontal force to make
60° by rope to vertical.The horizontal forces is
A. 10 kgwt
B. 30kgwt
C. $10 \sqrt{3} \mathrm{kgwt}$
D. $30 \sqrt{3} \mathrm{kgwt}$

T_{1}
 11. If P is in equilibrium then $\frac{T_{1}}{T_{2}}$ is

A. $\sqrt{3}$
B. 2
C. $\frac{1}{\sqrt{3}}$
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

12. A body starts with a velocity
$(2 \hat{i}+3 \hat{j}+11 \hat{k}) \mathrm{m} / \mathrm{s}$ and moves with an acceleration $(5 \hat{i}+5 \hat{j}-5 \hat{k}) \mathrm{m} / \mathrm{s}^{2}$. What is its velocity after 0.2 sec ?
A. $7 \hat{i}+8 \hat{j}+6 \hat{k}$
B. $2 \hat{i}-3 \hat{j}+11 \hat{k}$
C. $3 \hat{i}-4 \hat{j}-10 \hat{k}$
D. $3 \hat{i}+4 \hat{j}+10 \hat{k}$

Answer: D

D Watch Video Solution

13. The position vector of a particle is given by
$\vec{r}=\left(3 t^{2} \hat{i}+4 t^{2} \hat{j}+7 \hat{k}\right) m$ at a given time t.The
net displacement of the particle after 10 s is
A. 500 m
B. 400 m
C. 300 m
D. 700 m

Answer: A
14. A particle is moving eastwards with a velocity $5 \mathrm{~ms}^{-1}$, changes its direction northwards in 10 seconds and moves with same magnitude of velocity. The average acceleration is
A. zero
B. $\frac{1}{\sqrt{2}} m s^{-2}$ towards $N-E$
C. $\frac{1}{\sqrt{2}} m s^{-2}$ towards $S-E$
D. $\frac{1}{\sqrt{2}} m s^{-2}$ towards $N-W$

Answer: D

- Watch Video Solution

15. A man is going due east with a velocity of
$5 \mathrm{~ms}^{-1}$.tt is vertically rainging downwards with
a velocity of $4 \mathrm{~ms}^{-1}$. At what angle should he hold the umbrella to the vertical so as to protect him self from the rain?
A. $\tan ^{-1}\left(\frac{5}{4}\right)$ in anti-clockwise direction
B. $\tan ^{-1}\left(\frac{5}{4}\right)$ in clockwise direction
C. $\tan ^{-1}\left(\frac{5}{4}\right)$ North of East
D. $\tan ^{-1}\left(\frac{5}{4}\right)$ East of North

Answer: B

D Watch Video Solution

16. Rain drops are falling downward vertically
at 4 kmph . For a person moving forward at 3
kmph feels the rain falling at
A. 7 kmph
B. 1 kmph
C. 5 kmph

D. 25 kmph

Answer: C

D Watch Video Solution

17. A man travelling at 10.8 kmph in topless car on a rainy day. He holds an umbrella at angle of 37° with the vertical so that he does not wet. If rain drops falls vertically downwards what is rain velocity.
A. $1 \mathrm{~m} / \mathrm{s}$
B. $2 \mathrm{~m} / \mathrm{s}$
C. $3 \mathrm{~m} / \mathrm{s}$
D. $4 \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

18. A man can row a boat in still water with a
velocity of 8 kmph .Water is flowing in a river
with a velocity of 4 kmph . At what angle should
he row the boat so as to reach the exact

opposite point

A. 150° to flow of water.
B. 120° to flow of water.
C. 30° to flow of water.
D. 90° to flow of water.

Answer: B

- Watch Video Solution

19. A person can swim in still water at $5 \mathrm{~m} / \mathrm{s}$. He moves in a river of velocity $3 \mathrm{~m} / \mathrm{s}$, first down
the steam and next same distance up the stream. The ratio of times taken are
A. $1: 1$
B. 1:2
C. 1:4
D. $4: 1$

Answer: C
20. The velocity of water in a river is 2 kmph ,while width is 400 m . A boat is rowed from a point rowing always aiming opposite point at 8 kmph of still water velocity. On reaching the opposite bank the drift obtained is
A. $93 m$
B. 100.8 m
C. $112.4 m$
D. 100 m

Answer: D

- Watch Video Solution

21. A man can swim in still water at a speed of
$4 k m p h$. He desires to cross a river flowing at a
speed of $3 k m p h$ in the shortest time interval. If
the width of the river (in hours) and the
horizontal distance travelled (in km) are respectively

$$
\text { A. } \frac{3}{4}, \frac{9}{4}
$$

> B. $\frac{3}{5}, 3$ C. $\frac{1}{4}, \frac{15}{4}$ D. $\frac{3}{\sqrt{7}}, 7$

Answer: A

- Watch Video Solution

22. A particle is projected in $x y$ plane with y axis along vertical, the point of projection is origin. The equation of the path is
$y=\sqrt{3} x-\frac{g}{2} x^{2}$.where y and x are in m.Then the speed of projection in ms^{-1} is
A. 2
B. $\sqrt{3}$
C. 4
D. $\frac{\sqrt{3}}{2}$

Answer: A

- Watch Video Solution

23. If a body is thrown with a speed of $19.6 \mathrm{~m} / \mathrm{s}$ making an angle of 30° with the horizontal,then the time of flight is
A. 1 s
B. $2 s$
C. $2 \sqrt{3} s$
D. 5 s

Answer: B

D Watch Video Solution
24. A particle is projected with an initial
velocity of $200 \mathrm{~m} / \mathrm{s}$ in a direction making an
angle of 30° with the vertical. The horizontal distance covered by the particle in $3 s$ is
A. 300 m
B. 150 m
C. 175 m
D. 125 m

Answer: A
25. A body is projected with an initial velocity
$20 \mathrm{~m} / \mathrm{s}$ at 60° to the horizontal. Its initial
velocity vector is __ $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. $10 \hat{i}-20 \hat{j}$
B. $10 \sqrt{3} \hat{i}+10 \hat{j}$
C. $10 \hat{i}+10 \sqrt{3} \hat{j}$
D. $5 \hat{j}+5 \sqrt{3} \hat{j}$

Watch Video Solution

26. A body is projected at an angle of 30° with
the horizontal with momentum P.At its
highest point the magnitude of the momentum is:
A. $\frac{\sqrt{3}}{2} P$
B. $\frac{2}{\sqrt{3}} P$
C. P
D. $\frac{P}{2}$

Answer: A

D Watch Video Solution

27. The potential energy of a projectile at its maximum height is equal to its kinetic energy there. If the velocity of projection is $20 \mathrm{~m} / \mathrm{s}^{-1}$
,its time of flight is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. $2 s$
B. $2 \sqrt{2} s$
C. $\frac{1}{2} s$

$$
\text { D. } \frac{1}{\sqrt{2}} S
$$

Answer: B

D Watch Video Solution

28. From a point on the ground a particle is projected with initial velocity u,such that its horizontal range is maximum. The magnitude of average velocity during its ascent.
A. $\frac{\sqrt{5 u}}{2 \sqrt{2}}$
B. $\frac{5 u}{4}$
C. $\frac{\sqrt{3}}{2 \sqrt{2}}$
D. None

Answer: A

- Watch Video Solution

29. The horizontal and vertical displacements
of a projectile are given as $x=a t \& y=b t-c t^{2}$
.Then velocity of projection is
A. $\sqrt{a^{2}+b^{2}}$
B. $\sqrt{b^{2}+c^{2}}$
C. $\sqrt{a^{2}+c^{2}}$
D. $\sqrt{b^{2}-c^{2}}$

Answer: A

D Watch Video Solution

30. Two bodies are thrown from the same point with the same velocity of $50 \mathrm{~ms}^{-1}$.if their angles of projection are complimentary to
each other and the difference of maximum
heights is $30 m$, the minimum and maximum
heights are $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. $50 \mathrm{~m} \& 80 \mathrm{~m}$
B. $47.5 m \& 77.5 m$
C. $30 \mathrm{~m} \& 60 \mathrm{~m}$
D. $25 m \& 55 m$

Answer: B

31. A missile is fired for maximum range with
an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. If $g=10 \mathrm{~m} / \mathrm{s}^{2}$, the
range of the missile is
A. 50 m
B. 60 m
C. 20 m
D. 40 m

Answer: D

D Watch Video Solution
32. If $\vec{u}=a \hat{i}+b \hat{j}+c \hat{k}$ with $\hat{i}, \hat{j}, \hat{k}$ are in east, north and vertical directions, horizontal component of velocity of projectile is
A. a
B. b
C. $\sqrt{a^{2}+b^{2}}$
D. $\sqrt{b^{2}+c^{2}}$

Answer: C

33. If the time of flight of a projectile is
doubled, what happens to the maximum
height at tained?
A. halved
B. remains unchanged
C. doubled
D. become four times

Answer: D

D Watch Video Solution
34. If $\vec{u}=a \hat{i}+b \hat{j}+c \hat{k}$ with $\hat{i}, \hat{j}, \hat{k}$ are in east, north and vertical directions, the maximum
height of the projectileis

$$
\begin{aligned}
& \text { A. } \frac{a^{2}}{2 g} \\
& \text { B. } \frac{b^{2}}{2 g} \\
& \text { C. } \frac{c^{2}}{2 g} \\
& \text { D. } \frac{b^{2} c^{2}}{2 g}
\end{aligned}
$$

Answer: C
35. A body projected horizontally with a velocityv from a height h has a range R. With what velocity a body is to be projected horizontally from a height $h / 2$ to have the same range ?
A. $\sqrt{2} v$
B. $2 v$
C. $6 v$
D. $8 v$

Answer: A

D Watch Video Solution

36. A stone is thrown horizontally with velocity
$g m s^{-1}$ from the top of a tower of height g
metre. The velocity with which it hits the ground is $\left(\mathrm{inms}^{-1}\right)$
A. g
B. $2 g$
C. $\sqrt{3} g$

D. $4 g$

Answer: C

D Watch Video Solution

37. A body is thrown horizontally from the top of a tower. It reaches the ground after $4 s$ at an angle 45° to the ground. The velocity of projection is
A. $9.8 \mathrm{~ms}^{-1}$
B. $19.6 \mathrm{~ms}^{-1}$
C. $29.4 \mathrm{~ms}^{-1}$
D. $39.2 \mathrm{~ms}^{-1}$

Answer: D

- Watch Video Solution

38. Two cliffs of heights 120 m and 100.4 m are separated bya horizontal distance of 16 m if a car has to reach from the first cliff to the second the horizontal velocity of car should be
A. $16 \mathrm{~m} / \mathrm{s}$
B. $4 \mathrm{~m} / \mathrm{s}$
C. $2 \mathrm{~m} / \mathrm{s}$
D. $8 \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

39. A circular disc is rotating about its own axis at the rate of 200 revolutions per minute.

Two particles P, Q of disc are at distances
$5 \mathrm{~cm}, 10 \mathrm{~cm}$ from axis of rotation. The ratio of angular velocities of P and Q is
A. $1: 2$
B. 1:1
C. 2:1
D. $4: 1$

Answer: B
(Watch Video Solution
40. A stationary wheel starts rotating about its own axis at uniform rate amgular acceleration $8 \mathrm{rad} / \mathrm{s}^{2}$. The time taken by its to complete 77 rotation is
A. 5.5 sec
B. 7sec
C. 11sec
D. 14 sec

Answer: C

41. A circular disc is rotating about its own axis
at uniform rate completes 30 rotations in one
minute.The angular velocity of disc in rad s^{-1} is
A. 2π
B. π
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4} i$

Answer: B

- Watch Video Solution

42. A particle is moving at uniform speed
$2 \mathrm{~ms}^{-1}$ along a circle of radius 0.5 m . The centripetal acceleration of particle is
A. $1 \mathrm{~ms}^{-2}$
B. $2 m s^{-2}$
C. $4 m s^{-2}$
D. $8 m s^{-2}$

Answer: D

D Watch Video Solution

43. A particle P is moving in a circle of radius 'a'
with a uniform speed v. C is the centre of the circle and $A B$ is a diameter. When passing through B the angular velocity of P about A and C are in the ratio
A. $1: 1$
B. 1:2
C. 2:1
D. $1: 3$

Answer: B

(D) Watch Video Solution

Level-II(C.W)

1. The greatest and least resultant of two
forces acting at a point are 29 kgwt . and
5 kgwt . respectively. If each force is increased
by 3 kgwt . the magnitude of the resultant of new forces acting at right angles to each other is
A. 45 kgwt .
B. 35 kgwt .
C. 25 kgwt .
D. 15 kgwt .

Answer: C

D Watch Video Solution
2. Two forces P and Q act at an angle of 120° with each other. If the resultant is at right angles to P and P is equal to $4 k g-w t$, then the value of Q is
A. 4 kg wt .
B. 8 kgwt .
C. 6 kgwt .
D. 3 kgwt .

Answer: B

- Watch Video Solution

3. The resultant of two vectors \vec{P} and \vec{Q} is \vec{R}. If the magnitude of \vec{Q} is doubled, the new resultant vector becomes perpendicular to \vec{P}.

Then, the magnitude of \vec{R} is equal to
A. $\frac{P^{2}-Q^{2}}{2 P Q}$
B. $\frac{P+Q}{P-Q}$
C. Q
D. $\frac{P}{Q}$

Answer: C

D Watch Video Solution

4. $\vec{P}, \vec{Q}, \vec{R}, \vec{S}$ are vector of equal magnitude. If
$\vec{P}+\vec{Q}-\vec{R}=0$ angle between \vec{P} and \vec{Q} is θ_{1}.If
$\vec{P}+\vec{Q}-\vec{S}=0$ angle between \vec{P} and \vec{S} is θ_{2}. The
ratio of $\theta_{1} \operatorname{to} \theta_{2}$ is
A. 1:2
B. 2:1
C. 1:1
D. $1: \sqrt{3}$

Answer: B

D Watch Video Solution

5. If $A B C D$ is quadrilateral whose sides represent vectors in cyclic order, $\vec{A} B$ is equivalent is

$$
\rightarrow \quad \rightarrow
$$

A. $C A+C B$
\longrightarrow
B. $C D$

C. $A D+D C+C B$

$\rightarrow \quad \rightarrow$
D. $A D+B D$

Answer: C

- Watch Video Solution

6. An iron sphere of mass 100 kg is suspended freely from a rigid support by means of a rope of length $2 m$.The horizontal force required to displace it horizontally through 50 cm is nearly
A. 980 N
B. 490 N
C. 245 N
D. 112.5 N

Answer: C

- Watch Video Solution

7.

Three
forces
$\vec{A}=(\hat{i}+\hat{j}+\hat{k}), \vec{B}=(2 \hat{i}-\hat{j}+3 \hat{k})$ and \vec{C} acting
on a body to keep it in equilibrium. Then \vec{C} is

$$
\begin{aligned}
& \text { A. }-(3 \hat{i}+4 \hat{k}) \\
& \text { B. }-(4 \hat{i}+3 \hat{k}) \\
& \text { C. }(3 \hat{i}+4 \hat{j}) \\
& \text { D. }(2 \hat{i}-3 \hat{k})
\end{aligned}
$$

Answer: A

- Watch Video Solution

8. The displacement of the point of a wheel initially in contact with the ground when the wheel rolls forward quarter revolution where perimeter of the wheel is $4 \pi m$, is (Assume the forward direction as x-axis)

$$
\begin{aligned}
& \text { A. } \sqrt{(\pi+2)^{2}+4} \text { along } \tan ^{-1} \frac{2}{\pi} \text { with } x \text {-axis } \\
& \text { B. } \sqrt{(\pi+2)^{2}+4} \text { along } \tan ^{-1} \frac{2}{\pi-2} \text { with } x \text {-axis } \\
& \text { C. } \sqrt{(\pi+2)^{2}+4} \text { along } \tan ^{-1} \frac{2}{\pi} \text { with } x \text {-axis } \\
& \text { D. } \sqrt{(\pi+2)^{2}+4} \text { along } \tan ^{-1} \frac{2}{\pi-2} \text { with } x \text {-axis }
\end{aligned}
$$

9. A particle starts from the origin at $t=0 \mathrm{~s}$
with a velocity of $10.0 \hat{j m} / \mathrm{s}$ and moves in the $x y$
-plane with a constant acceleration of
$(8 \hat{i}+2 \hat{j}) \mathrm{m} / \mathrm{s}^{-2}$. Then y-coordinate of the particle in 2 sec is
A. $24 m$
B. 16 m
C. $8 m$

D. $12 m$

Answer: A

D Watch Video Solution

10. A car moving at a constant speed of

36kmph moves north wards for 20 min utes then due to west with the same speed for $8 \frac{1}{3}$ minutes. What is the average velocity of he car during this run in kmph
A. 27.5
B. 40.5
C. 20.8
D. 32.7

Answer: A

D Watch Video Solution

11. Velocity of a particle at time $t=0$ is $2 \mathrm{~ms}^{-1}$.

A constant acceleration of $2 \mathrm{~ms}^{-2}$ acts on the particle for 1 second at an angle of 60° with its
initial velocity. Find the magnitude of velocity at the end of 1 second.
A. $\sqrt{3} m / s$
B. $2 \sqrt{3} \mathrm{~m} / \mathrm{s}$
C. $4 \mathrm{~m} / \mathrm{s}$
D. $8 \mathrm{~m} / \mathrm{s}$

Answer: B
(Watch Video Solution
12. An aeroplane moving in a circular path with
a speed $250 \mathrm{~km} / \mathrm{h}$. The change in velocity in half of the revolution is.
A. $500 \mathrm{~km} / \mathrm{h}$
B. $250 \mathrm{~km} / \mathrm{h}$
C. $120 \mathrm{~km} / \mathrm{h}$
D. zero

Answer: A

D Watch Video Solution
13. A car starting from a point travels towards
east with a velocity of 36 kmph . Another car
starting from the same point travels towards
north with a velocity of 24 kmph . The relative
velocity of one with respect to another is
A. $12 \sqrt{13} \mathrm{kmph}$
B. 30 kmph
C. 12 kmph
D. 20 kmph

- Watch Video Solution

14. A ship is moving due east with a velocity of $12 \mathrm{~m} / \mathrm{sec}$, a truck is moving across on the ship with velocity $4 \mathrm{~m} / \mathrm{sec}$.A monkey is climbing the vertical pole mounted on the truck with a velocity of $3 \mathrm{~m} / \mathrm{sec}$.Find the velocity of the monkey as observed by the man on the shore ($\mathrm{m} / \mathrm{sec}$)
A. 10
B. 15
C. 13
D. 20

Answer: C

D Watch Video Solution

15. A man is walking due east at the rate of
$2 k m p h$.The rain appears to him to come down
vertically at the rate of $2 k m p h$.The actual
velocity and direction of rainfall with the
vertical respectively are
A. $2 \sqrt{2} \mathrm{kmph}, 45^{\circ}$
B. $\frac{1}{\sqrt{2}} k m p h, 30^{\circ}$
C. $2 \mathrm{kmph}, 0^{\circ}$
D. $1 \mathrm{kmph}, 90^{\circ}$

Answer: A

- Watch Video Solution

16. A boat takes two hours to travel 8 km and
back in still water. If the velocity of water is 4
km / h, the time taken for going upstream 8 km and coming back is
A. 160 minutes
B. 80 minutes
C. 320 minutes
D. 180 minutes

Answer: A
(Watch Video Solution
17. The velocity of water in a river is $2 k m p h$,while width is 400 m . A boat is rowed from a point rowing always aiming opposite point at 8 kmph of still water velocity. On reaching the opposite bank the drift obtained is
A. $93 m$
B. 100.8 m
C. $112.4 m$
D. 100 m

Answer: D

- Watch Video Solution

18. A particle is projected from ground with some initial velocity making an angle of 45° with the horizontal. It reaches a height of 7.5 m above the ground while it travels a horizontal distance of 10 m from the point of projection.

The initial speed of the projection is
A. $5 \mathrm{~m} / \mathrm{s}$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $20 \mathrm{~m} / \mathrm{s}$

D. $40 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

19. A particle is projected from ground at an angle 45° with initial velocity $20 \sqrt{2} \mathrm{~ms}^{-1}$. The magnitude of average velocity in a timer interval from $t=0$ to $t=3 s$ in ms^{-1} is
A. 20.62
B. 10.31
C. 41.14
D. 5.15

Answer: A

D Watch Video Solution
20. A ball is thrown with a velocity of u making
an angle θ with the horizontal. Its velocity
vector normal to initial vector (u) after a time
interval of
$u \sin \theta$
A. -
g
B. $\frac{u}{g \cos \theta}$
C. $\frac{u}{g \sin \theta}$
D. $\frac{u \cos \theta}{g}$

Answer: C

D Watch Video Solution

21. A stone is projected with a velocity $20 \sqrt{2} \mathrm{~m} / \mathrm{s}$ at an angle of 45° to the horizontal.The average velocity of stone
during its motion from starting point to its

maximum height is

A. $10 \sqrt{5} \mathrm{~m} / \mathrm{s}$
B. $20 \sqrt{5} \mathrm{~m} / \mathrm{s}$
C. $5 \sqrt{5} \mathrm{~m} / \mathrm{s}$
D. $20 \mathrm{~m} / \mathrm{s}$

Answer: A
(Watch Video Solution
22. A player kicks a football obliquely at a speed of $20 \mathrm{~m} / \mathrm{s}$ so that its range is maximum.

Another player at a distance of $24 m$ away in
the direction of kick starts running at that instant to catch it, the speed with which the second player has to run is $\left(g=10 \mathrm{~ms}^{-2}\right)$
A. $4 \mathrm{~m} / \mathrm{s}$
B. $4 \sqrt{2} \mathrm{~m} / \mathrm{s}$
C. $8 \sqrt{2} \mathrm{~m} / \mathrm{s}$
D. $8 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

23. A particle is fired with velocity u making angle θ with the horizontal. What is the change in velocity when it is at the highest point?
A. $u \cos \theta$
B. u
C. $u \sin \theta$
D. $(u \cos \theta-u)$

Answer: C

D Watch Video Solution

24. Two projectiles A and B are thrown from the same point with velocities v and $\frac{v}{2}$ respectively. If B is thrown at an angle 45° with horizontal.What is the inclination of A .when their ranges are the same?

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{1}{4}\right) \\
& \text { B. } \frac{1}{2} \sin ^{-1}\left(\frac{1}{4}\right)
\end{aligned}
$$

> C. $2 \sin ^{-1}\left(\frac{1}{4}\right)$
> D. $\frac{1}{2} \sin ^{-1}\left(\frac{1}{8}\right)$

Answer: B

D Watch Video Solution

25. A particle is projected with a velocity v so
that its range on a horizontal plane is twice
the greatest height attained. If g is acceleration due to gravity, then its range is

$$
\begin{aligned}
& \text { A. } \frac{4 v^{2}}{5 g} \\
& \text { B. } \frac{4 g}{5 v^{2}} \\
& \text { C. } \frac{v^{2}}{g} \\
& \text { D. } \frac{4 v^{2}}{\sqrt{5}} g
\end{aligned}
$$

Answer: A

D Watch Video Solution

26. A large number of bullets are fired in all directions with the same speed v. Find the
maximum area on the ground on which these bullets will spread.

$$
\begin{aligned}
& \text { A. } \pi\left(\frac{u^{2}}{g}\right)^{2} \\
& \text { B. } \pi\left(\frac{u^{2}}{2} g\right) \\
& \text { C. } \pi\left(\frac{u}{g}\right)^{2} \\
& \text { D. } \pi\left(\frac{u}{2} g\right)^{2}
\end{aligned}
$$

Answer: A
27. A ball is projected from the ground with
velocity u such that its range is maximum Then
A. Its velocity at half the maximum height

B. Its velocity at the maximum height is u
C. Change in its velocity when it returns to
the ground is u
D. all the above are true

Answer: A

- Watch Video Solution

28. A staircase contains three steps each 10 cm
high and 20 cm wide figure. What should be
the minimum horizontal velocity of a bal rolling off the upper most plane so as to hit directly the lowest plane?

Figure 3-E9

A. $42 m s^{-1}$
B. $4.2 \mathrm{~ms}^{-1}$
C. $24 m s^{-1}$
D. $2.4 m s^{-1}$

Answer: B

D Watch Video Solution

29. From certain height h two bodies are projected horizontally each with velocity v.One body is projected towards North and the
other body is projected towards east. Their separation on reaching the ground

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{2 v^{2} h}{g}} \\
& \text { B. } \sqrt{\frac{4 v^{2} h}{g}} \\
& \text { C. } \sqrt{\frac{v^{2} h}{g}} \\
& \text { D. } \sqrt{\frac{8 v^{2} h}{g}}
\end{aligned}
$$

Answer: B

- Watch Video Solution

30. An object is projected horizontally from a top of the tower of height h.The line joining the point of projection and point of striking on the ground makes an angle 45° with ground, Then with what velocity the object strikes the ground
A. $\sqrt{\frac{1 g h}{2}}$
B. $\sqrt{\frac{9 g h}{2}}$
C. $\sqrt{\frac{7 g h}{2}}$
D. $\sqrt{\frac{5 g h}{2}}$

Answer: D

D Watch Video Solution

31. A ball is thrown horizontally from a cliff such that it strikes the ground after 5 s.The line of sight makes an angle 37° with the horizontal.The initial velocity of projection in $m s^{-1}$ is
A. 50
B. $\frac{100}{\sqrt{3}}$
C. $\frac{100}{\sqrt{2}}$
D. $\frac{100}{3}$

Answer: D

- Watch Video Solution

32. An object is launched from a cliff $20 m$ above the ground at an angle of 30° above the horizontal with an initial speed of $30 \mathrm{~m} / \mathrm{s}$.How far does the object travel before landing on the ground?(in metre)
A. 20
B. $20 \sqrt{3}$
C. 60
D. $60 \sqrt{3}$

Answer: D

D Watch Video Solution

33. A bomber flying upward at an angle of 53°
with the vertical releases a bomb at an
altitude of 800 m .The bomb strikes the ground

20 s after its release.If $g=10 \mathrm{~ms}^{-2}$, the velocity at the time of release of the bomb in ms^{-1} is
A. 400
B. 800
C. 100
D. 200

Answer: C
(Watch Video Solution
34. Two particles move in a uniform gravitational field with an acceleration g.At the initial moment the particles were located at same point and moved with velocities $u_{1}=9 \mathrm{~ms}^{-1}$ and $u_{2}=4 \mathrm{~ms}^{-1}$ horizontally in opposite directions.The time between the particles at the moment when their velocity vectors are mutually perpendicular in s in (take $g=10 \mathrm{~ms}^{-2}$)
A. 0.36
B. 3.6
C. 0.6
D. 6

Answer: C

D Watch Video Solution

35. An aeroplane is flying horizontally at a height of 980 m with velocity $100 \mathrm{~ms}^{-1}$ drops a
food packet.A person on the ground is $414 m$ ahead horizontally from the dropping point.At
what velocity should he move so that he can
catch the food packet.
A. $50 \sqrt{2} \mathrm{~ms}^{-1}$
B. $\frac{50}{\sqrt{2}} m s^{-1}$
C. $100 \mathrm{~ms}^{-1}$
D. $200 \mathrm{~ms}^{-1}$

Answer: A
(Watch Video Solution
36. A cylclist is riding with a speed of $27 \mathrm{kmh}^{-1}$.

As he approaches a circular turn on the road of radius 80 m , he applies brakes and reduces his speed at the constant rate of $0.5 \mathrm{~ms}^{-2}$. What is the magnitude and direction of the net acceleration of the cyclist on the circular turn?
A. $0.5 \mathrm{~m} / \mathrm{s}^{2}$
B. $0.87 \mathrm{~m} / \mathrm{s}^{2}$
C. $0.56 \mathrm{~m} / \mathrm{s}^{2}$
D. $1 \mathrm{~m} / \mathrm{s}^{2}$

Answer: C

D Watch Video Solution

37. the length of seconds hand of a clock is

10 cm . The speed of the tip of the hand is
A. $\frac{\pi}{6000}$
B. $\frac{\pi}{18000}$
C. $\frac{\pi}{36000}$
D. $\frac{\pi}{1200}$

Answer: B

D Watch Video Solution

38. The equations of motion of a projectile are given by $x=36 t m$ and $2 y=96 t-9.8 t^{2} m$. The angle of projection is
A. $\sin ^{-1}\left(\frac{3}{4}\right)$
B. $\sin ^{-1}\left(\frac{4}{3}\right)$
C. $\sin ^{-1}\left(\frac{4}{5}\right)$
D. $\sin ^{-1}\left(\frac{3}{5}\right)$

Answer: C

D Watch Video Solution

39. \vec{A} and \vec{B} are two vectors of equal magnitude and θ is the angle between
them. The angle between \vec{A} or \vec{B} with their resultant is
A. $\frac{-}{4}$
B. $\frac{\theta}{2}$
C. 2θ
D. 0

Answer: B

D Watch Video Solution

40. If a body is projected with an angle θ to
the horizontal, then
A. it's velocity always perpendicular to its
accerleration
B.it's velocity becomes zero at its
maximum height
C. it's velocity makes zero angle with the horizontalat its maximum height
D. the body just before hitting the ground,
the direction of velocity coincides with
the acceleration.
41. A body is projected at an angle θ so that its range is maximum.If T is the time of flight then the value of maximum range is (acceleration due to gravity $=g$)
A. $\frac{g^{2} T}{2}$
в. $\frac{g T}{2}$
C. $\frac{g T^{2}}{2}$
D. $\frac{g^{2} T^{2}}{2}$

Answer: C

- Watch Video Solution

42. The trajectory of a projectile in a vertical
plane is $y=a x-b x^{2}$, where a and b are constant and x and y are, respectively, horizontal and vertical distances of the projectile from the point of projection. The maximum height attained by the particle and the angle of projectile from the horizontal are.

$$
\begin{aligned}
& \text { A. } \frac{2 a^{2}}{b}, \tan ^{-1}(a) \\
& \text { B. } \frac{b^{2}}{2} a, \tan ^{-1}(b) \\
& \text { C. } \frac{a^{2}}{b}, \tan ^{-1}(2 b) \\
& \text { D. } \frac{a^{2}}{4} b, \tan ^{-1}(a)
\end{aligned}
$$

Answer: D

- Watch Video Solution

43. A body is projected horizontally from the top of a tower with a velocity of $10 \mathrm{~m} / \mathrm{s}$. If it hits
the ground at an angle 45°, th vertical component of velocity when it hits ground in m / s is
A. 10
B. $10 \sqrt{2}$
C. $5 \sqrt{2}$
D. 5

Answer: A

D Watch Video Solution
44. A body is projected with an angle θ.The maximum height reached is h.lf the time of flight is 4sec and $g=10 \mathrm{~m} / \mathrm{s}^{2}$, then the value of h is
A. 10 m
B. 40 m
C. 20 m
D. $5 m$

Answer: C

- Watch Video Solution

45. A person reaches on a point directly opposite on the other bank of a river.The velocity of the water in the river is $4 \mathrm{~m} / \mathrm{s}$ and the velocity of the person in still water is $5 \mathrm{~m} / \mathrm{s}$.If the width of the river is 84.6 m , time taken to cross the river in seconds is
A. 9.4
B. 2
C. 84.6
D. 28.2

Answer: D

- Watch Video Solution

Level-III(C.W)

1. $B C$ is divided into four equal parts by P, Q

$$
\rightarrow \quad \rightarrow
$$

and R.The resultant of $A B$ and $3 A C$ is

A. $A R$
B. $4 A R$
\rightarrow
C. $4 A P$
D. $P Q$

Answer: B

D Watch Video Solution

2. A particle moves in the x - y plane under the action of a force \vec{F} such that the value of its
linear momentum \vec{P} at any time
$\operatorname{tis} P_{x}=2 \cos t, P_{y}=2 \sin t$.
The angle θ between vecF and vecP atagiventimet` will be:
A. $\theta=0^{\circ}$
B. $\theta=30^{\circ}$
C. $\theta=90^{\circ}$
D. $\theta=180^{\circ}$

Answer: C
3. Three particles A, B and C start from the origin at the same time, A with a velocity a along x-axis, B with a velocity b along y-axis and C with velocity c in $X Y$ plane along the line $x=y$.The magnitude of c so that the three always remain collinear is:

$$
\text { A. } \frac{a+b}{2}
$$

B. $\sqrt{a b}$
C. $\frac{a b}{a+b}$
$\sqrt{2} a b$
D. $\overline{a+b}$

Answer: D

D Watch Video Solution

4. Two forces F_{1} and F_{2} are acting at a point, whose resultant is F.If F_{2} is doubled F is also doubled. If F_{2} is reversed then also F is doubled. Then $F_{1}: F_{2}: F$ is
A. $\sqrt{2}: \sqrt{2}: \sqrt{3}$
B. $\sqrt{3}: \sqrt{3}: \sqrt{2}$
C. $\sqrt{3}: \sqrt{2}: \sqrt{3}$

D. $\sqrt{2}: \sqrt{3}: \sqrt{2}$

Answer: D

D Watch Video Solution

5. Two vectors of equal magnitude P are inclined at some angle such that the difference in magitude of resultant and magnitude of either of the vectors is 0.732
times either of the magnitude of vectors. If the angle between them is increased by half of its
initial value then find the magnitude of difference of the vectors
A. $2 P$
B. $\sqrt{2} P$
C. $3 P$
D. $\sqrt{3} P$

Answer: B
(Watch Video Solution
6. If O is at equilibrium then the values of the
tension T_{1} and T_{2} are, ($20 N$ is acting vertically downwards at O).

A. $20 N, 30 N$
B. $20 \sqrt{3} N, 20 N$
C. $20 \sqrt{3} N, 20 \sqrt{3} N$
D. $10 N, 30 N$

Answer: B

D Watch Video Solution

7. A particle starts from the origin at $t=O s$ with a velocity of $10.0 \hat{j} m / s$ and moves in the $x y$
-plane with a constant acceleration of
$(8 \hat{i}+2 \hat{j}) \mathrm{m} / \mathrm{s}^{-2}$. What time is the x-coordinate of the particle $16 m$?
A. $t=2 s$
B. $t=4 \mathrm{~s}$
C. $t=3 \mathrm{~s}$
D. $t=1 \mathrm{~s}$

Answer: A
8. Resultant of two vectors of magnitude P and Q is of magnitude Q.If the magnitude of \vec{Q} is doubled now the angle made by new resultant with \vec{P} is
A. 30°
B. 90°
C. 60°
D. 120°

Answer: B
9. The two forces $2 \sqrt{2} N$ and $x N$ are acting at a point their resultant is perpendicular to $\hat{x} N$ and having magnitude of $\sqrt{6} N$.The angle between the two forces and magnitude of x are.

$$
\begin{aligned}
& \text { A. } \theta=120^{\circ}, X=\sqrt{2} N \\
& \text { B. } \theta=30^{\circ}, X=\sqrt{2} N \\
& \text { C. } \theta=150^{\circ}, X=\sqrt{3} N \\
& \text { D. } \theta=150^{\circ}, X=\sqrt{2} N
\end{aligned}
$$

Answer: A

- Watch Video Solution

10. The square of the resultant of two forces
$4 N$ and $3 N$ exceeds the square of the resultant
of the two forces by 12 when they are mutually
perpendicular.The angle between the vectors
is.
A. 30°
B. 60°
C. 90°
D. 120°

Answer: B

D Watch Video Solution

11. An aeroplane flies along a straight line from
A to B with a speed v_{0}. A steady wind v is
blowing if $A B=l$ then

$$
2 v_{0} l
$$

a)total time for the trip is $\frac{}{v_{0}^{2}-v^{2}}$ if wind blows
along the line $A B$
b)total time for the trip is $2 \frac{1}{\sqrt{v_{0}^{2}-v^{2}}}$, if wind
blows perpendicular to the line $A B$
c)total time for the trip decrease because of
the pressure of wind
d)total time for the trip increase because of
the presence of wind
A. a, b, d are correct
B. a, b, c are correct
C. only a, d are correct
D. only b, d are correct

Answer: A

D Watch Video Solution

12. Two particles, 1 and 2 , move with constant velocities v_{1} and v_{2} along two mutually perpendicular straight lines toward the intersection point O . At the moment $t=0$ the particles were located at the distances l_{1} and l_{2} from the point O . How soon will the distance between the particles become the smallest? What is it equal to?

$$
\begin{aligned}
& \text { A. } \frac{\left|l_{1} v_{2}-l_{2} l_{1}\right|}{\sqrt{v_{1}^{2}+v_{2}^{2}}}, \frac{l_{1} v_{1}+l_{2} l_{2}}{v_{1}^{2}+v_{2}^{2}} \\
& \text { B. } \frac{\left|l_{1} v_{1}-l_{2} l_{2}\right|}{\sqrt{v_{1}^{2}+v_{2}^{2}}}, \frac{l_{1} v_{2}+l_{2} l_{1}}{v_{1}^{2}+v_{2}^{2}} \\
& \text { C. } \frac{\left|l_{1} v_{2}-l_{2} l_{1}\right|}{\sqrt{v_{1}^{2}+v_{2}^{2}}}, \sqrt{\frac{l_{1}}{l_{2}}, \frac{\left(l_{1} v_{1}+l_{2} v_{2}\right) l_{1}}{\left(v_{1}^{2}+v_{2}^{2}\right) l_{2}}} \\
& \text { D. } \frac{\left|l_{1} v_{2}-l_{2} l_{1}\right|}{\sqrt{v_{1}^{2}+v_{2}^{2}}}, \sqrt{\frac{l_{2}}{l_{1}}, \frac{\left(l_{1} v_{1}+l_{2} v_{2}\right) l_{2}}{\left(v_{1}^{2}+v_{2}^{2}\right) l_{1}}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

13. The distance between two moving particles P and Q at any time is a.If v_{r} be their relative velocity and if u and v be the components of v_{r} , along and perpendicular to $P Q$.The closest distance between P and Q and time that elapses before they arrive at their nearest distance is

$$
\begin{aligned}
& \text { A. } \frac{a\left(v+v_{r}\right)}{v}, a\left(1+\frac{v_{r}}{v}\right)^{2} \\
& \text { B. } \frac{a v}{\left(v+v_{r}\right)}, a\left(1+\frac{u}{v_{2}}\right)^{2} \\
& \text { C. } \frac{a v_{r}}{v}, \frac{a v_{r}}{u^{2}}
\end{aligned}
$$

D. $\frac{a v}{v_{r}}, \frac{a u}{v_{r}^{2}}$

Answer: D

D Watch Video Solution

14. Two ships are 10 km apart on a line from south to north.The one farther north is moving towards west at 40 kmph and the other is moving towards north at 40kmph.Then distance of their closest approach is
B. $10 \sqrt{2} \mathrm{~km}$
C. $\frac{10}{\sqrt{2}} k m$
D. 20 km

Answer: C

- Watch Video Solution

15. Two stones are projected from the top of a tower in opposite direction, with the same velocity V but as 30° and 60° with horizontal
respectively.The relative velocity of first stone relative to second stone is
A. $2 v$
B. $\sqrt{2} v$
C. $\frac{2 V}{\sqrt{3}}$
D. $\frac{V}{\sqrt{3}}$

Answer: B

- Watch Video Solution

16. A motor boat going down stream comes over a floating body at a point $A .60$ minutes
later it turned back and after some time passed the floating body at a distance of 12 km
from the point A.Find the velocity of the stream assuming constant velocity for the motor boat in still water.
A. $2 \mathrm{~km} / \mathrm{hr}$
B. $3 \mathrm{~km} / \mathrm{hr}$
C. $4 \mathrm{~km} / \mathrm{hr}$

D. $6 \mathrm{~km} / \mathrm{hr}$

Answer: D

D Watch Video Solution

17. It is raining at a speed of $5 \mathrm{~m} / \mathrm{s}^{-1}$ at an angle 37° to vertical, towards east. A man is moving to west with a velocity of $5 \mathrm{~m} / \mathrm{s}^{-1}$.The angle with the vertical at which he has to hold the umbrella to protect himself from rain is.

$$
\text { A. } \tan ^{-1}(2) \text { to west }
$$

B. $\tan ^{-1}(2)$ to east
C. $\tan ^{-1}\left(\frac{1}{2}\right)$ to south
D. $\tan ^{-1}\left(\frac{1}{2}\right)$ to east

Answer: A

D Watch Video Solution

18. Rain, pouring down at an angle α with the
vertical has a speed of $10 \mathrm{~ms}^{-1} A$ girl runs against the rain with a speed of $8 \mathrm{~ms} /^{-1}$ and
sees that the rain makes an angle β with the vertical, then relation between α and β is

> A. $\tan \alpha=\frac{8+10 \sin \beta}{10 \cos \beta}$
> B. $\tan \beta=\frac{8+10 \sin \alpha}{10 \cos \alpha}$
C. $\tan \alpha=\tan \beta$
D. $\tan \alpha=\cot \beta$

Answer: B

D Watch Video Solution

19. A man can swim directly a stream of width

100 m in 4 minutes, when there is no current of
water and in 5 min utes when there is current of water. The velocity of the current of water in
the stream is
A. $15 \mathrm{~ms}^{-1}$
B. $5 m s^{-1}$
C. $2.5 \mathrm{~ms}^{-1}$
D. $0.25 \mathrm{~ms}^{-1}$

- Watch Video Solution

20. The velocity of a boat in still water is $10 \mathrm{~m} / \mathrm{s}$
.If water flows in the river with a velocity of
$6 \mathrm{~m} / \mathrm{s}$ what is the difference in times taken to
cross the river in the shortest path and the shortest time.The width of the river is 80 m .
A. 1 s
B. 10 s
C. $\frac{\sqrt{3}}{2} s$

Answer: D

D Watch Video Solution

21. A boat takes $4 h r s$ to travel certain distance
in a river in down stream and it takes 6hrs to
travel the same distance in upstream. Then
the time taken by the boat to travel the same
distance in still water is
A. 4.8 hrs
B. 9.8hrs
C. 24 hrs
D. 10 hrs

Answer: A

D Watch Video Solution

22. A boatman finds that he can save $6 s$ in
crossing a river by the quickest path than by
the shortest path. If the velocity of the boat
and the river be, respectively,
$17 \mathrm{~ms}^{-1}$ and $8 \mathrm{~ms}^{-1}$, find the river width.
A. 675 m
B. 765 m
C. $567 m$
D. $657 m$

Answer: B
(Watch Video Solution
23. A boy playing on the roof of a 10 m high building throws a ball with a speed of $10 \mathrm{~m} / \mathrm{s}$ at an angle of $30(\circ)$ with the horizontal. How far from the throwing point will the ball be at the height of 10 m from the ground ?

$$
\left[g=10 \mathrm{~m} / \mathrm{s}^{2}, \sin 30^{\circ}=\frac{1}{2}, \cos 30^{\circ}=\frac{\sqrt{3}}{2}\right]
$$

A. $5.2 m$
B. 4.33 m
C. 2.66 m
D. $8.66 m$

Answer: D

D Watch Video Solution

24. At a given instant of time the position vector of a particle moving in a circle with a velocity $\quad 3 \hat{i}-4 \hat{j}+5 \hat{k} i s \hat{i}+9 \hat{j}-8 \hat{k}$.lts anglular velocity at that time is:

$$
\begin{aligned}
& \text { A. } \frac{(13 \hat{i}-29 \hat{j}-31 \hat{k})}{\sqrt{146}} \\
& \text { B. } \frac{(13 \hat{i}-29 \hat{j}-31 \hat{k})}{146}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \frac{(13 \hat{i}+29 \hat{j}-31 \hat{k})}{\sqrt{146}} \\
& \text { D. } \frac{(13 \hat{i}+29 \hat{j}-31 \hat{k})}{146}
\end{aligned}
$$

Answer: B

- Watch Video Solution

25. A projectile is given an initial velocity of
$(\hat{i}+2 \hat{j})$ The Cartesian equation of its path is $\left(g=10 \mathrm{~ms}^{-1}\right)$ (Here,\hat{i} is the unit vector along
horizontal and \hat{j} is unit vector vertically

upwards)

> A. $y=2 x-5 x^{2}$
> B. $9 y=12 x-5 x^{2}$
> C. $y=9 x-5 x^{2}$
> D. $5 y=x-9 x^{2}$

Answer: A
(Watch Video Solution
26. A projectile has initially the same horizontal velocity as it would acquire if it had moved from rest with uniform acceleration of
$3 m s^{-2}$ for 0.5 min . If the maximum height reached by it is 80 m , then the angle of projection is $\left(g=10 \mathrm{~ms}^{-2}\right)$.
A. $\tan ^{-1}(3)$
B. $\tan ^{-1}\left(\frac{3}{2}\right)$
C. $\tan ^{-1}\left(\frac{4}{9}\right)$
D. $\sin ^{-1}\left(\frac{4}{9}\right)$

Answer: C

D Watch Video Solution

27. A ball is thrown from a point with a speed
V_{0}, at an angle of projection θ.From the same
point and at the same instance a person starts running with a constant speed $\frac{V_{0}}{\sqrt{2}}$ to catch
the ball will the person be able to catch the ball? If yes, what should be the angle of projection
A. yes, 60°
B. yes, 30°
C. No
D. yes, 45°

Answer: D

D Watch Video Solution

28. The coach throws a baseball to a player
with an initial speed at $20 \mathrm{~ms}^{-1}$ at an angle of
45° with the horizontal.At the moment the
ball is thrown, the player is 50 m from coach.The speed and the direction that the player has to run to catch the ball at the same height at which it was released in ms^{-1} is
A. $\frac{5}{\sqrt{2}}$ away from coach
B. $\frac{5}{\sqrt{2}}$ towards from coach
C. $\frac{\sqrt{2}}{5}$ towards the coach
D. $\frac{\sqrt{2}}{5}$ away from the coach

Answer: B
29. If a stone is to hit at a point which is at a distance d away and at a height h (see fig) above the point from where the stone starts, then what is the value of initial speed u if the stone is launched at an angle θ ?

$$
\begin{aligned}
& \text { A. } \frac{d}{\sin \theta} \sqrt{\frac{g}{2(d \tan \theta-h)}} \\
& \text { B. } \frac{d}{\cos \theta} \sqrt{\frac{g}{2(d \tan \theta-h)}} \\
& \text { C. } \sqrt{\frac{g d}{h \cos ^{2} \theta}} \\
& \text { D. } \sqrt{\frac{g d}{(d-h)}}
\end{aligned}
$$

Answer: B

D Watch Video Solution

30. If a projectile crosses two walls of equal height h symmetrically as shown in the
fig.Choose the correct statement
$\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

A. The time of flight is 8 sec
B. The height of each wall is 60 m
C. The maximum height of projectile is 80 m
D. All the above
31. A particle is dropped from a height h .Another particle which is initially at a horizontal distance d from the first is simultaneously projected with a horizontal velocity u and the two particles just collide on the ground.Then

$$
\begin{aligned}
& \text { A. } d^{2}=\frac{u^{2} h}{2} \\
& \text { B. } d^{2}=\frac{2 u^{2} h}{g}
\end{aligned}
$$

C. $d=h$
D. $g d^{2}=u^{2} h$

Answer: B

D Watch Video Solution

32. A ball is projected from the top of a tower with a velocity $3 \hat{i}+4 \hat{j}+5 \hat{k} m s^{-1}$, where $\hat{i}+\hat{j}+\hat{k}$ are unit vectors along east, north and vertical upwards respectively. If the height of the tower is 30 m , its range is $\left(g=10 \mathrm{~ms}^{-1}\right)$
A. $12 m$
B. $9 m$
C. $15 m$
D. 25 m

Answer: C

D Watch Video Solution

33. A ball is projected from the top of a tower with a velocity $3 \hat{i}+4 \hat{j}+5 \hat{k}$ s $^{-1}$, where $\hat{i}+\hat{j}+\hat{k}$ are unit vectors along east, north and vertical
upwards respectively. If the height of the
tower is 30 m , its time is $\left(g=10 \mathrm{~ms}^{-1}\right)$
A. 5
B. 3
C. 0.3
D. 0.5

Answer: B

D Watch Video Solution
34. A cricketer of height $2.5 m$ thrown a ball at an angle of 30° with the horizontal such that
it is received by another crickerter of same height standing at distance of 50 m from the first one.Find the maximum height attained by the ball.
A. 10 m
B. $9 m$
C. 10.7 m
D. $9.7 m$

Answer: D

D Watch Video Solution

35. A particle when fired at an angle $\theta=60^{\circ}$
along the direction of the breadth of a rectangular building of dimension
$9 m \times 8 m \times 4 m$ so as to sweep the edges.Find the range of the projectile.
A. $8 \sqrt{3}$
B. $4 \sqrt{3}$
C. $\frac{8}{\sqrt{3}}$
D. $\frac{4}{\sqrt{3}}$

Answer: A

D Watch Video Solution

36. A hiker stands on the edge of a cliff 490 m above the ground and throwns a stone horiozontally with an initial speed of $15 \mathrm{~ms}^{-1}$ neglecting air resistance.The time taken by the
stone to reach the ground in seconds is

$$
\left(g=9.8 m s^{2}\right)
$$

A. 5
B. 10
C. 1
D. 5

Answer: B

- Watch Video Solution

37. A hiker stands on the edge of a cliff 490 m above the ground and throwns a stone horiozontally with an initial speed of $15 \mathrm{~ms}^{-1}$ neglecting air resistance.The speed with which
it hits the ground in $m s^{-1}$ is $\left(g=9.8 m s^{2}\right)$
A. 9.8
B. 99
C. 4.9
D. 49

- Watch Video Solution

38. The direction of a projectile at a certain instant is inclined at an angle \propto to the horizontal, after t second, it is inclined at an angle β. Prove that the horizontal component of the velocity of the projectile is $\frac{g t}{\tan \alpha-\tan \beta}$.
A. $\frac{g}{\tan \alpha-\tan \beta}$
B. $\frac{g t}{\tan \alpha-\tan \beta}$
C. $\frac{t}{(\tan \alpha-\tan \beta)}$

D. $\frac{g t}{\tan \alpha+\tan \beta}$

Answer: B

- Watch Video Solution

39. Two bodies are projected from the same point with same speed in the directions making an angle α_{1} and α_{2} with the horizontal and strike at same point in the horizontal plane through a point of projection. If t_{1} and

$$
t_{1}^{2}-t_{2}^{2}
$$

t_{2} are their time of flights.Then

$$
\overline{t_{1}^{2}+t_{2}^{2}}
$$

$\tan \left(\alpha_{1}-\alpha_{2}\right)$
A.
$\tan \left(\alpha_{1}+\alpha_{2}\right)$
$\sin \left(\alpha_{1}+\alpha_{2}\right)$
B.
$\sin \left(\alpha_{1}-\alpha_{2}\right)$
$\sin \left(\alpha_{1}-\alpha_{2}\right)$
C.
$\sin \left(\alpha_{1}+\alpha_{2}\right)$
$\sin ^{2}\left(\alpha_{1}-\alpha_{2}\right)$
D.

$$
\sin ^{2}\left(\alpha_{1}+\alpha_{2}\right)
$$

Answer: C

- Watch Video Solution

40. At high altitude, a body explodes at rest into two equal fragments with one fragment receiving horizontal velocity of $10 \mathrm{~m} / \mathrm{s}$. Time taken by the two radius vectors connecting of explosion to fragments to make 90° is
A. 1 s
B. 2 s
C. 1.5 s
D. 1.7 s

- Watch Video Solution

41. At a certain height a shell at rest explodes
into two equal fragments one of the fragments receives a horizontal velocity u.The time interval after which the velocity vectors will be inclined at 120° to each other is

$$
\begin{aligned}
& \text { A. } \frac{u}{\sqrt{3} g} \\
& \text { B. } \frac{\sqrt{3} u}{g} \\
& \text { C. } 2 \frac{u}{\sqrt{3} u}
\end{aligned}
$$

D. $\frac{u}{2 \sqrt{3} g}$

Answer: A

D Watch Video Solution

42. A bomb is rest at the summit of a cliff breaks into two equal fragments. One of the fragments attains a horizontal velocity of $20 \sqrt{3} \mathrm{~ms}^{-1}$. The horizontal distance between the two fragments, when their displacement
vectors is inclined at 60° relative to each
other is $\left(g=10 \mathrm{~ms}^{-2}\right)$
A. $40 \sqrt{3}$
B. $80 \sqrt{3}$
C. $120 \sqrt{3}$
D. $480 \sqrt{3}$

Answer: D

D Watch Video Solution
43. An object in projected up the inclined at
the angle shown in the figure with an initial
velocity of $30 \mathrm{~ms}^{-1}$. The distance x up the incline at with the object lands is

A. 600 m
B. $104 m$
C. 60 m

D. 208 m

Answer: C

D Watch Video Solution

44. A projectile is fired with a velocity u at right angles to the slope, which is inclined at an angle θ with the horizontal. Derive an expression for the distance R to the point of impact.
A. $\frac{2 u}{g} \tan \theta$
B. $\frac{2 u}{g} \sec \theta$
C. $\frac{u^{2}}{g} \tan ^{2} \theta$
D. $\frac{2 u}{g} \tan \theta \sec \theta$

Answer: A

- Watch Video Solution

45. In the time taken by the projectile to reach
from A to B is t. Then the distance $A B$ is equal
to.

A. $\frac{u t}{\sqrt{3}}$
B. $\sqrt{3} u \frac{t}{2}$
C. $\sqrt{3} u t$
D. $2 u t$

Answer: A

- Watch Video Solution

46. A particle moves on a circle of radius r with centripetal acceleration as function of time as $a_{c}=k^{2} r t^{2}$, where k is a positive constant. Find the following quantities as function of time at an instant :
(a) The speed of the particle
(b) The tangential acceleration of the particle
(c) The resultant acceleration, and
(d) Angle made by the resultant with tangential direction.
A. $k t^{2}$
B. $k r$
C. $k r \sqrt{k^{2} t^{4}+1}$
D. $k r \sqrt{k^{2} t^{2}-1}$

Answer: C

D Watch Video Solution

47. A particle moves in a circular path such
that its speed v varies with distance s as
$v=\propto \sqrt{s}$, where \propto is a positive constant.

Find the acceleration of the particle after traversing a distance s.
A. $\alpha^{2} \sqrt{\frac{1}{4}-\frac{S^{2}}{R^{2}}}$
B. $\alpha^{2} \sqrt{\frac{1}{4}+\frac{S^{2}}{R^{2}}}$
C. $\alpha \sqrt{\frac{1}{4}+\frac{S^{2}}{R^{2}}}$
D. $\alpha^{2} \sqrt{\frac{1}{4}+\frac{S^{2}}{R^{2}}}$

Answer: B
48. A particle moves in a circle of radius 20 cm .

Its linear speed is given by $v=2 t$, where t is in
second and v in metre/ second. Find the radial and tangential acceleration at $\mathrm{t}=3 \mathrm{~s}$.
A. onlya, b, c are correct
B. onlya, b, d are correct
C. onlya, c, d are correct
D. alla, b, c, d are correct

Answer: D

NCERT BASED QUES. SINGLE ANS.

1. the angle between the vectors $(\hat{i}+\hat{j})$ and $(\hat{j}+\hat{k})$ is
A. 45°
B. 90°
C. -45°
D. 180°

D Watch Video Solution

2. Which one of the following statements is true?
A. A scalar quantity is the one that is
conserved in a process
B. A scalar quantity is the one that can
never take negative values
C. A scalar quantity is the one that does
not vary from one point to another in
space.
D. A scalar quantity has the same value for
observes with different orientations of
the axes.

Answer: D

D Watch Video Solution

3. Figure shows the orientation of two vectors u and $v i n$ the $X Y$ plane.
if $\vec{u}=a \hat{i}+b \hat{j}$ and $\vec{v}=p \hat{i}+q \hat{j}$
which of the following is correct?

A. a and p are positive while b and q are negative
B. a, p and b are positive while q is negative
C. a, q and b are positive while p is negative
D. a, b, q and q are all positive

Answer: B

D Watch Video Solution

4. The component of a vector r along X-axis will have maximum value if
A. \vec{r} is along positive Y-axis
B. \vec{r} is along positive X-axis
C. \vec{r} makes an angle of 45° with the X-axis
D. \vec{r} is along negitive Y-axis

Answer: B

D Watch Video Solution

5. The range of a projectile fired at an angle of 15° is 50 m . If it is fired with the same speed at an angle of 45° its range will be
A. 60 m
B. 71 m
C. 100 m
D. 141 m

Answer: C

6. Pick out the only vector quantity in the following list : temperature, pressure, impulse, time, power. Total path-length, energy.

Gravitational potential, coefficient of friction, charge,
A. Impulse, pressure and area
B. Impulse an area
C. Area and gravitational potential
D. Impulse and pressure

- Watch Video Solution

7. In a two dimensional motion, instantaneous speed v_{0} is a positive constant.Then which of the following are necessarily true?
A. The average velocity is not zero at any
time
B. Average acceleration must always vanish.
C. Displacements in equal time intervals
are equal
D. Equal path lengths are traversed in equal intervals.

Answer: D

D Watch Video Solution

8. In a two dimensional motion, instantaneous
speed v_{0} is a positive constant. Then which of the following are neccessarily true?
A. The acceleration of th particle is zero
B. The acceleration of th particle is
bounded.
C. The acceleration of th particle is necessarly in the plane of motion.
D. The particle must be undergoing a

uniform circular motion

Answer: C

D Watch Video Solution

NCERT BASED QUES. MORE THAN ONE OPTION

1. Three vectors \vec{A}, \vec{B} and \vec{C} add up to zero. Find which is false.
A. $(\vec{A} \times \vec{B}) \times \vec{C}$ is not zero unless \vec{B}, \vec{C} are
parallel
B. $(\vec{A} \times \vec{B}) \cdot \vec{C}$ is not zero unless \vec{B}, \vec{C} are
parallel
C. If $\vec{A}, \vec{B}, \vec{C}$ define a plane, $(\vec{A} \times \vec{B}) \times \vec{C}$ is in that plane

$$
\text { D. }(\vec{A} \times \vec{B}) \cdot \vec{C}=|\vec{A}||\vec{B}||\vec{C}| \rightarrow C^{2}=A^{2}+B^{2}
$$

Answer: B::D

D Watch Video Solution

2. It is found that $|A+B|=|A|$,This necessarily
implies.
A. $\vec{B}=0$
B. \vec{A}, \vec{B} are antiparallel
C. \vec{A}, \vec{B} are perpendicular

D. $\vec{A}, \vec{B} \leq 0$.

Answer: A::B

- Watch Video Solution

3. Two particles are projected in air with speed v_{0} at angles θ_{1} and θ_{2} (both acute) to the horizontal,respectively.If the height reached by the first particle greater than that of the second,then thick the right choices
A. angle of projection: $\theta_{1}>\theta_{2}$
B. time of flight: $T_{2}>T_{1}$
C. horizontal range: $R_{1}>R_{2}$
D. total energy : $U_{1}>U_{2}$

Answer: A::B::C

D Watch Video Solution

4. A particle slides down a frictionless paraboli
$\left(y=x^{2}\right)$ track $(A-B-C)$ starting from rest at point A.Point B is at the vertex of parabola and point C is at a height less than that of
point A.After C,the particle moves freely in air as a projectile. If the particle reaches highest

point at P,then

A. $K E$ at $P=K E$ at B
B. height at $P=$ height at A
C. total energy at $P=$ total energy at A

D. time of travel from A to $B=$ time of travel

from B to P

Answer: C

D Watch Video Solution

5. Following are four different relations about displacement, velocity and acceleration for the motion of a particle in general. Choose the incorrect one (s)

$$
\begin{aligned}
& \text { A. } v_{a v}=\frac{1}{2}\left[v\left(t_{1}\right)-v\left(t_{2}\right)\right] \\
& \text { B. } v_{a v}=\frac{r\left(t_{2}\right)-r\left(t_{1}\right)}{t_{2}-t_{1}} \\
& \text { C. } r=\frac{1}{2}\left(v\left(t_{2}\right)-v\left(t_{1} t\right) t_{2}-t_{1}\right) \\
& \text { D. } a_{a v}=\frac{v\left(t_{2}\right)-v\left(t_{1}\right)}{t_{2}-t_{1}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

6. For a particle performing uniform circular motion, choose the incorrect statement form
the following.
A. Magnitude of particle velocity (speed)
remains constant
B. Particle velocity remains directed
perpendicular to radius vector.
C. Direction of acceleration keeps changing
as particles moves
D. Angular momentum is constant in
magnitude but direction keeps
changing.

Answer: A::B::C

- Watch Video Solution

NCERT BASED QUES. PASSAGE

1. A cricket fielder can throw the cricket ball
with a speed v_{0}.If the throws the ball while
running with speed u at an angle θ to the horizontal.

The effective angle to the horizontal at which
the ball is projected in air as seen by a spector is

> A. $\theta=\tan ^{-1}\left(\frac{v_{0} \sin \theta}{u+v_{0} \cos \theta}\right)$
> B. $\theta=\tan ^{-1}\left(\frac{v_{0} \cos \theta}{u+v_{0} \sin \theta}\right)$
> C. $\theta=\cot ^{-1}\left(\frac{v_{0} \cos \theta}{u+v_{0} \sin \theta}\right)$
> D. $\theta=\cot ^{-1}\left(\frac{v_{0} \cos \theta}{u+v_{0} \sin \theta}\right)$

Answer: A
2. A cricket fielder can throw the cricket ball with a speed v_{0}. If he throws the ball while running with speed (u) at angle θ to the horizontal, find
(b) what will be time of flight ?
(c) what is the distance (horizontal range)
form the point of projection at which the ball will land?
(d) find θ at which he should throw the ball
that would maxmise the horizontal range range as found in (c).
(e) how does θ for maximum range change if $u>v_{0}, u=v_{0}, \underline{t} v_{0} ?$
(f) how does θ in (e) compare with that for

$$
\text { u=0 (i.e., } 45^{\wedge} @ \text {) ? }
$$

$$
\begin{aligned}
& \text { A. } T=\frac{2 v_{0}}{g} \\
& \text { B. } T=\frac{2\left(u+v_{0} \sin \theta\right)}{g} \\
& \text { C. } T=\frac{2 v_{0} \sin \theta}{g} \\
& \text { D. } T=\frac{2 u}{g}
\end{aligned}
$$

Answer: C
3. A cricket fielder can throw the cricket ball with a speed v_{0}. If he throws the ball while running with speed (u) at angle θ to the horizontal, find
(b) what will be time of flight ?
(c) what is the distance (horizontal range)
form the point of projection at which the ball will land?
(d) find θ at which he should throw the ball
that would maxmise the horizontal range range as found in (c).
(e) how does θ for maximum range change if

$$
u>v_{0}, u=v_{0}, t v_{0} ?
$$

(f) how does θ in (e) compare with that for
u=0 (i.e., 45^@) ?

> A. $R=\frac{v_{0}}{g}\left[u \sin 2 \theta+v_{0} \sin \theta\right]$ B. $R=\frac{v_{0}}{g}\left[2 u \sin \theta+v_{0} \sin 2 \theta\right]$ C. $R=\frac{v_{0}}{g}\left[u \sin \theta+v_{0} \sin \theta\right]$ D. $R=\frac{v_{0}^{2} \sin 2 \theta}{g}$

Answer: B
4. A cricket fielder can throw the cricket ball with a speed v_{0}. If he throws the ball while running with speed (u) at angle θ to the horizontal, find
(b) what will be time of flight ?
(c) what is the distance (horizontal range)
form the point of projection at which the ball will land?
(d) find θ at which he should throw the ball
that would maxmise the horizontal range range as found in (c).
(e) how does θ for maximum range change if $u>v_{0}, u=v_{0}, \underline{t} v_{0} ?$
(f) how does θ in (e) compare with that for u=0 (i.e., 45^@) ?

$$
\begin{aligned}
& \text { A. } \theta_{\max }=\cos ^{-1}\left[\frac{-u+\sqrt{u^{2}+8 v_{0}^{2}}}{4 v_{0}}\right] \\
& \text { B. } \theta_{\max }=\cos ^{-1}\left[\frac{u+\sqrt{u^{2}+8 v_{0}^{2}}}{4 v_{0}}\right] \\
& \text { C. } \theta_{\max }=\cos ^{-1}\left[\frac{-u+\sqrt{u^{2}-8 v_{0}^{2}}}{4 v_{0}}\right]
\end{aligned}
$$

$$
\text { D. } \theta_{\max }=\cos ^{-1}\left[\frac{-u+\sqrt{u^{2}-4 v_{0}^{2}}}{4 v_{0}}\right]
$$

Answer: A

D Watch Video Solution

5. A cricket fielder can throw the cricket ball
with a speed v_{0}. If he throws the ball while running with speed (u) at angle θ to the horizontal, find
(b) what will be time of flight ?
(c) what is the distance (horizontal range)
form the point of projection at which the ball will land?
(d) find θ at which he should throw the ball that would maxmise the horizontal range range as found in (c).
(e) how does θ for maximum range change if $u>v_{0}, u=v_{0}, \underline{L} v_{0}$?
(f) how does θ in (e) compare with that for u=0 (i.e., 45^@) ?
A. $\frac{\pi}{2}$
B. 0

> C. $\frac{\pi}{3}$
> D. $\frac{\pi}{4}$

Answer: A

- Watch Video Solution

6. A cricket fielder can throw the cricket ball
with a speed v_{0}. If he throws the ball while running with speed (u) at angle θ to the horizontal, find
(b) what will be time of flight ?
(c) what is the distance (horizontal range)
form the point of projection at which the ball will land?
(d) find θ at which he should throw the ball that would maxmise the horizontal range range as found in (c).
(e) how does θ for maximum range change if $u>v_{0}, u=v_{0}, \underline{L} v_{0}$?
(f) how does θ in (e) compare with that for u=0 (i.e., 45^@) ?
A. $\frac{\pi}{2}$
B. 0

> C. $\frac{\pi}{3}$
> D. $\frac{\pi}{4}$

Answer: C

D Watch Video Solution

7. A cricket fielder can throw the cricket ball with a speed v_{0}.If the throws the ball while running with speed u at an angle θ to the horizontal.

The $\theta_{\text {max }}$ for which maximum range change if

$$
u \ll v_{0} \text { is }
$$

$$
\begin{aligned}
& \text { A. } \frac{\pi}{2} \\
& \text { B. } 0 \\
& \text { C. } \frac{\pi}{3} \\
& \text { D. } \frac{\pi}{4}
\end{aligned}
$$

Answer: D

D View Text Solution
8. A cricket fielder can throw the cricket ball
with a speed v_{0}. If he throws the ball while
running with speed (u) at angle θ to the horizontal, find
(b) what will be time of flight ?
(c) what is the distance (horizontal range)
form the point of projection at which the ball will land?
(d) find θ at which he should throw the ball that would maxmise the horizontal range range as found in (c).
(e) how does θ for maximum range change if
$u>v_{0}, u=v_{0}, \underline{t} v_{0} ?$
(f) how does θ in (e) compare with that for

$$
\text { u=0 (i.e., } 45^{\wedge} @ \text {) ? }
$$

$$
\begin{aligned}
& \text { A. } \frac{\pi}{2} \\
& \text { B. } 0 \\
& \text { C. } \frac{\pi}{3} \\
& \text { D. } \frac{\pi}{4}
\end{aligned}
$$

Answer: D

- Watch Video Solution

Level -V Single answer

1. An aeroplne A is flying horizontally due east at a speed of $400 \mathrm{~km} / \mathrm{hr}$.Passengers in A, observe another aeroplane B moving perpendicular to direction of motion of A
.Aeroplane B is actually moving in a direction
30° north of east in the same horizontal
plane as shown in the figure.Determine the
velocity of B

A. $400 \sqrt{3} \hat{i}+400 \sqrt{3} \hat{j}$
B. $400 \hat{i}+\frac{400}{\sqrt{3}} \hat{j}$
C. $400 \hat{i}+400 \hat{j}$
D. $\frac{400}{\sqrt{3}} \hat{i}+400 \hat{j}$

Answer: B
2. A boat moves relative to water with a velocity v which is n times less than the river
flow velocity u. At what angle to the stream direction must the boat move to minimize drifting ?

$$
\begin{aligned}
& \text { A. } \theta=\sin ^{-1}\left(\frac{v}{u}\right) \text { from normal direction } \\
& \text { B. } \theta=\cos ^{-1}\left(\frac{v}{u}\right) \text { from normal direction } \\
& \text { C. } \theta=\tan ^{-1}\left(\frac{v}{u}\right) \text { from normal direction }
\end{aligned}
$$

$$
\text { D. } \theta=\sin ^{-1}\left(\frac{u}{v}\right) \text { from normal direction }
$$

Answer: A

D Watch Video Solution

3. A man wishes to cross a river flowing with
velocity u swims at an angle θ with the river
flow.lf the man swims with speed vand if the width of the river is d, then the drift travelled by him is

> A. $(u+v \cos \theta) \frac{d}{v \sin \theta}$
> B. $(u-v \cos \theta) \frac{d}{v \sin \theta}$
> C. $(u-v \cos \theta) \frac{d}{v \cos \theta}$
> D. $(u+v \cos \theta) \frac{d}{v \cos \theta}$

Answer: A

D Watch Video Solution

4. A boat moves relative to water with a velocity which is $n=2.0$ times less than the river flow velocity. At what angle to the stream
direction must the boat move to minimize drifting?
A. 45°
B. 60°
C. 120°
D. 90°

Answer: C
(Watch Video Solution
5. Two bodies were thrown simultaneously
from the same point, one, straight up, and the other, at an angle of $\theta=60^{\circ}$ to the horizontal. The initial velocity of each body is equal to $v_{0}=25 \mathrm{~m} / \mathrm{s}$. Neglecting the air drag,
find the distance between the bodies $t=1.70 \mathrm{~s}$ later.
A. 20 m
B. 18 m
C. $22 m$

D. $24 m$

Answer: C

D Watch Video Solution

6. A sailor in a boat, which is going due east
with a speed of $8 \mathrm{~m} / \mathrm{s}$ observes that a
submarine is heading towards north at a speed of $12 \mathrm{~m} / \mathrm{s}$ and sinking at a rate of $2 \mathrm{~m} / \mathrm{s}$
.The commander of submarine observes a helicopter ascending at a rate of $5 \mathrm{~m} / \mathrm{s}$ and
heading towards west with $4 \mathrm{~m} / \mathrm{s}$. Find the speed of the helicopter with respect to boat.
A. $10 \mathrm{~m} / \mathrm{s}$
B. $11 \mathrm{~m} / \mathrm{s}$
C. $12 \mathrm{~m} / \mathrm{s}$
D. $13 \mathrm{~m} / \mathrm{s}$

Answer: D
(Watch Video Solution
7. Consider a collection of a large number of particles each with speed v in a plane.The direction of velocity is randomly distributed in
the collection. The magnitude of the average relative velocity of a particle with velocities of all other particles is
A. $>v$
B. $<v$
C. $=v$
D. none of these

Answer: A

D Watch Video Solution

8. A man in a row boat must get from point A
to point B on the opposite bank of the river
(see figure).The distance $B C=a$. The width of
the river $A C=b$.At what minimum speed u
relative to the still water should the boat travel to reach the point B ? The velocity of flow
of the river is v_{0}

$$
C \leftarrow a \rightarrow B
$$

$$
\begin{aligned}
& \text { A. } \frac{v_{0} b}{\sqrt{a^{2}+b^{2}}} \\
& \text { B. } \frac{v_{0} a}{\sqrt{a^{2}+b^{2}}} \\
& \text { C. } \frac{v_{0} b}{\sqrt{2} a}
\end{aligned}
$$

D. $\frac{v_{0} a}{\sqrt{2} b}$

Answer: A

D Watch Video Solution

9. A man standing on a road has to hold his
umbrella at 30^{0} with the vertical to keep the rain away. The throws the umbrella and starts
running at $10 \mathrm{~km} / \mathrm{h}$. He finds that raindrops are hitting his head vertically. Find the speed
of raindrops with respect to a. the road, b. the moving man.
A. $12 \mathrm{~km} / \mathrm{hr}$
B. $14 \mathrm{~km} / \mathrm{hr}$
C. $16 \mathrm{~km} / \mathrm{hr}$
D. $18 \mathrm{~km} / \mathrm{hr}$

Answer: C
(Watch Video Solution
10. A motor boat has a speed of $5 \mathrm{~m} / \mathrm{s}$.At time
$t=0$,its position vector relative to a origin is
$(-11 \hat{i}+16 \hat{j}) m$,having the aim of getting as
close as possible to a steamer.At time $t=0$,the steamer is at the point $(4 \hat{i}+36 \hat{j}) m$ and is moving with constant velocity $(10 \hat{i}-5 \hat{j}) \mathrm{m} / \mathrm{s}$
.Find the direction in which the motorboat must steer

$$
\begin{aligned}
& \text { A. } 3 \hat{i}+3 \hat{j} \\
& \text { B. } 3 \hat{i}+4 \hat{j} \\
& \text { C. } 4 \hat{i}+3 \hat{j}
\end{aligned}
$$

D. $4 \hat{i}+4 \hat{j}$

Answer: C

D Watch Video Solution

11. A river 400 m wide is flowing at a rate of
$2.0 \mathrm{~m} / \mathrm{s}$. A boat is sailing at a velocity of $10.0 \mathrm{~m} / \mathrm{s}$ with respect to the water $\ln \mathrm{a}$ direction perpendicular to the river.
(a) Find the time taken by the boat to reach
the opposite bank.
(b) How far from the point directly opposite to
the starting point does the boat reach the opposite bank?
A. $40 \mathrm{sec}, 80 \mathrm{~m}$
B. $30 \mathrm{sec}, 40 \mathrm{~m}$
C. $20 \mathrm{sec}, 20 \mathrm{~m}$
D. $35 \mathrm{sec}, 80 \mathrm{~m}$

Answer: A

D Watch Video Solution
12. A block of mass m in floating in a river
flowing with a velocity of $2 \mathrm{~m} / \mathrm{s} . \mathrm{A}$ boat is moving behind the block with a velocity of
$5 \mathrm{~m} / \mathrm{s}$ with respect to the block as shown.From
the boat a stone is thrown with a velocity
$\vec{v}=v_{1} \hat{i}-v \hat{j}+v_{3} \hat{k}$ with respect to the river such
that it hits the block.If $v_{1}: v_{2}: v_{3}=2 \sqrt{3}: 2: 3$
then the velocity of the stone with respect to
the ground is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

A. $10 \hat{i}-\frac{10}{\sqrt{3}} \hat{j}+5 \sqrt{3} \hat{k}$
B. $12 \hat{i}-\frac{10}{\sqrt{3}} \hat{j}+5 \sqrt{3} \hat{k}$
C. $10 \hat{i}-10 \hat{j}+5 \sqrt{3} \hat{k}$
D. $10 \sqrt{3} \hat{i}-\frac{10}{\sqrt{3}} \hat{j}+5 \sqrt{3} \hat{k}$

Answer: B

- Watch Video Solution

13. From a point on the ground at a distance a
from the foot of a pole, a ball is thrown at an
angle of 45°, which just touches the top of the pole and strikes the ground at a distance of b, on the outer side of it. Find the height of the pole.

$$
\begin{aligned}
& \text { A. } \frac{a b}{a-b} \\
& \text { B. } \frac{a b}{a+b} \\
& \text { C. } \frac{2 a b}{a+b} \\
& \text { D. } \frac{a b}{a+2 b}
\end{aligned}
$$

Answer: B
14. A heavy particle is projected with a velocity at an angle with the horizontal into the uniform gravitational field. The slope of the trajectory of the particle varies as

C.

D.

Answer: A

D Watch Video Solution

15. A fixed morter fires a bomb at an angle of
53° above the horizontal with a muzzle velocity of $80 \mathrm{~ms}^{-1}$. A tank is advancing directly towards the mortar on level ground at a constant speed of $5 \mathrm{~m} / \mathrm{s}$. The initial separation
(at the instant mortar is fired) between the mortar and tank, so that the tank would be hit is $\left[\right.$ Takeg $\left.=10 \mathrm{~ms}^{-2}\right]$
A. $662.4 m$
B. $526.3 m$
C. $486.6 m$
D. 678.4 m

Answer: D

16. The angular elevation of an enemy's position on a hill 'h' ft height is α. Wha should be the minimum velocity of the projectile in order to hit the enemy?

$$
\begin{aligned}
& \text { A. } u=\sqrt{g h(\cos \alpha+1)} \\
& \text { B. } u=\sqrt{g h(\sin \alpha+1)} \\
& \text { C. } u=\sqrt{g h(\operatorname{cossec} \alpha+1)} \\
& \text { D. } u=\sqrt{g h(\sec \alpha+1)}
\end{aligned}
$$

Answer: C

17. Two particles are projected simultaneously with the same speed v in the same vertical
plane with angles of elevation θ, and 2θ, where
$\theta<45^{\circ}$.At what time will velocities be parallel?
A. $t=\frac{v}{g} \tan \frac{\theta}{2} \operatorname{cosec} \frac{3 \theta}{2}$
B. $t=\frac{v}{g} \cos \frac{\theta}{2} \cot \frac{3 \theta}{2}$
C. $t=\frac{v}{g} \cos \frac{\theta}{2} \tan \frac{3 \theta}{2}$
D. $t=\frac{v}{g} \cos \frac{\theta}{2} \operatorname{cosec} \frac{3 \theta}{2}$

Answer: D

D Watch Video Solution

18. Figure shows a sphere moving in a steady
flow of air in the x-direction on a horizontal plane.The air stream exerts an essentially constant acceleration $1.8 \mathrm{~m} / \mathrm{sec}^{2}$ on the sphere
in the x-direction.If at $t=0$ the sphere is moving as shown in figure, determine the time
t required for the sphere to cross the y-axis

A. $1 / 3 \mathrm{sec}$
B. $2 / 3 \mathrm{sec}$
C. $4 / 3 \mathrm{sec}$
D. $5 / 3 \mathrm{sec}$

Answer: D

- Watch Video Solution

19. A very broad elevator is going up vertically
with a constant acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$. At the instant when its velocity is $4 \mathrm{~m} / \mathrm{s}$ a ball is projected form the floor of the lift with a speed of $4 \mathrm{~m} / \mathrm{s}$ relative to the floor at an elevation of 30°. Time taken by the ball to return the floor is $\left(g=10 m s^{2}\right)$

1
 A. $\frac{-s}{2}$
 B. $\frac{1}{3} s$
 C. $\frac{1}{4} S$
 D. 1 s

Answer: B

D Watch Video Solution

20. A boy throws a ball upward with velocity $v_{0}=20 \mathrm{~m} / \mathrm{s}$. The wind imparts a horizontal acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$ to the left. The angle θ
at which the ball must be thrown so that the ball returns to the boy's hand is :

$$
\left(g=10 m s^{-2}\right)
$$

A. $\tan ^{-1}(1.2)$
B. $\tan ^{-1}(0.2)$
C. $\tan ^{-1}(2)$
D. $\tan ^{-1}(0.4)$

Answer: D

D Watch Video Solution

21. A particle is projected from an inclined plane $O P_{1}$ from A with velocity $v_{1}=8 \mathrm{~ms}^{-1}$ at an angle 60° with horizontal. An another particle is projected at the same instant from B with velocity $v_{2}=16 \mathrm{~ms}^{-1}$ and perpendicular to the plane OP_{2} as shown in figure. After time $10(\sqrt{3}) \mathrm{s}$ there separation was minimum and found to be 70 m . Then find distance $A B$.

A. 250 m
B. 500 m
C. 750 m
D. 1000 m

Answer: A

D Watch Video Solution

22. A particle is projected with a certain velocity at an angle \propto above the horizontal
from the foot of an inclined plane of
inclination 30°. If the particle strikes the plane normally, then \propto is equal to.

> A. $30^{\circ}+\tan ^{-1}\left(\frac{1}{2 \sqrt{3}}\right)$
> B. $30^{\circ}+\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
C. 60°

$$
\text { D. } 30^{\circ}+\tan ^{-1}(2 \sqrt{3})
$$

Answer: B
23. A particle is projected at an angle 60° with speed $10(\sqrt{3}) m / s$, from the point A, as shown in the figure. At the same time the wedge is made to move with speed $10(\sqrt{3}) \mathrm{m} / \mathrm{s}$ towards right as shown in the figure. Then the time after which particle will strike with wedge is

A. $2 s$
B. $2 \sqrt{3} s$
C. $\frac{4}{\sqrt{3}} s$

D. none of these

Answer: A

D Watch Video Solution

24. A particle is projected from a point A with
velocity $u \sqrt{2}$ at an angle of 45° with
horizontal as shown in the figure. It strikes the
plane $B C$ at right angles. The velocity of the
particle at the time of collision is

A. $\frac{\sqrt{3} u}{2}$
B. $\frac{u}{2}$
C. $\frac{2 u}{\sqrt{3}}$
D. u

Answer: C
25. A particle is dropped from point P at time t
$=0$. At the same time another particle is
thrown from point O as shown in the figure and it collides with the particle P. Acceleration due to gravity is along the negative y-axis. If
the two particles collide 2 s after they start,
find the initial velocity v_{0} of the particle which was projected from O . Point O is not
necessarily on ground.

$$
\text { A. } \sqrt{6} m / s^{-1}, \theta=\tan ^{-1}(1) \text { with X-axis }
$$

B. $\sqrt{26} \mathrm{~m} / \mathrm{s}^{-1}, \theta=\tan ^{-1}(5)$ with X -axis
C. $\sqrt{2} m / s^{-1}, \theta=\tan ^{-1}(2)$ with X-axis
D. $\sqrt{13} \mathrm{~m} / \mathrm{s}^{-1}, \theta=\tan ^{-1}(4)$ with X -axis

- Watch Video Solution

26. Shots are fired simultaneously from the top and bottom of a vertical cliff with the elevation $\alpha=30^{\circ}$, beta $=60^{\circ}$, respectively.

The shots strike an object simultaneously at the same point. If $a=10(\sqrt{3}) \mathrm{m}$ is the horizontal distance of the object from the cliff,
then the height h of the cliff is

A. $\frac{a(\cot \alpha-\cot \beta)}{\cot \alpha \cot \beta}$
B. $a(\sin \beta-\tan \alpha)$
C. $\frac{a \tan \alpha}{\tan \beta}$
D. $a(\cot \alpha-\cot \beta)$

Answer: A

D Watch Video Solution

27. Two projectiles are projected

simultaneously from two towers as shwon in
figure. If the projectiles collide in the air, then
find the distance "s" between the towers.

A. 10 m
B. 20 m
C. 30 m
D. 40 m

Answer: B

- Watch Video Solution

28. In the figure shown, the two projectiles are
fired simultaneously. The minimum distance between them during their flight is

A. 20 m
B. $10 \sqrt{3} m$
C. 10 m
D. zero

Answer: B

D Watch Video Solution

29. Two particles A and B are projected simultaneously in the directins shown in figure
with velocities $v_{A}=20 \mathrm{~m} / \mathrm{s}$ and $v_{B}=10 \mathrm{~m} / \mathrm{s}$
respectively. They collide in air after $\frac{1}{2} \mathrm{~s}$. Find
(a) the angle θ
(b) the distance x.
A. $2 \sqrt{3} m$
B. $3 \sqrt{3} m$
C. $4 \sqrt{3} m$
D. $5 \sqrt{3} m$

Answer: D

D Watch Video Solution
30. A particle starts from the origin of coordinates at time $t=0$ and moves in the $x y$ plane with a constant acceleration α in the y direction. Its equation of motion is $y=\beta x^{2}$. Its velocity component in the x-direction is
A. Variable
B. $\sqrt{\frac{2 \alpha}{\beta}}$
C. $\frac{\alpha}{2 \beta}$
D. $\sqrt{\frac{\alpha}{2 \beta}}$

Answer: D

D Watch Video Solution

31. Motion of a particle is governed by

following

relations
$y=\frac{x}{\alpha}, V_{x}=b-c t .(a, b$, care + veconst $)$
The displacement (S) verson from (t) graph os

B.
$\xrightarrow[\mathrm{s}]{\stackrel{(\mathrm{B})}{\uparrow}{ }_{\mathrm{s}}}$
(C)

C.
$\xrightarrow[\mathrm{t} \rightarrow]{\text { (D) } \uparrow \uparrow \text { ~ }}$

Answer: D

(Watch Video Solution

1. At that instant a motor bike starts from rest in a given direction, a car overtakes the motor bike, both moving in the same direction.The speed time graphs for motor bike and car are represented by $O A B$ and $C D$ respectively.Then

A. at $t=18 \mathrm{~s}$ the motor bike and car are 180m apart.
B. at $t=18 \mathrm{~s}$ the motor bike and car are

720 m apart.
C. the relative distance between motor bike
and car reduce to zero at $t=27 \mathrm{~s}$ and
both are 1080 m far from origin

D. the relative distance between motor bike

and car always remains same.

Answer: A::C

- Watch Video Solution

2. A man in a boat crosses a river from point A.

If he rows perpendicular to the banks he reaches point $C(B C=120 \mathrm{~m})$ in 10 min . If the man heads at a certain angle α to the straight
line $A B$ ($A B$ is perpendicular to the banks) against the current he reaches point B in 12.5
min . Find the width of the river w , the rowing
velocity u, the speed of the river current v and
the angle α. Assume the velocity of the boat relative to water to be constant and the same
magnitude in both cases.

A. The width of the river is 300 m
B. The width of the river is 200 m
C. The rowing velocity is $20 \mathrm{~m} / \mathrm{min}$
D. The rowing velocity is $30 \mathrm{~m} / \mathrm{min}$

Answer: B::C

D Watch Video Solution

3. A motor boat is to reach at a point 30° upstream on the outer side of a river flowing with velocity $5 \mathrm{~ms}^{-1}$. The velocity of motor boat with respect to water is $5(\sqrt{3}) \mathrm{ms}^{-1}$. The driver
should steer the boat at an angle.

A. 30° up w.r.t the line of destination from

the starting point
B. 60° up w.r.t normal to the bank
C. 150° w.r.t stream direction
D. none of these

Answer: A::B::C

D Watch Video Solution

4. A car is moving rectilinearly on a horizontal path with acceleration a_{0}.A person sitting inside the car observes that an insect S is crawling up the screen with an acceleration a.If θ is the inclination of the wind screen with
the horizontal, then the acceleration of the insect.
A. perpendicular to screen is $a_{0} \tan \theta$
B. perpendicular to screen is $a_{0} \sin \theta$
C. along the horizontal is $a_{0}-a \cos \theta$
D. parallel to screen is $a+a_{0} \cos \theta$

Answer: B::C

D Watch Video Solution

5. Three particles A, B and C and situated at the vertices of an equilateral triangle $A B C$ of side of length l at time $t=0$,Each of the
particles move with constant speed u. A always has its velocity along $A B, B$ along $B C$ and C along $C A$.

21
A. The time after which they meet is $\overline{3 u}$
B. Total distance travelled by each particle
before they meet is $\frac{2 l}{3}$
C. Average velocity during the motion is
$\frac{\sqrt{3} u}{2}$
D. Relative velocity of apporach between any two particles is $\frac{3 u}{2}$

Answer: A::B::C::D

D Watch Video Solution

6. A man crosses a river in a boat. If he cross
the river in minimum time he takes 10 min
with a drift 120 m . If he crosses the river taking
shortest path, he takes 12.5 min , find
(a) width of the river
(b) velocity of the boat with respect to water
(c) speed of the current
A. width of the river is 200 m
B. velocity of the boat with respect to
water $12 \mathrm{~m} / \mathrm{min}$
C. speed of the current $20 \mathrm{~m} / \mathrm{min}$
D. velocity of the boat with respect to

Answer: A::D

D Watch Video Solution

7. The coordinate of a particle moving in a
plane are
given
$x(t)=a \cos (p t)$ and $y(t)=b \sin (p t)$
where
$a, b(<a)$ and P are positive constants of appropriate dimensions. Then
A. The path of the particle is an ellipse
B. The velocity and acceleration of the particle are normal to each other at

$$
t=\frac{\pi}{2 p}
$$

C. The acceleration of the particle is always
directed towards a fixed position
D. The distance travelled by the particle in
time internal $t=0$ to $t=\frac{\pi}{2 p}$ is a

Answer: A::B::C

- Watch Video Solution

8. Trajectories of two projectiles are shown in
figure.Let T_{1} and T_{2} be the time periods and
u_{1} and u_{2} their speeds of projection.Then

$$
\begin{aligned}
& \text { A. } T_{2}>T_{1} \\
& \text { B. } T_{1}=T_{2} \\
& \text { C. } u_{1}>u_{2}
\end{aligned}
$$

$$
\text { D. } u_{1}<u_{2}
$$

Answer: B::D

D Watch Video Solution

9. In a projectile motion let v_{x} and v_{y} are the
horizontal and vertical components of velocity at any time t and x and y are displacements along horizontal and vertical from the point of projection at any time t.Then
A. $v_{y}-t$ graph is a straight line with negative slope and positive intercept B. x-tgraph is a straight line passing through origin
C. $y-t$ graph is a straight line passing
through origin

D. $u_{x}-t$ graph is a straight line

Answer: A::B::D

D Watch Video Solution

10. Two particles are projected from ground
with same intial velocities at angles 60° and
30° (with horizontal). Let R_{1} and R_{2} be their horizontal ranges, H_{1} and H_{2} their maximum heights and T_{1} and T_{2} are the time of flights.Then

$$
\begin{aligned}
& \text { A. } \frac{H_{1}}{R_{1}}>\frac{H_{2}}{R_{2}} \\
& \text { B. } \frac{H_{1}}{R_{1}}<\frac{H_{2}}{R_{2}} \\
& \text { C. } \frac{H_{1}}{T_{1}}>\frac{H_{2}}{T_{2}} \\
& \text { D. } \frac{H_{1}}{T_{1}}<\frac{H_{2}}{T_{2}}
\end{aligned}
$$

Answer: A::C

D Watch Video Solution

11. A particle is projected from the ground with
velocity u at angle θ with horizontal.The horizontal range,maximum height and time of flight are R, H and T respectively.Now keeping u as fixed, θ is varied from 30° to 60°. Then
A. R will first increase. H will increase and T
B. R will first increase.than decrease while
H and T both will increase
C. R will decrease while H and T will increase
D. R will increase while H and T will decrease

Answer: B

D Watch Video Solution

12. Two projectiles A and B are fired simultaneously as shown in figure. They collide in air at point at time t.Then

A. $t\left(u_{1} \cos \theta_{1}-u_{2} \cos \theta_{2}\right)=20$
B. $t\left(u_{1} \sin \theta_{1}-u_{2} \sin \theta_{2}\right)=10$
C. Both (a) and (b) are correct
D. Both (a) and (b) are wrong

Answer: B

D Watch Video Solution

13. Suppose in the absence of air resistance,
$R=O B, H+A C, t_{1}=t_{O A}$ and $t_{2}=t_{A B}$.If air
resistance is taken into consideration and the
corresponding values are $R^{\prime}, H^{\prime}, T_{1}^{\prime}$ and t_{2}
then

A. $R^{\prime}<R, H^{\prime}<H, t_{1}^{\prime}>t_{1}$ and $t_{2}^{\prime}>t_{2}$
B. $R^{\prime}<R, H^{\prime}<H, t_{1}^{\prime}>t_{1}$ and $t_{2}{ }^{\prime}<t_{2}$
C. $R^{\prime}<R, H^{\prime}>H, t_{1}^{\prime}>t_{1}$ and $t_{2}^{\prime}<t_{2}$
D. $R^{\prime}<R, H^{\prime}<H, t_{1}{ }^{\prime}<t_{1}$ and $t_{2}{ }^{\prime}>t_{2}$

Answer: D
14. From an inclined paIne two particles P, Q are projected with same speed at same angle θ,one up and other down the plane as shown in figure. Which of the following statements) is/are correct?

A. The particles will collide the plane with
same speed
B. The times of flight of each particle are same
C. Both particles strike the plane perpendicularly
D. The particles will collide in mid air if projected simultaneuosly and time of flight of each particle is less than the time of collision.

Answer: B::D

15. In a projectile motion let $t_{O A}=t_{1}$ and
$t_{A B}=t_{2}$. The horizontal displacement from O
to A is R_{1} and from A to B is R_{2}.Maximum height is H and time of flight is T.If air drag is to be considered, then choose the correct alternative(s).

A. t_{1} will decrease while t_{2} will increase
B. H will increase
C. R_{1} will decrease while R_{2} will increase
D. T may increase or decrease

Answer: A::D

D Watch Video Solution

16. A projectile is projected from the ground making an angle of 30° with the horizontal.Air
exerts a drag which is proportional to the velocity of the projectile
A. at highest point velocity will be horizontal
B. the time of ascent will be equal to the
time of descent
C. The time of descent will be greater than
the time of ascent
D. the time of ascent will be greater than
the time of descent

Answer: A::D

D Watch Video Solution

17. A particle is fired from a point on the ground with speed u making an angle θ with
the horizontal.Then
A. the radius of curvature of the projectile
at the highest point is $\frac{u^{2} \cos ^{2} \theta}{g}$
B. the radius of curvature of the projectile $u^{2} \sin ^{2} \theta$ at the highest point is g
C. at the point of projection magnitude of tangential acceleration is $g \sin \theta$
D. at the point of projection magnitude of tangential acceleration is $g \cos \theta$

Answer: A::C

D Watch Video Solution

18. A particle is projected from ground with velocity $40 \sqrt{2} m$ at 45°. At time $t=2 \mathrm{~s}$
A. displacement of particles is 100 m
B. vertcal component of velocity is $20 \mathrm{~m} / \mathrm{s}$
C. velocity makes an angle of $\tan ^{-1}(2)$ with
vertical
D. particle is at height of 60 m from ground

Answer: A::B::C::D

Level -V Passage

1. A motor cyclist is riding North in still air at $36 \mathrm{kmh}^{-1}$. The wind starts blowing West ward with a velocity $18 \mathrm{kmh}^{-1}$

The direction of apparent velocity is
A. $\tan ^{-1}(1 / 2)$ West of North
B. $\tan ^{-1}(1 / 2)$ North of West
C. $\tan ^{-1}(1 / 2)$ East of North
D. $\tan ^{-1}(1 / 2)$ North of East

Answer: A

- Watch Video Solution

2. A motor cyclist is riding North in still air at
$36 \mathrm{kmh}^{-1}$. The wind starts blowing West ward with a velocity $18 \mathrm{kmh}^{-1}$

If the wind velocity becomes $36 \mathrm{kmh}^{-1}$ due

West, then how much more distance the motor cyclist would cover in 10 min

A. 10 km

B. 1.8 km
C. 3.6 km
D. 8.5 km

Answer: B

D Watch Video Solution

3. A river of width a with straight parallel banks flows due north with speed u. The points O and A are on opposite banks and A is due east of O . Coordinate axes O_{x} and O_{y} are
taken in the east and north directions
respectively. A boat, whose speed is v relative to water, starts from O and crosses the river. If the boat is steered due east and u varies with $x a s: u=x(a-x) \frac{v}{a^{2}}$. Find
(a) equation of trajectory of the boat,
(b) time taken to cross the river,
(c) absolute velocity of boatman when he reaches the opposite bank,
(d) the displacement of boatman when he reaches the opposite bank from the initial position.

$$
\begin{aligned}
& \text { A. } y=\frac{x}{a}-\frac{x^{2}}{2 a} \\
& \text { B. } y=\frac{x^{2}}{2 a}-\frac{x^{2}}{3 a} \\
& \text { C. } y=\frac{x^{2}}{a}-\frac{x^{3}}{a^{2}} \\
& \text { D. } y=\frac{x^{2}}{a}-\frac{x^{3}}{3 a^{2}}
\end{aligned}
$$

Answer: B

- Watch Video Solution

4. A river of width a with straight parallel banks flows due north with speed u. The
points O and A are on opposite banks and A is due east of O. Coordinate axes O_{x} and O_{y} are taken in the east and north directions respectively. A boat, whose speed is v relative to water, starts from O and crosses the river. If the boat is steered due east and u varies with
$x a s: u=x(a-x) \frac{v}{a^{2}}$. Find
(a) equation of trajectory of the boat,
(b) time taken to cross the river,
(c) absolute velocity of boatman when he reaches the opposite bank,
(d) the displacement of boatman when he
reaches the opposite bank from the initial position.

$$
\begin{aligned}
& \text { A. } \frac{a}{v} \\
& \text { B. } \frac{v}{a} \\
& \text { C. } \frac{2 a}{v} \\
& \text { D. } \frac{2 v}{a}
\end{aligned}
$$

Answer: A
(Watch Video Solution
5. A river of width a with straight parallel banks flows due north with speed u. The points O and A are on opposite banks and A is due east of 0 . Coordinate axes O_{x} and O_{y} are taken in the east and north directions respectively. A boat, whose speed is v relative to water, starts from O and crosses the river. If the boat is steered due east and u varies with
$x a s: u=x(a-x) \frac{v}{a^{2}}$. Find
(a) equation of trajectory of the boat,
(b) time taken to cross the river,
(c) absolute velocity of boatman when he
reaches the opposite bank,
(d) the displacement of boatman when he reaches the opposite bank from the initial position.
A. west
B. south
C. east

D. north

Answer: C

6. A car is moving towards south with a speed of $20 \mathrm{~ms}^{-1}$. A motorcyclist is moving towards east with a speed of $15 \mathrm{~s}^{-1}$. At a certain instant, the motorcyclist is due south of the car and is at a distance of 50 mfrom the car.

The shortest distance between the motorcyclist and the car is.
A. 10 m
B. 20 m
C. 30 m

D. 40 m

Answer: C

D Watch Video Solution

7. A car is moving towards south with a speed of $20 \mathrm{~ms}^{-1}$. A motorcyclist is moving towards east with a speed of $15 \mathrm{~ms}^{-1}$. At a certain instant, the motorcyclist is due south of the car and is at a distance of 50 m from the car.

The time after which they are closest to each other.
A. $1 / 3 s$
B. $8 / 3 \mathrm{~s}$
C. $1 / 5 \mathrm{~s}$
D. $8 / 5 \mathrm{~s}$

Answer: D
(Watch Video Solution
8. A particle is fired from A in the diagonal plane of a building of dimension 20 m (length)
$\times 15 m$ (breadth) $\times 12.5 m($ height $)$, just clears
the roof diagonally \& falls on the other side of
the building at B.It is observed that the particle is travelling at an angle 45° with the horizontal when it clears the edges P and Q of the diagonal. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

The speed of the particle at point P will be:

A. $5 \sqrt{10} \mathrm{~m} / \mathrm{s}$
B. $10 \sqrt{5} \mathrm{~m} / \mathrm{s}$
C. $5 \sqrt{15} \mathrm{~m} / \mathrm{s}$

D. $5 \sqrt{5} \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

9. A particle is fired from A in the diagonal
plane of a building of dimension 20 m (length)
$\times 15 m$ (breadth) $\times 12.5 m$ (height), just clears
the roof diagonally \& falls on the other side of
the building at B.It is observed that the particle is travelling at an angle 45° with the
horizontal when it clears the edges P and Q of the diagonal. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

The speed of projection of the particle at A
will be:

A. $5 \sqrt{10} \mathrm{~m} / \mathrm{s}$
B. $10 \sqrt{5} \mathrm{~m} / \mathrm{s}$
C. $5 \sqrt{15} \mathrm{~m} / \mathrm{s}$
D. $5 \sqrt{5} \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

10. A particle is fired from A in the diagonal
plane of a building of dimension 20 m (length)
$\times 15 m$ (breadth) $\times 12.5 m($ height $)$, just clears
the roof diagonally \& falls on the other side of
the building at B.It is observed that the particle is travelling at an angle 45° with the horizontal when it clears the edges P and Q of the diagonal. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

The range that is $A B$ will be:

A. $5 \sqrt{10} m$
B. $25 \sqrt{3} m$
C. $5 \sqrt{15} m$
D. $25 \sqrt{5} m$

Answer: B

D Watch Video Solution

11. Two projectiles are projected simultaneously from the top and bottom of a vertical tower of height h at angles 45° and
60° above horizontal respectively.Body strike at the same point on ground at distance 20 m
from the foot of the tower after same time.

The speed of projectile projected from the bottom is
A. $40 \mathrm{~m} / \mathrm{s}$
B. $\frac{20}{\sqrt{3}} \mathrm{~m} / \mathrm{s}$
C. $40 \sqrt{3} \mathrm{~m} / \mathrm{s}$

$$
\text { D. } \frac{20}{\sqrt{\sqrt{3}}} \mathrm{~m} / \mathrm{s}
$$

Answer: D
12. Two projectiles are projected
simultaneously from the top and bottom of a vertical tower of height h at angles 45° and 60° above horizontal respectively.Body strike at the same point on ground at distance 20 m from the foot of the tower after same time.

The ratio of the speed of the projectile projected from the top and the speed of the projectile projected from the bottom of tower is
A. $1: \sqrt{2}$
B. $1: \sqrt{3}$
C. $\sqrt{5}: 1$
D. $\sqrt{7}: 1$

Answer: A

D Watch Video Solution

13. Two projectiles are projected simultaneously from the top and bottom of a vertical tower of height h at angles 45° and
60° above horizontal respectively.Body strike at the same point on ground at distance 20 m
from the foot of the tower after same time.

The time of flight of projectles is
A. $(3)^{\frac{1}{4}}$
B. $2(3)^{\frac{1}{4}}$
C. $3(3)^{\frac{1}{4}}$
D. $4(3)^{\frac{1}{4}}$

Answer: B
14. Two guns situated at the top of a hill of height 10 m fire one shot each with the same speed $5 \sqrt{3} \mathrm{~m} / \mathrm{s}$ at some interval of time. One gun fires horizontal and the other fores upwards at an angle of 60° with the horizontal. Two shots collide in air at a poit P.

Find (i) time-interval between the firing and (ii) coordinates of the point P. Take the origin of coordinates system at the foot of the hill right below the muzzle and trajectorise in the $x-y$ plane.
A. 1 s
B. $2 s$
C. 3 s
D. 4 s

Answer: A

D Watch Video Solution
15. Two guns situated at the top of a hill of height 10 m fire one shot each with the same speed $5 \sqrt{3} \mathrm{~m} / \mathrm{s}$ at some interval of time. One
gun fires horizontal and the other fores
upwards at an angle of 60° with the horizontal. Two shots collide in air at a poit P.

Find (i) time-interval between the firing and (ii)
coordinates of the point P. Take the origin of
coordinates system at the foot of the hill right below the muzzle and trajectorise in the $x-y$ plane.
A. $(5 m, 5 m)$
B. $(5 \sqrt{3} m, 5 \sqrt{3} m)$
C. $(5 \sqrt{3} m, 5 m)$

D. $(5 m, 5 \sqrt{3} m)$

Answer: C

(Watch Video Solution

Integer

1. Three points are located at the vertices of an
equilateral triangle each of whose sides
measure a. They all start simultaneously with
speed v, each aiming at the next in order. How soon will the points converge?

D Watch Video Solution

2. The slopes of wind screen of two cars are
$\alpha_{1}=30^{\circ}$ and $\alpha_{2}=15^{\circ}$ respectively. At what ratio $\frac{v_{1}}{v_{2}}$ of the velocities of the cars will their
drivers see the hail stones bounced back by
the wind screen on their cars in vertical direction? Assume hail stones fall vertically downwards and collisions to be elastic.

- Watch Video Solution

3. A heavy particles is projected from a point at the foot of a fixed plane, inclined at an angle 45° to the horizontal, in the vertical plane containging the line of greatest slope through the point. If $\phi\left(>45^{\circ}\right)$ is the inclination to the horizontal of the initial direction of projection,for what value of $\tan \phi$ will the particle strike the plane horizontal.
4. A projectile is fired from the base of coneshaped hill. The projectile grazes the vertex and strikes the hill again at the base.If α be the half-angle of the cone, h its height, u the initial velocity of projection and θ angle of projection, then then $\theta \tan \theta$ is

- Watch Video Solution

5. Three balls A, B and C are projected from ground with same speed at same angle with
the horizontal.The balls A, B and C collide with
the wall during a flight in air and all three collide perpendicularly and elastically with the
wall as shown in figure.If the time taken by the ball A and fall back on ground is 4 seconds and that by ball B is 2secondsThen the time taken by the ball C to reach the ground after
projection will be

- Watch Video Solution

6. In figure, the angle of inclination of the inclined plane is 30°. Find the horizontal velocity V_{0} so that the particle hits the
inclined plane perpendicularly.
(Watch Video Solution

Level-Vi single answer

1. An open merry go round rotates at an angular velocity ω.A person stands in it a distance r from the rotational axis.lt is raining and the rain drops falls vertically at a velocity v_{0}. How should the person hold an umbrella to
prorect himself from the rain in the best
way.Angle made by umbrealla with the vertical
is

> A. $\cot \alpha=\frac{v_{0}}{r \omega}$ B. $\tan \alpha=\frac{v_{0}}{r \omega}$ C. $\cot \alpha=\frac{r \omega}{v_{0}}$ D. $\tan \alpha=\frac{v_{0}}{r \omega}$

Answer: A
2. A standing man observes rain falling with
the velocity of $20 \mathrm{~ms}^{-1}$ at an angle of 30° with
the vertical.
(a) Find the velocity with which the man
should move so that rain appears to fall
vertically to him.

Now if he futher increases his speed, rain again appears to fall at 30° with the vertical.

Find his new velocity.
A. $20 \mathrm{~m} / \mathrm{s}$
B. $30 \mathrm{~m} / \mathrm{s}$

C. $40 \mathrm{~m} / \mathrm{s}$

D. $10 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

3. A person standing on a road has to hold his
umbrella at 60° with the verticcal to keep the
rain away. He throws the umbrella an starts
running at $20 \mathrm{~ms}^{-1}$. He finds that rain drops are hitting his head vertically. Find the speed
of the rain drops wigh respect to (a) the road
(b) the moving person.

$$
\begin{aligned}
& \text { A. } \frac{40}{3} \mathrm{~m} / \mathrm{s}, \frac{20}{3} \mathrm{~m} / \mathrm{s} \\
& \text { B. } \frac{40}{3} \mathrm{~m} / \mathrm{s}, \frac{22}{3} \mathrm{~m} / \mathrm{s} \\
& \text { C. } 40 \frac{\sqrt{3}}{3} \mathrm{~m} / \mathrm{s}, 20 \frac{\sqrt{3}}{3} \mathrm{~m} / \mathrm{s} \\
& \text { D. } 40 \frac{\sqrt{3}}{3} \mathrm{~m} / \mathrm{s}, \frac{20}{3} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Answer: C
4. Two swimmers leave point A on the bank of the river to reach point B lying right across on the other bank. One of them crosses the river along the straight line $A B$ while the other swims at right angles to the stream and then walks the distance that he has been carried away by the stream to get to point B. What was the velocity u of his walking if both swimmers reached the destination simultaneously? The stream velocity $v_{0}=2.0 \mathrm{~km} /$ hour and the velocity v^{\prime} of each
swimmer with respect to water equals to

2.5 km per hour.

A. $3 \mathrm{~km} / \mathrm{hr}$
B. $3.5 \mathrm{~km} / \mathrm{hr}$
C. $4 \mathrm{~km} / \mathrm{hr}$
D. $5 \mathrm{~km} / \mathrm{hr}$

Answer: A
(Watch Video Solution
5. A ball is thrown vertically upward from the

12 m level with an initial velocity of $18 \mathrm{~m} / \mathrm{s}$. At
the same instant an open platform elevator passes the 5 m level, moving upward with a constant velocity of $2 \mathrm{~m} / \mathrm{s}$. Determine ($\left.g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) when and where the ball will meet the elevator,
(b) the relative velocity of the ball with respect to the elevator when the ball hits the elevator.

$$
\text { A. } 10.2 \mathrm{~m} 9.8 \mathrm{~m} / \mathrm{s}
$$

B. $12.3 \mathrm{~m} 19.8 \mathrm{~m} / \mathrm{s}$
C. $12 \mathrm{~m} 10.2 \mathrm{~m} / \mathrm{s}$
D. $12.5 \mathrm{~m} 22 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

6. From a point A on bank of a channel with still water a person must get to a point B on the opposite bank.All the distances are shown in figure.The person uses a boat to travel
across the channel and then walks along the bank of point B.The velocity of the boat is v_{1} and the velocity of the walking person is v_{2}
.Prove that the fastest way for the person to get from A to B is to select the angles α_{1} and α_{2} in such a manner that

> A. $\frac{\sin \alpha_{1}}{\sin \alpha_{2}}=\frac{v_{2}}{v_{1}}$
> B. $\frac{\sin \alpha_{1}}{\sin \alpha_{2}}=\frac{v_{1}}{v_{2}}$
> C. $\frac{\cos \alpha_{1}}{\cos \alpha_{2}}=\frac{v_{2}}{v_{1}}$
> D. $\frac{\cos \alpha_{2}}{\cos \alpha_{1}}=\frac{v_{1}}{v_{2}}$

Answer: A

D Watch Video Solution

7. On morning Joy was walking on a grass-way
in a garden.Wind was also blowing in the
direction of his walking with speed u.He suddenly saw his friend Kim walking on the parallel grass-way at a distance x away.Both stopped as they saw each other when they were directly opposite on their ways at a distance x.Joy shouted "Hi Kim".Find the time after which Kim would have heard his greeting.Sound speed in still air is v.

$$
\begin{aligned}
& \text { A. } \frac{x}{\sqrt{v^{2}-u^{2}}} \\
& \text { B. } \frac{2 x}{\sqrt{v^{2}-u^{2}}} \\
& \text { C. } \frac{x}{2 \sqrt{v^{2}-u^{2}}}
\end{aligned}
$$

D. $\frac{x}{4 \sqrt{v^{2}-u^{2}}}$

Answer: A

- Watch Video Solution

8. A projectile is fired with velocity v_{0} from a gun adjusted for a maximum range.lt passes through two points P and Q whose heights above the horizontal are h each.The separation of the two points is
A. $\frac{v_{0}}{g} \sqrt{v_{0}^{2}-4 g h}$
B. $\frac{v_{0}}{g} \sqrt{v_{0}^{2}+4 g h}$
C. $2 \frac{v_{0}}{g} \sqrt{v_{0}^{2}-4 g h}$
D. $\frac{v_{0}}{g} \sqrt{v_{0}^{2}-g h}$

Answer: A

D Watch Video Solution

9. A shot is fired with a velocity u at a very high
vertical wall whose distance from the point of
projection is x.The greatest height above the
level of the point of projection at which the bullet can hit the wall is.

$$
\begin{aligned}
& \text { A. } \frac{u^{4}+g^{2} x^{2}}{2 g u^{2}} \\
& \text { B. } \frac{u^{4}-g^{2} x^{2}}{g u^{2}} \\
& \text { C. } \frac{u^{4}-g^{2} x^{2}}{4 g u^{2}} \\
& \text { D. } \frac{u^{4}-g^{2} x^{2}}{2 g u^{2}}
\end{aligned}
$$

Answer: D
10. A stone is projected from the ground in
such a direction so as to hit a bird on the top of a telegraph post of height h and attains the maximum height of 2 h above the ground. If at
the insatant of projection, the bird were to fly away horizontally with a uniform speed, find
the ratio between the horizontal velocity of bird and the horizontal component of velocity of stone, if the stone hits the bird while descending.

$$
\text { A. } \frac{2}{\sqrt{2}+1}
$$

$$
\begin{aligned}
& \text { B. } \frac{1}{\sqrt{2}+1} \\
& \text { C. } \frac{2}{\sqrt{2}-1} \\
& \text { D. } \frac{1}{\sqrt{2}-1}
\end{aligned}
$$

Answer: A

- Watch Video Solution

11. The benches of a gallery in a cricket stadium are 1 m wide and 1 m high. A batsman strikes the ball at a levl one metre above the ground and hits a mammoth sixer. The ball
starts at $35 \mathrm{~m} / \mathrm{s}$ at an angle of 53^{0} with the
horizontal. The benches are perpendicular to
the plane of motion and the first bench is 110
m from the batsman.. On which benchk will theball hit?
A. 4 th step
B. 5 th step
C. 6 th step
D. 7 th step

Answer: C

12. If R is the horizontal range for θ inclination

 and h is the maximum height reached by the projectile, Then maximum range is$$
\begin{aligned}
& \text { A. } \frac{R^{2}}{h}+2 h \\
& \text { B. } \frac{R^{2}}{8 h}+2 h \\
& \text { C. } \frac{R^{2}}{8 h}+8 h \\
& \text { D. } \frac{R^{2}}{h}+h
\end{aligned}
$$

- Watch Video Solution

13. The acceleration of gravity can be measured by projecting a body upward and measuring the time it takes to pass two given points in both directions. Show that if the time the body takes to pass a horizontal line a in both directions is t_{A} anytime to go by a second line B in both direction is t_{B}, then assuming that the acceleration is constant, its magnitude is $g=$ (where h is the height of the line B above line A.)
A. $\frac{h}{t_{A}^{2}-t_{B}^{2}}$
B. $8 \frac{h}{t_{A}^{2}-t_{B}^{2}}$
C. $8 \frac{h}{t_{A}^{2}+t_{B}^{2}}$
D. $4 \frac{h}{t_{A}^{2}+t_{B}^{2}}$

Answer: B

- Watch Video Solution

14. A particle is released from a certain height $H=400 \mathrm{~m}$. Due to the wind, the particle
gathers the horizontal velocity component
$v_{x}=$ aywhere $\mathrm{a}=(\sqrt{5}) s^{-1}$ and y is the vertical
displacement of the particle from the point of release, then find
(a) the horizontal drift of the particle when it strikes the ground,
(b) the speed with which particle strikes the ground.
A. 2.67 km
B. 5.67 km
C. 12.67 km

D. 4.97 km

Answer: A

D Watch Video Solution

15. A fighter plane enters inside the enemy territory, at time $t=0$, with velocity
$v_{o}=250 \mathrm{~m} / \mathrm{s}$ a moves horizontally with constant acceleration $a=20 \mathrm{~m} / \mathrm{s}^{2}$ (see figure)

An enemy tank at the border, spot the plane and fire shots at an angle $\theta=60^{2}$ with the
horizontal and with velocity $u=600 \mathrm{~m} / \mathrm{s}$.At
what altitude H of the plane it can be hit by the shot?

A. 1500 m
B. $2473 m$
C. 1650 m

D. 1800 m

Answer: B

D Watch Video Solution

16. A bomber plane moving at a horizontal
speed of $20 \mathrm{~m} / \mathrm{s}$ releases a bomb at a height of

80 m above ground as shown. At the same instant a Hunter of negligible height starts
running from a point below it, to catch the bomb with speed $10 \mathrm{~m} / \mathrm{s}$. After two seconds he
relized that he cannot make it, he stops running and immediately hold his gun and
fires in such direction so that just before bomb hits the ground, bullet will hit it. What should be the firing speed of bullet
(Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

A. $10 \mathrm{~m} / \mathrm{s}$
B. $20 \sqrt{10} \mathrm{~m} / \mathrm{s}$

C. $10 \sqrt{10} \mathrm{~m} / \mathrm{s}$

D. None of these

Answer: C

D Watch Video Solution

17. A body has maximum range R_{1} when projected up the plane. The same body when projected down the inclined plane, it has maximum range R_{2}. Find the maximum horizontal range. Assume equal speed of
projection in each case and the body is projected onto the inclined plane in the line of the greatest slope.

$$
\begin{aligned}
& \text { A. } R=\frac{2 R_{1} R_{2}}{R_{1}-R_{2}} \\
& \text { B. } R=\frac{2 R_{1} R_{2}}{R_{1}+R_{2}} \\
& \text { C. } R=\frac{R_{1} R_{2}}{R_{1}-R_{2}} \\
& \text { D. } R=\frac{4 R_{1} R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

Answer: B

A particle P is projected from a point on the surface of smooth inclined plane (see figure).

Simultaneously another particle Q is released on the smooth inclined plane from the same position. P and Q collide aftert $=4$. The speed of projection of P is
A. $5 \mathrm{~m} / \mathrm{s}$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $15 \mathrm{~m} / \mathrm{s}$
D. $20 \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

19.

A particle is projected from surface of the inclined plane with speed u and at an angle θ with the horizontal. After some time the particle collides elastically with the smooth fixed inclined plane for the first time and subsequently moves in vertical direction.

Starting from projection, find the time taken
by the particle to reach maximum height.
(Neglect time of collision).

Answer: C

D Watch Video Solution

20. A perfectly elastic particle is projected with
a velocity v on a vertical plane through the
line of greatest slope of an inclined plane of elevation α.If after striking the plane, the particle rebounds vertically show that it will return to the point of projection at the end of time equal to
$6 v$
A. $\frac{6 v}{g \sqrt{1+8 \sin ^{2} \alpha}}$
$6 v$
B. $\frac{}{g \sqrt{1+\sin ^{2} \alpha}}$
C. $\frac{v}{g \sqrt{1+8 \sin ^{2} \alpha}}$
D. $\frac{v}{g \sqrt{1+\sin ^{2} \alpha}}$

Answer: A

D View Text Solution

21. Two bodies A and B are projected from the same place in same vertical plane with
velocities v_{1} and v_{2}.Form a long inclined plane
as shown Find the ratio of their times of flight.

$$
\begin{aligned}
& \text { A. } \frac{v_{1} \sin \theta}{v_{2}} \\
& \text { B. } \frac{2 v_{1} \sin \theta}{v_{2}} \\
& \text { C. } \frac{v_{1} \sin \theta}{2 v_{2}} \\
& \text { D. } \frac{v_{1} \cos \theta}{v_{2}}
\end{aligned}
$$

Answer: A
22. A particle A is projected from the ground with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$ at an angle of 60° with horizontal. From what height should an another particle B be projected horizontally with velocity $5 \mathrm{~m} / \mathrm{s}$ so that both the particles collide in ground at point C if
both are projected simultaneously $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

A. 10 m
B. 15 m
C. 20 m
D. 30 m

Answer: B

- Watch Video Solution

23. A smooth square plateform $A B C D$ is moving towards right with a uniform speed v .

At what angle θ must a particle be projected from A with speed u so that it strikes the point

A. $\sin ^{-1}\left(\frac{u}{v}\right)$
B. $\cos ^{-1}\left(\frac{v}{u}\right)$
C. $\cos ^{-1}\left(\frac{u}{v}\right)$
D. $\sin ^{-1}\left(\frac{v}{u}\right)$

Answer: B

- Watch Video Solution

24. Two particles are projected from the same point on ground simultaneously with speeds and $20 \mathrm{~m} / \mathrm{s}$ and $20 / \sqrt{3}$ at angles 30° and 60° with the horizontal in the same direction.The maximum distance between them till both of them strike the ground is approximately $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. $23.1 m$
B. $16.4 m$
C. $30.2 m$
D. $10.4 m$

Answer: A

D Watch Video Solution

25. Two particles A and B projected simultaneously from a point situated on a horizontal place. The particle A is projected
vertically up with a velcity v_{A} while the particle
B is projected up at an angle 30° with
horizontal with velocity v_{B}. After 5 s the particles were observed moving mutually perpendicular to each other. The velocity of projection of the particle v_{A} and v_{B} respectively are:
A. $5 \mathrm{~ms}^{-1}, 100 \mathrm{ma}^{-1}$
B. $100 \mathrm{~ms}^{-1}, 50 \mathrm{ma}^{-1}$
C. v_{A} can have any value greater than

$$
25 \mathrm{~ms}^{-1}, 100 \mathrm{~ms}^{-1}
$$

D. $20 m s^{-1}, 25 m s^{-1}$

Answer: C

D Watch Video Solution

26. An aircraft moving with a speed of $250 \mathrm{~m} / \mathrm{s}$
is at a height of 6000 m ,just overhead of an
antiaircraft gun.If the muzzle velocity is
$500 \mathrm{~m} / \mathrm{s}$, the firing angle θ should be:

$\longrightarrow 250 \mathrm{~m} / \mathrm{s}$

A. 30°
B. 45°
C. 60°

D. none of these

Answer: C
27. A cannon fires successively two shells from
the same point with velocity $V_{0}=250 \mathrm{~m} / \mathrm{s}$, the
first at the angle $\theta_{1}=60^{\circ}$ and the second at
the angle $\theta_{2}=45^{\circ}$ to the horizontal, the azimuth being the same. Neglecting the air drag, find the approximate time interval between firings leading to the collision of the
shells $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. 4 sec
B. 7 sec
C. 17 sec
D. 11 sec

Answer: D

D Watch Video Solution

28. A shell is projected from a gun with a muzzle velocity v.The gun is fitted with a trolley car at an angle θ as shown in the fig. If the trolley car is made to move with constant velocity v towards right, find the horizontal
range of the shell relative to ground.

$$
\begin{aligned}
& \text { A. } R=\frac{2 u \sin \theta(u \cos \theta+v)}{g} \\
& \text { B. } R=\frac{2 u \sin \theta(u \cos \theta-v)}{g} \\
& \text { C. } R=\frac{u \sin \theta(u \cos \theta+v)}{g} \\
& \text { D. } R=\frac{u \sin \theta(u \cos \theta-v)}{g}
\end{aligned}
$$

Answer: A
29. Two guns are projected at each other, one upward at an angle of 30° and the other at
the same of depression, the muzzles being 30 m apart as shown in the figure. If the guns are shots with velocities of $350 \mathrm{~m} / \mathrm{s}$ upward and $300 \mathrm{~m} / \mathrm{s}$ downward respectively.where the bullets may meet.

A. $x=14 m, y=8.07 m$
B. $x=4 m, y=4.07 m$
C. $x=10 m, y=10.07 m$
D. $x=5 m, y=18.07 m$

Answer: A

D Watch Video Solution

30. Two particles A and B are projected in same vertical plane as shown in figure.Their initial positions $(t=0)$, initial spped and angle
of projections are indicated in the diagram.If initial angle of projection $\theta_{B}=37^{\circ}$, what should be initial speed of projection of particle B, so that it hits particle $A \cdot U_{A}=60 \mathrm{~m} / \mathrm{s}$

A. $80 \mathrm{~m} / \mathrm{s}$
B. $75 \mathrm{~m} / \mathrm{s}$
C. $40 \mathrm{~m} / \mathrm{s}$
D. $45 \mathrm{~m} / \mathrm{s}$

Answer: A

- Watch Video Solution

Level-Vi multiple answer

1. A child in danger of drowning in a river is
being carried downstream by a current that
flows uniformly at a speed of $2.5 \mathrm{~km} / \mathrm{h}$. The
child is 0.6 km from shore and 0.8 km upstream of a boat landing when a rescue boat sets out. If the boat proceeds at its
maximum speed of $20 \mathrm{~km} / \mathrm{h}$ with respect to the
water, what angle does the boat velocity v make with the shore? How long will it take boat to reach the child?
A. The angle made by the boat with the shore is 53°
B. The angle made by the boat with the shore is 37°
C. the time taken by boat to reach the child is 4 min

D. the time taken by boat to reach the child

 is 3 min
Answer: B::D

D Watch Video Solution

2. A launch plies between two points A and B on the opposite banks of a river always following the line $A B$. The distance S between points and B is 1200 m . The velocity of the river current $v=1.9 \mathrm{~m} / \mathrm{s}$ is constant over the
entire width of the river. The line $A B$ makes an
angle $\alpha=60^{\circ}$ with the direction of the current. With what velocity u and at what angle beta to the line $A B$ should the launch move to cover the distance $A B$ and back in a time $t=5 \mathrm{~min} ?$ The angle beta remains the same during the passage from A to B and from
B to A.

A. The velocity of the boat is $8 \mathrm{~m} / \mathrm{s}$
B. The velocity of the boat is $6 \mathrm{~m} / \mathrm{s}$
C. The angle made by u with the line $A B$ is
12°
D. The angle made by u with the line $A B$ is

$$
10^{\circ}
$$

Answer: A::C

- Watch Video Solution

3. The current velocity of river grows in proportion to the distance from its bank and reaches the maximum value v_{0} in the middle.

Near the banks the velocity is zero. A boat is moving along the river in such a manner that
the boatman rows his boat always
perpendicular to the current. The speed of the boat in still water is u. Find the distance through which the boat crossing the river will be carried away by the current, if the width of the river is c. Also determine the trajectory of the boat.
A. The distance carried by the boat is

$$
X_{\max }=\frac{2 c u}{v_{0}}
$$

B. The distance carried by the boat is

$$
X_{\max }=\frac{v_{0}}{2 c u}
$$

C. The trajectary of the boat is $y^{2}=\frac{v_{0} C}{u} x$
D. The trajectary of the boat is $y^{2}=\frac{v_{0} c}{u} x$

Answer: B::D

D Watch Video Solution

4. Two swimmers A and B start swimming from different positions on the same bank as shown
in figure. The swimmer A swims at angle 90°
with respect to the river to reach point P.He
takes 120 seconds to cross the river of width

10 m .The swimmer B also takes the same time to reach the point P

A. velocity of A with respect to river is
$1 / 6 \mathrm{~m} / \mathrm{s}$
B. river flow velocity is $1 / 4 \mathrm{~m} / \mathrm{s}$
C. Velocity of B along y-axis with respect to
earth is $1 / 3 \mathrm{~m} / \mathrm{s}$.
D. Velocity of B along x-axis with respect to earth is $5 / 24 \mathrm{~m} / \mathrm{s}$.

Answer: B::D

D Watch Video Solution

5. Two frames of reference P and Q are moving relative to each other at constant velocity. Let
$\vec{v}_{O P}$ and $\vec{a}_{O P}$ represent the velocity and the acceleration respectively of a moving particle
O as measured by an observer in frame P and
$\vec{v}_{O Q}$ and $\vec{a}_{O Q}$ represent the velocity and the acceleration respectively of the moving particle O as measured by an observer in frame Q, then
A. $\vec{v}_{O P}=\vec{v}_{O Q}$
B. $\vec{v}_{O P}=\vec{v}_{O Q}+\vec{v}_{Q P}$
C. $\vec{a}_{O P}=\vec{a}_{O Q}$
D. $\vec{a}_{O P}=\vec{a}_{O Q}+\vec{a}_{Q P}$

Answer: B::C::D
6. Two swimmers start a race. One who reaches
the point C first on the other bank wins the race. A makes his strokes in a direction of 37° to the river flow with velocity $5 \mathrm{~km} / \mathrm{hr}$ relative to water. B makes his strokes in a direction 127^{0} to the river flow with same relative velocity.River is flowing with speed of $2 \mathrm{~km} / \mathrm{hr}$ and is 100 m wide.speeds of A and B on the
ground are $8 \mathrm{~km} / \mathrm{hr}$ and $6 \mathrm{~km} / \mathrm{hr}$ respectively.

A. A will win the race
B. B will win the race
C. the time taken by A to reach the point C
is 165 sec
D. the time taken by B to reach the point C is 150 sec

Answer: A::D

- Watch Video Solution

7. Two trains A and B are moving with same speed of $100 \mathrm{~km} / \mathrm{hr}$.Train A moves towards east
and train B moves towards west.An an instant
when the trains are moving side by side, an
aeroplane files above the trains
horizontally.For the passengers in the train A,
the plane appears to fly from North to South
direction.For the passengers in the train B, the
plane appears to fly in a direction making an angle 60° to North-South direction.
A. The speed of the plane with respect to
ground is $100 \sqrt{\frac{7}{3}} \mathrm{~km}$
B. The speed of the plane with respect to
ground is $100 \sqrt{3} \mathrm{~km}$
C. The plane moves in a direction at an
angle of $\tan ^{-1} \frac{\sqrt{3}}{2}$ to North-South
direction (with respect to ground)
D. The plane moves in a direction at an angle of $\tan ^{-1} \frac{\sqrt{5}}{2}$ to North-South direction (with respect to ground)

Answer: A::C

D Watch Video Solution

8. Two shells are fired from cannon with speed u each, at angles of α of β respectively with the horizontal.The time interval between the shots is T.They collide in mid air after time t from the
first shot.Which of the following conditions must be satisfied?
A. $\alpha>\beta$
B. $t \cos \alpha=(t-T) \cos \beta$
C. $(t-T) \cos \alpha=t \cos \beta$
D. $(u \sin \alpha) t-\frac{1}{2} \mathrm{gt}^{2}=(u \sin \beta)(t-T)-\frac{1}{2} g(t-T)^{2}$

Answer: A::B::D

- Watch Video Solution

9. Two inclined planes $O A$ and $O B$ having inclination (with horizontal) 30° and 60°, respectively, intersect each other at O as shown in figure. A particle is projected from point P with velocity $u=10 \sqrt{3} \mathrm{~ms}^{-1}$ along a direction perpendicular to plane OA. If the particle strikes plane $O B$ perpendicularly at Q, calculate

The vertical height h of P from O,
A. The time of flight $2 s$
B. The velocity with which the particle strikes the plane $O B=10 \mathrm{~m} / \mathrm{s}$
C. The height of the point P from point O
is $5 m$
D. The distance $P Q=20 m$

Answer: A::B::C::D

D Watch Video Solution

10. Two balls are thrown from an inclined plane at angle of projection α with the plane, one up the incline and other down the incline as shown in figure (T stands for total time of flight):

> A. $h_{1}=h_{2}=\frac{v_{0}^{2} \sin ^{2} \alpha}{2 g \cos \theta}$ B. $T_{1}=T_{2}=\frac{2 v_{0} \sin \alpha}{g \cos \theta}$ C. $R_{2}-R_{1}=g(\sin \theta) T_{1}^{2}$ D. $v_{1}=v_{2}$

Answer: A::B::C::D

- Watch Video Solution

11. An aeroplane at a constant speed releases a bomb.As the bomb drops away from the
aeroplane,
A. It will always be vertically below the aeroplane
B. It will always be vertically below the aeroplane only if the aeroplane was
flying horizontally.
C. It will always be vertically below the
aeroplane only if the aeroplane was
flying at an angle of 45° to the horizontal

D. It will gradually was fall behind the

 aeroplane if the aeroplane was flying horizontally.
Answer: A

D Watch Video Solution

12. Two particles are projected with speed
$4 \mathrm{~m} / \mathrm{s}$ and $3 \mathrm{~m} / \mathrm{s}$ simultaneously from same
point as shown in the figure. Then:

A. Their relative velocity is along vertical
direction
B. Their relative acceleration is non-zero
and it is along vertical direction
C. They will hit the surface simultaneously
D. Their relative velocity is constant and has magnitude $1.4 \mathrm{~m} / \mathrm{s}$

Answer: A::D

D Watch Video Solution

13. A particle moves along x-axis with constant acceleration and its x-position depend on time
t as shown in the following graph
(parabola), then in interval 0 to 4 sec .

A. relation between x-coordinate $\&$ time is

$$
x=t-t^{2} / 4
$$

B. maximum x-coordinate is $1 m$.
C. total distance travelled is $2 m$
D. average speed is $0.5 \mathrm{~m} / \mathrm{s}$

Answer: A::B::C::D

D Watch Video Solution

14. A railway compartments is 16 m long, 2.4 m
wide and $3.2 m$ high. It is moving with a velocity
v A particle moving horizontally with a speed u perpendicular to the direction of v enters
through a hole at an upper corner A and
strikes the diagonally opposite corner B
.Assume $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

A. $v=20 \mathrm{~m} / \mathrm{s}$
B. $u=3 m / s$
C. To an observer inside the compartment,
the path of the particle is a parabola
D. To a stationary observer outside the compartment, the path of the particle is

Answer: A::B::C::D

- Watch Video Solution

15. Two particles A and B are projected from
the same point with the same velocity of projection but at different angles α and β of projection, such that the maximum height of A is two-third of the horizontal range of B . then which of the following relations are true?
A. range of $A=$ maximum height of B
B. $3(1-\cos 2 \alpha)=8 \sin 2 \beta$
C. maximum value of β is $\sin ^{-1}(3 / 4)$
D. maximum horizontal range of $A=u^{2} / g$
and this occurs when $\beta=\frac{1}{2} \sin ^{-1}\left(\frac{3}{8}\right)$

Answer: B::D

D Watch Video Solution
16. Two particles are projected from the same point, with the same speed, in the same vertical plane, at different angles with the horizontal.A frame of references is fixed to one particle.The position vector of the other particle as observed from this frame is \vec{r} Which of the following statements are corrects?
A. direction of \vec{r} does not change
B. \vec{r} changes in magnitudes and direction
with time
C. The magnitude of \vec{r} increases linearly
with time
D. The direction of \vec{r} changes with time, its magnitude may or may not change, depending on the angles of projection

Answer: A::C

(D) Watch Video Solution

1. A river of width w is flowing such that the
stream velocity varies with y as
$v_{R}=v_{0}\left[1+\frac{\sqrt{3}-1}{w} y\right]$, where y is the
perpendicular distance from one bank.A boat
starts rowing from the bank with constant velocity $v=2 v_{0}$ in such a way that it always moves along a straight line perpendicular to the banks.

At what time will he reach the other bank

$$
\begin{aligned}
& \text { A. } t=\frac{w \pi}{6 v_{0}} \\
& \text { B. } \frac{w \pi}{6(\sqrt{2}-1) v_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \frac{w \pi}{6(\sqrt{3}-1) v_{0}} \\
& \text { D. } \frac{w \pi}{(\sqrt{3}-1) v_{0}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

2. A river of width w is flowing such that the stream velocity varies with y as
$v_{R}=v_{0}\left[1+\frac{\sqrt{3}-1}{w} y\right]$, where y is the
starts rowing from the bank with constant
velocity $v=2 v_{0}$ in such a way that it always
moves along a straight line perpendicular to
the banks.

What will be the velocity of the boat along the
straight line when he reaches the other bank
A. v_{0}
B. $\sqrt{2} v_{0}$
C. $\frac{v_{0}}{\sqrt{2}}$
D. $2 c_{0}$

Answer: A

D Watch Video Solution

3. A man is riding on a flat car travelling with a constant speed of $10 \mathrm{~m} / \mathrm{s}$. He wishes to throw a
ball through a stationary hoop 15 m above the height of his hands in such a manner that the ball will move horizontally as it passes through the hoop. He throws the ball with a speed of $12.5 \mathrm{~m} / \mathrm{s}$ w.r.t himself.

How many seconds after he release the ball will it pass through the hoop?
A. 1 sec
B. 2sec
C. 3sec
D. 4 sec

Answer: B

- Watch Video Solution

4. A man is riding on a flat car travelling with a constant speed of $10 \mathrm{~m} / \mathrm{s}$. He wishes to throw a ball through a stationary hoop 15 m above the height of his hands in such a manner that the ball will move horizontally as it passes through the hoop. He throws the ball with a speed of $12.5 \mathrm{~m} / \mathrm{s}$ w.r.t himself.

At what horizontal distance in front of the hoop must he release the ball?
A. $12.5 m$
B. 15.5 m
C. 17.5 m
D. 20 m

Answer: C

D Watch Video Solution

5. A cannon is fixed with a smooth massive trolley car at an angle θ as shown in the figure.The trolley car slides from rest down the inclined plane of angle of inclination β.

The muzzle velocity of the shell fired at $t=y_{0}$
from the cannon is u,such that the shell moves
perpendicular to the inclined just after the
firing.
The value of t_{0} is:
firing.

A. $\frac{u \cos \theta}{g}$
B. $\frac{u \cos \theta}{g \cos \theta}$
C. $\frac{u \cos \theta}{g \sin \beta}$
D. $\frac{u \sin \theta}{g \cos \theta}$

Answer: C

D Watch Video Solution

6. A cannon is fixed with a smooth massive
trolley car at an angle θ as shown in the
figure.The trolley car slides from rest down the inclined plane of angle of inclination β.

The muzzle velocity of the shell fired at $t=y_{0}$
from the cannon is u,such that the shell moves
perpendicular to the inclined just after the firing.

The time of flight of the shell is:
firing.

A. $\frac{u \cos \theta}{g \sin \beta}$
B. $\frac{2 u \sin \theta}{g \cos \beta}$
C. $\frac{u}{g}$
D. $\frac{u \sin \theta}{g \sin \beta}$

Answer: B
7. A cannon is fixed with a smooth massive trolley car at an angle θ as shown in the figure.The trolley car slides from rest down the inclined plane of angle of inclination β.

The muzzle velocity of the shell fired at $t=y_{0}$ from the cannon is u,such that the shell moves perpendicular to the inclined just after the firing.
the difference in range of the shell relative to
the trolley car and ground is:
firing.

$$
\begin{aligned}
& \text { A. } \frac{u^{2} \sin 2 \theta}{g \cos \beta} \\
& \text { B. } \frac{u^{2} \cos \theta}{2 g \sin \beta} \\
& \text { C. } \frac{u^{2} \sin \theta \sin \beta}{2 g} \\
& \text { D. } \frac{2 U^{2} \sin \theta \cos (\theta-\beta)}{g \cos ^{2} g}
\end{aligned}
$$

Answer: D
8. A cannon is fixed with a smooth massive trolley car at an angle θ as shown in the figure.The trolley car slides from rest down the inclined plane of angle of inclination β.

The muzzle velocity of the shell fired at $t=y_{0}$ from the cannon is u,such that the shell moves perpendicular to the inclined just after the firing.
after what time should the shell be fired such
that it will go vertically up?
firing.

$$
\begin{aligned}
& \text { A. } \frac{u \cos \theta}{g \sin \beta} \\
& \text { B. } \frac{u \sin (\theta+\beta)}{g \cos \theta \sin \beta} \\
& \text { C. } \frac{u \cos (\theta+\beta)}{g \cos \beta} \\
& \text { D. } \frac{u \cos (\theta+\beta)}{g \sin \beta \cos \beta}
\end{aligned}
$$

Answer: D

9. When we analyse the projectile motion from any accelerated frame O as \vec{r}_{o}, \vec{u}_{o} and \vec{a}_{o} respectively, express the following terms,
$\vec{r}_{p O}+\vec{a}_{p}-\vec{r}_{O}, \vec{u}_{p O}=\vec{u}_{p}-\vec{u}_{O}$
$\vec{a}_{p O}=\vec{a}_{p}-\vec{a}_{O}$
where P stands for projectile. Then using the following kinematical equations of the projectile (For constant acceleration) relative to the accelerating frame ,we have
$\vec{S}_{p O}=\vec{u}_{p O}^{t+\frac{1}{2}} \vec{a}_{p o} t^{2}, \vec{v}_{p O}$
$=\vec{u}_{p O}+\vec{a}_{p O} t$ and $v_{p O}^{2}=u_{p O}^{2}+2 \vec{a} . \vec{s}_{p} O$

Using the above expressions, anwer the

following

question:A projectile has initial velocity v_{0} realtive to the large plate which is moving with a constant upward acceleration a.

Which of the following remains equal for the observers A and B ?

A. Maximum height
B. Range

C. Time of flight

D. Angle of projection

Answer: D

D View Text Solution

10. When we analyse the projectile motion from any accelerated frame O as \vec{r}_{o}, \vec{u}_{o} and \vec{a}_{o} respectively, express the following terms,
$\vec{r}_{p O}+\vec{a}_{p}-\vec{r}_{O}, \vec{u}_{p O}=\vec{u}_{p}-\vec{u}_{O}$
and
$\vec{a}_{p O}=\vec{a}_{p}-\vec{a}_{O}$
where P stands for projectile. Then using the following kinematical equations of the projectile (For constant acceleration) relative to the accelerating frame ,we have
$\vec{S}_{p O}=\vec{u}_{p O} t+\frac{1}{2} \vec{a}_{p O} t^{2}, \vec{v}_{p O}$
$=\vec{u}_{p O}+\vec{a}_{p O} t$ and $v_{p O}^{2}=u_{p O}^{2}+2 \vec{a} \cdot \vec{s}_{p} O$
Using the above expressions, anwer the following
question:A projectile has initial velocity v_{0} realtive to the large plate which is moving with a constant upward acceleration a.

Refering to Q.1, velocity of the projectile
relative to B ofter some time

A. $<v_{0}$ at an angle $\theta<\theta_{0}$
B. $>v_{0}$ at an angle $\theta>\theta_{0}$
C. $>v_{0}$ at an angle $\theta=\theta_{0}$
D. v_{0} at an angle $\theta=\theta_{0}$

Answer: D

11. A point moves in the plane $x y$ according to
the law, $x=a \sin \omega t, y=a(1-\cos \omega t)$ Answer the
following question taking a and ω as positive

constant

The distance travelled by the point during the time T is
A. $2 a \omega T$
B. $3 a \omega T$
C. $4 a \omega T$
D. $a \omega T$

Answer: D

D Watch Video Solution

12. A point moves in the plane $x y$ according to
the law, $x=a \sin \omega t, y=a(1-\cos \omega t)$ Answer the
following question taking a and ω as positive constant

The equation of the trajectory of the particle is

$$
\text { A. } y=a-\sqrt{a^{2}-x^{2}}
$$

$$
\begin{aligned}
& \text { B. } y=a+\sqrt{a^{2}-x^{2}} \\
& \text { C. } y=a-\frac{\sqrt{a^{2}-x^{2}}}{2 a} \\
& \text { D. } y=a-2 \frac{\sqrt{a^{2}-x^{2}}}{a}
\end{aligned}
$$

Answer: B

D Watch Video Solution

13. A point moves in the plane $x y$ according to
the law, $x=a \sin \omega t, y=a(1-\cos \omega t)$ Answer the
following question taking a and ω as positive

constant

The magnitude of the velocity of the point as a
function of time is

$$
\begin{aligned}
& \text { A. } a \sqrt{1+(1-\alpha t)^{2}} \\
& \text { B. } a \sqrt{1+(1-2 \alpha t)^{2}} \\
& \text { C. } 2 a \sqrt{1+(1-\alpha t)^{2}} \\
& \text { D. } 2 a \sqrt{1+(1-2 \alpha t)^{2}}
\end{aligned}
$$

Answer: B

D Watch Video Solution
14. At time $t=0$, the position vector of a particle moving in the $x-y$ plane is $5 \hat{j} m$.By time $t=0.62 \mathrm{sec}$, its position vector has become $(5.1 \hat{i}+0.4 \hat{j})$ m.with the data answer the following questions.

The magnitude of the average velocity during the above time interval.
A. $.0206 \mathrm{~m} / \mathrm{sec}$
B. $0.206 \mathrm{~m} / \mathrm{sec}$
C. $20.6 \mathrm{~m} / \mathrm{sec}$
D. $2.06 \mathrm{~m} / \mathrm{sec}$

Answer: C

D Watch Video Solution

15. At time $t=0$, the position vector of a particle moving in the $x-y$ plane is $5 \hat{j} m$.By time $t=0.62$ sec, its position vector has become
$(5.1 \hat{i}+0.4 \hat{j})$ m.with the data answer the following questions.

The angle θ made by the average velocity with the positive x axis
A. $\tan ^{-1}(2)$
B. $\tan ^{-1}(3)$
C. $\tan ^{-1}(1)$
D. $\tan ^{-1}(4)$

Answer: D

D Watch Video Solution

16. The position vector of a particle at time t is given by $\vec{r}=2 t \hat{i}+5 t \hat{j}+4 \sin \omega t \hat{k}$ where ω is a

constant.Answer the following questions

Velocity vector of the particle is

A. Constant in magnitude but variable with
direction
B. constant in direction must variable with
magnitude
C. constant
D. Varying with magnitude as well as
direction
17. The position vector of a particle at time t is

given by $\vec{r}=2 t \hat{i}+5 t \hat{j}+4 \sin \omega t \hat{k}$ where ω is a constant.Answer the following questions

Velocity vector is perpendicular tovector
A. $2 \hat{i}+4 \hat{j}$
B. $3 \hat{i}+2 \hat{j}$
C. $5 \hat{i}-2 \hat{j}$
D. None

Answer: C

D Watch Video Solution

18. The position vector of a particle at time t is
given by $\vec{r}=2 t \hat{i}+5 t \hat{j}+4 \sin \omega t \hat{k}$ where ω is a
constant.Answer the following questions

Acceleration of the particle is
A. Constant in magnitude but variable with
direction
B. constant
C. Constant in direction but variable with
magnitude
D. Varying with magnitude as well as
direction

Answer: D

- Watch Video Solution

Level-Vi Integer

1. The distance between two moving particles
P and Q at any time is a.lf v_{r} be their relative
velocity and if u and v be the components of v_{r}
, along and perpendicular to $P Q$.The closest distance between P and Q and time that elapses before they arrive at their nearest distance is
2. Airplanes A and B are flying with constant velocity in the same vertical plane at angles 30° and 60° with respect to the horizontal respectively as shown in figure. The speed of A is $100 \sqrt{3} \mathrm{~m} / \mathrm{s}$. At time $t=0 \mathrm{~s}$, an observer in A
finds B at a distance of 500 m . The observer sees B moving with a constant velocity perpendicular to the line of motion of A. If at $t=t_{0}$, A just escapes being hit by $B, t_{0}, \mathrm{~A}$ just
escapes being hit by B, t_{0} in seconds is

D Watch Video Solution

3. A rock is launched upward at 45°.A bee moves along the trajectory of the rock at a constant speed equal to the initial speed of the rock.The magnitude of acceleration of the
bee at the top point of the trajectory is $x g$?For
the rock, neglect the air resistance.Find the value of x.

- Watch Video Solution

4. A ball is thrown horizontally from a height of 20 m .If hits the ground with a velocity of 3 times the velocity of projection. The velocity of projection is $3.5 x m / s$ then x is
5. A body is projected up from the bottom as inclined plane with velocity $3 \sqrt{3} m /$ sec which makes an angle 60° if the horizontal. The angle of projection is 30° with the plane then the time of fight when it strikes the same plane is $0.1 x$. Then the value of x is

- Watch Video Solution

6. A ball is thrown with a velocity whose horizontal component is $12 \mathrm{~ms}^{-1}$ from a point 15 m above the ground and 6 m away from a
verticlewall 18.75 m high in such a way so as
just to clear the wall. At what time will it reach
the ground ? $\left(g=10 m s^{-2}\right)$.

- Watch Video Solution

7. A golfer standing on level ground hits a ball with a velocity of $52 \mathrm{~ms}^{-1}$ at an angle θ above
the horizontal. If $\tan \theta=5 / 12$, then find the
time for which then ball is atleast 15 m above
the ground $\left(\right.$ takeg $\left.=10 \mathrm{~ms}^{-2}\right)$.
8. A particle is projected from a stationary trolley. After projection, the trolley moves with a velocity $2(\sqrt{15}) \mathrm{m} / \mathrm{s}$. For an observer on the trolley, the direction of the particle is as shown in the figure while for the observer on the ground, the ball rises vertically. The maximum height reached by the ball from the trolley is h meter. The value of h will be

- Watch Video Solution

9. A projectile is launched at time $\mathrm{t}=0$ from
point A which is at height 1 m above the floor
with speed vms^{-1} and at and angle $\theta=45^{\circ}$
with the floor. It passes through a hoop at B
which is 1 m above A and B is the highest point of the trajectory. The horizontal distance between A and B is d meters. The projectile then falls into a basket, hitting the floor at C a horizontal distance 3 d meters from A. Find I
(in m).

D Watch Video Solution

Level-I (H.W)

1. The forces each of 20 N act on a body at
120° The magnitude and direction of
resultant is
A. $20 N, \phi=60^{\circ}$
B. $20 \sqrt{2} N, \phi=60^{\circ}$
C. $10 \sqrt{2} N, \phi=0^{\circ}$
D. $10 \sqrt{2} N, \phi=120^{\circ}$

Answer: A
2. Two forces whose magnitudes are in the ratio 3:5 give a resultant of $35 N$.If the angle between them is 60°, the magnitude of each force is
A. $3 N, 5 N$
B. $9 \mathrm{~N}, 25 \mathrm{~N}$
C. $15 N, 25 N$
D. $21 N, 35 N$

Answer: C

3. The resultant of two forces $2 P$ and $\sqrt{2} P$ is

 $\sqrt{10} P$.The angle between the forces isA. 30°
B. 45°
C. 60°
D. 90°

Answer: B

4. Which one of the following cannot be represented by the three sides of a triangle?
A. $5,9,11$
B. 3, 7, 11
C. 7, 10, 13
D. $3,8,9$

Answer: B

- Watch Video Solution

5. Figure shows three vectors \vec{a}, \vec{b} and \vec{c} where
R is the mid point of $P Q$, then which of the
following relations is correct.

A. $\vec{a}+\vec{b}=2 \vec{c}$
B. $\vec{a}+\vec{b}=\vec{c}$
C. $\vec{a}-\vec{b}=2 \vec{c}$

$$
\text { D. } \vec{a}-\vec{b}=\vec{c}
$$

Answer: A

D Watch Video Solution

6. Eleven forces each equal to $5 N$ act on a
particle simultaneously.If each force makes an
angle 30° with the next one, the resultant of
all forces is
A. $15 N$
B. 55 N
C. 5 N
D. zero

Answer: C

D Watch Video Solution

7. A body of mass $\sqrt{3} \mathrm{~kg}$ is suspended by a string to rigid support.The body is pulled horizontally by a force F until the string makes
an angle of 30° with the vertical. The value of F and tension in the string are
A. $9.8 N, 9.8 N$
B. $9.8 N, 19.6 N$
C. $19.6 \mathrm{~N}, 19.6 \mathrm{~N}$
D. $19.6 N, 9.8 N$

Answer: B

D Watch Video Solution

8. Two light strings of length 4 cm and 3 cm are
tied to a bob of weight 500 gm . The free ends of
the strings are tied to pegs in the same horizontal line and separated by 5 cm .The ratio of tension in the longer string to that in the shortest string is
A. $4: 3$
B. $3: 4$
C. $4: 5$
D. $5: 4$

Answer: B

- Watch Video Solution

9. A force $2 \hat{i}+\hat{j}-\hat{k}$ newton acts on a body which is initially at rest.If the velocity of the body at the end of 20seconds is
$4 \hat{i}+2 \hat{j}+2 \hat{k} m^{-1}$, the mass of the body
A. 20 kg
B. 15 kg
C. 10 kg

D. 5 kg

Answer: C

D Watch Video Solution

10. The position vector of a moving particle at seconds in given by $\vec{r}=3 \hat{i}+4 t^{2} \hat{j}-t^{3} \hat{k}$.lts displacement during an interval of $1 s$ to $3 s$ is

$$
\begin{aligned}
& \text { A. } \hat{j}-\hat{k} \\
& \text { В. } 3 \hat{i}+4 \hat{j}-\hat{k}
\end{aligned}
$$

C. $9 \hat{i}+36 \hat{j}-27 \hat{k}$
D. $32 \hat{j}-26 \hat{k}$

Answer: D

- Watch Video Solution

11. If initial velocity of a body is
$\vec{u}=2 \vec{i}-2 \vec{j}+3 \vec{k}$ and the final velocity is
$\vec{v}=2 \vec{i}-4 \vec{j}+5 \vec{k}$ and it is changed in time of
10sec.Find the acceleration vector?

$$
\begin{aligned}
& \text { A. } \frac{3 \vec{i}-2 \vec{j}+2 \vec{k}}{10} \\
& \text { B. } \frac{-3 \vec{i}+\vec{j}+2 \vec{k}}{10} \\
& \text { C. } \frac{-3 \vec{i}-2 \vec{j}+2 \vec{k}}{10} \\
& \text { D. } \frac{-j+\vec{k}}{5}
\end{aligned}
$$

Answer: D
(Watch Video Solution
12. A particle is moving eastwards with a velocity $15 \mathrm{~ms}^{-1}$.Suddenly it moves towards north and moves with the same speed in time 10sec.The average acceleration during this time is
A. $3 / \sqrt{2} N E$
B. $3 / \sqrt{2} N E$
C. $3 / \sqrt{2} N W$
D. $3 / \sqrt{2} N W$

Answer: C

- Watch Video Solution

13. A person crossing a road with a certain velocity due north, sees a car moving towards east.The relative velocity of the car w.r.t the person is $\sqrt{2}$ times that of the velocity of the person. The angle made by the relative velocity with the east is
A. 30°
B. 45°
C. 60°

D. 90°

Answer: B

D Watch Video Solution

14. A Person is walking in rain feels the velocity
of rain as twice to his velocity.At which angle
he should hold the umbrella with vertical if he moves forward, if it is raining vertically downwards

$$
\text { A. } 30^{\circ}
$$

B. 45°
C. 60°
D. 90°

Answer: A

- Watch Video Solution

15. When it is raining vertically down, to a man
walking on road the velocity of rain appears to
be $1.5 \times$ his velocity.To protect himself from
rain he should hold the umbrealla at an angle
θ to vertical. The $\tan \theta=$

$$
\begin{aligned}
& \text { A. } \frac{2}{\sqrt{5}} \\
& \text { B. } \frac{\sqrt{5}}{2} \\
& \text { C. } \frac{2}{3} \\
& \text { D. } \frac{3}{2}
\end{aligned}
$$

Answer: A

D Watch Video Solution

16. A motor car A is travelling with a velocity of
$20 \mathrm{~m} / \mathrm{s}$ in the north-west direction and another motor car B is travelling with a velocity of $15 \mathrm{~m} / \mathrm{s}$ in the north-east directions.The magnitude of relative velocity of B with respect to A is.
A. $25 \mathrm{~m} / \mathrm{s}$
B. $15 \mathrm{~m} / \mathrm{s}$
C. $20 \mathrm{~m} / \mathrm{s}$
D. $35 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

17. A man can swim in still water at a speed of

6 kmph and he has to cross the river and reach
just opposite point on the other bank.If the river is flowing at a speed of $3 k m p h$, and the width of the river is 2 km , the time taken to cross the river is (in hours)
A. $\frac{2}{27}$
B. $\frac{2}{\sqrt{27}}$
C. $\frac{2}{3}$
D. $\frac{2}{\sqrt{45}}$

Answer: B

D Watch Video Solution

18. A boat moves perpendicular to the bank
with a velocity of $7.2 \mathrm{~km} / \mathrm{h}$. The current carries it

150 m downstreamk.find the velocity of the current (The width of the river is 0.5 km).
A. $0.4 m s^{-1}$
B. $1.2 \mathrm{~ms}^{-1}$
C. $0.5 \mathrm{~ms}^{-1}$
D. $0.6 m s^{-1}$

Answer: D

D Watch Video Solution

19. A swimmer is capable of swimming $1.65 \mathrm{~ms}^{-1}$ in still water.If she swims directily across a 180 m wide river whose current is
$0.85 \mathrm{~ms}^{-1}$,how far downstreams (from a point opposite her starting point) will she reach?
A. $92.7 m$
B. 40 m
C. 48 m
D. 20 m

Answer: A

D Watch Video Solution
20. A person swims at 135° to current to river, to meet target on reaching opposite point.The ratio of person's velocity to river water velocity is
A. $\sqrt{3}: 1$
B. $\sqrt{2}: 1$
C. $1: \sqrt{2}$
D. $1: \sqrt{3}$

Answer: B
21. The parabolic path of a projectile is
represented by $y=\frac{x}{\sqrt{3}}-\frac{x^{2}}{60}$ in MKS units: Its
angle of projection is $\left(g=10 \mathrm{~ms}^{-2}\right)$
A. 30°
B. 45°
C. 60°
D. 90°

Answer: A

- Watch Video Solution

22. A body is projected at angle 30° to
horizontal with a velocity $50 \mathrm{~ms}^{-1}$. Its time of flight is
A. $4 s$
B. $5 s$
C. $6 s$

D. 7 s

23. A body is projected with velocity $60 \mathrm{~m} / \mathrm{s}$ at
30° to the horizontal.The velocity of the body after 3seconds is
A. $20 \hat{i}+20 \sqrt{3} \hat{j}$
B. $30 \hat{i}$
C. $10 \sqrt{3} \hat{j}$
D. $30 \sqrt{3 \hat{i}}$
24. A body is projected with velocity u such
that in horizontal range and maximum vertical
heights are samek.The maximum height is
A. $\frac{u^{2}}{2 g}$
$3 u^{2}$
B. $\frac{}{4 g}$
C. $\frac{16 u^{2}}{17 g}$
D. $\frac{8 u^{2}}{17 g}$

Answer: D

- Watch Video Solution

25. A cricket ball is hit for a six leaving the bat
at an angle of 60° to the horizontal with
kinetic energy k.At the top, K. E. of the ball is
A. Zero
B. k
C. $\frac{k}{4}$
D. $\frac{k}{\sqrt{2}}$

Answer: C

D Watch Video Solution

26. A bomb at rest is exploded and the pieces
are scattered in all directions with a maximum
velocity of $20 \mathrm{~ms}^{-1}$. Dangerous distance from
that spot is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. 10 m
B. 20 m
C. 30 m

D. 40 m

Answer: D

D Watch Video Solution

27. A boy can throw a stone up to a maximum
height of 10 m . The maximum horizontal
distance that the boy can throw the same stone up to will be :
A. $20 \sqrt{2} m$
B. 10 m
C. $10 \sqrt{2} m$
D. 20 m

Answer: D

D Watch Video Solution

28. A grass hopper can jump a maximum horizontal distance of 20.4 cm . If it speeds negligible tiem on the ground, what is its speed of travel along the road, $g=10 \mathrm{~m} / \mathrm{s}^{\circ}$.
A. $3 / 2 \mathrm{~m} / \mathrm{s}$
B. $\sqrt{\frac{3}{2}} m / s$
C. $1 / 2 \mathrm{~m} / \mathrm{s}$
D. $\sqrt{\frac{2}{3}} \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

29. A stone is thrown with a velocity v at an angle θ with the horizontal.Its speed when it
makes an angle β with the horizontal is
A. $v \cos \theta$
B. $\frac{v}{\cos \beta}$
C. $v \cos \theta \cos \beta$
D. $\frac{v \cos \theta}{\cos \beta}$

Answer: D

- Watch Video Solution

30. A body is projected with a certain speed at angles of projection of θ and $90-\theta$.The maximum heights attained in the two cases are 20 m and 10 m respectively.The maximum possible range is
A. 60 m
B. 30 m
C. 20 m
D. 80 m
31. The launching speed of a certain projectile
is five times the speed it has at its maximum height.Its angles of projection is
A. $\theta=\cos ^{-1}(0.2)$
B. $\theta=\sin ^{-1}(0.2)$
C. $\theta=\tan ^{-1}(0.2)$
D. $\theta=0^{\circ}$
32. A person throws a bottle into a dustbin at the same height as he is $2 m$ away at an angle of 45°. The velocity of thrown is
A. g
B. \sqrt{g}
C. $2 g$
D. $\sqrt{2 g}$
33. A body projected horizontally from the top of a tower follows $y=20 x^{2}$ parabola equation where x, y are in $m\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.Then the velocity of the projectile is $\left(\mathrm{ms}^{-1}\right)$
A. 0.2
B. 0.3
C. 0.4
D. 0.5

Answer: D

- Watch Video Solution

34. A bomb is dropped from an aeroplane
flying horizontally with a velocity of 720 kmph
at an altitude of $980 m$.Time taken by the bomb
to hit the ground is
A. 1 s
B. 7.2 s
C. 14.14 s

D. 0.15 s

Answer: C

D Watch Video Solution

35. A body is projected horizontally from a height of 78.4 m with a velocity $10 \mathrm{~ms}^{-1}$. Its velocity after 3seconds is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$ (Take direction of projection as i and vertically upward direction as j)
A. $10 \hat{i}-30 \hat{j}$
B. $10 \hat{i}+30 \hat{j}$
C. $20 \hat{i}-30 \hat{j}$
D. $10 \hat{i}-10 \sqrt{3} \hat{j}$

Answer: A

D Watch Video Solution

36. Two thin wood screens A and B are separated by 200 m a bullet travelling horizontally at speed of $600 \mathrm{~m} / \mathrm{s}$ hits the screen A penetrates through it and finally
emerges out from B making holes in A and B
the resistance of air and wood are negligible
the difference of heights of the holes in A and B is.
A. $5 m$
B. $\frac{49}{90} m$
C. $\frac{7}{\sqrt{90}} m$
D. zero

Answer: B
37. A fly wheel is rotating about its own axis at an angular velocity $11 \mathrm{rads}^{-1}$, its angular velocity in revolation per minute is
A. 105
B. 210
C. 315
D. 420

Answer: A
38. A stationary wheel starts rotating about its
own axis at constant angular acceleration. If
the wheel completes 50 rotations in first 2 seconds, then the number of rotations mades by it in next two seconds is
A. 75
B. 100
C. 125
D. 150

Answer: D

D Watch Video Solution

39. A point size body is moving along a circle at an angular velocity $2.8 \mathrm{rads}^{-1}$.If centripetal acceleration of body is $7 \mathrm{~ms}^{-2}$ then its speed is
A. $1.25 \mathrm{~ms}^{-1}$
B. $2.5 \mathrm{~ms}^{-1}$
C. $3.5 \mathrm{~ms}^{-1}$
D. $7 m s^{-1}$

Answer: B

D Watch Video Solution

40. A circular plate is rotating about its own axis at an angular velocity 100 revolutions per minute. The linear velocity of a particle P of plate at a distance 4.2 cm from axis of rotation is
A. $0.22 \mathrm{~m} / \mathrm{s}$
B. $0.44 \mathrm{~m} / \mathrm{s}$
C. $2.2 \mathrm{~m} / \mathrm{s}$
D. $4.4 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

41. An air craft executes a horizontal loop of radius 1 km with steady speed of $900 \mathrm{kmh}^{-1}$.

Compare its centripetal acceleration with the acceleration due to gravity.
A. 6.0
B. 6.4
C. 5
D. 7

Answer: B

- Watch Video Solution

Level-II(H.W)

1. The greatest and least resultant of two
forces are $7 N$ and $3 N$ respectively. If each of the force is increased by $3 N$ and applied at 60°.The magnitude of the resultant is
A. $7 N$
B. $3 N$
C. 10 N
D. $\sqrt{129} N$

Answer: D

2. In an equilateral triangle $A B C, A L, B M$, and $C N$ are medians. Forces along $B C$ and $B A$ represented by them will have a resultant represented by
\rightarrow
A. $2 A L$
\rightarrow
B. $2 B M$
C. $2 C N$
\rightarrow
D. $A C$

Answer: B

- Watch Video Solution

3. Given that $\vec{A}+\vec{B}+\vec{C}=0$, out of three vectors two are equal in magnitude and the magnitude of third vector is $\sqrt{2}$ times that of either of two having equal magnitude. Then angle between vectors are given by
A. $30^{\circ}, 60^{\circ}, 90^{\circ}$

$$
\text { B. } 45^{\circ}, 135^{\circ}, 150^{\circ}
$$

C. $90^{\circ}, 135^{\circ}, 150^{\circ}$
D. $90^{\circ}, 135^{\circ}, 135^{\circ}$

Answer: D

D Watch Video Solution

4. A and B are two pegs separated by $13 \mathrm{~cm} . A$
body of 169 kgwt is suspended by thread of

17 cm connecting to $A \& B$, such that the two
segments of strings are perpendicular.Then
tensions in shorter and longer parts of string are
A. $100 \mathrm{kgwt}, 69 \mathrm{kgwt}$
B. $65 \mathrm{kgwt}, 156 \mathrm{kgwt}$
C. $156 \mathrm{kgwt}, 65 \mathrm{kgwt}$
D. $69 \mathrm{kgwt}, 100 \mathrm{kgwt}$

Answer: B

D Watch Video Solution
5. Two particles having position vectors
$\vec{r}_{1}=(3 \vec{i}+5 \vec{j}) m$ and $\vec{r}_{2}=(-5 \vec{i}+3 \vec{j}) m$ are moving with velocities $\vec{V}_{1}=(4 \hat{i}-4 \hat{j}) m s^{-1}$ and $\vec{V}_{2}=(1 \hat{i}-3 \hat{j}) \mathrm{ms}^{-1}$. If they collide after 2 seconds, the value of a is
A. 2
B. 4
C. 6
D. 8

Answer: C

D Watch Video Solution

6. A body is projected up such that its position

second.The time when its y-coordinate is zero
is
A. $3 s$
B. 1 s
C. 0.8 s
D. 1.25 s

Answer: C

D Watch Video Solution

7. The position of a particle is given by
$\vec{r}=3 t \vec{i}-2 t^{2} \hat{j}+4 \hat{k} m$ where t is in second and
the co-efficients have proper units for r to be in m.The magnitude and direction of velocity of the particle at $t=2 s$ is
A. $8.54 \mathrm{~ms}^{-1}, 20^{\circ}$ with x-axis
B. $10.54 \mathrm{~ms}^{-1}, 70^{\circ}$ with x-axis
C. $8.54 \mathrm{~ms}^{-1}, 70^{\circ}$ with x-axis
D. $10.54 \mathrm{~ms}^{-1}, 20^{\circ}$ with x-axis

Answer: C

D Watch Video Solution

8. A particle starts from origin at $t=0$ with a constant velocity $5 \hat{i} m / s$ and moves in $x-y$ plane under action of a force which produce a
constant acceleration of $(3 \hat{i}+2 \hat{j}) \mathrm{m} / \mathrm{s}^{2}$ the y coordinate of the particle at the instant its x co-ordinate is $84 m$ in m is
A. 6
B. 36
C. 18
D. 9

Answer: B

(
9. When two bodies approach each other with
the different speeds, the distance between
them decreases by 120 m for every 1 min . The
speeds of the bodies are
A. $2 \mathrm{~m} / \mathrm{s}$ and $0.5 \mathrm{~m} / \mathrm{s}$
B. $3 \mathrm{~m} / \mathrm{s} \& 2 \mathrm{~m} / \mathrm{s}$
C. $1.75 \mathrm{~m} / \mathrm{s} \& 0.25 \mathrm{~m} / \mathrm{s}$
D. $2.5 \mathrm{~m} / \mathrm{s} \& 0.5 \mathrm{~m} / \mathrm{s}$

Answer: C

10. An aeroplane is flying with the velocity of
$V_{1}=800 \mathrm{kmph}$ relative to the air towards
south.A wind with velocity of $V_{2}=15 \mathrm{~ms}^{-1}$ is
blowing from west to east.What is the velocity
of the aeroplane with respect of the earth.
A. $221.7 \mathrm{~ms}^{-1}$
B. $150 \mathrm{~ms}^{-1}$
C. $82 m s^{-1}$
D. $40 \mathrm{~ms}^{-1}$

Answer: A

D Watch Video Solution

11. A boat takes $4 h r$ upstream and $2 h r$ down
the stream for covering the same distance.The ratio of velocity of boat to the water in river is.
A. $1: 3$
B. $3: 1$
C. $1: \sqrt{3}$
D. $\sqrt{3}: 1$

Answer: B

- Watch Video Solution

12. The width of a river is $2 \sqrt{3} \mathrm{~km} . \mathrm{A}$ boat is rowed in direction perpendicular to the banks of river.If the drift of the boat due to flow is $2 k m$,the displacement of the boat is.
A. 3 km
B. 6 km
C. 5 km

D. 4 km

Answer: D

D Watch Video Solution

13. Person aiming to reach the exactly opposite point on the bank of a stream is
swimming with a speed of $0.5 \mathrm{~ms}^{-1}$ at an angle of 120° with the direction of flow of water.The speed of water in the stream is
A. $1 \mathrm{~ms}^{-1}$
B. $0.25 \mathrm{~ms}^{-1}$
C. $0.67 \mathrm{~ms}^{-1}$
D. $3 m s^{-1}$

Answer: B

D Watch Video Solution

14. A particle projected from the level ground just clears in its ascent a wall 30 m high and $120 \sqrt{3}$ away measured horizontally.The time since projection to clear the wall is two
second.lt will strike the ground in the same
horizontal plane from the wall on the other side of a distance of (in metres)
A. $150 \sqrt{3}$
B. $180 \sqrt{3}$
C. $120 \sqrt{3}$
D. $210 \sqrt{3}$

Answer: B

D Watch Video Solution
15. A stone is projected with a velocity
$20 \sqrt{2} \mathrm{~m} / \mathrm{s}$ at an angle of 45° to the horizontal.The average velocity of stone during its motion from starting point to its maximum height is
A. $10 \sqrt{5} \mathrm{~m} / \mathrm{s}$
B. $20 \sqrt{5} \mathrm{~m} / \mathrm{s}$
C. $5 \sqrt{5} \mathrm{~m} / \mathrm{s}$
D. $20 \mathrm{~m} / \mathrm{s}$
16. A ball is thrown with velocity $8 \mathrm{~ms}^{-1}$ making an angle 60° with the horizontal.Its velocity will be perpendicular to the direction of initial velocity of projection after a time of
A. $\frac{1.6}{\sqrt{3}} s$
B. $\frac{4}{\sqrt{3}} s$
C. 0.6 s
D. $1.6 \sqrt{3} s$

D Watch Video Solution

17. The range of a projectile launched at an angle of 15° with horizontal is 1.5 km . The range of projectile when launched at an angle of 45° to the horizontal is
A. 3 km
B. 4.5 km
C. 1.5 km

D. 2.5 km

Answer: C

D Watch Video Solution

18. A body is projected obliquely from the ground such that its horizontal range is maximum.If the change in its maximum height to maximum height, is P, the change in its
linear momentum as it travels from the point
of projection to the landing point on the

ground will be

A. P
B. \sqrt{P}
C. $2 P$
D. $2 \sqrt{2} P$

Answer: D
(Watch Video Solution
19. A projectile is thrown at angle β with vertical.It reaches a maximum height H.The time taken to reach the hightest point of its path is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{\bar{H}}{g}} \\
& \text { B. } \sqrt{\frac{2 H}{g}} \\
& \text { C. } \sqrt{\frac{H}{2 g}} \\
& \text { D. } \sqrt{\frac{2 H}{g \cos \theta}}
\end{aligned}
$$

- Watch Video Solution

20. The maximum height attained by a projectile is increased by 5%. Keeping the angle of projection constant, what is the percentage increases in horizontal range?
A. 5%
B. 10%
C. 15 \%
D. 20%

Answer: A

D Watch Video Solution

21. A gardener wants to wet the garden without moving from his place with a water jet whose velocity is $20 \mathrm{~ms}^{-1}$ the maximum area
that he can wet $\left(g=10 \mathrm{~ms}^{-2}\right)\left(\right.$ in $\left.m e t r e^{2}\right)$
A. 1600π
B. 40π
C. 400π
D. 200π

Answer: A

D Watch Video Solution

22. A particle is projected with speed u at
angle θ to the horizontal. Find the radius of
curvature at highest point of its trajectory

$$
\begin{aligned}
& \text { A. } \frac{u^{2} \cos ^{2} \theta}{2 g} \\
& \text { B. } \frac{\sqrt{3} u^{2} \cos ^{2} \theta}{2 g}
\end{aligned}
$$

Answer: C

D Watch Video Solution

23. From the top of a tower of height $78.4 m$
two stones are projected horizontally with
$10 \mathrm{~m} / \mathrm{s}$ and $20 \mathrm{~m} / \mathrm{s}$ in opposite directions. On
reaching the ground, their separation is
A. 120 m
B. 100 m
C. 200 m
D. 150 m

Answer: A

D Watch Video Solution

24. A body is projected vertically upwards.At its
highest point it explodes into two pieces of masses in the ratio of $2: 3$ and the lighter
piece flies horizontally with a velocity of $6 \mathrm{~ms}^{-1}$
.The time after which the lines joining the point of explosion to the position of particles are perpendicular to each other is

> A. $\sqrt{\frac{6}{25}} s$
> B. $\sqrt{\frac{12}{15}} s$
> C. $\sqrt{\frac{24}{25}} s$
D. $2 s$

Answer: C
25. From the top of a building 80 mhigh , a ball
is thrown horizontally which hits the ground at a distance.The line joining the top of the building to the point where it hits the ground makes an angle of 45° with the ground. Initial velocity of projection of the ball is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. $10 \mathrm{~m} / \mathrm{s}$
B. $15 \mathrm{~m} / \mathrm{s}$
C. $20 \mathrm{~m} / \mathrm{s}$
D. $30 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

26. A stone is thrown from the top of a tower
of height 50 m with a velocity of $30 \mathrm{~ms}^{-1}$ at an
angle of 30° above the horizontal. Find the
time during which the stone will be in air
A. 2 sec
B. 3sec
C. 4 sec
D. 5 sec

Answer: D

D Watch Video Solution

27. From the top of a tower of height $40 \mathrm{~m}, \mathrm{a}$ ball is projected upward with a speed of $20 \mathrm{~ms}^{-1}$ at an angle of elevation of 30°. Then the ratio of the total time taken by the ball to
hit the ground to the time taken to ball come at same level as top of tower.
A. $2: 1$
B. $3: 1$
C. $3: 1$
D. $4: 1$

Answer: A
(Watch Video Solution
28. A body is thrown horizontally with a velocity u from the top of a tower.The displacement of the stone when the horizontal and vertical velocities are equal is

$$
\begin{aligned}
& \text { A. } \frac{u^{2}}{g} \\
& \text { B. } \frac{u}{2 g} \\
& \text { C. } \sqrt{5}\left(\frac{u^{2}}{2 g}\right) \\
& \text { D. } \frac{2 u^{2}}{g}
\end{aligned}
$$

- Watch Video Solution

29. A ball is projected with $20 \sqrt{2} \mathrm{~m} / \mathrm{s}$ at angle
45° with horizontal.The angular velocity of
the particle at highest point of its journey about point of projection is
A. $0.1 \mathrm{rad} / \mathrm{s}$
B. $1 \mathrm{rad} / \mathrm{s}$
C. $0.3 \mathrm{rad} / \mathrm{s}$
D. $0.4 \mathrm{rad} / \mathrm{s}$

Answer: B

- Watch Video Solution

30. A particle is moving along a circular path in $x y$-plane. When its crosses x-axis,it has an acceleration along the path of $1.5 \mathrm{~m} / \mathrm{s}^{2}$, and is moving with a speed of $10 \mathrm{~m} / \mathrm{s}$ in -ve y -

direction.The total acceleration is

A. $50 \hat{i}-105 \hat{j} m / s^{2}$
B. $10 \hat{i}-1.5 \hat{j} m / s^{2}$
C. $-50 \hat{i}-1.5 \hat{j} m / s^{2}$
D. $1.5 \hat{i}-50 \hat{j} m / s^{2}$

Answer: C

D Watch Video Solution

31. An insect trapped in a circular groove of radius 12 cm moves along the groove steadily and complete 7 revolutions in 100 seconds.The linear speed of the motion in cm / s
A. 5.3
B. 4
C. 3
D. 5

Answer: A

- Watch Video Solution

llustration

1. A particle start origin moves towares north
with 50 m then move towards east with 40 m
and finaly move towards south with 20 m . Find
distance and displacement.

- Watch Video Solution

2. A bullet fired at an angle of 30° with the horizontal hits the ground 3.0 km away. By adjusting its angle of projection, can one hope to hit a target 5.0 km away? Assume the muzzle speed to be fixed and neglect air resistance.
3. A cannon and a target are 5.10 km apart and
located at the same level. How soon will the
shell launched with the initial velocity $240 \mathrm{~m} / \mathrm{s}$ reach the target in the absence of air drag?

D Watch Video Solution

4. The ceiling of a long hall is 20 m high. What
is the maximum horizontal distance that a ball
thrown with a speed of 40 m can go without
hitting the ceiling of hall $\left(g=10 \mathrm{~ms}^{-2}\right)$?
5. A ball projected with a velocity of $10 \mathrm{~m} / \mathrm{s}$ at angle of 30° with horizontal just clears two vertical poles each of height 1 m . Find separation between the poles.

D View Text Solution

6. A body is projected with velocity u at an angle of projection θ with the horizontal. The
direction of velocity of the body makes angle
30° with the horizontal at $t=2 \mathrm{~s}$ and then after $1 s$ it reaches the maximum height. Then

D Watch Video Solution

7. A particle is thrown over a triangle from one end of a horizontal base and after grazing the
vertex falls on the other end of the base. If α and β be the base angles and θ the angle of projection, prove that $\tan \theta=\tan \alpha+\tan \beta$.
8. The velocity of a projectile when it is at the greatest height is $(\sqrt{2 / 5})$ times its velocity when it is at half of its greatest height. Determine its angle of projection.

D Watch Video Solution

9. A foot ball is kicked off with an initial speed
of $19.6 \mathrm{~m} / \mathrm{s}$ to have maximum range. Goal
keeper standing on the goal line $67.4 m$ away in
the direction of the kick starts running
opposite to the direction of kick to meet the ball at that instant. What must his speed be if he is to catch the ball before it hits the ground?

D Watch Video Solution

10. A body projected from a point ' O ' at an angle θ, just crosses a wall 'y' m high at a distance ' x ' m from the point of projection and strikes the ground at Q beyond the wall as
shown, then find height of the wall,

D View Text Solution

11. A particle is projected with a velocity of $10 \sqrt{2} \mathrm{~m} / \mathrm{s}$ at an angle of 45° with the horizontal. Find the interval between the moments when speed is
$\sqrt{125} \mathrm{~m} / \mathrm{s}\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

D Watch Video Solution

12. A projectile of 2 kg has velocities $3 \mathrm{~m} / \mathrm{s}$ and
$4 \mathrm{~m} / \mathrm{s}$ at two points during its flight in the uniform gravitational field of the earth. If
these two velocities are \perp to each other
then the minimum $K E$ of the particle during its flight is

- Watch Video Solution

13. In the absence of wind the range and maximum height of a projectile were R and H.

If wind imparts a horizontal acceleration
$a=g / 4$ to the projectile then find the maximum range and maximum height.

D Watch Video Solution

14. A particle is projected from the ground with an initial speed of v at an angle θ with horizontal. The average velocity of the particle between its point of projection and highest point of trajectroy is :
15. A ball is thrown from the top of a tower of

61 m high with a velocity $24.4 \mathrm{~ms}^{-1}$ at an elevation of 30° above the horizontal. What is the distance from the foot of the tower to the point where the ball hits the ground?

- Watch Video Solution

16. A particle is projected from a tower as
shown in figure, then find the distance from
the foot of the tower where it will strike the
ground. $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

- View Text Solution

17. A golfer standing on the ground hits a ball with a velocity of $52 \mathrm{~m} / \mathrm{s}$ at an angle θ above
the horizontal if $\tan \theta=\frac{5}{12}$ find the time for which the ball is at least 15 m above the ground?
$\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
18. Two paper screens A and B are separated by a distance of 100 m . A bullet pierces A and B.

The hole in B is 10 cm below the hole in A. If the bullet is travelling horizontally at the time of hitting the screen A, calculate the velocity of the bullet when it hits the screen A. Neglect resistance of paper and air.

D
 Watch Video Solution

19. A boy aims a gun at a bird from a point, at a horizontal distance of 100 m . If the gun can impart a velocity of $500 \mathrm{~m} / \mathrm{sec}$ to the bullet, at what height above the bird must he aim his gun in order to hit it?

D Watch Video Solution

20. An enemy plane is flying horizontally at an
altitude of 2 km with a speed of $300 \mathrm{~ms}^{-1}$.An army man with an anti-aircraft gun on the
ground sights enemy plane when it is directly
overhead and fires a shell with a muzzle speed
of $600 \mathrm{~ms}^{-1}$.At what angle with the vertical should the gun be fired so as to hit the plane?

D Watch Video Solution

21. From the top of a tower, two balls are thrown horizontally with velocities u_{1} and u_{2} in opposite directions. If their velocities are perpendicular to each other just before they strike the ground, find the height of tower.

Watch Video Solution

22. From points A and B, at the respective heights of 2 m and 6 m , two bodies are thrown simultaneouly towards each other, one is thrown horizontally with a velocity of $8 \frac{\mathrm{~m}}{\mathrm{~s}}$ and the other, downward at an angle 45° to the horizontal at an initial velocity v_{0} such that the bodies collide in flight. The horizontal distance between points A and B equal to 8m.Then find

The initial velocity V_{0} of the body thrown at an
angle 45°

The time of flight of the bodies before colliding

The coordinate (x, y) of the point of collision
(consider the botton of the tower A as origin)
is

D Watch Video Solution

23. A particle is projected horizontally with a speed u from the top of plane inclined at an angle θ with the horizontal. How far from the
point of projection will the particle strike the plane?

D Watch Video Solution

24. A projectile has the maximum range of 500 m . If the projectile is now thrown up on an inclined plane of 30° with the same speed,
what is the distance covered by it along the inclined plane?

D Watch Video Solution

25. When a motor cyclist takes a U-turn in $4 s$ what is the average angular velocity of the motor cyclist.

D Watch Video Solution
26. What is the linear velocity of a person at equator of the earth due to its spinning motion? (Radius of the earth $=6400 \mathrm{~km}$)

- Watch Video Solution

27. (i) What does $\left|\frac{d v}{d t}\right|$ and $\frac{d|V|}{d t}$ represent ?
(ii) Can these be equal ?
(iii) Can $\frac{d \mid V}{d t}=0$ while | $\frac{d V}{d t} \neq 0$?
(iv) Can $\frac{d|V|}{d t} \neq 0$ while $\left|\frac{d v}{d t}\right|=0$?
28. A particle revolving in a circular path completes first one third of circumference in 2 sec , while next one third in 1 sec . The average angular velocity of particle will be - ("in "rad//sec)

- Watch Video Solution

29. The angular displacement of a particle is given
30. The angular velocity of a particle is given by $\omega=1.5 t-3 t^{\circ}+2$, Find the time when its angular acceleration becomes zero.

- Watch Video Solution

31. A point on the rim of a disc starts circular motion from rest and after time t, it gains an
angular acceleration given by $\alpha=3 t-t^{2}$.
Calculate the angular velocity after 2 s .

D Watch Video Solution

32. In the situation shown the car and the bus are travelling on parallel roads. Initial velocity
of car $=0$,acceleration $=1 \mathrm{~m} / \mathrm{s}^{2}$ and velocity of
Bus $5 \mathrm{~m} / \mathrm{s}$ (constant). Find
(i) The instant at which the car overtake the bus.
(ii) The road distance used by the car for
overtaking the bus
(iii) Velocity of car w.rt. the bus at that moment
iv) How will the answer to (i), (i) \& (iii) will change if they were moving towards each other (case of crossing)

D View Text Solution

33. X is moving with velocity $2 \mathrm{~m} / \mathrm{sec}$. due east and Y is moving with velocity $4 \mathrm{~m} / \mathrm{sec}$ due west

Find (1) The velocity of Y with respect to X, (2)

Velocity of X with respect to Y

D Watch Video Solution

34. A passenger in a Bus moving towards east, observes a man moving towards north. What is the actual direction of man w.r.t ground.

D View Text Solution

35. A person moves due east at speed $6 \mathrm{~m} / \mathrm{s}$
and feels the wind is blowing to south at speed $6 \mathrm{~m} / \mathrm{s}$.
(a) Find actual velocity of wind blow.
(b) If person doubles his velocity then find the relative velocity of wind blow w.r.t. man.

D Watch Video Solution

36. A man is moving due east with a speed 1 $\mathrm{km} / \mathrm{hr}$ and rain is falling vertically with a speed
$\sqrt{3} \mathrm{~km} / \mathrm{hr}$. At what angle from vertical the man
has to hold his umbrella to keep the rain away.
Also find the speed of rain drops w.r.t. man.

D Watch Video Solution

EVALUATE YOUR SELF-1

1. A particle moves in $x-y$ plane according to
equations $x=4 t^{2}+5 t \quad$ and $\quad 6 y=5 t \quad$ The
acceleration of the particle must be
A. $8 \mathrm{~m} / \mathrm{sec}^{2}$
B. $12 \mathrm{~m} / \mathrm{sec}^{2}$
C. $14 \mathrm{~m} / \mathrm{sec}^{2}$
D. none of the above

Answer: A

D Watch Video Solution
2. A large number of bullets are fired in all directions with the same speed v. Find the
maximum area on the ground on which these
bullets will spread.

$$
\begin{aligned}
& \text { A. } \frac{\pi u^{2}}{g} \\
& \text { B. } \frac{\pi u^{4}}{g^{2}} \\
& \text { C. } \frac{\pi u^{2}}{g^{4}} \\
& \text { D. } \frac{\pi u}{g^{4}}
\end{aligned}
$$

Answer: B

D Watch Video Solution
3. From a point on the ground at a distance of

2 m from the fot of a verticle wal, a ball is thrown at an angle of 45° which just clears the top of the wall and then strikes the ground at distance of 4 m from the foot of the wall on the other side. The height of the wall is
A. $(3 / 2)$
B. $(2 / 3)$
C. $(3 / 4)$
D. $(4 / 3)$

Answer: D

- Watch Video Solution

4. The range of a projectile when fired at 75°
with the horizontal is 0.5 km . What will be its
range when fired at 45° with same speed:-
A. 0.5 km
B. 1.0 km
C. 1.5 km
D. 2.0 km

Answer: B

- Watch Video Solution

5. The speed at the maximum height of a
projectile is $\frac{\sqrt{3}}{2}$ times of its initial speed 'u' of projection Its range on the horizontal plane:-
$\sqrt{3} u^{2}$
A. $\frac{}{2 g}$
B. $\frac{u^{2}}{2 g}$
C. $\frac{3 u^{2}}{2 g}$
D. $\frac{3 u^{2}}{g}$

Answer: A

- Watch Video Solution

6. A student is able to throw a ball vertically to
maximum height of 40 m . The maximum
distance to which the student can throw the
ball in the horizonal direction:-
A. $40(2)^{1 / 2} m$
B. $20(2)^{1 / 2} m$
C. 20 m
D. 80 m

Answer: D

D Watch Video Solution

7. The equation of projectile is $y=16 x-\frac{x^{2}}{4}$ the horizontal range is:-
A. 16 m
B. 8 m
C. 64 m
D. 12.8 m

Answer: C

- Watch Video Solution

8. A ball is thrown upwards and returns to the ground describing praraboleic path. Which of the quantities remain constant throufgout the motion.
A. speed of the ball
B. kinetic energy of the ball
C. vertical component of velocity
D. horizontal component of velocity

Answer: D

D Watch Video Solution

9. The velocity of projection of oblique projectile is $(6 \hat{i}+8 \hat{j}) \mathrm{ms}^{-1}$ The horizontal range of the projectile is
A. 4.9 m
B. 9.6 m
C. 19.6 m
D. 14 m

Answer: B

D Watch Video Solution
10. If R and h represent the horizontal range and maximum height respectively of an
obliquie projectile, the $\frac{-}{8 h}+2 h$ represents
A. maximum horizontal range
B. maximum vertical range
C. time of fight
D. velocity of projectile at highest point

Answer: A

D Watch Video Solution

1. From the top of a tower 20 m high, a ball is thrown horizontally. If the line joining the point of projection to the point where it hits the ground makes an angle of 45° with the horizontal, then the initial velocity of the ball is:
A. $5 \mathrm{~m} / \mathrm{s}$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $15 \mathrm{~m} / \mathrm{s}$
D. $20 \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

2. A person fires a bullet directly towards a monkey sitting on a tree. Just when the bullet
leaves the gun, the monkey starts falling freely.
The monkey falls in the range of the bullet.
The bullet
A. Will go above the monkey
B. Will hit the monkey
C. Will go below the monkey
D. None of these

Answer: B

D View Text Solution

3. a body is thrown horizontally with a velocity
$\sqrt{2 g h}$ from the top of a tower of height h. It strikes the level gound through the foot of the tower at a distance x from the tower. The value of x is :-
A. h
B. $\frac{h}{2}$
C. 2 h
D. $\frac{2 h}{3}$

Answer: C

D Watch Video Solution
4. A bomb is dropped from an aeroplane moving horizontally at constant speed. When
air resistance is taken into consideration, the bomb
A. ahead of the bag
B. directly above the bag
C. far behind the bag
D. data is not sufficient.

Answer: B
5. A plane surface is inclined making an angle β
above the horizon. A bullet is fired with the point of projection at the bottom of the inclined plane with velocity u, then the maximum range is given by:
A. $\frac{v^{2}}{g}$
B. $\frac{v^{2}}{g(1+\sin \theta)}$
C. $\frac{v^{2}}{g(1-\sin \theta)}$
D. $\frac{v^{2}}{g(1+\cos \theta)}$

Answer: B

6. A ball is projected horizontally with a speed
v from the top of the plane inclined at an
angle 45° with the horizontal. How far from
the point of projection will the ball strikes the plane?
A. $\frac{v^{2}}{g}$
B. $\sqrt{2} \frac{v^{2}}{g}$
C. $\frac{2 v^{2}}{g}$
D. $\sqrt{2}\left[\frac{2 v^{2}}{g}\right]$

Answer: D

D Watch Video Solution

7. The time of flight of a projectile on an upwardd inctined plane depends upon
A. angle of inclination of the plane
B. angle of projection
C. the value of acceleration due to gravity

D. all of these.

Answer: D

- Watch Video Solution

EVALUATE YOUR SELF-3

1. If the angle (θ) between velocity vector and
the acceleration vector of a moving particle is
$90^{\circ}<\theta<180^{\circ}$, then the path of the particle
A. Straight path with retardation
B. Straight path with acceleration
C. Curvilinear path with acceleration
D. Curvilinear path with retardation

Answer: D

D Watch Video Solution
2. In uniform circular motion
A. Velocity remains constant
B. Speed is constant
C. Acceleration is zero
D. Acceleration is along the direction of
tangent

Answer: B

D Watch Video Solution

3. A particle moves along a circle if radius (20
//pi) m with constant tangential acceleration.
If the velocity of the particle is $80 \mathrm{~m} / \mathrm{s}$ at the
A. $40 \pi m / s^{2}$
B. $40 \mathrm{~m} / \mathrm{s}^{2}$
C. $640 \pi m / s^{2}$
D. $160 \mathrm{~m} / \mathrm{s}^{2}$

Answer: B

4. A particle moves in a circle of radius 25 cm at two revolutions per sec. The acceleration of the particle in $\mathrm{m} / \mathrm{s}^{2}$ is:
A. π^{2}
B. $8 \pi^{2}$
C. $4 \pi^{2}$
D. $2 \pi^{2}$

Answer: C

D Watch Video Solution
5. In a circular motion of a particle the tangential acceleration of the particle is given by $a_{t}=2 \mathrm{tm} / \mathrm{s}^{2}$. The radius of the circle described is $4 m$. The particle is initially at rest.

Time after which total acceleration of the particle makes 45° with radial acceleration is :
A. 1s
B. 2s
C. 3 s
D. 12 s

Answer: B

- Watch Video Solution

6. A cylclist is riding with a speed of $27 \mathrm{kmh}^{-1}$.

As he approaches a circular turn on the road of radius 80 m , he applies brakes and reduces his speed at the constant rate of $0.5 \mathrm{~ms}^{-2}$. What is the magnitude and direction of the net acceleration of the cyclist on the circular turn?
A. $0.5 \mathrm{~m} / \mathrm{s}^{2}$
B. $0.49 \mathrm{~m} / \mathrm{s}^{2}$
C. $0.86 \mathrm{~m} / \mathrm{s}^{2}$
D. None of these

Answer: C

D Watch Video Solution

7. In a non- uniform circular motion

A. Tangential acceleration $\left(a_{t}\right)$ is zero
B. Radial acceleration $\left(a_{R}\right)$ is zero
C. Both (1) \& (2) are correct
D. Both $a_{t} \& a_{R}$ are non zero

Answer: D

D Watch Video Solution

8. For an electron circulating around the nucleus, the centripetal force is supplied by
A. Magnetic force
B. Electrostatic force
C. Gravitational force
D. Nuclear force

Answer: B

D Watch Video Solution

9. A body is revolving with a uniform speed v in
a circle of radiusr. The tangential acceleration
is
A. $\frac{v}{r}$
B. $\frac{v^{2}}{r}$
C. Zero
D. $\frac{v}{r^{2}}$

Answer: C

- Watch Video Solution

10. The ratio of angular speeds of minute hand
and hour hand of a watch is
A. $1: 12$
B. $6: 1$
C. 12:1
D. $1: 6$

Answer: C
(Watch Video Solution

EVALUATE YOUR SELF -4

1. A lift starts ascending with an acceleration of $4 f t / s^{2}$. At the same time a bolt falls from its cieling 6 ft above the floor. Find the time taken by it to reach the floor. $g=32 \mathrm{ft} / \mathrm{s}^{2}$

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{3}} s \\
& \text { B. } \frac{1}{3} s \\
& \text { C. } \frac{1}{\sqrt{5}} s \\
& \text { D. } \frac{1}{5} s
\end{aligned}
$$

2. A bus starts moving with acceleration $2 \mathrm{~ms}^{-2}$
. A cyclist $96 m$ behind the bus starts simultaneously towards the bus at a constant speed of $20 \mathrm{~ms}^{-1}$

After some time the bus will be left behind. If bus continues moving with the same acceleration, after what time from the beginning, the bus will overtake the cyclist ?
A. 4 s
B. 8 s
C. 12s
D. 16 s

Answer: B

- Watch Video Solution

3. Two particles start simultaneously from a point with equal velocities v each along two straight inclined at 60°. Find their relative velocity
A. V
B. 2 V
C. $\frac{V}{2}$
D. 3 V

Answer: A

D Watch Video Solution

4. For a man running with a speed v. Wind appears to have a velocity v and inclination 120° with him. Find original velocity of wind
A. V
B. 2 V
C. $\frac{V}{2}$
D. 3 V

Answer: A

D Watch Video Solution

5. Rain is falling vertically at $10 \sqrt{3} \mathrm{kph}$. A man is running at 10 kph . The angle with vertical at which he should hold his umbrella is
A. 60°
B. 45°
C. 30°
D. 15°

Answer: C

D Watch Video Solution

6. Rain was falling on a non-windy day, vertically downwards at the rate of $12 \mathrm{~m} / \mathrm{s}$.

Suddenly wind starts blowing at the rate of 4
m / s due North, with what speed the rain drops hit a man travelling due east at $3 \mathrm{~m} / \mathrm{s}$?
A. $10 \mathrm{~m} / \mathrm{s}$
B. $11 \mathrm{~m} / \mathrm{s}$
C. $12 \mathrm{~m} / \mathrm{s}$
D. $13 \mathrm{~m} / \mathrm{s}$

Answer: D

- View Text Solution

7. A particle is projected from a point A vertically upwards with a speed of $50 \mathrm{~ms}^{-1}$ and another is dropped simultaneously from B which is 200 m vertically above A. They cross each other after [Given: $g=10 \mathrm{~ms}^{-2}$].
A. 4 s
B. 5 s
C. 6 s
D. 8 s

- Watch Video Solution

8. A person walks up a stalled escalator in 90 s .

When standingon the same escalator, now moving, he is carried in 60 s.The time it would take him to walk up the moving escalator will be:
A. 27 s
B. 72 s
C. 18s
D. 36 s

Answer: D

D Watch Video Solution

9. A jet airplance travelling at the speed of
$500 \mathrm{~km}^{-1}$ ejects its products of combustion at the speed of $1500 \mathrm{kmh}^{-1}$ relative to the jet plane. What is the speed of the burnt gases with respect to observer on the ground ?
A. $1500 \mathrm{~km} / \mathrm{h}$

B. 2000 km/h

C. $1000 \mathrm{~km} / \mathrm{h}$

D. $500 \mathrm{~km} / \mathrm{h}$

Answer: C

- Watch Video Solution

10. Two balls are thrown simultaneously, A
vetically upwards with a speed of $20 \mathrm{~ms}^{-1}$ from
the ground, and B vetically downwards from height of 40 m with the same speed and along
the same line of motion. At what points do the two balls collide? Take $g=9.8 \mathrm{~ms}^{-2}$.
A. 15 m above from the ground
B. 15 m below from the top of the tower
C. 20 m above from the ground
D. 20 m below fom the top of the tower

Answer: A

D Watch Video Solution

11. A man wishes to swim across a river 0.5 km .
wide if he can swim at the rate of $2 \mathrm{~km} / \mathrm{h}$. in
still water and the river flows at the rate of
$1 \mathrm{~km} / \mathrm{h}$. The angle (w.r.t. the flow of the river)
along which he should swin so as to reach a
point exactly oppposite his starting point, should be:-
A. 60°
B. 120°
C. 145°

D. 90°

Answer: B

D Watch Video Solution

12. A boat man can row with a speed of 10 $\mathrm{km} / \mathrm{hr}$. in still water. The river flow steadily at 5
$\mathrm{km} / \mathrm{hr}$. and the width of the river is 2 km . if the boat man cross the river with reference to minimum distance of approach then time elapsed in rowing the boat will be:-
A. $\frac{}{5}$ hour
B. $\frac{2}{5 \sqrt{3}}$ hours
c. $\frac{3 \sqrt{2}}{5}$ hours
$5 \sqrt{2}$
D. $\frac{}{3}$ hour

Answer: B

D Watch Video Solution

13. A boat covers certain distance between two
spots on a river taking ' t_{1} ' time, going down
stream and ' t_{2} ' time going upstream, what
time will be taken by the boat to cover the same distance in still water:-

$$
\begin{aligned}
& \text { A. } \frac{t_{1}+t_{2}}{2} \\
& \text { B. } \frac{t_{1}}{2}+\frac{3}{4} t_{2} \\
& \text { C. } \frac{2 t_{1} t_{2}}{t_{1}+t_{2}} \\
& \text { D. } \frac{t_{1}+t_{2}}{2 t_{1} t_{2}}
\end{aligned}
$$

Answer: C

1. If $\vec{A}+\vec{B}=\vec{C}$ and the angle between \vec{A} and \vec{B} is 120°, then the magnitude of \vec{C}
A. must be equal to $|\vec{A}-\vec{B}|$ B. must be less than $|\vec{A}-\vec{B}|$
C. must be greater than $|\vec{A}-\vec{B}|$
D. must be equal to $|\vec{A}-\vec{B}|$

Answer: B

2. When two vectors \vec{A} and \vec{B} of magnitudes a

 and b respectively are added, the magnitude of resultant vector is alwaysA. Equal to $(a+b)$
B. Less than $(a+b)$
C. Greater than $(a+b)$
D. Not greater than $(a+b)$
3. If $\vec{C}=\vec{A}+\vec{B}$ then
A. \vec{C} is always greater than $|\vec{A}|$
B. C is always equal to $A+B$
C. C is always equal to $A+B$
D. It is possible to have $|\vec{C}|<|\vec{A}|$ and

$$
|\vec{C}|<|\vec{B}|
$$

Answer: D

4. Three forces start acting simultaneously on a particle moving the velocity \vec{V}. The forces are represented in magnitude and direction by the three sides of a triangle $A B C$ (as shown).

The particle will now move with velocity

A. less than \vec{V}
B. greater than \vec{V}
C. $|\vec{V}|$ in the direction of largest force
D. \vec{V} remaining unchanged

Answer: D

D Watch Video Solution
5. The minimum number of forces of equal magnitude in a plane that can keep a particle in equilibrium is
A. 4
B. 2
C. 3
D. 5

Answer: B

D Watch Video Solution

6. The minimum number of unequal forces in a plane that can keep a particle in equilibrium is
A. 4
B. 2
C. 3
D. 6

Answer: C

D Watch Video Solution

7. How many minimum number of coplanar vector having different magnitudes can be added to give zero resultant?
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

8. A train is moving due east and a car is moving due north with equal speeds. A
passenger in the train finds that the car is

moving towards

A. North-East
B. North-West
C. South-West
D. South-East

Answer: B
9. A bus moves over a straight level road with
a constant acceleration a. A boy in the bus drops a ball out side. The acceleration of the ball w.r.t the bus and the earth are respectively
A. $\sqrt{a^{2}+g^{2}}, g$
B. $g, \sqrt{a^{2}+g^{2}}$
C. a, g
D. g, a

Answer: A
10. A particles P moves with speed v along $A B$ and $B C$, sides of a square $A B C D$. Another particle Q also starts at A and moves with the same speed but along $A D$ and $D C$ of the same square $A B C D$. Then their respective changes in velocities are
A. equal in magnitude but different in directions
B. different in magnitude but same in
directions
C. different both in magnitude and
direction
D. same both in magnitude and direction

Answer: A

- Watch Video Solution

11. A river is flowing from east to west at a speed of $5 \mathrm{~m} / \mathrm{min}$. A man on south bank of river, capable of swimming $10 \mathrm{~m} / \mathrm{min}$ in still water, wants to swim across the river in shortest time. He should swim
A. Due north
B. 30° east of west
C. 30° west of north
D. 60° east of north

Answer: A

- Watch Video Solution

12. A hunter aims his fun and fires a bullet directly at a monkey on a tree. At the instant the bullet leaves the gun, the monkey drops. The bullet
A. cannot hit the monkey
B. may hit the monkey it its weight is more
than 30 kg . wt
C. may hit the monkey it its weight is less
than 30 kg . wt
D. hits the monkey irrespective of its
weight.

Answer: D

D Watch Video Solution

13. Keeping the speed of projection constant,
the angle of projection is increased from 0°
to 90°. Then the horizontal range of the projectile
A. goes on increasing up to 90°
B. decreases up to 90°
C. increases up to 45° and decreases
afterwards
D. decreases up to 45° and increases
afterwards

Answer: C
14. Keeping the speed of projection constant,
the angle of projection is increased from 0°
to 90°. Then the maximum height of the projectile
A. goes on increasing up to 90°
B. decreases up to 90°
C. increases up to 45° and decreases
beyond it

D. decreases up to 45° and increases

beyond it

Answer: A

D Watch Video Solution

15. The path of one projectile as seen from another projectile is a (if horizontal components of velocities are equal)
A. straight line
B. parabola
C. hyperbola
D. circle

Answer: A

D Watch Video Solution

16. Two particles are projected with same speed but at angles of projection $\left(45^{\circ}-\theta\right)$ and $\left(45^{\circ}+\theta\right)$. Then their horizontal ranges are in the ratio of
A. $1: 2$
B. $2: 1$
C. 1:1
D. none of the above

Answer: C

D Watch Video Solution

17. The acceleration of a projectile relative to another projectile is
A. $-g$
B. g
C. $2 g$
D. 0

Answer: D

D Watch Video Solution

18. A stone is just dropped from the window of
a train moving along a horizontal straight
track with uniform speed. The path of the stone is
A. a parabola for an observer standing by the side of the track
B. a horizontal straight line for an ovserver inside the train
C. both (1)\&(2) are true
D. (1) is true but (2) is false

Answer: C
19. A bomb is dropped from an aeroplane
flying horizontally with uniform speed. The path of the bomb of
A. a verticle straight line for a stationary
observer on the ground
B. a parabola for the pilot of the aeroplane
C. a vertical straight line for the pilot and
parabola for a stationary observer on
the ground

D. a horizontal straight line for the pilot

 and parabola for a stationary observer on the ground
Answer: C

D Watch Video Solution

20. A and B are two trains moving parallel to
each other. If a balls is thrown vertically up
from the train A, the path of the ball is
A. parabola for an observer standing on
the ground
B. vertical straight line for an observer in B
when B is moving with same speed but
in same direction
C. a parabola for an observer in B when B
is moving with same speed but in
opposite direction.
D. all the above are true

- Watch Video Solution

21. A ball is thrown from rear end to the front end of a compartment of a train which is moving at constant horizontal velocity. An observer sitting in the compartment and another observer standing on the ground draw the trajectory of the ball. They will have
A.equal horizontal and equal vertical ranges
B.equal vertical ranges but different
horizontal ranges
C. different vertical ranges but equal
horizontal ranges

D. different
vertical and
different

horizontal ranges

Answer: B

D Watch Video Solution
22. For body thrown horizontally from the top of a tower,
A. the time of flight depends both on h and
v
B. the horizontal Range depends only on v
but not on h
C. the time of flight and horizontal Range
depend on h but not on v

D. The horizontal Range depends on both v

 and h
Answer: D

D Watch Video Solution

23. A body is projected from a point with different angles of projections
$20^{\circ}, 35^{\circ}, 45^{\circ}, 60^{\circ}$ with the horizontal but with same initial speed. Their respective horizontal but with same initial speed. Their
respective horizontal ranges are R_{1}, R_{2}, R_{3} and R_{4}. Identify the correct order in increasing order
A. $R_{1}, R_{4}, R_{2}, R_{3}$
B. $R_{2}, R_{1}, R_{4}, R_{3}$
C. $R_{1}, R_{2}, R_{4}, R_{3}$
D. $R_{4}, R_{1}, R_{2}, R_{3}$

Answer: A

D Watch Video Solution
24. Two particles are projected from the same point with the same speed at different angles
θ_{1} and θ_{2} to the horizontal. If their respective
times of flights are T_{1} and T_{2} and horizontal ranges are same then
a) $\theta_{1}+\theta_{2}=90^{\circ}$,
b) $T_{1}=T_{2} \tan \theta_{1}$
c. $T_{1}=T_{2} \tan \theta_{2}$,
d) $T_{1} \sin \theta_{2}=T_{2} \sin \theta_{1}$
A. a, b, dare correct
B. a, c, dare correct
C. b, c, d are correct
D. a, b, care correct

Answer: A

- Watch Video Solution

25. Two bodies are projected at angles 30°
and 60° to the horizontal from the ground
such that the maximum heights reached by
them are equal then
a) Their times of flight are equal
b) Their horizontal ranges are equal
c) The ratio of their initial speeds of projection
is $\sqrt{3}: 1$
d) Both take same time to reach the maximum
height.
A. a, b, c and d are correct
B. only a, b and c are correct
C. only a and c are correct
D. only a, c and d are correct

Answer: D
26. A body is projected with an initial speed of $100 \sqrt{3} \mathrm{~ms}^{-1}$ at an angle of 60° above the horizontal. If $g=10 \mathrm{~ms}^{-2}$ then velocity of the projectile
a) is perpendicular to it's acceleration at the instant $t=15$ sec.
b) Is perpendicular to initial velocity of projection at $t=20 \mathrm{sec}$.
c) Is minimum at the highest point
d) Changes both in magnitude and direction, during its flight.
A. a, b, c and d are correct
B. only a, c and d are correct
C. only b, c and d are correct
D. only a, b and d are correct

Answer: A

- Watch Video Solution

27. A paricle is moving along a circular path with uniform speed. Through what angle does
its angular velocity change when it completes

half of the circular path?

A. 0°
B. 45°
C. 180°
D. 360°

Answer: A
28. A car of mass m moves in a horizontal circular path of radius r metre. At an instant
its speed is Vm / s and is increasing at a rate of $a m / \sec ^{2}$.then the acceleration of the car is
A. $\frac{V^{2}}{r}$
B. a
c. $\sqrt{a^{2}+\left(\frac{V^{2}}{r}\right)^{2}}$
D. $\sqrt{a+\left(\frac{V^{2}}{r}\right)}$

Answer: C

D Watch Video Solution

29. Consider the following two statements A
and B and identify the correct choice
A) When a rigid body is rotating about its own axis, at a given instant all particles of body
posses same angular velocity.
B) When a rigid body is rotating about its own axis, the linear velocity of a particle is directly
proportional to its perpendicular distance from axis
A. A is true but B is false
B. A is false but B is true
C. Both A and B are true
D. Both A and B are false

Answer: C

D Watch Video Solution

30. Suppose a disc is rotating counter clockwise in the plane of the paper then
A. It's angular velocity vector will be perpendicular to the page pointing up
out of the page
B. It's angular velocity vector will be perpendicular to the page pointing in
wards

C. It's angular velocity vector act along the

 tan-gent to the disc.D. none of the above is correct

Answer: A

D Watch Video Solution

31. $\vec{A}, \vec{B}, \vec{C}, \vec{D}, \vec{E}$ and \vec{F} are coplanar vectors having the same magnitude each of 10units and angle between successive vectors is 60°

The magnitude of resultant is
A. 0 units
B. 1 units
C. 2 units
D. 3 units

Answer: A

D Watch Video Solution

32. $\vec{A}, \vec{B}, \vec{C}, \vec{D}, \vec{E}$ and \vec{F} are coplanar vectors
having the same magnitude each of 10 units
and angle between successive vectors is 60°

If \vec{A} is reversed the magnitude of resultant is
A. 10 units
B. 20 units
C. 30 units
D. 40 units

Answer: B

D Watch Video Solution
33. $\vec{A}, \vec{B}, \vec{C}, \vec{D}, \vec{E}$ and \vec{F} are coplanar vectors
having the same magnitude each of 10units
and angle between successive vectors is 60°
If $\vec{A}, \vec{B} \& \vec{C}$ is reversed the magnitude of resultant is
A. 10 units
B. 20 units
C. 30 units
D. 40 units

- Watch Video Solution

34. On an open ground, a motorist follows a track that turns to his left by an angle of 60° after every 500 m . Starting from a given turn,

The path followed by the motorist is a regular hexagon with side 500 m , as shown in the given
figure specify the displacement of the motorist

at the end of third turn.
A. 500 m
B. 250 m
C. 1000 m
D. 1500 m

Answer: C

- Watch Video Solution

35. On an open ground, a motorist follows a track that turns to his left by an angle of 60° after every 500 m . Starting from a given turn,

The path followed by the motorist is a regular hexagon with side 500 m , as shown in the given figure specify the displacement of the motorist

at the end of sixth turn.
A. 3000 m
B. 1500 m
C. $0 m$
D. 1000 m

Answer: C

D Watch Video Solution

36. On an open ground, a motorist follows a track that turns to his left by an angle of 60° after every 500 m . Starting from a given turn,

The path followed by the motorist is a regular hexagon with side 500 m , as shown in the given
figure specify the displacement of the motorist

at the end of eighth turn.
A. 3000 m
B. 1500 m
C. $0 m$
D. $866 m$

Answer: D

D Watch Video Solution

37. A train is moving due east and a car is moving due north with equal speeds. A passenger in the train finds that the car is moving towards
A. North- East

B. North- West

C. South- West

D. South- East

Answer: B

D Watch Video Solution

38. A bus moves over a straight level road with
a constant acceleration a. A boy in the bus drops a ball out side. The acceleration of the ball w.r.t the bus and the earth are respectively

$$
\text { A. } \sqrt{a^{2}+g^{2}}, g
$$

B. $g, \sqrt{a^{2}+g^{2}}$
C. a, g
D. g, a

Answer: A

D Watch Video Solution

39. A particles P moves with speed v along $A B$ and $B C$, sides of a square $A B C D$. Another particle Q also starts at A and moves with the same speed but along $A D$ and $D C$ of the same
A. equal in magnitude but different in
directions
B. diferent in magnitude but same in
directions
C. diferent both in magnitude and
direction
D. same both in magnitude and direction

- Watch Video Solution

40. Ariver is flowing from west to east at a speed of $5 \mathrm{~m} / \mathrm{s}$. Aman on the south bank of the river capable of swimming at $10 \mathrm{~m} / \mathrm{s}$ in a still water wants to swim, across the river in a shortest time He should swim in a direction
A. Due north
B. 30° east of west
C. 30° west of north

D. 60° east of north

Answer: A

D View Text Solution

41. A hunter aims his fun and fires a bullet
directly at a monkey on a tree. At the instant
the bullet leaves the gun, the monkey drops.

The bullet
A. cannot hit the monkey
B. may hit the monkey it its weight is more than 30 kg w
C. may hit the monkey if its weight is less
than 30 kg wt
D. hits the monkey irrespective of its
weight.

Answer: D
(Watch Video Solution
42. Keeping the speed of projection constant,
the angle of projection is increased from 0° to 90°. Then the horizontal range of the projectile
A. goes on increasing up to 90°
B. decreases up to 90°
C. increases up to 45° and decreases
afterwards
D. decreases up to 45° and increases
afterwards

Answer: C

- Watch Video Solution

43. Keeping the speed of projection constant,
the angle of projection is increased from 0° to 90°. Then the maximum height of the projectile
A. goes on increasing upto 90°
B. decreases upto 90°
C. increases upto 45° and decreases
beyond it
D. decreases upto 45° and increases
beyond it

Answer: A

- Watch Video Solution

44. The path of one projectile as seen from another projectile is a (if horizontal components of velocities are equal)
A. straight line
B. parabola
C. hyperbola
D. circle

Answer: A

D Watch Video Solution
45. Two particles are projected with same speed but at angles of projection $\left(45^{\circ}-\theta\right)$
and $\left(45^{\circ}+\theta\right)$. Then their horizontal ranges are in the ratio of
A. $1: 2$
B. 2:1
C. 1:1
D. none of the above

Answer: C

- Watch Video Solution

46. The acceleration of a projectile relative to

 another projectile isA. $-g$
B. g
C. 2 g
D. 0

Answer: D
(D) Watch Video Solution
47. A stone is just dropped from the window of
a train moving along a horizontal straight track with uniform speed. The path of the stone is
A. a parabola for an observer standing by
the side of the track
B. a horizontal straight line for an observer
inside the train
C. both (1) \& (2) are true
D. (1) is true but (2) is false

Answer: C

D Watch Video Solution

48. A bomb is dropped from an aeroplane
flying horizontally with uniform speed. The path of the bomb of
A. a vertical straight line for a stationary
observer on the ground
B. a parabola for the pilot of the aeroplane
C. a vertical straight line for the pilot and parabola for a stationary observer on
the ground
D. a horizontal straight line for the pilot
and parabola for a stationary observer
on the ground

Answer: C

D Watch Video Solution

49. A and B are two trains moving parallel to
each other. If a balls is thrown vertically up
from the train A, the path of the ball is
A. parabola for an observer standing on
the ground
B. vertical straight linie for an observer in B
when B is moving with the same speed
in the same direction of A
C. a parabola for an observer in B when B is
moving with same speed but in opposite

direction

D. all the above are true

Answer: D

- Watch Video Solution

50. A ball is thrown from rear end to the front
end of a compartment of a train which is moving at constant horizontal velocity. An observer sitting in the compartment and
another observer standing on the ground draw the trajectory of the ball. They will have
A. equal horizontal and equal vertical

ranges

B. equal vertical ranges but different
horizontal ranges
C. different vertical ranges but equal horizontal ranges

D. different

vertic

Answer: B

- Watch Video Solution

51. For body thrown horizontally from the top of a tower,
A. the time of flight depends both onh and
v
B. the horizontal Range depends only on
vbut not on h
C. the time of fight and horizontal Range depend on h but not on v
D. the horizontal Range depends on both v and h

Answer: D

D Watch Video Solution

52. A body is projected from a point with different angles of projections
$20^{\circ}, 35^{\circ}, 45^{\circ}, 60^{\circ}$ with the horizontal but
with same initial speed. Their respective horizontal but with same initial speed. Their respective horizontal ranges are R_{1}, R_{2}, R_{3} and R_{4}. Identify the correct order in increasing order
A. $R_{1}, R_{4}, R_{2}, R_{3}$
B. $R_{2}, R_{1}, R_{4}, R_{3}$
C. $R_{1}, R_{2}, R_{4}, R_{3}$
D. $R_{4}, R_{1}, R_{2}, R_{3}$

Answer: A
53. Two particles are projected from the same point with the same speed at different angles
θ_{1} and θ_{2} to the horizontal. If their respective times of flights are T_{1} and T_{2} and horizontal ranges are same then
a) $\theta_{1}+\theta_{2}=90^{\circ}$,
b) $T_{1}=T_{2} \tan \theta_{1}$
c. $T_{1}=T_{2} \tan \theta_{2}$,
d) $T_{1} \sin \theta_{2}=T_{2} \sin \theta_{1}$
A. a, b, d are correct
B. a, c, d are correct
C. b, c, d are correct
D. a, b, c are correct

Answer: A

- Watch Video Solution

54. Two bodies are projected at angles 30°
and 60° to the horizontal from the ground
such that the maximum heights reached by
them are equal then
a) Their times of flight are equal
b) Their horizontal ranges are equal
c) The ratio of their initial speeds of projection
is $\sqrt{3}: 1$
d) Both take same time to reach the maximum
height.
A. a, b, c and d are corect
B. only a, b and c are correct
C. only a and c are correct
D. only a, c and d are correct

- Watch Video Solution

55. A body is projected with an initial speed of $100 \sqrt{3} \mathrm{~ms}^{-1}$ at an angle of 60° above the horizontal. If $g=10 \mathrm{~ms}^{-2}$ then velocity of the projectile
a) is perpendicular to it's acceleration at the instant $t=15$ sec.
b) Is perpendicular to initial velocity of projection at $t=20$ sec.
c) Is minimum at the highest point
d) Changes both in magnitude and direction, during its flight.
A. a, b, c and d are corect
B. only a, c and d are correct
C. only b, cand d are correct
D. only a,b and d are correct

Answer: A

- Watch Video Solution

56. In a projectile motion,the velocity:- (1) is always perpendicular to the acceleration (2) is never perpendicular to the acceleration (3) is perpendicular to the acceleration for one instant only (4) is perpendicular to the acceleration for two instants
A. a and b are correct
B. b and c are correct
C. c and d are correct
D. a and d are correct

Answer: C

- Watch Video Solution

57. Two bullets are fired simultaneously,
horizontally and with different speeds from
the same place. Whch bullet will hit the ground first?
A. the faster one
B. the slower one
C. both will reach singultaneously

D. depends on the masses

Answer: C

- Watch Video Solution

58. A ball is thrown from rear end to the front end of a compartment of a train which is moving at constant horizontal velocity. An observer sitting in the compartment and another observer standing on the ground draw the trajectory of the ball. They will have
A. equal horizontal and equal vertical ranges
B.equal vertical ranges but different horizontal ranges
C. different vertical ranges but equal
horiozontal ranges
D. diferent vertical and different horizontal
ranges

Answer: B

59. A projectile has
A. minimum velocity at the point of projection and maximum at the maximum height
B. maximum at the point of projection and
minimum at the maximum height
C. same velocity at any point in its path

D. zero velocity at the maximum height

 irrespective of the velocity of projectionAnswer: B

D Watch Video Solution

60. Two bullets are fired simultaneously,
horizontally and with different speeds from
the same place. Whch bullet will hit the ground first?
A. first
B. the slower one
C. both will reach simutaneously
D. depends on the masses

Answer: C

D Watch Video Solution

61. A particle is moving along a circular path with uniform speed. Through what angle does
its angular velocity change when it completes

half of the circular path?

A. 0°
B. 45°
C. 180°
D. 360°

Answer: A
(Watch Video Solution
62. A car of mass m moves in a horizontal circular path of radius r metre. At an instant
its speed is Vm / s and is increasing at a rate of $a m / \sec ^{2}$.then the acceleration of the car is
A. $\frac{V^{2}}{r}$
B. 3
C. $\sqrt{a^{2}+\left(\frac{V^{2}}{r}\right)^{2}}$
D. $\sqrt{a+\frac{V^{2}}{r}}$

- Watch Video Solution

63. Consider the following two statements A
and B and identify the correct choice
A) When a rigid body is rotating about its own axis, at a given instant all particles of body posses same angular velocity.
$B)$ When a rigid body is rotating about its own axis, the linear velocity of a particle is directly proportional to its perpendicular distance from axis
A. A is true but B is false
B. A is false but B is true
C. Both A and B are true
D. Both A and B are false

Answer: C

- Watch Video Solution

64. Suppose a disc is rotating counter clockwise in the plane of the paper then .
A. It's angular velocity vector will be perpendicular to the page pointing up
out of the page
B. It's angular velocity vector will be perpendicular to the page pointing in
wards
C. It's angular velocity vector acts along the
tangent to the disc.
D. none of the above is corect
65. The direction of angular acceleration of a body moving in a circle in the plane of the paper is .
A. along the tangent
B. along the radius inward
C. along the radius outward
D. along the perpendicular to the plane of
the first paper

Answer: D

- Watch Video Solution

66. Suppose a disc is rotating counter clockwise in the plane of the paper then .
A. it's angular velocity vector will be perpen
dicular to the page pointing up out of
the page
B. It's angular velocity vector will be perpen
dicular to the page pointing inwards
C. It's angular velocity vector acts along the
tangent to the disc

D. none of the above is correct

Answer: A

- Watch Video Solution

67. A Particle of mass ' M ' moves in a uniform
circular path of radius ' r ' with a constant
speed ' v ' then its centripetal acceleration is .

> A. $\frac{V^{2}}{r}$
> B. $\frac{V^{2}}{r^{2}}$
C. $V^{2} r$
D. zero

Answer: A

D Watch Video Solution
68. Many great rivers flow towards the equator, what effect does the sediment they
carry. To sea have on the rotation of the earth
A. the rotation of the earth slows down
B. the rotation of theearth speeds up
C. no effect on the rotation of the earth
D. none

Answer: A
69. The average acceleration vector for a particle having a uniform circular motion is
V^{2}
A. A consrant vector of magnitude r
B. a vector of magnitude $\frac{V^{2}}{r}$ directed nor mally to the plane of motion
C. null vector
D. equal to instantaneous acceleration
vector

Answer: C

70. A ody is in pure rotation. The linear speed v of a particle, the distance r of the particle from the axis and the angular velocity ω of the body are related as $\omega=\frac{v}{r}$. Thus
A. $\omega \alpha \frac{1}{r}$
B. $\omega \alpha r$
C.v
D. ω is independent of r

Answer: D

(D) Watch Video Solution

EXERCISE I-(C.W)

1. A particle is moving eastwards with a
velocity $5 \mathrm{~ms}^{-1}$, changes its direction northwards in 10 seconds and moves with
same magnitude of velocity. The average acceleration is
A. zero
B. $\frac{1}{\sqrt{2}} m s^{-2}$ towards $\mathrm{N}-\mathrm{E}$
C. $\frac{1}{\sqrt{2} m s^{-2}}$ towards S-E
D. $\frac{1}{\sqrt{2}} m s^{-2}$ towards $\mathrm{N}-\mathrm{W}$

Answer: D

- Watch Video Solution

2. A man is going due east with a velocity of
$5 \mathrm{~ms}^{-1}$. It is vertically rainging downwards with
a velocity of $4 \mathrm{~ms}^{-1}$. At what angle should he hold the umbrella to the vertical so as to protect him self from the rain?
A. $\tan ^{-1}\left(\frac{5}{4}\right)$ in anti-clockwise direction
B. $\tan ^{-1}\left(\frac{5}{4}\right)$ in clock-wise direction
C. $\tan ^{-1}\left(\frac{4}{5}\right)$ North of East
D. $\tan ^{-1}\left(\frac{4}{5}\right)$ East of North

Answer: B

3. Rain drops are falling downward vertically at

4 kmph . For a person moving forward at 3 kmph feels the rain falling at
A. 7 kmph
B. 1 kmph
C. 5 kmph
D. 25 kmph

Answer: C

- Watch Video Solution

4. A man travelling at 10.8 kmph in topless car on a rainy day. He holds an umbrella at angle of 37° with the vertical so that he does not wet.If rain drops falls vertically downwards what is rain velocity.
A. $1 \mathrm{~m} / \mathrm{s}$
B. $2 \mathrm{~m} / \mathrm{s}$
C. $3 \mathrm{~m} / \mathrm{s}$
D. $4 \mathrm{~m} / \mathrm{s}$

Answer: D

- Watch Video Solution

5. A man can row a boat in still water with a velocity of 8 kmph .Water is flowing in a river with a velocity of 4 kmph . At what angle should he row the boat so as to reach the exact opposite point
A. 150° to flow of water.
B. 120° to flow of water.
C. 30° to flow of water.
D. 90° to flow of water.

Answer: B

D Watch Video Solution

6. A person can swim in still water at $5 \mathrm{~m} / \mathrm{s}$.He
moves in a river of velocity $3 \mathrm{~m} / \mathrm{s}$, first down
the steam and next same distance up the stream. The ratio of times taken are
A. 1:1
B. 1:2
C. 1:4
D. $4: 1$

Answer: C

D Watch Video Solution

7. The velocity of water in a river is 2 kmph ,while

width is 400 m . A boat is rowed from a point
rowing always aiming opposite point at 8 kmph
of still water velocity. On reaching the

opposite bank the drift obtained is

A. 93 m
B. 100.8 m
C. 112.4 m
D. 100 m

Answer: D
(Watch Video Solution
8. A man can swim in still water at a speed of
$4 k m p h$. He desires to cross a river flowing at a
speed of $3 k m p h$ in the shortest time interval. If
the width of the river is 3 km , then time taken
to cross river (in hours) and the horizontal
distance travelled (in km) are respectively

$$
\begin{aligned}
& \text { A. } \frac{3}{4}, \frac{9}{4} \\
& \text { B. } \frac{3}{5}, 3 \\
& \text { C. } \frac{1}{4}, \frac{15}{4} \\
& \text { D. } \frac{3}{\sqrt{7}}, 7
\end{aligned}
$$

Answer: A

D Watch Video Solution

9. A particle is projected in $x y$ plane with y-axis
along vertical, the point of projection is origin.
The equation of the path is $y=\sqrt{3} x-\frac{g}{2} x^{2}$
.where y and x are in m.Then the speed of projection in ms^{-1} is
A. 2
B. $\sqrt{3}$
C. 4

$$
\text { D. } \frac{\sqrt{3}}{2}
$$

Answer: A

D Watch Video Solution

10. If a body is thrown with a speed of $19.6 \mathrm{~m} / \mathrm{s}$
making an angle of 30° with the
horizontal,then the time of flight is
A. 1s
B. 2s
C. $2 \sqrt{3} s$
D. 5 s

Answer: B

D Watch Video Solution

11. A particle is projected with an initial velocity of $200 \mathrm{~m} / \mathrm{s}$ in a direction making an angle of 30° with the vertical. The horizontal distance covered by the particle in $3 s$ is
A. 300 m
B. 150 m
C. 175 m
D. 125 m

Answer: A

D Watch Video Solution

12. A body is projected with an initial velocity
$20 \mathrm{~m} / \mathrm{s}$ at 60° to the horizontal. Its initial
velocity vector is __ $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. $10 \hat{i}-20 \hat{j}$
B. $10 \sqrt{3} \hat{i}+10 \hat{j}$
C. $10 \hat{i}+10 \sqrt{3} \hat{j}$
D. $5 \hat{i}+5 \sqrt{3} \hat{j}$

Answer: C
(Watch Video Solution
13. A body is projected at an angle of 30° with
the horizontal with momentum P.At its
highest point the magnitude of the momentum is:

$$
\begin{aligned}
& \text { A. } \frac{\sqrt{3}}{2} P \\
& \text { B. } \frac{2}{\sqrt{3}} P
\end{aligned}
$$

C. P
D. $\frac{P}{2}$

Answer: A
14. The potential energy of a projectile at its maximum height is equal to its kinetic energy
there. If the velocity of projection is $20 \mathrm{~m} / \mathrm{s}^{-1}$
,its time of flight is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. 2 s
B. $2 \sqrt{2} s$
C. $\frac{1}{2} s$
D. $\frac{1}{\sqrt{2}} s$

Answer: B

D Watch Video Solution

15. From a point on the ground a particle is
projected with initial velocity u,such that its
horizontal range is maximum. The magnitude of average velocity during its ascent.

$$
\begin{aligned}
& \text { A. } \frac{\sqrt{5 u}}{2 \sqrt{2}} \\
& \text { B. } \frac{5 u}{4}
\end{aligned}
$$

C. $\frac{\sqrt{3}}{2 \sqrt{2}}$
D. none

Answer: A

- Watch Video Solution

16. The horizontal and vertical displacements
of a projectile are given as $x=a t \& y=b t-c t^{2}$
.Then velocity of projection is

$$
\text { A. } \sqrt{a^{2}+b^{2}}
$$

B. $\sqrt{b^{2}+c^{2}}$
C. $\sqrt{a^{2}+c^{2}}$
D. $\sqrt{\left(b^{2}-c^{2}\right)}$

Answer: A

- Watch Video Solution

17. Two bodies are thrown from the same point
with the same velocity of $50 \mathrm{~ms}^{-1}$.if their angles of projection are complimentary to each other and the difference of maximum
heights is $30 m$, the minimum and maximum
heights are $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. $50 \mathrm{~m} \& 80 \mathrm{~m}$
B. $47.5 \mathrm{~m} \& 77.5 \mathrm{~m}$
C. $30 \mathrm{~m} \& 60 \mathrm{~m}$
D. $25 \mathrm{~m} \& 55 \mathrm{~m}$

Answer: B

D Watch Video Solution
18. A missile is fired for maximum range with
an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. If $g=10 \mathrm{~m} / \mathrm{s}^{2}$, the
range of the missile is
A. 50 m
B. 60 m
C. 20 m
D. 40 m

Answer: D

D Watch Video Solution
19. If $\vec{u}=a \hat{i}+b \hat{j}+c \hat{k}$ with $\hat{i}, \hat{j}, \hat{k}$ are in east, north and vertical directions, horizontal component of velocity of projectile is
A. a
B. b
C. $\sqrt{a^{2}+b^{2}}$
D. $\sqrt{b^{2}+c^{2}}$

Answer: C

- Watch Video Solution

20. If the time of flight of a projectile is
doubled, what happens to the maximum
height at tained?
A. halved
B. remains unchanged
C. doubled
D. become four times

Answer: D

D Watch Video Solution
21. If $\vec{u}=a \hat{i}+b \hat{j}+c \hat{k}$ with $\hat{i}, \hat{j}, \hat{k}$ are in east, north and vertical directions, the maximum
height of the projectileis

$$
\begin{aligned}
& \text { A. } \frac{a^{2}}{2 g} \\
& \text { B. } \frac{b^{2}}{2 g} \\
& \text { C. } \frac{c^{2}}{2 g} \\
& \text { D. } \frac{b^{2} c^{2}}{2 g}
\end{aligned}
$$

Answer: C

22.v20

A. 2.5 m
B. 0.8 m
C. 0.9 m
D. 0.45 m

Answer: D

D Watch Video Solution
23. A stone is projected from the ground with
a velocity of $14 \mathrm{~ms}^{-1}$. One second later it clears
a wall 2 m high. The angle of projection is
$\left(g=10 m s^{-2}\right)$
A. 45°
B. 30°
C. 60°
D. 15°

Answer: B
24. The horizontal and vertical distances travelled by a particle in time t are given by
$\mathrm{x}=6 \mathrm{t}$ and $y=8 t-5 t^{2}$. If $\mathrm{g}=10 \mathrm{~m} / \mathrm{sec}^{2}$, then the initial velocity of the particle is
A. $8 m s^{-1}$
B. $6 m s^{-1}$
C. $14 m s^{-1}$
D. $10 \mathrm{~ms}^{-1}$

Answer: D

D Watch Video Solution

25. A gun fires a bullet at a speed of $140 \mathrm{~ms}^{-1}$.If
the bullet is to hit a-target at the same level as
the gun and at 1 km distance, the angle of projection may be
A. 60° or 30°
B. 40° or 50°
C. 15° or 75°

D. 20° or 70°

Answer: C

D Watch Video Solution

26. An object is projected with a velocity of $20 \frac{\mathrm{~m}}{\mathrm{~s}}$ making an angle of 45° with horizontal.

The equation for the trajectory is $h=A x-B x^{2}$ where h is height, x is horizontal distance, A and B are constants. The ratio $A: B$ is (g $=m s^{-2}$)
A. $1: 5$
B. $5: 1$
C. $1: 40$
D. $40: 1$

Answer: D

- Watch Video Solution

27. For a projectile, the ratio of maximum height reached to the square of flight time is

$$
\left(g=10 \mathrm{~ms}^{-2}\right)
$$

A. 5:4
B. $5: 2$
C. 5:1
D. $10: 1$

Answer: A
(Watch Video Solution
28. Two bodies are thrown from the same point with the same velocity of projection angles of projection being complimentary angles. If R_{1} and R_{2} are the ranges and h_{1} and h_{2} are maximum heights respectively, then

$$
\begin{aligned}
& \text { A. } R_{1}=R_{2}=\frac{u^{2}}{g} \sin 2 \theta \\
& \text { B. } h_{1}+h_{2}=\frac{u^{2}}{2 g}
\end{aligned}
$$

C. both
D. none

Answer: C

- Watch Video Solution

29. Two bodies are thrown with the same
velocity at angles α and $90^{\circ}-\alpha$ to the
horizontal.Calculate the ratio of the maximum heights reached by the bodies.
A. $\cot ^{2} \alpha$
B. $\tan ^{2} \alpha$
C. $\sec ^{2} \alpha$
D. $\cos ^{2} \alpha$

Answer: B

D Watch Video Solution

30. The speed of a projectile at its maximum
height is half of its initial speed. The angle of projection is .
A. 30°
B. 45°
C. 60°

$$
\text { D. } 76^{\circ}
$$

Answer: C

D Watch Video Solution

31. A ball is thrown with a velocity of u making an angle θ with the horizontal. Its velocity
vector normal to initial vector (u) after a time interval of
$u \sin \theta$
A. g
B. $\frac{u}{g \cos \theta}$
C. $\frac{u}{g \sin \theta}$
D. $\frac{u \cos \theta}{g}$

Answer: C

- Watch Video Solution

32. A body projected horizontally with a velocityv from a height h has a range R. With what velocity a body is to be projected
horizontally from a height $h / 2$ to have the same range ?
A. $\sqrt{2} v$
B. 2v
C. 6 v
D. 8 v

Answer: A

D Watch Video Solution
33. A stone is thrown horizontally with velocity
$g m s^{-1}$ from the top of a tower of height g
metre. The velocity with which it hits the ground is (inms ${ }^{-1}$)
A. g
B. 2 g
C. $\sqrt{3} g$
D. 4 g

Answer: C
34. A body is thrown horizontally from the top of a tower.It reaches the ground after $4 s$ at an angle 45° to the ground. The velocity of projection is
A. $9.8 \mathrm{~ms}^{-1}$
B. $19.6 \mathrm{~ms}^{-1}$
C. $29.4 \mathrm{~ms}^{-1}$
D. $39.2 \mathrm{~ms}^{-1}$

Answer: D

D Watch Video Solution

35. Two cliffs of heights 120 m and 100.4 m are separated bya horizontal distance of 16 m if a
car has to reach from the first cliff to the second the horizontal velocity of car should be
A. $16 \mathrm{~m} / \mathrm{s}$
B. $4 \mathrm{~m} / \mathrm{s}$
C. $2 \mathrm{~m} / \mathrm{s}$

D. $8 \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

36. A circular disc is rotating about its own axis at the rate of 200 revolutions per minute.

Two particles P, Q of disc are at distances $5 \mathrm{~cm}, 10 \mathrm{~cm}$ from axis of rotation. The ratio of angular velocities of P and Q is
A. $1: 2$
B. $1: 1$
C. 2:1
D. $4: 1$

Answer: B

D Watch Video Solution

37. A stationary wheel starts rotating about its
own axis at uniform rate amgular acceleration
$8 \mathrm{rad} / \mathrm{s}^{2}$. The time taken by its to complete 77 rotation is
A. 5.5 sec
B. 7 sec
C. 11 sec
D. 14 sec

Answer: C

D Watch Video Solution

38. A circular disc is rotating about its own axis at uniform rate completes 30 rotations in
one minute.The angular velocity of disc in rad s^{-1} is
A. 2π
B. π
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: B
(Watch Video Solution
39. A particle is moving at uniform speed
$2 m s^{-1}$ along a circle of radius $0.5 m$.The centripetal acceleration of particle is
A. $1 \mathrm{~ms}^{-2}$
B. $2 m s^{-2}$
C. $4 m s^{-2}$
D. $8 m s^{-2}$

Answer: D

D Watch Video Solution
40. A particle P is moving in a circle of radius r with a uniform speed u. C is the centre of the circle and $A B$ is diameter. The angular velocity of P about A and V are in the ratio :
A. $1: 1$
B. 1:2
C. 2:1
D. $1: 3$

Answer: B

EXERCISE H-(H.W)

1. A particle is moving eastwards with a velocity $15 \mathrm{~ms}^{-1}$. Suddenly it moves towards north and moves with the same speed in time 10sec.The average acceleration during this time is
A. $3 / \sqrt{2} N E$
B. $3 \sqrt{2} N E$

C. $3 / \sqrt{2} N W$

D. $3 \sqrt{2} N W$

Answer: C

D Watch Video Solution

2. A person crossing a road with a certain velocity due north, sees a car moving towards east.The relative velocity of the car w.r.t the person is $\sqrt{2}$ times that of the velocity of the
person.The angle made by the relative velocity with the east is
A. 30°
B. 45°
C. 60°
D. 90°

Answer: B

D Watch Video Solution
3. A Person is walking in rain feels the velocity
of rain as twice to his velocity.At which angle
he should hold the umbrella with vertical if he moves forward, if it is raining vertically downwards
A. 30°
B. 45°
C. 60°
D. 90°

- Watch Video Solution

4. When it is raining vertically down, to a man walking on road the velocity of rain appears to be $1.5 \times$ his velocity.To protect himself from rain he should hold the umbrealla at an angle θ to vertical. The $\tan \theta=$

$$
\begin{aligned}
& \text { A. } \frac{2}{\sqrt{5}} \\
& \text { B. } \frac{\sqrt{5}}{2} \\
& \text { C. } \frac{2}{3}
\end{aligned}
$$

D. $\frac{3}{2}$

Answer: A

- Watch Video Solution

5. A motor car A is travelling with a velocity of
$20 \mathrm{~m} / \mathrm{s}$ in the north-west direction and another motor car B is travelling with a velocity of $15 \mathrm{~m} / \mathrm{s}$ in the north-east directions.The magnitude of relative velocity of B with respect to A is.
A. $25 \mathrm{~m} / \mathrm{s}$
B. $15 \mathrm{~m} / \mathrm{s}$
C. $20 \mathrm{~m} / \mathrm{s}$
D. $35 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

6. A man can swim in still water at a speed of 6 kmph and he has to cross the river and reach just opposite point on the other bank.If the
river is flowing at a speed of $3 k m p h$,and the
width of the river is 2 km , the time taken to cross the river is (in hours)

> A. $\frac{2}{27}$
> B. $\frac{2}{\sqrt{27}}$
> C. $\frac{2}{3}$
> D. $\frac{2}{\sqrt{45}}$

Answer: D

D Watch Video Solution
7. A boat moves perpendicular to the bank with a velocity of $7.2 \mathrm{~km} / \mathrm{h}$. The current carries it 150 m downstreamk.find the velocity of the current (The width of the river is 0.5 km).
A. $0.4 m s^{-1}$
B. $1.2 \mathrm{~ms}^{-1}$
C. $0.5 \mathrm{~ms}^{-1}$
D. $0.6 \mathrm{~ms}^{-1}$

Answer: A
8. A swimmer is capable of swimming $1.65 \mathrm{~ms}^{-1}$
in still water.If she swims directily across a 180 m wide river whose current is $0.85 \mathrm{~ms}^{-1}$,how
far downstreams (from a point opposite her starting point) will she reach?
A. 92.7 m
B. 40 m
C. 48 m
D. 20 m

Answer: B

D Watch Video Solution

9. A person swims at 135° to current to river, to meet target on reaching opposite point.The ratio of person's velocity to river water velocity is
A. $\sqrt{3}: 1$
B. $\sqrt{2}: 1$
C. $1: \sqrt{2}$
D. $1: \sqrt{3}$

Answer: A

D Watch Video Solution

10. The parabolic path of a projectile is
represented by $y=\frac{x}{\sqrt{3}}-\frac{x^{2}}{60}$ in MKS units: Its
angle of projection is $\left(g=10 \mathrm{~ms}^{-2}\right)$
A. 30°
B. 45°
C. 60°
D. 90°

Answer: B

- Watch Video Solution

11. A body is projected at angle 30° to
horizontal with a velocity $50 \mathrm{~ms}^{-1}$. Its time of flight is
A. 4 s
B. 5 s
C. 6 s
D. 7s

Answer: D

D Watch Video Solution

12. A body is projected with velocity $60 \mathrm{~m} / \mathrm{s}$ at 30° to the horizontal.The velocity of the body after 3seconds is
A. $20 \hat{i}+20 \sqrt{3 \hat{j}}$
B. $30 \hat{i}$
C. $10 \sqrt{3} \hat{j}$
D. $30 \sqrt{3} \hat{i}$

Answer: D

D Watch Video Solution

13. A body is projected with velocity u such
that in horizontal range and maximum vertical
heights are samek.The maximum height is
A. $\frac{u^{2}}{2 g}$
B. $\frac{3 u^{2}}{4 g}$
C. $\frac{16 u^{2}}{17 g}$
D. $\frac{8 u^{2}}{17 g}$

Answer: C

- Watch Video Solution

14. A cricket ball is hit for a six leaving the bat at an angle of 60° to the horizontal with
kinetic energy k.At the top, K. E. of the ball is
A. zero
B. k
C. $\frac{k}{4}$
D. $\frac{k}{\sqrt{2}}$

Answer: D

- Watch Video Solution

15. A bomb at rest is exploded and the pieces
are scattered in all directions with a maximum
velocity of $20 \mathrm{~ms}^{-1}$. Dangerous distance from
that spot is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. 10 m
B. 20 m
C. 30 m
D. 40 m

Answer: D
16. A boy can throw a stone up to a maximum
height of 10 m . The maximum horizontal
distance that the boy can throw the same
stone up to will be:
A. $20 \sqrt{2} m$
B. 10 m
C. $10 \sqrt{2} m$
D. 20 m

Answer: B

- Watch Video Solution

17. A grass hopper can jump a maximum
horizontal distance of 0.3 m . If it spends negligible time on the ground, its horizontal component of velocity is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. $3 / 2 \mathrm{~m} / \mathrm{s}$
B. $\sqrt{\frac{3}{2}} m / s$
C. $1 / 2 \mathrm{~m} / \mathrm{s}$
D. $\sqrt{\frac{2}{3}} \mathrm{~m} / \mathrm{s}$

Answer: A

- Watch Video Solution

18. A stone is thrown with a velocity v at an angle θ with the horizontal.Its speed when it makes an angle β with the horizontal is
A. $v \cos \theta$
B. $\frac{v}{\cos \beta}$
C. $v \cos \theta \cos \beta$

$$
\text { D. } \frac{v \cos \theta}{\cos \beta}
$$

Answer: A

D Watch Video Solution

19. A body is projected with a certain speed at angles of projection of θ and $90-\theta$.The maximum heights attained in the two cases are 20 m and 10 m respectively.The maximum possible range is
A. 60 m
B. 30 m
C. 20 m
D. 80 m

Answer: A

D Watch Video Solution
20. The launching speed of a certain projectile is five times the speed it has at its maximum height.Its angles of projection is
A. $\theta=\cos ^{-1}(0.2)$
B. $\theta=\sin ^{-1}(0.2)$
C. $\theta=\tan ^{-1}(0.2)$
D. $\theta=0^{\circ}$

Answer: D

D Watch Video Solution

21. A person throws a bottle into a dustbin at
the same height as he is $2 m$ away at an angle of 45°. The velocity of thrown is
A. g
B. \sqrt{g}
C. 2 g
D. $\sqrt{2 g}$

Answer: D

D Watch Video Solution

22. A body projected horizontally from the top
of a tower follows $y=20 x^{2}$ parabola equation
where x, y are in $m\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.Then the velocity of the projectile is $\left(\mathrm{ms}^{-1}\right)$
A. 0.2
B. 0.3
C. 0.4
D. 0.5

Answer: D

- Watch Video Solution

23. A bomb is dropped from an aeroplane
flying horizontally with a velocity of 720 kmph at an altitude of 980 m . Time taken by the bomb to hit the ground is
A. 1s
B. 7.2 s
C. 14.14 s
D. 0.15 s

Answer: C
24. A body is projected horizontally from a height of 78.4 m with a velocity $10 \mathrm{~ms}^{-1}$.Its velocity after 3seconds is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$ (Take direction of projection as i and vertically upward direction as j)
A. $10 \hat{i}-30 \hat{j}$
B. $10 \hat{i}+30 \hat{j}$
C. $20 \hat{i}-30 \hat{j}$
D. $10 \hat{i}+10 \sqrt{3} \hat{j}$

Answer: A

- Watch Video Solution

25. Two thin wood screens A and B are separated by 200 m a bullet travelling horizontally at speed of $600 \mathrm{~m} / \mathrm{s}$ hits the screen A penetrates through it and finally emerges out from B making holes in A and B the resistance of air and wood are negligible the difference of heights of the holes in A and B is.
A. 5 m
B. $\frac{49}{90} m$
C. $\frac{7}{\sqrt{90}} m$
D. zero

Answer: B

- Watch Video Solution

26. A fly wheel is rotating about its own axis at an angular velocity $11 \mathrm{rads}^{-1}$, its angular velocity in revolation per minute is
A. 105
B. 210
C. 315
D. 420

Answer: A

D Watch Video Solution

27. A stationary wheel starts rotating about its
own axis at constant angular acceleration. If
the wheel completes 50 rotations in first 2
seconds, then the number of rotations mades by it in next two seconds is
A. 75
B. 100
C. 125
D. 150

Answer: D
(Watch Video Solution
28. A point size body is moving along a circle
at an angular velocity $2.8 \mathrm{rads}^{-1}$.If centripetal
acceleration of body is $7 \mathrm{~ms}^{-2}$ then its speed is
A. $1.25 \mathrm{~ms}^{-1}$
B. $2.5 \mathrm{~ms}^{-1}$
C. $3.5 \mathrm{~ms}^{-1}$
D. $7 m s^{-1}$

Answer: B

D Watch Video Solution
29. A circular plate is rotating about its own axis at an angular velocity 100 revolutions per minute. The linear velocity of a particle P of plate at a distance 4.2 cm from axis of rotation is
A. $0.22 \mathrm{~m} / \mathrm{s}$
B. $0.44 \mathrm{~m} / \mathrm{s}$
C. $2.2 \mathrm{~m} / \mathrm{s}$
D. $4.4 \mathrm{~m} / \mathrm{s}$

Answer: B
30. An aircraft executes a horizontal loop of radius 1 km with a steady speed of 900 kmph .

Compare its centripetal acceleration with acceleration due to gravity .
A. 6.0
B. 6.4
C. 5
D. 7

Answer: B

- Watch Video Solution

EXERCISE II-(C.W)

1. A particle is projected from ground with
some initial velocity making an angle of 45°
with the horizontal.It reaches a height of 7.5 m
above the ground while it travels a horizontal
distance of 10 m from the point of
projection.The initial speed of the projection is
A. $5 \mathrm{~m} / \mathrm{s}$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $20 \mathrm{~m} / \mathrm{s}$
D. $40 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution
2. A particle is projected from ground at an angle 45° with initial velocity $20 \sqrt{2} \mathrm{~ms}^{-1}$.The
magnitude of average velocity in a timer interval from $t=0$ to $t=3 s$ in ms^{-1} is
A. 20.62
B. 10.31
C. 41.14
D. 5.15

Answer: A

D Watch Video Solution
3. A ball is thrown with a velocity of u making an angle θ with the horizontal. Its velocity vector normal to initial vector (u) after a time interval of

$$
\begin{aligned}
& \text { A. } \frac{u \sin \theta}{g} \\
& \text { B. } \frac{u}{g \cos \theta} \\
& \text { C. } \frac{u}{g \sin \theta} \\
& \text { D. } \frac{u \cos \theta}{g}
\end{aligned}
$$

Answer: C

4. A stone is projected with a velocity $20 \sqrt{2} \mathrm{~m} / \mathrm{s}$ at an angle of 45° to the horizontal.The average velocity of stone during its motion from starting point to its maximum height is
A. $10 \sqrt{5} \mathrm{~m} / \mathrm{s}$
B. $20 \sqrt{5} \mathrm{~m} / \mathrm{s}$
C. $5 \sqrt{5} \mathrm{~m} / \mathrm{s}$
D. $20 \mathrm{~m} / \mathrm{s}$

Answer: A

- Watch Video Solution

5. A player kicks a football obliquely at a speed of $20 \mathrm{~m} / \mathrm{s}$ so that its range is maximum.

Another player at a distance of $24 m$ away in
the direction of kick starts running at that instant to catch it, the speed with which the
second player has to run is $\left(g=10 \mathrm{~ms}^{-2}\right)$
A. $4 \mathrm{~m} / \mathrm{s}$
B. $4 \sqrt{2} \mathrm{~m} / \mathrm{s}$
C. $8 \sqrt{2} \mathrm{~m} / \mathrm{s}$
D. $8 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

6. A particle is fired with velocity u making angle θ with the horizontal. What is the change in velocity when it is at the highest point?
A. $u \cos \theta$
B. u
C. $u \sin \theta$
D. $u \cos \theta-u$

Answer: C

D Watch Video Solution

7. Two projectiles A and B are thrown from the

 same point with velocities v and $\frac{v}{2}$respectively. If B is thrown at an angle 45°
with horizontal.What is the inclination of A
.when their ranges are the same?

> A. $\sin ^{-1}\left(\frac{1}{4}\right)$
> B. $\frac{1}{2} \sin ^{-1}\left(\frac{1}{4}\right)$
> C. $2 \sin ^{-1}\left(\frac{1}{4}\right)$
> D. $\frac{1}{2} \sin ^{-1}\left(\frac{1}{8}\right)$

Answer: B
8. A particle is projected with a velocity v such
that its range on the horizontal plane is twice
the greatest height attained by it. The range of the projectile is (where g is acceleration due to gravity)

$$
\begin{aligned}
& \text { A. } \frac{4 v^{2}}{5 g} \\
& \text { B. } \frac{4 g}{5 v^{2}} \\
& \text { C. } \frac{v^{2}}{g} \\
& \text { D. } \frac{4 v^{2}}{\sqrt{5} g}
\end{aligned}
$$

Answer: A
9. A large number of bullets are fired in all directions with the same speed v. Find the maximum area on the ground on which these bullets will spread.

> A. $\pi\left(\frac{u^{2}}{g}\right)$
> B. $\pi\left(\frac{u^{2}}{2 g}\right)$
> С. $\pi\left(\frac{u}{g}\right)^{2}$
D. $\pi\left(\frac{u}{2 g}\right)^{2}$

Answer: A

- Watch Video Solution

10. A ball is projected from the ground with
velocity u such that its range is maximum Then
A. Its velocity at half the maximum height

$$
\text { is } \frac{\sqrt{3}}{2} u
$$

B. Its velocity at the maximum height is 'u'.
C. Change in its velocity when it returns to the ground is 'u'.
D. all the above are true.

Answer: A

D Watch Video Solution

11. A projectile is given an initial velocity of $(\hat{i}+2 \hat{j})$ The Cartesian equation of its path is $\left(g=10 \mathrm{~ms}^{-1}\right)$ (Here,\hat{i} is the unit vector along
horizontal and \hat{j} is unit vector vertically

upwards)

$$
\begin{aligned}
& \text { A. } y=2 x-5 x^{2} \\
& \text { B. } 9 y=12 x-5 x^{2} \\
& \text { C. } y=9 x-5 x^{2} \\
& \text { D. } 5 y=x-9 x^{2}
\end{aligned}
$$

Answer: B

D Watch Video Solution
12. A projectile has initially the same horizontal velocity as it would acquire if it had moved from rest with uniform acceleration of
$3 m s^{-2}$ for 0.5 min . If the maximum height reached by it is 80 m , then the angle of projection is $\left(g=10 \mathrm{~ms}^{-2}\right)$.
A. $\tan ^{-1}(3)$
B. $\tan ^{-1}\left(\frac{3}{2}\right)$
C. $\tan ^{-1}\left(\frac{4}{9}\right)$
D. $\sin ^{-1}\left(\frac{4}{9}\right)$

Answer: B

D Watch Video Solution

13. A ball is thrown from a point with a speed
V_{0}, at an angle of projection θ.From the same
point and at the same instance a person starts running with a constant speed $\frac{V_{0}}{\sqrt{2}}$ to catch
the ball will the person be able to catch the
ball? If yes, what should be the angle of projection
A. yes, 60°
B. yes, 30°
C. No
D. yes, 45°

Answer: D

D Watch Video Solution

14. If a stone is to hit at a point which is at a distance d away and at a height h (see fig) above the point from where the stone starts,
then what is the value of initial speed u if the
stone is launched at an angle θ ?

$$
\begin{aligned}
& \text { A. } \frac{d}{\sin \theta} \sqrt{\frac{g}{2(d \tan \theta-h)}} \\
& \text { B. } \frac{d}{\cos \theta} \sqrt{\frac{g}{2(d \tan \theta-h)}} \\
& \text { C. } \sqrt{\frac{g d^{2}}{h \cos ^{2} \theta}} \\
& \text { D. } \sqrt{\frac{g d^{2}}{(d-h)}}
\end{aligned}
$$

Answer: B
15. If a projectile crosses two walls of equal height h symmetrically as shown in the fig.

Choose the correct statement
$\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. The time of fight is 8 sec
B. The height of each wall is 60 m
C. The maximum height of projectile is 80 m
D. All the above

Answer: D

D View Text Solution

16. A staircase contains four steps each 10 cm
high and 20 cm wide. The minimum horizontal
velocity of a ball rolling off the uppermost
plane so as to hit directly the lowest plane is

A. $42 \mathrm{~ms}^{-1}$
B. $4.2 \mathrm{~ms}^{-1}$
C. $24 \mathrm{~ms}^{-1}$
D. $2.4 \mathrm{~ms}^{-1}$

- Watch Video Solution

17. From certain height h two bodies are projected horizontally each with velocity v.One body is projected towards North and the other body is projected towards east. Their separation on reaching the ground
A. $\sqrt{\frac{2 \nu^{2} h}{g}}$
B. $\sqrt{\frac{4 v^{2} h}{g}}$
C. $\sqrt{\frac{v^{2} h}{g}}$
D. $\sqrt{\frac{8 v^{2} h}{g}}$

Answer: C

D Watch Video Solution

18. An object is projected horizontally from a top of the tower of height h.The line joining
the point of projection and point of striking on the ground makes an angle 45° with ground,Then with what velocity the object strikes the ground
A. $\sqrt{\frac{11 g h}{2}}$
B. $\sqrt{\frac{9 g h}{2}}$
C. $\sqrt{\frac{7 g h}{2}}$
D. $\sqrt{\frac{5 g h}{2}}$

Answer: A

D Watch Video Solution

19. A ball is thrown horizontally from a cliff
such that it strikes the ground after 5 s.The
line of sight makes an angle 37° with the horizontal.The initial velocity of projection in ms^{-1} is
A. 50
B. $\frac{100}{\sqrt{3}}$
C. $\frac{100}{\sqrt{2}}$
D. $\frac{100}{3}$

Answer: C

D Watch Video Solution
20. An object is launched from a cliff $20 m$ above the ground at an angle of 30° above
the horizontal with an initial speed of $30 \mathrm{~m} / \mathrm{s}$
.How far does the object travel before landing on the ground?(in metre)
A. 20
B. $20 \sqrt{3}$
C. 60
D. $60 \sqrt{3}$

- Watch Video Solution

21. A bomber flying upward at an angle of 53°
with the vertical releases a bomb at an altitude of 800 m .The bomb strikes the ground

20 s after its release.lf $g=10 \mathrm{~ms}^{-2}$, the velocity at the time of release of the bomb in ms^{-1} is
A. 400
B. 800
C. 100
D. 200

Answer: C

D Watch Video Solution

22. Two particles move in a uniform gravitational field with an acceleration g.At the initial moment the particles were located at same point and moved with velocities $u_{1}=9 \mathrm{~ms}^{-1}$ and $u_{2}=4 \mathrm{~ms}^{-1}$ horizontally in opposite directions.The time between the particles at the moment when their velocity
vectors are mutually perpendicular in s in (take $g=10 \mathrm{~ms}^{-2}$)
A. 0.36
B. 3.6
C. 0.6
D. 6

Answer: C

- Watch Video Solution

23. An aeroplane is flying horizontally at a height of 980 m with velocity $100 \mathrm{~ms}^{-1}$ drops a
food packet.A person on the ground is $414 m$ ahead horizontally from the dropping point.At
what velocity should he move so that he can
catch the food packet.
A. $50 \sqrt{2} \mathrm{~ms}^{-1}$
B. $\frac{50}{\sqrt{2}} m s^{-1}$
C. $100 \mathrm{~ms}^{-1}$
D. $200 \mathrm{~ms}^{-1}$

Answer: D

D Watch Video Solution

24. A cylclist is riding with a speed of $27 \mathrm{kmh}^{-1}$.

As he approaches a circular turn on the road of radius 80 m , he applies brakes and reduces his speed at the constant rate of $0.5 m s^{-2}$. What is the magnitude and direction of the net acceleration of the cyclist on the circular turn ?
A. $0.5 \mathrm{~m} / \mathrm{s}^{2}$
B. $0.87 \mathrm{~m} / \mathrm{s}^{2}$
C. $0.56 \mathrm{~m} / \mathrm{s}^{2}$
D. $1 \mathrm{~m} / \mathrm{s}^{2}$

Answer: B

D Watch Video Solution

25. The length of minute hand in a pendu lum
clock is 10 cm , the speed of Tip of the hand is
(in m / s):
A. $\frac{\pi}{6000}$
B. $\frac{\pi}{18000}$
C. $\frac{\pi}{3600}$
D. $\frac{\pi}{1200}$

Answer: D

D Watch Video Solution

26. A particle moves on a circle of radius r with centripetal accelration as function of time as
$a_{c}=K^{2} r t^{2}$ where k is a positive constant, find the resu Itant acceleration.
A. $k t^{2}$
B. kr
C. $k r \sqrt{k^{2} t^{4}+1}$
D. $k r \sqrt{k^{2} t^{2}-1}$

Answer: C

- Watch Video Solution

27. A particle moves in a circular path such
that its speed v varies with distance s as
$v=\alpha \sqrt{s}$ where α is a positive constant. If the acceleration of the particle after traversing a
distance s is $\left[\alpha^{2} \sqrt{x+\frac{s^{2}}{R^{2}}}\right]$ find x .
A. $\alpha^{2} \sqrt{\frac{1}{4}-\frac{s^{2}}{R^{2}}}$
B. $\alpha^{2} \sqrt{\frac{1}{4}+\frac{s^{2}}{R^{2}}}$
C. $\alpha \sqrt{\frac{1}{2}+\frac{s^{2}}{R^{2}}}$
D. $\alpha^{2} \sqrt{\frac{1}{2}+\frac{s^{2}}{R^{2}}}$

Answer: B

- Watch Video Solution

EXERCISE II-(H.W)

1. A particle projected from the level ground
just clears in its ascent a wall 30 m high and
$120 \sqrt{3}$ away measured horizontally.The time
since projection to clear the wall is two
second.lt will strike the ground in the same
horizontal plane from the wall on the other
side of a distance of (in metres)
A. $150 \sqrt{3}$
B. $180 \sqrt{3}$
C. $120 \sqrt{3}$
D. $210 \sqrt{3}$

Answer: B

D Watch Video Solution
2. A stone is projected with a velocity $20 \sqrt{2} \mathrm{~m} / \mathrm{s}$ at an angle of 45° to the horizontal.The average velocity of stone during its motion from starting point to its maximum height is
A. $10 \sqrt{5} \mathrm{~m} / \mathrm{s}$
B. $20 \sqrt{5} \mathrm{~m} / \mathrm{s}$
C. $5 \sqrt{5} \mathrm{~m} / \mathrm{s}$
D. $20 \mathrm{~m} / \mathrm{s}$

Answer: A

- Watch Video Solution

3. A ball is thrown with velocity $8 \mathrm{~ms}^{-1}$ making an angle 60° with the horizontal.Its velocity
will be perpendicular to the direction of initial
velocity of projection after a time of
A. $\frac{1.6}{\sqrt{3}} s$
B. $\frac{4}{\sqrt{3}} s$
C. $0.6 s$
D. $1.6 \sqrt{3} s$
4. The range of a projectile, when launched at an angle of 15° with the horizontal is 1.5 km . what is the range of the projectile, when launched at an angle of 45° to the horizontal with the same speed?
A. 3 km
B. 4.5 km
C. 1.5 km

D. 2.5 km

Answer: C

D Watch Video Solution

5. A body is projected obliquely from the ground such that its horizontal range is maximum. If the change in its linear momentum, as it moves from half the maximum height to maximum height, is P, the
change in its linear momentum as it travels
from the point of projection to the landing point on the ground will be:
A. P
B. $\sqrt{2} P$
C. 2 P
D. $2 \sqrt{2} P$

Answer: D
(Watch Video Solution
6. A projectile is thrown at angle β with
vertical.It reaches a maximum height H.The time taken to reach the hightest point of its path is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{H}{g}} \\
& \text { B. } \sqrt{\frac{2 H}{g}} \\
& \text { C. } \sqrt{\frac{H}{2 g}} \\
& \text { D. } \sqrt{\frac{2 H}{g \cos \beta}}
\end{aligned}
$$

Answer: B

- Watch Video Solution

7. The maximum height attained by a projectile is increased by 5%. Keeping the angle of projection constant, what is the percentage increases in horizontal range?
A. 0.05
B. 0.1
C. 0.15
D. 0.2

Answer: A

D Watch Video Solution

8. A gardener wants to wet the garden without moving from his place with a water jet whose velocity is $20 \mathrm{~ms}^{-1}$ the maximum area that he can wet $\left(g=10 \mathrm{~ms}^{-2}\right)\left(\right.$ in metre ${ }^{2}$)
A. 1600π
B. 40π
C. 400π
D. 200π

Answer: A

D Watch Video Solution

9. A particle is projected with speed u at angle
θ to the horizontal. Find the radius of
curvature at highest point of its trajectory

$$
\begin{aligned}
& \text { A. } \frac{u^{2} \cos ^{2} \theta}{2 g} \\
& \text { B. } \frac{\sqrt{3} u^{2} \cos ^{2} \theta}{2 g}
\end{aligned}
$$

Answer: C

D Watch Video Solution

10. A cricketer of height 2.5 m thrown a ball at an angle of 30° with the horizontal such that it is received by another crickerter of same height standing at distance of 50 m from the
first one.Find the maximum height attained by
the ball.
A. 10 m
B. 9 m
C. 10.7 m
D. 9.7 m

Answer: D

D Watch Video Solution
11. A particle when fired at an angle $\theta=60^{\circ}$ along the direction of the breadth of a rectangular building of dimension
$9 m \times 8 m \times 4 m$ so as to sweep the edges.Find the range of the projectile.
A. $8 \sqrt{3}$
B. $4 \sqrt{3}$
C. $\frac{8}{\sqrt{3}}$
D. $\frac{4}{\sqrt{3}}$

- Watch Video Solution

12. A hiker stands on the edge of a cliff 490 m above the ground and throwns a stone horiozontally with an initial speed of $15 \mathrm{~ms}^{-1}$ neglecting air resistance.The time taken by the stone to reach the ground in seconds is $\left(g=9.8 m s^{2}\right)$
A. 5
B. 10
C. 1
D. 15

Answer: B

D Watch Video Solution

13. Two bodies are projected from the same point with same speed in the directions making an angle α_{1} and α_{2} with the horizontal and strike at same point in the horizontal
plane through a point of projection. If t_{1} and

$$
t_{1}^{2}-t_{2}^{2}
$$

$$
\tan \left(\alpha_{1}-\alpha_{2}\right)
$$

A.
$\tan \left(\alpha_{1}+\alpha_{2}\right)$
$\sin \left(\alpha_{1}+\alpha_{2}\right)$
B.
$\sin \left(\alpha_{1}-\alpha_{2}\right)$
$\sin \left(\alpha_{1}-\alpha_{2}\right)$
C.

$$
\sin \left(\alpha_{1}+\alpha_{2}\right)
$$

$\sin ^{2}\left(\alpha_{1}-\alpha_{2}\right)$
D.

$$
\sin ^{2}\left(\alpha_{1}+\alpha_{2}\right)
$$

Answer: C

- Watch Video Solution

14. From the top of a tower of height $78.4 m$ two stones are projected horizontally with $10 \mathrm{~m} / \mathrm{s}$ and $20 \mathrm{~m} / \mathrm{s}$ in opposite directions. On reaching the ground, their separation is
A. 120 m
B. 100 m
C. 200 m
D. 150 m

Answer: A

- Watch Video Solution

15. A body is projected vertically upwards.At its
highest point it explodes into two pieces of masses in the ratio of $2: 3$ and the lighter piece flies horizontally with a velocity of $6 \mathrm{~ms}^{-1}$
.The time after which the lines joining the point of explosion to the position of particles are perpendicular to each other is
A. $\sqrt{\frac{6}{25}} s$
B. $\sqrt{\frac{12}{15}} s$
C. $\sqrt{\frac{24}{25}} s$
D. 2 s

Answer: C

D Watch Video Solution

16. From the top of a building 80 mhigh , a ball
is thrown horizontally which hits the ground
at a distance.The line joining the top of the building to the point where it hits the ground makes an angle of 45° with the ground. Initial velocity of projection of the ball is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. $10 \mathrm{~m} / \mathrm{s}$
B. $15 \mathrm{~m} / \mathrm{s}$
C. $20 \mathrm{~m} / \mathrm{s}$
D. $30 \mathrm{~m} / \mathrm{s}$

Answer: C
17. A stone is thrown from the top of a tower of height 50 m with a velocity of $30 \mathrm{~ms}^{-1}$ at an angle of 30° above the horizontal.Find the time during which the stone will be in air
A. 2 sec
B. 3 sec
C. 4 sec
D. 5 sec

Answer: D

D Watch Video Solution

18. From the top of a tower of height $40 \mathrm{~m}, \mathrm{a}$
ball is projected upward with a speed of
$20 \mathrm{~ms}^{-1}$ at an angle of elevation of 30°. Then
the ratio of the total time taken by the ball to
hit the ground to the time taken to ball come
at same level as top of tower.
A. $2: 1$
B. $3: 1$
C. $3: 2$
D. $4: 1$

Answer: A

D Watch Video Solution

19. A body is thrown horizontally with a velocity u from the top of a tower.The displacement of the stone when the horizontal and vertical velocities are equal is
A. $\frac{u^{2}}{2 g}$
B. $\frac{u^{2}}{2 g}$
C. $\sqrt{5}\left(\frac{u^{2}}{2 g}\right)$
D. $\frac{2 u^{2}}{g}$

Answer: C

D Watch Video Solution

20. A hiker stands on the edge of a cliff 490 m above the ground and throwns a stone
horiozontally with an initial speed of $15 \mathrm{~ms}^{-1}$

neglecting air resistance.The speed with which

it hits the ground in ms^{-1} is $\left(g=9.8 m s^{2}\right)$
A. 9.8
B. 99
C. 4.9
D. 49

Answer: B
21. A ball is projected with $20 \sqrt{2} \mathrm{~m} / \mathrm{s}$ at angle
45° with horizontal.The angular velocity of
the particle at highest point of its journey about point of projection is
A. $0.1 \mathrm{rad} / \mathrm{s}$
B. $1 \mathrm{rad} / \mathrm{s}$
C. $0.3 \mathrm{rad} / \mathrm{s}$
D. $0.4 \mathrm{rad} / \mathrm{s}$

Answer: B
22. A particle is moving along a circular path in xy-plane. When it crosses x-axis, it has an acceleration along the path of $1.5 \mathrm{~m} / \mathrm{s}^{2}$, and is moving with a speed of $10 \mathrm{~m} / \mathrm{s}$ in -ve y direction. The total acceleration is

- View Text Solution

23. An insect trapped in a circular groove of radius 12 cm moves along the groove steadily
and complete 7 revolutions in 100 seconds.The
linear speed of the motion in cm / s
A. 5.3
B. 4
C. 3
D. 5

Answer: A

D Watch Video Solution
24. A particle moves in a circle of radius 20 cm .

Its linear speed is given by $\mathrm{v}=2 \mathrm{t}$ where t is in s and v in m / s. Then
a) the radial acceleration at $t=2 \mathrm{~s}$ is $80 \mathrm{~ms}^{-2}$
b) tangential acceleration at $t-2 \mathrm{~s}$ is $2 \mathrm{~ms}^{-2}$
c) net acceleration at $\mathrm{t}=2 \mathrm{~s}$ is greater than $80 \mathrm{~ms}^{-2}$
d) tangential acceleration remains constant in magnitude.
A. only a,b,c are correct
B. only a,b,d are correct

C. only a,c,d are correct

D. all a,b,c,d are correct

Answer: D

D Watch Video Solution

EXERCISE - III

1. A fielder in a cricket match throws ball from
the boudnary line to the wicket keeper. The
ball describes at parabolic path. Which of the
following quantities remain constant during
the motion in air? (Neglecting air resistance)
A. Kinetic energy
B. Vertical component of velocity
C. Hrizontal component of velocity
D. Speed

Answer: C

D View Text Solution
2. A body is projected horizontally with a
velocity of $4 \mathrm{~ms}^{-1}$ from the top of a high tower.

The velocity of the body after 0.7 is nearly
(Take, $g=10 \mathrm{~ms}^{-2}$)
A. $1 \mathrm{~ms}^{-1}$
B. $10 \mathrm{~ms}^{-1}$
C. $8 m s^{-1}$
D. $3 m^{-1}$

Answer: C
3. The maximum height attained by a projectile is increased by 5%. Keeping the angle of projection constant, what is the percentage increases in horizontal range?
A. 0.05
B. 0.1
C. 0.15
D. 0.2

Answer: A

- Watch Video Solution

4. A projectile can have same range R for two
angles of projection. It t_{1} and t_{2} are the times
of flight in the two cases, then what is the product of two times of flight?
A. R^{2}
B. $\frac{1}{R^{2}}$
C. $\frac{1}{R}$

D. R

Answer: D

D Watch Video Solution

5. A partical is moving along a circular path of
radius 5 m and with uniform speed $5 \mathrm{~m} / \mathrm{s}$. What
will be the avarage acceleration when the partical completes half revoluation?
A. Zero
B. $10 \mathrm{~ms}^{-2}$
C. $10 \pi m s^{-2}$

$$
\text { D. } \frac{10}{\pi} m s^{-2}
$$

Answer: D

D Watch Video Solution

6. Assertion: A body of mass 1 kg is making 1 rps in a circle of radius 1 m . Centrifugal force acting on it is $4 \pi^{2} N$.

Reason: Centrifugal force is given by $F=\frac{m v^{2}}{r}$.
A. Both assertion and reason are true and
reason is the correct explanantion of
assertion
B. Both assertion and reason are true but
reason is not the correct explanation of assertion
C. Assertion is true but reason is false
D. Both assertion and reason are false

Answer: A

D Watch Video Solution
7. A roller coaster is designed such that riders experience "weightlessness" as they go round the top of a hill whose radius of curvature is 20 m . The speed of the car at the top of the hill is between
A. $14 \mathrm{~ms}^{-1}$ and $15 \mathrm{~ms}^{-1}$
B. $15 \mathrm{~ms}^{-1}$ and $16 \mathrm{~ms}^{-1}$
C. $16 \mathrm{~ms}^{-1}$ and $17 \mathrm{~ms}^{-1}$
D. $13 \mathrm{~ms}^{-1}$ and $14 \mathrm{~ms}^{-1}$

Answer: A

D Watch Video Solution

8. A partricle of mass m is projected with a
velocity v at an angle of 60° with horizontal

When the particle is at the maximum height.
The magnitude ofits angular momentum
about the point ofprojection is
A. zero
B. $\frac{3 m v^{2}}{16 g}$
$\sqrt{3} m v^{3}$
C.
$16 g$
D. $\frac{3 m v^{3}}{16 g}$

Answer: B

- Watch Video Solution

9. A missile is fired for maximum range with an
initial velocity of $20 \mathrm{~m} / \mathrm{s}$. If $g=10 \mathrm{~m} / \mathrm{s}^{2}$, the
range of the missile is
A. 50 m
B. 60 m
C. 20 m
D. 40 m

Answer: D

D Watch Video Solution

10. One end of string of length l is connected to a particle on mass m and the other end is connected to a small peg on a smooth horizontal table. If the particle moves in circle
with speed v the net force on the particle
(directed toward centre) will be (T reprents
the tension in the string):

$$
\begin{aligned}
& \text { A. } \frac{m v^{2}}{l} \\
& \text { B. } T-\frac{m v^{2}}{l} \\
& \text { C. } T+\frac{m v^{2}}{l} \\
& \text { D. Zero }
\end{aligned}
$$

Answer: A

11. A car is moving in a circular horizonta track of radius 10 m with a constant speed of $10 \mathrm{~m} / \mathrm{s}$.

A pendulum bob is suspended from the roof of the cat by a light rigid rod of length 1.00 m .

The angle made by the rod with track is
A. Zero
B. 30°
C. 45°
D. 60°

Answer: C

- Watch Video Solution

12. A wheel is rotating at 900 rpm about its
axis. When the power is cut off, it comes to
rest in 1 min . The angular retardation (in rad s^{-2} is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{8}$

D Watch Video Solution

13. A particle moves in a circle of radius 5 cm
with constant speed and time period $0.2 \pi s$.

The acceleration of the particle is
A. $25 \mathrm{~m} / \mathrm{s}^{2}$
B. $36 \mathrm{~m} / \mathrm{s}^{2}$
C. $5 \mathrm{~m} / \mathrm{s}^{2}$
D. $15 \mathrm{~m} / \mathrm{s}^{2}$

D Watch Video Solution

14. The horizontal range is equal to two times
maximum height of a projectile. The angle of projection ofthe projectile is:
A. $\theta=\tan ^{-1}(4)$
B. $\theta=\tan ^{-1}(2)$
C. $\theta=45^{\circ}$
D. $\theta=\tan ^{-1}\left(\frac{1}{4}\right)$

Answer: B

D Watch Video Solution

15. The position vector of a particle \vec{R} as a
funtion of time is given by:
$\vec{R}=4 \sin (2 \pi t) \hat{i}+4 \cos (2 \pi t) \hat{j}$
Where R is in meters, t is in seconds and \hat{i} and
\hat{j} denote until vectors along x-and y directions, respectively Which one of the
following statements is wrong for the motion of particle ?
A. Path of the particle is a circle of radius 4
meter
B. Acceleration vector is along $-\vec{R}$.
C. Magnitude of acceleration vector is $\frac{v^{2}}{R}$
,where v is the velocity of particle.
D. Magnitude of the velocity of aprticle is 8
meter/second
16. Range of a projectile is R, when the angle of
projection is 30°. Then, the value of the other
angle of projection for the same range is
A. 45°
B. 60°
C. 50°
D. 40°

- Watch Video Solution

17. A ball is thrown from a point with a speed
V_{0},at an angle of projection θ.From the same
point and at the same instance a person starts

$$
V_{0}
$$

running with a constant speed $\frac{V^{2}}{\sqrt{2}}$ to catch
the ball will the person be able to catch the ball? If yes, what should be the angle of projection
A. yes, 60°
B. yes, 30°
C. No
D. yes, 45°

Answer: A

D Watch Video Solution
18. If a_{r} and a_{t} represent radial and tangential accelerations, the motion of a particle will be uniformly circular if
A. $a_{r}=0$ and $a_{t}=0$
B. $a_{r}=0$ and $a_{t} \neq 0$
C. $a_{r} \neq 0$ and $a_{t}=0$
D. $a_{r} \neq 0$ and $a_{t} \neq 0$

Answer: C

D Watch Video Solution

19. A Particle is kept at rest at the top of a sphere of diameter $42 m . w h e n$ disturbed
slightly, it slides down. At what height h from
the bottom, the particle will leave the sphere
A. 14 m
B. 28 m
C. 35 m
D. 7 m

Answer: C
(Watch Video Solution
20. The maximum range of a gun from
horizontal terrain is 16 km . If $g=10 \mathrm{~m} / \mathrm{s}^{2}$ what must be the muzzle velocity of the shell?
A. $200 \mathrm{~m} / \mathrm{s}$
B. $100 \mathrm{~m} / \mathrm{s}$
C. $400 \mathrm{~m} / \mathrm{s}$
D. $300 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution
21. A projectile can have the same range R for two angles of projection. If t_{1} and t_{2} be the times of flight in the two cases:-

$$
\begin{aligned}
& \text { A. } t_{1} t_{2} \propto R^{2} \\
& \text { B. } t_{1} t_{2} \propto R \\
& \text { C. } t_{1} t_{2} \propto \frac{1}{R} \\
& \text { D. } t_{1} t_{2} \propto \frac{1}{R^{2}}
\end{aligned}
$$

Answer: B

D Watch Video Solution
22. The range of a projectile when fired at 75°
with the horizontal is 0.5 km . What will be its
range when fired at 45° with same speed:-
A. 0.5 m
B. 1.0 km
C. 1.5 km
D. 2.0 km

Answer: B

D Watch Video Solution
23. A ball is thrown at different angles with the
same speed u and from the same points and it
has same range in both the cases. If y_{1} and y_{2}
be the heights attained in the two cases, then
find the value of $y_{1}+y_{2}$.
A. u^{2} / g
B. $2 u^{2} / g$
C. $u^{2} / 2 g$
D. $u^{2} / 4 g$
24. A projectile is projected with linear momentum p making angle θ with the horizontal. The change in momentum of the projectile on returning to the ground will be-
A. 2 p
B. $2 p \cos \theta$
C. $2 p \sin \theta$
D. $2 p \tan \theta$

Answer: C

D Watch Video Solution

25. The driver of a car travelling at $72 \mathrm{kmh}^{-1}$
suddenly sees a big rock on the road at a
distance of 20 m . What can he do to avoid a collision ?
A. Apply brakes
B. Turn sharply
C. Follow a zig - zag path

D. Shut the engine

Answer: A

D Watch Video Solution

26. If a body is projected with an angle θ to the
horizontal, then
A. its velocity is always perpendicular to its
acceleration
B. its velocity becomes zero at its maximum
height
C. its velocity makes zero angle with the
horizontal at its maximum height
D. the body just before hitting the ground,
the direction of velocity coincides with
the acceleration

Answer: C

D Watch Video Solution

27. A spaceman in training is rotated in a seat at the end of a horizontal arm of length 5 m . If he can with stand acceleration upto 9 g , then what is the maximum number of revolution per second permissible? (Take, $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
A. $13.5 \mathrm{rev} / \mathrm{s}$
B. $1.35 \mathrm{rev} / \mathrm{s}$
C. $0.675 \mathrm{rev} / \mathrm{s}$
D. $6.75 \mathrm{rev} / \mathrm{s}$

- Watch Video Solution

28. Two stones are projected with the same speed but making different angles with the horizontal. Their horizontal ranges are equal. The angle of projection of one is $\frac{\pi}{3}$ and the maximum height reached by it is 102 m . Then
the maximum height reached by the other in metres is
A. 3.36
B. 224
C. 56
D. 34

Answer: D

D Watch Video Solution

29. A projectile is fired at an angle of 45° with
the horizontal. Elevation angle of the projection at its highest point as seen from the point of projection is
A. 45°
B. 60°
C. $\tan ^{-1}\left(\frac{1}{2}\right)$
D. $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$

Answer: C

- Watch Video Solution

30. Two particles starting from a point on a circle of radius 4 m in horizontal plane move
along the respectively in opposite directions.

The particle will collide with each other after a
time of
A. 3.0 s
B. 2.5 s
C. 2.0 s
D. 1.5 s

Answer: B

D View Text Solution
31. For angle of projection of a projectile at angles and $\left(45^{\circ}+\theta\right)$, the horizontal range described by the projectile are in the ratio of
A. $2: 1$
B. 1:1
C. 2:3
D. 1:2

Answer: B
32. A paricle starting from the origin $(0,0)$ moves in a straight line in (x, y) plane. Its coordinates at a later time are $(\sqrt{3}, 3)$. The path of the particle makes with the x-axis an angle of
A. 45°
B. 60°
C. 0°
D. 30°

- Watch Video Solution

33. A police jeep is chasing with, velocity of
$45 \mathrm{~km} / \mathrm{h}$ a thief in another jeep moving with
velocity $153 \mathrm{~km} / \mathrm{h}$. Police fires a bullet with muzzle velocity of $180 \mathrm{~m} / \mathrm{s}$. The velocity it will strike the car of the thief is.
A. 2 s
B. 4 s
C. 1s
D. 6 s

Answer: B

D Watch Video Solution

34. A police jeep is chasing with, velocity of
$45 \mathrm{~km} / \mathrm{h}$ a thief in another jeep moving with
velocity $153 \mathrm{~km} / \mathrm{h}$. Police fires a bullet with muzzle velocity of $180 \mathrm{~m} / \mathrm{s}$. The velocity it will strike the car of the thief is.
A. $150 \mathrm{~m} / \mathrm{s}$

B. $27 \mathrm{~m} / \mathrm{s}$

C. $450 \mathrm{~m} / \mathrm{s}$
D. $250 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution
35. Which motion does not require force to maintain it?
A. Uniform circular motion

B. Elliptical motion

C. Uniformstraight line motion
D. Projectile motion

Answer: C

D Watch Video Solution

36. A fielder in a cricket match throws ball from
the boundary line to thhe wicket keeper. The ball describes a partabolic path. Which of the
following quantities remain constant during
the motion in air? (Neglecting air resistance)
A. Kinetic energy
B. Vertical component of velocity
C. Hortizontal component of velocity
D. Speed

Answer: C

D Watch Video Solution

37. A particle is moving in a vertical in a vertical circle. The tensions in the string when passing through two positions at angles 30° and 60° from the lowest positon are T_{1} and T_{2} respectively, then
A. $T_{1}=T_{2}$
B. $T_{2}>T_{1}$
C. $T_{1}>T_{2}$
D. tension in the string always remains the

Answer: C

- Watch Video Solution

38. The angle of projection at which the horizontal range and maximum height of projectile are equal is
A. 45°
B. $\theta=\tan ^{-1}(4)$
C. $\theta=\tan ^{-1}(0.25)$
D. none of these

Answer: B

- Watch Video Solution

39. The height y and the distance x along the horizontal plane of a projectile on a certain planet (with no surrounding atmosphere) are given by $y=\left(8 t-5 t^{2}\right)$ meter and $x=6 t$ meter, where t is in second. The velocity with which
the projectile is projected is
A. $8 \mathrm{~m} / \mathrm{s}$
B. $6 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}$
D. not obtained from the data

Answer: C

D Watch Video Solution

40. The relation between the time of flight of projectile T_{f} and the time to reach the maximum height t_{m} is
A. $T_{f}=2 t_{m}$
B. $T_{f}=t_{m}$
C. $T_{f}=\frac{t_{m}}{2}$
D. $T_{f}=\sqrt{2}\left(t_{m}\right)$

Answer: A

- Watch Video Solution

41. The acceleration of an object moving with speed v in a circle of radius r is
A. $\frac{u^{2}}{r}$ towards the centre
B. $\frac{u}{r}$ way from the centre
C. $\frac{u}{r^{2}}$ way from the centre
D. $\frac{r}{u^{2}}$ towards the centre

Answer: A

D Watch Video Solution

42. A projectile of mass 30 kg is shot vertically
upwards with an intial velocity of $10 \mathrm{~m} / \mathrm{s}$.After

5 s , it explodes into two fragments, one of which having a mass of 20 kg is travelling vertically with a velocity of $150 \mathrm{~m} / \mathrm{s}$. What is the velocity of the other fragment at that instant?
A. $-15 \mathrm{~m} / \mathrm{s}$
B. $15 \mathrm{~m} / \mathrm{s}$
C. zero
D. None of these

Answer: A

43. A cartis moving horizontally along a straight line with constant speed $30 \mathrm{~m} / \mathrm{s}$.At projectile is to be fired from the moving cart in
such a way that it will return to the cart after
the cart has moved 80 m . At what speed
(relative to the cart) must the projectile be
fired? (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
A. $10 \sqrt{8 m} / \mathrm{s}$
B. $8 \sqrt{10 \mathrm{~m}} / \mathrm{s}$
C. $\frac{40}{3} \mathrm{~m} / \mathrm{s}$

D. None of these

Answer: C

D View Text Solution

44. A bullet is fired with a speed of $1500 \mathrm{~m} / \mathrm{s}$ in
order to hit a target 100 m away. if $\mathrm{g} 10 \mathrm{~m} / \mathrm{s}^{2}$,
the gun should be aimed:
A. 15 cm above the target
B. 10 cm above the target

C. 3 cm above the target

D. directly towards the target

Answer: C

D View Text Solution

45. A fighter plane is moving in a vertical circle of radius ' r '. Its minimum velocity at the highest point of the circle will be

$$
\text { A. } \sqrt{\frac{1}{2} g r}
$$

B. $\sqrt{2 g r}$
C. $\sqrt{g r}$
D. $\sqrt{3 g r}$

Answer: C

D Watch Video Solution

46. The horizontal range and the maximum height of a projectile are equal. The angle of projection of the projectile is
A. $\theta=\tan ^{-1}(2)$
B. $\theta=45^{\circ}$
C. $\theta=\tan ^{-1}\left(\frac{1}{4}\right)$
D. $\theta=\tan ^{-1}(4)$

Answer: D

D Watch Video Solution

47. A car of mass 1000 kg negotiates a banked curve of radius 90 m on a fictionless road. If the
banking angle is 45° the speed of the car is:
A. $5 m s^{-1}$
B. $10 \mathrm{~ms}^{-1}$
C. $20 \mathrm{~ms}^{-1}$
D. $30 \mathrm{~ms}^{-1}$

Answer: D
48. The velocity of a projectile at the initial point. A is $(2 \hat{i}+3 \hat{j}) \mathrm{m} / \mathrm{s}$. It's velocity (in m / s) at point B is
A. $-2 \hat{i}+3 \hat{j}$
B. $2 \hat{i}-3 \hat{j}$
C. $2 \hat{i}+3 \hat{j}$
D. $-2 \hat{i}-3 \hat{j}$

Answer: B
49. a projectile is fired from the surface of the earth with a velocity of $5 \mathrm{~ms}^{-1}$ and angle θ with the horizontal. Another projectile fired from another planet with a velocity of $3 \mathrm{~ms}^{-1}$ at the
same angle follows a trajectory which is identical with the trajectory of the projectile fired from the earth.The value of the acceleration due to gravity on the planet is in ms^{-2} is given $\left(\mathrm{g}=9.8 \mathrm{~ms}^{-2}\right)$
A. 3.5
B. 5.9
C. 16.3
D. 110.8

Answer: A

D Watch Video Solution

50. If the angle of projection of a projector with same initial velocity exceed or fall short of 45° by equal amount α, then the ratio of horizontal rages is
A. $1: 2$
B. 1:3
C. 1:4
D. $1: 1$

Answer: D

- Watch Video Solution

EXERCISE-IV

1. A ball is thrown from a roof top at angle of
40° above the horizontal. It hits the ground a
few seconds later. At what point during its motion. Does the ball have
(a) greatest speed (b) smallest speed (c) greatest acceleration ? Explain.
A. At the highest point
B. At the starting point
C. At the point where it toughes the ground

D. None of the above

Answer: C

D Watch Video Solution

2. Two particles A and B are placed as shown in
the figure. The particle A one the top of tower
, is projected horizontally with a velocity μ and
the particle B is projected along the suface towards the tower simultaneously. If particle meet each other, then the speed of projected
of particle B is : [igoner friction].

> A. $d \sqrt{\frac{g}{2 H}}-u$
> B. $d \sqrt{\frac{g}{2 H}}$
> C. $d \sqrt{\frac{g}{2 H}}+u$
> D. u

Answer: A
3. Three particles A, B and C are projected from
the same point with the same initial speeds making angles $30^{\circ}, 45^{\circ}$ and 60° respectively with the horizontal. Which of the following statement is correct?
A. A, B and C have unequal ranges
B. Ranges of A and C are less than that of B
C. Ranges of A and C are equal and greater
than that of B
D. A, B and C have equal ranges

Answer: B

- Watch Video Solution

4. An artillary piece which consistently shoots
its shells with the same muzzle speed has a maximum range R. To hit a target which is $R / 2$ from the gun and on the same level, the elevation angle of the gun should be
A. 15°
B. 45°
C. 30°
D. 60°

Answer: A

D Watch Video Solution

5. A bullet fired at an angle of 30° with the
horizontal hits the ground 3 km away. By adjusting the angle of projection, can one hope to hit a target 5 km away ? Assume the
muzzle speed to be fixed and neglect air resistance.
A. Not possible
B. Possible
C. information insufficient

D. None of these

Answer: A
(Watch Video Solution
6. The range of a projectile fired at an angle of
15° is 50 m . If it is fired with the same speed at an angle of 45° its range will be

A. 60 m

B. 71 m
C. 100 m
D. 141 m

Answer: C

D Watch Video Solution
7. In a two dimensional motion, instantaneous speed v_{0} is a positive constant.Then which of the following are necessarily true?
A. The average velocity is not zero at any
time
B. Average acceleration must always vanish
C. displacements in equal time intervals are
equal
D. Equal path lengths are traversed in
equal intervals

Answer: D

- Watch Video Solution

8. In a two dimensional motion, instantaneous
speed v_{0} is a positive constant.Then which of
the following are necessarily true?
A. The acceleration of the particle is zero
B. The acceleration of the particle is
bounded
C. The acceleration of the particle is necessarily in the plane of motion
D. The particle must be undergoing a uniform circubar motion

Answer: C

D Watch Video Solution

9.

A stone is projected from a horizontal plane. It attains maximum height H \& strikes a stationary smooth wall \& falls on the ground vertically below the maximum height.

Assuming the collision to be elastic the height of the point on the wall where ball will strike is
A. $(H / 2)$
B. $(\mathrm{H} / 4)$
C. $(3 \mathrm{H} / 4)$
D. none of these

Answer: C

D Watch Video Solution

10. A player kicks a ball at a speed of $20 \mathrm{~ms}^{-1}$ so
that its horizontal range is maximum. Another players 24 m away in the direction of kick starts
running in the same direction at the same
instant of hit. If he has to catch the ball just before it reaches the ground, he should run
with a velocity equl to $\left(\right.$ takeg $\left.=10 \mathrm{~ms}^{-2}\right)$
A. $2 \sqrt{2} m s^{-1}$
B. $4 \sqrt{2} \mathrm{~ms}^{-1}$
C. $6 \sqrt{2} m s^{-1}$
D. $10 \sqrt{2} \mathrm{~ms}^{-1}$

Answer: B
11. For a particle performing uniform circular motion, choose the incorrect statement form the following.

A. Maggnitude of particle velocity (speed)

remains constant
B. paricle velocity remains directed
perpendicular to radius vector
C. Direction of acceleration keeps changing
as the particle moves

D. Magnetude of acceleration does not

remain constant

Answer: D

D Watch Video Solution

12. A cyclist is riding with a speed of $27 \mathrm{kmh}^{-1}$.

As he approaches a circular turn on the road of radius 80 m , he applies brakes and reduces
his speed at the constant rate $0.5 \mathrm{~ms}^{-2}$. What is the magnitude and direction of the net
acceleration of the cyclist on the circular turn
?
A. $0.68 \mathrm{~ms}^{-2}$
B. $0.86 \mathrm{~ms}^{-2}$
C. $0.56 \mathrm{~ms}^{-2}$
D. $0.76 \mathrm{~ms}^{-2}$

Answer: B
(Watch Video Solution
13. A particle is moving on a circular path of radius r with uniform speed v. What is the displacement of the particle after it has described an angle of 60° ?
A. $r \sqrt{2}$
B. $r \sqrt{3}$
C. r
D. $2 r$

Answer: C

14. A stone tied to the end of string 100 cm long is whirled in a horizontal circle with a constant speed. If the stone makes 14 revolution in 22 s , then the acceleration of the ston is
A. $16 m s^{-2}$
B. $4 m s^{-2}$
C. $12 m s^{-2}$
D. $8 m s^{-2}$

Answer: A

D Watch Video Solution

15. When a body is projected from a level ground the ratio of its speed in the vertical and horizontal direction is $4: 3$. If the velocity of projection is u, the time after which, the ratio of the velocities in the vertical and horizontal directions are reversed is (A)7u/20g (B) $35 u / 10 g(C) 9 u / g(D) 10 u / g$
A. $\frac{7 u}{20 g}$
B. $\frac{3 u}{10 g}$
C. $\frac{9 u}{20 g}$
D. $\frac{10 u}{7 g}$

Answer: A

D Watch Video Solution

16. A particle is projected horizonatally with a speed 'u' from the top of plane in clined at an angle θ with the vertical. How far from the
point of projection will the particle strike the plane?
A. $\frac{2 u^{2}}{g} \cot \theta e c \theta$
B. $\frac{2 u^{2}}{g} \cot \theta \sec \theta$
C. $\frac{2 u^{2}}{g} \tan \theta \sec \theta$
D. $\frac{2 u^{2}}{g} \cot \theta \cos \theta$

Answer: A
17. The speed of a projectile when it is at its greatest height is $\sqrt{2 / 5}$ times its speed at half the maximum height. The angle of projection is
A. 30°
B. 45°
C. 60°
D. 90°

Answer: C
18. A particle of mass m is projected with an initial velocity U at an angle θ to the horizontal. The torque of gravity on projectile at maximum height about the point of projection is

$$
\text { A. } \frac{m U^{2} \sin 2 \theta}{2}
$$

B. $m U^{2} \sin 2 \theta$
C. $\frac{m U^{2} \sin \theta}{2}$
D. $\frac{1}{2} m U^{2}(\sin 2 \theta)^{2}$

Answer: A

D Watch Video Solution

19. The horizontal range and miximum height
attained by a projectile are R and H,
respectively. If a constant horizontal
acceleration $a=g / 4$ is imparted to the
projectile due to wind, then its horizontal
range and maximum height will be
A. $(R+H), H / 2$
B. $(R+H / 2), 2 H$
C. $(R+2 H), H$
D. $(R+H), H$

Answer: D

D Watch Video Solution

20. A projectile is fired with a velocity u at right angles to the slope, which is inclined at an angle θ with the horizontal. Derive an expression for the distance R to the point of
impact.

$$
\begin{aligned}
& \text { A. } \frac{2 u^{2}}{g} \tan \theta \\
& \text { B. } \frac{2 u^{2}}{g} \sec \theta \\
& \text { C. } \frac{u^{2}}{g} \tan ^{2} \theta \\
& \text { D. } \frac{2 u^{2}}{g} \tan \theta \sec \theta
\end{aligned}
$$

Answer: A

- Watch Video Solution

21. The horizontal range and miximum height
attained by a projectile are R and H,
respectively. If a constant horizontal
acceleration $a=g / 4$ is imparted to the projectile due to wind, then its horizontal
range and maximum height will be
A. $(R+H), \frac{H}{2}$
B. $\left(R+\frac{H}{2}\right), 2 H$
C. $(R+2 H), H$
D. $(R+H), H$

Answer: D

D Watch Video Solution

22. Time taken by the projectile to reach from
A to B is t. Then the distance $A B$ is equal to :
A. $\frac{u t}{\sqrt{3}}$
B. $\frac{\sqrt{3} u t}{2}$
C. $\sqrt{3} u t$

D. 2ut

Answer: A

D View Text Solution

23. Two persons P and Q crosses the river starting the point A on one side to exactly opposite point B on the other bank of the river. The person P crosses the river in the shortest path. The person Q crosses the river in shortest time and walks back to point B
.Velocity of river is 3 kmph and speed of each person is $5 k m p h$ w.r.t river. If the two persons reach the point B in the same time, then the speed of walk of Q is .
A. 8 kmph
B. 12 kmph
C. 4 kmph
D. 6 kmph

Answer: B
24. To a man walking at 7 kmph due west, the wind appears to blow from the north-west but when he walks at 3 kmph due west, the wind appears to blow from north. The magnitude and actual direction of wind are
A. $5 \mathrm{kmph}, \tan ^{-1}\left(\frac{3}{4}\right)$ east of north
B. $5 \mathrm{kmph}, \tan ^{\frac{3}{4}}$ north of east
C. $4 \mathrm{kmph}, \tan ^{-1}\left(\frac{3}{4}\right)$ east of north
D. $3 \mathrm{kmph}, \tan ^{-1}\left(\frac{3}{4}\right)$ north of east

Answer: A

D View Text Solution

25. The distance between two moving particles
P and Q at any time is a.If v_{r} be their relative velocity and if u and v be the components of v_{r} , along and perpendicular to $P Q$.The closest distance between P and Q and time that elapses before they arrive at their nearest distance is

$$
\begin{aligned}
& \text { A. } \frac{a\left(v+v_{r}\right)}{v}, a\left(1+\frac{v_{r}}{u}\right)^{2} \\
& \text { B. } \frac{a v}{\left(v+v_{r}\right)}, a\left(1+\frac{u}{v_{r}}\right)^{2} \\
& \text { C. } \frac{a v_{r}}{v}, \frac{a v_{r}}{u} \\
& \text { D. } \frac{a v}{v_{R}}, \frac{a u}{v_{r}^{2}}
\end{aligned}
$$

Answer: D

D Watch Video Solution

26. In a harbour, wind is blowing at the speed
of $72 \mathrm{~km} / \mathrm{h}$ and the flag on the mast of a boat
anchored in the harbour flutters along the $\mathrm{N}-\mathrm{E}$
direction. If the boat starts moving at a speed
of $51 \mathrm{~km} / \mathrm{h}$ to the North, what is the direction of flag on the mast of the bat ?
A. Nearly west
B. Nearly east
C. Nearly south
D. Nearly north

Answer: B

D Watch Video Solution

27. A horizontal wid is blowing with a velocity v
towards north-east. A man starts running
towards north with acceleration a. The after
which man will feel the wind blowing towards east is

$$
\begin{aligned}
& \text { A. } \frac{v}{a} \\
& \text { B. } \frac{\sqrt{2} v}{a}
\end{aligned}
$$

C. $\frac{v}{\sqrt{2} a}$
D. $\frac{2 v}{a}$

Answer: C

- Watch Video Solution

28. Assuming the gravity to be in negative z direction, a force $F=v \times A$ is exerted on a particle in addition to the force of gravity where v is the velocity of the particle and A is a constant vector in positive x-direction. With
what minimum speed a particle of mass m be projected so that it continues to move undeflected with constant velocity?

$$
\begin{aligned}
& \text { A. }-\frac{A}{m g} \hat{j} \\
& \text { B. } \frac{A}{m g} \hat{j} \\
& \text { C. } \frac{m g}{A} \hat{j} \\
& \text { D. }-\frac{m g}{A} \hat{j}
\end{aligned}
$$

Answer: D

D Watch Video Solution

29. Rain is falling vertically with a speed of $20 \mathrm{~ms}^{-1}$., A person is running in the rain with a velocity of $5 \mathrm{~ms}^{-1}$ and a wind is also blowing with a speed of $15 \mathrm{~ms}^{-1}$ (both from the west)

The angle with the vertical at which the person should hold his umbrella so that he may not get drenched is:
A. $\tan ^{-1}\left(\frac{2}{3}\right)$
B. $\tan ^{-1}\left(\frac{1}{2}\right)$
C. $\tan ^{-1}\left(\frac{1}{3}\right)$
D. $\tan ^{-1}(2)$

Answer: B

- Watch Video Solution

