©゙" doubtnut

India's Number 1 Education App

PHYSICS

AIMED AT STUDENTS PREPARING FOR

IIT JEE EXAMS

VECTORS

Solved Example

1. Three vectors $\vec{A}, \vec{B}, \vec{C}$ are shown in the
figure. Find angle between
(i) \vec{A} and \vec{B} (ii) \vec{B} and \vec{C} (iii) \vec{A} and \vec{C}.

- Watch Video Solution

2. If $\vec{A}, \vec{B}, \vec{C}$ represents the three sides of an equilateral triangle taken in the same order then find the angle between
(i) \vec{A} and \vec{B} (ii) \vec{B} and \vec{C} (iii) \vec{A} and \vec{C}.
\vec{B}

${ }^{*} A$
$\vec{C}_{:}=\vec{A}$

- Watch Video Solution

3. A man walks towards east with certain velocity. A car is travelling along a road which is 30° west of north. While a bus is travelling in another road which is 60° south of west.

Find the angle between velocity vector of
(a) man and car (b) car and bus
(c) bus and man.

D Watch Video Solution

4. A vector \vec{A} makes an angle 30° with the Y axis in anticlockwise direction. Another vector
\vec{B} makes an angle 30° with the x-axis in clockwise direction. Find angle between vectors \vec{A} and \vec{B}.

5. The components of a vector along the x - and
y - directions are $(n+1)$ and 1 , respectively. If
the coordinate system is rotated by an angle
$\theta=60^{\circ}$, then the components change to n and 3 . The value of n is

- Watch Video Solution

6. A weight mg is suspended from the middle of a rope whose ends are at the same level.

The rope is no longer horizontal. Find the
minimum tenstion required to completely straighten the rope.

D Watch Video Solution

7. Sum of magnitudes of the two forces acting at a point is $16 N$ if their resultant is normal to
the smaller forces and has a magnitude $8 N$ then the forces are .
8. A bird moves with velocity $20 \mathrm{~m} / \mathrm{s}$ in a direction making an angle of 60° with the eastern line and 60° with the vertical upward.

Represent the velocity vector in rectangular form.

D Watch Video Solution
9. Find the resultant of the vectors shown in
figure.

D Watch Video Solution

10. Find the resultant of the three vectors
$\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ shown in figure. Radius of
the circle is R .

- Watch Video Solution

11. Vector \vec{A} is 2 cm long and is 60° above the x-axis in the first quadrant. Vector \vec{B} is 2 cm long and is 60° below the x-axis in the fourth quadrant. The sum $\vec{A}+\vec{B}$ is a vector of magnitudes

D Watch Video Solution

12. Find the resultant of the vectors shown in
fig by the component method.

- Watch Video Solution

13. If vectors A and B be respectively equal to $3 \hat{i}-4 \hat{j}+5 \hat{k}$ and $2 \hat{i}+3 \hat{j}-4 \hat{k}$. Find the unit vector parallel to $\mathrm{A}+\mathrm{B}$
14. If $\vec{A}=3 \hat{i}+4 \hat{j}$ and $\vec{B}=7 \hat{i}+24 \hat{j}$, find a vector having the same magnitude as \vec{B} and parallel and same direction as \vec{A}.

- Watch Video Solution

15. The resultant of two vectors \vec{A} and \vec{B} is perpendicular to \vec{A} and equal to half of the magnitud of \vec{B}. Find angle between \vec{B} and \vec{B}
16. If $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $3 \hat{i}+\lambda \hat{j}+\mu \hat{k}$ be collinear vectors, them find the values of λ and
μ.

- Watch Video Solution

17. Find the angle between two vectors
$\widehat{A}=2 \hat{i}+\hat{j}-\hat{k}$ and $\widehat{B}=\hat{i}-\hat{k}$

- Watch Video Solution

18. If \widehat{a}_{1} and \widehat{a}_{2} are two non collinear unit vectors inclined at 60° to each other then the value of $\left(\widehat{a}_{1}-\widehat{a}_{2}\right) \cdot\left(2 \widehat{a}_{1}+\widehat{a}_{2}\right)$ is

D Watch Video Solution

19. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicular to each other, then the angle between \vec{a} and \vec{b} is
20. If $\vec{F}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{r}=2 \hat{i}-\hat{j}+\hat{k}$ find $\vec{r} \times \vec{F}$

D Watch Video Solution

21. Find the components of a vector
$A=2 \hat{i}+3 \hat{j}$ along the directions of
$\hat{i}+\hat{j}$ and $\hat{i}-\hat{j}$.
22. Find the unit vector perpendicular to Itbr.
$\vec{A}=3 \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{B}=\hat{i}-\hat{j}+\hat{k}$

D Watch Video Solution

23. Find the angle between the diagonals of a cube with edges of length "a".

- Watch Video Solution

1. Of the following the vector quantity is

A. Time
B. Electric Current
C. Velocity of light
D. Gravitational force

Answer: D

D Watch Video Solution

2. Of the following the scalar quantity is
A. Temperature
B. Moment of force
C. Moment of couple
D. Magnetic moment

Answer: A

D Watch Video Solution
3. Choose the correct statement
A. Temperature is a scalar but temperature
gradient is a vector
B. Velocity of a body is a vector but velocity
of light is a scalar
C. Electric intensity and Electric current density are vectors
D. All the above

Answer: D

4. Choose the false statement:

A. Electric current is a vector because it has
both magnitude and directions
B. Timke is a vector which has direction
always in the forward direction.
C. All quantities having magnitude and
direction are vector quantities
D. All the above

- Watch Video Solution

5. Which of the gollowing units could be associated with a vector quantity?
A. newton/metre
B. newton metre/second
C. $\mathrm{kg} m^{2} s^{-2}$
D. newton second

Answer: D

6. A vector is not changed if

A. it is rotated through an arbitarary angle
B. it is multiplied by an arbitarary scalar
C. it is cross multiplied by a unit vector
D. it slides parallel to itslef.

Answer: D

D Watch Video Solution

7. Which of the following is meaningful?

A. vector/vector
B. scalar/Vector
C. Scalar+Vector

D. Vector/Scalar

Answer: D

D Watch Video Solution

8. Choose the correct statement
A. Scalar+vector=scalar/vector
B. $\frac{\text { vector }}{\text { vector }}=$ scalar
C. Scalar/vector=scalar (Or) vector
D. vector-vector=vector.

Answer: D

D Watch Video Solution

9. If the angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$, then angle between $2 \vec{a}$ and $-3 \vec{b}$ is :
A. $\frac{\overline{3}}{3}$
B. $\frac{2 .}{3}$
C. $\frac{\overline{\overline{6}}}{}$
D. $\frac{5 .}{3}$

Answer: B

- Watch Video Solution

10. If component of one vector in the direction
of another vector is zero, then those two
vectors
A. are parallel to each other
B. are perpendicular to each other
C. are opposite to each other
D. are coplanar vectors.

Answer: B

D Watch Video Solution
11. The component of a vector is
A. always less than its magnitude
B. always greater than its magnitude
C. always equal to its magnitude
D. less than or equal to its magnitude '

Answer: D

D Watch Video Solution

12. The horizontal component of the weight of a body of mass m is
A. $m g$
B. $\frac{m g}{2}$
C. zero
D. inifinity

Answer: C

- Watch Video Solution

13. Cross product of vectors obeys
A. commutative law
B. associative law

C. distributive law

D. all the above

Answer: C

D Watch Video Solution

14. Distributive law is obeyed by
A. scalar product
B. vector product
C. both

D. none

Answer: C

D Watch Video Solution

15. Choose the false statement.
A. Scalar product and vector product obey
commutative law

B. Scalar product does not obey

distributive law where as vector product
obeys commutative law
C. Scalar product and vector product obey

associative law

D. All the above

Answer: D

D Watch Video Solution
16. Three vectors satisfy the relation $A \cdot B=0$ and
A. $C=0$ then A is parallel to
А. \vec{C}
B. \vec{B}
C. $\vec{B} \times \vec{C}$
D. $\vec{B} \cdot \vec{C}$

Answer: C

D Watch Video Solution

17. Let \vec{F} be a force acting on a particle having positon vector \vec{r}. Let \vec{r} be the torque of this force about the origin then
A. $\vec{r} \cdot \vec{\Gamma}=0$ and $\vec{F} \cdot \vec{\Gamma}=0$
B. $\vec{r} \cdot \vec{\Gamma}=0 b u t \vec{F} \cdot \vec{\Gamma} \neq 0$
c. $\vec{r} \cdot \vec{\Gamma} \neq 0 b u t \vec{F} \cdot \vec{\Gamma}=0$
D. $\vec{r} \cdot \vec{\Gamma} \neq 0$ and $\vec{F} \cdot \vec{\Gamma} \neq 0^{\circ}$

Answer: A

- Watch Video Solution

18. $(\vec{A} \times \vec{B})+(\vec{B} \times \vec{A})$ is equal to
A. 2 AB
B. $A^{2} B^{2}$

C. zero

D. null vector

Answer: D

D Watch Video Solution

19. If $\vec{C}=\vec{A} \times \vec{B}$, then \vec{C} is
A. parallel to \vec{A}
B. parallel to \vec{B}
C. perpendicular to \vec{A} and parallel to \vec{B}
D. perpendicular to both \vec{A} and \vec{B}

Answer: D

- Watch Video Solution

20. If \vec{A} and \vec{B} are two vectors, then which of
the following is wrong?
A. $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$
B. $\vec{A}+\vec{B}=\vec{B}+\vec{A}$
c. $\vec{A} \times \vec{B}=\vec{B} \times \vec{A}$
D. $\vec{A} \times \vec{B}=-\vec{B} \times \vec{A}$

Answer: C

- Watch Video Solution

21. The angle between $(\vec{A} \times \vec{B})$ and $(\vec{B} \times \vec{A})$ is (in radian)
A. $\pi / 2$
B. π
C. $\pi / 4$
D. zero

Answer: B

D Watch Video Solution

22. If none of the vectors \vec{A}, \vec{B} and \vec{C} are zero and if $\vec{A} \times \vec{B}=0$ and $\vec{B} \times \vec{C}=0$ the value of $\vec{A} \times \vec{C}$ is
A. unity
B. zero
C. B^{2}
D. $A C \cos (\theta)$

Answer: B

- Watch Video Solution

23. Choose th false statement
A. A vector having zero magnitude can
B. If $\vec{A} \times \vec{B}=\overrightarrow{0}$, then either \vec{A} or \vec{B} or
both must have zero magnitude
C. The component of a vector is a vector
D. All the above

Answer: D

D Watch Video Solution

24. If \vec{A}, \vec{B} and \vec{C} are coplanar vectors, then
A. $(\vec{A} \cdot \vec{B}) \times \vec{C}=0$
B. $(\vec{A} \times \vec{B}) \vec{C}=0$
C. $(\vec{A} \cdot \vec{B}) \vec{C}=0$
D. all the above are true

Answer: B

D Watch Video Solution

25. If \vec{A} along North and \vec{B} vertically upward then the directions of $\vec{A} \times \vec{B}$ is along
A. west

B. south

C. east

D. vertically downwards

Answer: C

- Watch Video Solution

26.

The
angle
between
$(\vec{A}+\vec{B}) \&(\vec{A} \times \vec{B})$
A. 0
B. $\pi / 4$
C. $\pi / 2$
D. π

Answer: C

D Watch Video Solution

27. The position vector \vec{r} and linear momentum \vec{p} and $\vec{r}=\hat{i}$ and $\vec{p}=4 \hat{j}$ the angular momentum vector is perpendicular to
A. x-axis
B. y-axis
C. z-axis
D. xy-plane

Answer: D

D Watch Video Solution

28. The vector area of triangle whose sides are $\vec{a}, \vec{b}, \vec{c}$ is
A. $\frac{1}{2}|\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{a} \times \vec{b}|$
B. $\frac{1}{2}|\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{b}|$
C. $\frac{1}{3}|\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{b}|$
D. $\frac{1}{2}|-\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{b}|$

Answer: A

D Watch Video Solution

29. Set the following vectors in the increasing order to their magnitude.
(i) $3 \hat{i}+4 \hat{j}$ (ii) $2 \hat{i}+4 \hat{j}+6 \hat{k}$ (iii) $2 \hat{i}+2 \hat{j}+2 \hat{k}$
A. a,b,c
B. c, a, b
C. a, c, b
D. b,c,a

Answer: B

D Watch Video Solution
30. Arrangement the vectors additions so that their magnitude are in the increasing order.
A. Two vector \vec{A} and \vec{B} are parallel
B. Two vectors \vec{A} and \vec{B} are antiparallel
C. Two vectors \vec{A} and \vec{B} making an angle
60°
D. Two vectors \vec{A} and \vec{B} are perpendicular

Answer: A

D Watch Video Solution

31. Arrange the vector subtractions so that their magnitude are in decreasing order. If the two vectors \vec{A} and \vec{B} are acting at an angle $(|\vec{A}|>|\vec{B}|)$. (a) 60° (b) 90° (c) 180°
120°
A. a,b,c
B. c, b, a
C. c,d,b,a
D. a, c, b
32. Set the angles made by following vectors with x-axis in the increasing order.
(a) $3 \hat{i}+4 \hat{j}$ (b) $4 \hat{i}+3 \hat{j}$ (c) $\hat{i}+\hat{j}$
A. a, b, c
B. c, b, a
C. b,c,a
D. a, c, b
33. Arrange the dot products in increasing order
(a) \vec{A} and \vec{B} are parallel
(b) \vec{A} and \vec{B} are making an angle 60°
(c) \vec{A} and \vec{B} making an angle 180°
A. c,b,a
B. a, b, c
C. b,c,a

D. c, a, b

Answer: A

D Watch Video Solution

34. Arrange the magnitude of cross products
in the decreasing order.
(a) \vec{A} and \vec{B} making angle zero
(b) \vec{A} and \vec{B} making angle 30°
(c) \vec{A} and \vec{B} making angle 120°
A. a,b,c
B. b,c,a
C. c, a, b
D. c, b, a

Answer: D

- Watch Video Solution

Level I C W

1. If $\vec{A}=3 \hat{i}-4 \hat{j}$ and $\widehat{B}=-\hat{i}-4 \hat{j}$,
calculate the direction of $\vec{A}+\vec{B}$
A. $\tan ^{-1}(4)$ with positive X-axis in close wise
B. $\tan ^{-1}(4)$ with X-axis in clock wise
C. $\tan ^{-1}(4)$ with positive X-axis in anticlock wise
D. $\tan ^{-1}(4)$ with negative X-axis in anticlock wise

Answer: A

2. Two vectors are given by $\vec{a}=2 \vec{b}-\vec{c}=0$ then thrid vector \vec{c} is

A. $4 \hat{i}-9 \hat{j}-13 \hat{k}$
B. $-4 \hat{i}-9 \hat{j}+13 \hat{k}$
C. $4 \hat{i}-9 \hat{j}-13 \hat{j}$
D. $2 h t i-3 \hat{j}+13 \hat{k}$

Answer: A

D View Text Solution
3. The vector sum of two vectors of magnitudes 10 units and 15 units can never be
A. 28units
B. 22units
C. 18units
D. 8units

Answer: A

D Watch Video Solution
4. The car makes a displacement of 100 m towards east and then 200 m towards north.

Find the magnitude and direction of the resultant.
A. $223.7 \mathrm{~m}, \tan ^{-1}(2), N$ of E
B. $223.7 \mathrm{~m}, \tan ^{-1}(2), E$ of N
C. $300 \mathrm{~m}, \tan ^{-1}(2), \mathrm{N}$ of E
D. $100 \mathrm{~m}, \tan ^{-1}(2), \mathrm{N}$ of E

Answer: A
5. If a vector has an x-component of -250units and a y-component of 40.0 units, then the magnitude and direction of this vector is
A. $5 \sqrt{89}$ units, $\sin ^{-1}\left(\frac{5}{\sqrt{89}}\right)$ with + ve- $\mathrm{x}-$
axis
B. $5 \sqrt{89}$ units, $\cos ^{-1}\left(\frac{5}{\sqrt{89}}\right)$ with -ve-x-
axis
C. 45 units, $\cos ^{-1}\left(\frac{-5}{9}\right)$ with x-axis
D. 45 units, $\sin ^{-1}\left(\frac{-5}{9}\right)$ with x-axis

Answer: B

D Watch Video Solution

6. A force of $10 N$ is resolved into the perpendiuclar components. If the first component makes 30° with the force, the magnitudes of the components are
A. $5 \mathrm{~N}, 5 \mathrm{~N}$
B. $5 \sqrt{2} N, 5 N$
C. $5 \sqrt{3} N, 5 N$
D. $10 N, 10 \sqrt{3} N$

Answer: C

D Watch Video Solution

7. If the system is in equilibrium

$\left(\cos 53^{\circ}=3 / 5\right)$, then the value of ' P ' is

A. 16 N

B. 4 N

C. $\sqrt{208} N$

D. $\sqrt{232} N$

Answer: C

- Watch Video Solution

8. Two billiard balls are moving on a table and
the component velocities along the length and breadth are $5,5 \mathrm{~ms}^{-1}$ for one ball $2 \sqrt{3} 2 \mathrm{~ms}^{-1}$ for the other ball the angle between the motion of balls is
A. 30°
B. 60°
C. 40°

D. 15°

Answer: D

D Watch Video Solution

9. If $\vec{A}=2 \hat{i}-3 \hat{j}+4 \hat{k}$, its components in YZ-
plane and ZX-plane are respectively
A. $\sqrt{13}$ and 5
B. 5 and $2 \sqrt{5}$
C. $2 \sqrt{5}$ and $\sqrt{13}$

D. $\sqrt{13}$ and $\sqrt{29}$

Answer: B

D Watch Video Solution

10. A car weighing 100 kg is on a slope that makes and angle 30° with the horizontal. The component of car's weight parallel to the slope is $\left(g=10 m s^{-2}\right)$
A. 500 N

B. 1000 N

C. 15,000N

D. $20,000 \mathrm{~N}$

Answer: A

- Watch Video Solution

11. A room has dimensions $3 m \times 4 m \times 5 m$. A
fly starting at one corner ends up at the diamertrically opposite corner. The magnitude of the displacement of the fly is
A. 12 m
B. 60 m
C. $2 \sqrt{5} m$
D. $5 \sqrt{2} m$

Answer: D

D Watch Video Solution

12. If $\vec{P}=\hat{i}+2 \hat{j}+6 \hat{k}$, its direction cosines are
A. $\frac{1}{41}, \frac{2}{41}$ and $\frac{6}{41}$
B. $\frac{1}{\sqrt{41}} \cdot \frac{2}{\sqrt{41}}$ and $\frac{6}{\sqrt{41}}$
C. $\frac{3}{\sqrt{41}} \cdot \frac{8}{\sqrt{41}}$ and $\frac{7}{\sqrt{41}}$
D. 1,2 and 6

Answer: B

- Watch Video Solution

13. The value of ' m ', if $\hat{i}+2 \hat{J}-3 \hat{k}$ is parallel to $3 \hat{i}+m \hat{j}-9 \hat{k}$ is
A. 12
B. 9
C. 6
D. 3

Answer: C

D Watch Video Solution

14. A force $2 \hat{i}+\hat{j}-\hat{k}$ newton acts on a body which is initially at rest.If the velocity of the
body at the end of 20 sec onds is
$4 \hat{i}+2 \hat{j}+2 \hat{k} m s^{-1}$, the mass of the body
A. 20 kg
B. 15 kg
C. 10 kg
D. 5 kg

Answer: C

- Watch Video Solution

15. When a force vector $\vec{F}=(\hat{i}+2 \hat{j}+\hat{k}) \mathrm{N}$ acts on a body and produces a displacement of $\vec{S}=(4 \hat{i}+\hat{j}+7 \hat{k}) \mathrm{m}$, then the work done is
A. 9 J
B. 13J
C. 5J
D. 1J

Answer: B
16. The angle between the two vectors

$$
\vec{A}=\hat{i}+2 \hat{j}-\hat{k} \text { and } \vec{B} i=-\hat{i}+\hat{j}-2 \hat{k} \text { is }
$$

A. 90°
B. 30°
C. 45°
D. 60°

Answer: D
17. In a righht angled triangle the three vectors \vec{a}, \vec{b} and \vec{c} add to zero. Then \vec{a}, \vec{b} is

A. -9
B. +9
C. 0
D. -3

Answer: C

D Watch Video Solution

18. A vector parallel to the vector $(\hat{i}+2 \hat{j})$ and having magnitude $3 \sqrt{5}$ units is

$$
\text { A. } 3 \hat{i}+6 \hat{j}
$$

B. $6 \hat{i}-3 \hat{j}$
C. $4 \hat{i}-2 \hat{j}$
D. $\hat{i}-2 \hat{j}$

Answer: A

D Watch Video Solution

19. If $\overrightarrow{2} \hat{i}+3 \hat{j}$ and $\vec{B}=2 \hat{j}+3 \hat{k}$ the component of \vec{B} along \vec{A} is
A. 6
B. $\frac{1}{6}$
C. $\frac{6}{13}$
D. $\frac{6}{\sqrt{13}}$

Answer: D

D Watch Video Solution

20. if the vectors $P=\alpha \hat{i}+\alpha j+3 \hat{k}$ and
$Q=\alpha \hat{i}-2 \hat{j}-\hat{k}$ are perpendicular to each other, then the positive value of α is
A. Zero
B. 1
C. 2
D. 3

Answer: D

D Watch Video Solution

21. A force of $2 i+3 j+2 k N$ acts on a body for 4 and produces a displacement of $3 \hat{i}+4 \hat{j}+5 \hat{k} \mathrm{~m}$ calculate the power?
A. 5 W
B. 6 W
C. 7W
D. 9W

Answer: C

- Watch Video Solution

22. If θ is the angle between unit vectors \vec{A}
and \vec{B}, then $\left.\frac{(1-\vec{A} \cdot \vec{B})}{1+\vec{A} \cdot \vec{B}}\right)$ is equal to
A. $\tan ^{2}(\theta / 2)$
B. $\sin ^{2}(\theta / 2)$
C. $\cot ^{2}(\theta / 2)$
D. $\cos ^{2}(\theta / 2)$

Answer: A
23. Find the torque of a force
$\vec{F}=3 \hat{i}+2 \hat{j}+\hat{k} \quad$ acting at the point $\vec{r}=8 \hat{i}+2 \hat{j}+3 \hat{k}$ about origin
A. $14 \hat{i}-38 \hat{j}+3 \hat{k}$
B. $4 \hat{i}+4 \hat{j}+6 \hat{k}$
C. $-14 \hat{i}+38 \hat{j}-16 \hat{k}$
D. $-4 \hat{i}-17 \hat{j}+22 \hat{k}$

Answer: D
24. The area of the triangle whose adjacent sides are represented by the vector $(4 \hat{i}+3 \hat{j}+4 \hat{k})$ and $5 \hat{i}$ in sq. units is
A. 25
B. 12.5
C. 50
D. 45

Answer: B
25. The magnitude of scalar and vector products of two vectors are $48 \sqrt{3}$ and 144 respectively. What is the angle between the two vectors?
A. 30°
B. 45°
C. 60°
D. 90°

Answer: C

D Watch Video Solution

26. The diagonals of a parallelogram are $\vec{A}=2 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{B}=-2 \hat{i}+4 \hat{j}-\hat{k}$ what is the area of the paralleogram?
A. 4 units
B. 7 units
C. $\sqrt{5}$ units
D. $\sqrt{8}$ units

Answer: C

D Watch Video Solution

27. Deduce the condition for the vectors
$2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $3 \hat{i}-\alpha \hat{j}+b \hat{k}$ to be parallel.

$$
\begin{aligned}
& \text { A. } a=-9 / 2, b=-6 \\
& \text { B. } a=-6, b=-9 / 2 \\
& \text { C. } a=4, b=5 \\
& \text { D. } a=8, b=2
\end{aligned}
$$

Answer: A

D Watch Video Solution

Level li C W

1. A man travels 1 mile due east. Then 5 miles
due south, then 2 miles due east and finally 9
miles due north. His displacement is
A. 3 miles
B. 5 miles

C. 4 miles

D. between 5 and 9 miles

Answer: B

D Watch Video Solution

2.

Three
forces
$\vec{F}_{1}=a(\hat{i}-\hat{j}+\hat{k}), \vec{F}_{2}=2 \hat{i}-3 \hat{j}+4 \hat{k}$
and $\vec{F}_{3}=8 \hat{i}-7 \hat{j}+6 \hat{k}$ act simultaneously
on a particle. If the particle is in equilibrium,
the value of α is
A. 10
B. -10
C. 8
D. 2

Answer: B

D Watch Video Solution

3. If a particle is displaced from $(0,0,0)$ to a point in XY-plane which is at a distance of 4 units in a direction making an angle clock wise
60° with the negative x-axis. What is the final position vector of the particle?
A. $-2 \hat{i}+2 \sqrt{3} \hat{j}$
B. $2 \hat{i}+2 \sqrt{3} \hat{j}$
C. $2 \hat{j}+2 \sqrt{3} \hat{k}$
D. $\sqrt{3} \hat{j}+2 \hat{k}$

Answer: A

D Watch Video Solution

4. Cosines of angles made by a vector with X, Y axes are $3 / 5 \sqrt{2}, 4 / 5 \sqrt{2}$ respectively. If the magnitude of the vector is $10 \sqrt{2}$ then that vector is
A. $8 \hat{i}+6 \hat{j}-10 \hat{k}$
B. $6 \hat{i}-8 \hat{j}-10 \hat{k}$
C. $-6 \hat{i}-8 \hat{j}+10 \hat{k}$
D. $6 \hat{i}+8 \hat{j}+10 \hat{k}$

Answer: D

5. If a vector \vec{A} makes angles 45° and 60° with x and y axis respectively then the angle made by it with z-axis is
A. 30°
B. 60°
C. 90°
D. 120°

Answer: B
6. A vector \vec{B} which has a magnitude 8.0 is added to a vector \vec{A} which lies along the x axis. The sum of these two vector is a third
vector which lies along the y-axis and has a magnitude that is twice the magnitude of \vec{A}. Find the magnitude of \vec{A}

$$
\begin{aligned}
& \text { A. } \frac{6}{\sqrt{5}} \\
& \text { B. } \frac{8}{\sqrt{5}} \\
& \text { C. } \frac{12}{\sqrt{5}}
\end{aligned}
$$

D. $\frac{16}{\sqrt{5}}$

Answer: B

D Watch Video Solution

7. If $\vec{V}=3 \hat{i}+4 \hat{j}$ then, with what scalar 'C' must it be multiplied so that $|C V|=7.5$
A. 0.5
B. 2.5
C. 1.5
D. 3.5

Answer: C

D Watch Video Solution

8. Find the angle between the diagonals of a
cube with edges of length "a".
A. $\sin ^{-1}(1 / 3)$
B. $\cos ^{-1}(1 / 3)$
C. $\tan ^{-1}(1 / 3)$

$$
\text { D. } \cot ^{-1}(1 / 3)
$$

Answer: B

D Watch Video Solution

9. The angle made by the vector $\vec{A}=2 \hat{i}+3 \hat{j}$
with Y-axis is
A. $\tan ^{-1}\left(\frac{3}{2}\right)$
B. $\tan ^{-1}\left(\frac{2}{3}\right)$
C. $\sin ^{-1}\left(\frac{2}{3}\right)$
D. $\cos ^{-1}\left(\frac{3}{2}\right)$

Answer: B

D Watch Video Solution

10. If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are the directional cosines of two vectors and θ is the angle between them, then their value of $\cos \theta$ is

$$
\text { A. } l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}
$$

$$
\begin{aligned}
& \text { B. } l_{1} m_{1}+m_{1} n_{1}+n_{1} l_{1} \\
& \text { C. } l_{2} m_{2}+m_{2} n_{2}+n_{2} l_{2} \\
& \text { D. } m_{1} l_{2}+l_{2} m_{2}+n_{1} m_{2}
\end{aligned}
$$

Answer: A

D Watch Video Solution

11. If $\vec{A}+\vec{B}=\vec{C}$, then magnitude of \vec{B} is
A. $\vec{C}-\vec{A}$
B. C-A
c. $\sqrt{\vec{C} \cdot \vec{B}-\vec{A} \cdot \vec{B}}$
D. $\sqrt{\vec{C} \cdot \vec{A}-\vec{B} \cdot \vec{A}}$

Answer: C

D Watch Video Solution

12. If $\vec{a}=m \vec{b}+\vec{c}$. The scalar m is
A. $\frac{\vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{c}}{b^{2}}$
B. $\frac{\vec{c} \cdot \vec{b}-\vec{a} \cdot \vec{c}}{a^{2}}$

> C. $\frac{\vec{c} \cdot \vec{a}-\vec{b} \cdot \vec{c}}{c^{2}}$
> D. $\frac{\vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{c}}{a^{2}}$

Answer: A

D Watch Video Solution

13. Velocity and acceleration vectors of charged particle moving perpendicular to the direction of magnetic field at a given instant of time are $\vec{v}=2 \hat{i}+c \hat{j}$ and $\vec{a}=3 \hat{i}+4 \hat{j}$ respectively. Then that value of ' c ' is
A. 3
B. 1.5
C. -1.5
D. -3

Answer: C

- Watch Video Solution

14. Dot product is used in the determination of
(a) Work done by a force
(b) Power developed by an automobile moving with uniform velocity.
(c) The normal flux linked with a coil kept in magnetic field.
(d) The force acting on a conductor carrying
current kept in a magnetic field
A. a,d are true
B. b,d are true
C. a,b,c are true
D. c,d are true
15. The unit vectors perpendicular to $\vec{A}=2 \hat{i}+3 \hat{j}+\hat{k}$ and $\vec{B}=\hat{i}-\hat{j}+\hat{k}$ is
A. $\frac{4 \hat{i}-\hat{j}-5 \hat{k}}{\sqrt{42}}$
B. $\frac{4 \hat{i}-\hat{j}+5 \hat{k}}{\sqrt{42}}$
c. $\frac{4 \hat{i}+\hat{j}+5 \hat{k}}{\sqrt{42}}$
D. $\frac{4 \hat{i}+\hat{j}-5 \hat{k}}{\sqrt{42}}$

Answer: A
16. the value of $(\vec{A}+\vec{B}) \times(\vec{A}-\vec{B})$ is
A. $(\vec{a} \times \vec{b})$
B. $2(\vec{a} \times \vec{b})$
C. $-2(\vec{a} \cdot \vec{b})$
D. $-2(\vec{a} \times \vec{b})$

Answer: D

1. If $\vec{A}=3 \hat{i}-4 \hat{j}$ and $\vec{B}=-\hat{i}-4 \hat{j}$, calculate the direction of $\vec{A}-\vec{B}$.
A. along positive x-axis
B. along negative x-axis
C. along positive y-axis
D. along negative y-axis

Answer: A

D Watch Video Solution
2. The resultant of the forces $\vec{F}_{1}=4 \hat{i}-3 \hat{j}$ and $\vec{F}_{2}=6 \hat{i}+8 \hat{j}$ is
A. $5 \sqrt{5}$
B. $10 \hat{i}-5 \hat{j}$
C. 125
D. $-2 \hat{i}-3 \hat{j}$

Answer: A
3. The vector sum of two vectors of magnitudes 10 units and 15 units can never be
A. 20 units
B. 22 units
C. 18 units
D. 3 units

Answer: D
(Watch Video Solution
4. A car moves 40 m due east and turns towards north and moves 30 m then tursn
45° east of norht and moves $20 \sqrt{2} m$. The net displacment of car is (east is taken positive x axis, North as positive y-axis)
A. $50 \hat{i}+60 \hat{j}$
B. $60 \hat{i}+50 \hat{j}$
C. $30 \hat{i}+40 \hat{j}$
D. $40 \hat{j}+30 \hat{j}$

Answer: B
5. A bird moves in such a way that if has a displacement of 12 m towards east, 5 m towards noth and 9 m vertically upwards Find the magnitude of its displacement
A. $5 \sqrt{2} m$
B. $5 \sqrt{10} m$
C. $5 \sqrt{5} m$
D. $5 m$

Answer: B

- Watch Video Solution

6. An aeroplane is heading north east at a
speed of $141.4 m s^{-1}$. The north ward
component of its velocty is
A. $141.4 m s^{-1}$
B. $100 \mathrm{~ms}^{-1}$
C. zero
D. $50 \mathrm{~ms}^{-1}$

Answer: B

D Watch Video Solution

7. The unit vector parallel to the resultant of
the vectors $\vec{A}=4 \hat{i}+3 \hat{j}+6 \hat{k} \quad$ and $\vec{B}=-\hat{i}+3 \hat{j}-8 \hat{k}$ is

$$
\begin{aligned}
& \text { A. } \frac{1}{7}(3 \hat{i}+6 \hat{j}-2 \hat{k}) \\
& \text { B. } \frac{1}{7}(3 \hat{i}+6 \hat{j}+2 \hat{k}) \\
& \text { C. } \frac{1}{49}(3 \hat{i}+6 \hat{j}-2 \hat{k}) \\
& \text { D. } \frac{1}{49}(3 \hat{i}-6 \hat{j}+2 \hat{k})
\end{aligned}
$$

Answer: A

- Watch Video Solution

8. The vector parallel to $4 \hat{i}-3 \hat{j}+5 \hat{k}$ and whose length is the arithmetic mean of
lenghts of two vectors $2 \hat{i}-4 \hat{j}+4 \hat{k}$ and $\hat{j}+\sqrt{6} \hat{j}+3 \hat{k}$ is
A. $4 \hat{i}-3 \hat{j}+5 \hat{k}$
B. $(4 \hat{i}-3 \hat{j}+5 \hat{k}) / \sqrt{3}$
C. $(4 \hat{i}-3 \hat{j}+5 \hat{k}) / \sqrt{2}$

$$
\text { D. }(4 \hat{i}-3 \hat{j}+5 \hat{k}) / \sqrt{5}
$$

Answer: C

D Watch Video Solution

9. The direction consines of a vector \vec{A} are
$\cos \alpha=\frac{4}{\begin{array}{c}5 \sqrt{2} \\ 3\end{array}, \cos \beta=\frac{1}{\sqrt{2}}, ~\left(\frac{1}{2}\right.}$
A. $4 \hat{i}+\hat{j}+3 \hat{k}$
B. $4 \hat{i}+5 \hat{j}+3 \hat{k}$
C. $4 \hat{i}-5 \hat{j}-3 \hat{k}$
D. $\hat{i}+5 \hat{j}-\hat{k}$

Answer: B

- Watch Video Solution

10. Given two vectors $\vec{A}=\hat{i}-2 \hat{j}-3 \hat{k}$ and $\vec{B}=4 \hat{i}-2 \hat{j}+6 \hat{k}$. The angle made by $(\vec{A}+\vec{B})$ with the X -axis is
A. 30°
B. 45°
C. 60°
D. 90°

Answer: B

D Watch Video Solution

11. To go from town A to town B a plane must
fly about 1780 km at an angle of 30° west of north. How far West of A is B ?
A. 1542 km
B. 1452 km
C. 1254 km
D. 890 km

Answer: D

D Watch Video Solution

12. A vector $\hat{i}+\sqrt{3} \hat{j}$ rotates about its tail
through an angle 60° in clockwise direction
then the new vector is
A. $\hat{i}+\sqrt{3} \hat{j}$
B. $3 \hat{i}-4 \hat{j}$
C. $2 \hat{j}$
D. $2 \hat{i}$

Answer: D

D Watch Video Solution

13. If $\vec{a}=2 \hat{i}+6 \hat{j}+m \hat{k}$ and
$\vec{b}=n \hat{i}+18 \hat{j}+3 \hat{k}$ are parallel to each other then values of m, n are
A. 1,6
B. 6,1
C. $-1,6$
D. $-1,-6$

Answer: A

D Watch Video Solution

14. A particle has an initial velocity
$(6 \hat{i}+8 \hat{j}) m s^{-1}$ and an acceleration of
$(0.8 \hat{i}+0.6 \hat{j}) m s^{-2}$. Its speed after 10 s is
A. $20 m s^{-1}$
B. $7 \sqrt{2} m s^{-1}$
C. $10 m s^{-1}$
D. $14 \sqrt{2} m s^{-1}$

Answer: D

D Watch Video Solution

15. A motor boat is going in a river with a velocity $\vec{V}=(4 \hat{i}-2 \hat{j}+\hat{k}) m s^{-1}$. If the resisting force due to stream is
$\vec{F}=(5 \hat{i}-10 \hat{j}+6 \hat{k}) N$, then the power of the motor boat is

A. 100 w

B. 50 w
C. 46 w
D. 23 w

Answer: C
(Watch Video Solution
16. The angle between the two vectors $-2 \hat{i}+3 \hat{j}-\hat{k}$ and $\hat{i}+2 \hat{j}+4 \hat{k}$ is
A. 0°
B. 90°
C. 180°
D. 45°

Answer: B

D Watch Video Solution
17. If a vector $\vec{A}=2 \hat{i}=2 \hat{j}+3 \hat{k}$, and $\vec{B}=3 \hat{i}=6 \hat{j}+n \hat{k}$, are perpendicular to eachother tehn the value of ' n ' is
A. 4
B. 12
C. 6
D. -6

Answer: D

18. A vector parallel to the vector $(\hat{i}+2 \hat{j})$ and having magnitude $3 \sqrt{5}$ units is

$$
\begin{aligned}
& \text { A. } 3 \hat{i}+6 \hat{j} \\
& \text { B. } 6 \hat{i}-3 \hat{j} \\
& \text { C. } 4 \hat{i}-2 \hat{j} \\
& \text { D. } \hat{i}-2 \hat{j}
\end{aligned}
$$

Answer: A

- Watch Video Solution

19. If $\vec{A}=5 \hat{i}-2 \hat{j}+3 \hat{k} \quad$ and $\vec{B}=2 \hat{i}+\hat{j}+2 \hat{k}$, component of \vec{B} along \vec{A}
is

> A. $\frac{\sqrt{14}}{38}$
> B. $\frac{28}{\sqrt{38}}$
> C. $\frac{\sqrt{28}}{38}$
> D. $\frac{14}{\sqrt{38}}$

Answer: D
20. If the vectors $\vec{A}=a \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{B}=a \hat{i}-a \hat{j}+\hat{k}$ are perpendicular to each other then the positve value of 'a' is
A. Zero
B. 1
C. 2
D. 3

Answer: C

D Watch Video Solution
21. When a force $(8 \hat{i}+4 \hat{j})$ newton displaces a particle through $(3 \hat{i}-3 \hat{j})$ metre, the power is 0.6 W . The time of action of the force is
A. 20 s
B. 7.2 s
C. 72 s
D. 2 s

Answer: A
22. If \vec{a} and \vec{b} are two unit vectors and the

A. 2
B. 3
C. 0
D. $1 / 2$

Answer: B

- Watch Video Solution

23. If $\vec{F}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{r}=\hat{i}-\hat{j}+6 \hat{k}$
find $\vec{r} \times \vec{F}$

> A. $-17 \hat{i}+13 \hat{j}+5 \hat{k}$
> B. $-17 \hat{i}-13 \hat{j}-5 \hat{k}$
> C. $3 \hat{i}+4 \hat{j}-5 \hat{k}$
> D. $-3 \hat{i}-4 \hat{j}+5 \hat{k}$

Answer: A

D Watch Video Solution

24. Two sides of a triangle are given by
$\hat{i}+\hat{j}+\hat{k}$ and $-\hat{i}+2 h t j+3 \hat{k}$, then area of triangle is
A. $\sqrt{26}$
B. $\sqrt{26} / 2$
C. $\sqrt{46}$
D. 26

Answer: B

D Watch Video Solution

25. The magnitude of scalar and vector products of two vectors are 144 and $48 \sqrt{3}$ respectivley. What is the angle between the two vectors?
A. 30°
B. 45°
C. 60°
D. 90°

Answer: A

D Watch Video Solution

26. Area of a parallelogram formed by vectors
$(3 \hat{i}-2 \hat{j}+\hat{k}) m$ and $(\hat{i}+2 \hat{j}+3 \hat{k}) \mathrm{m}$ as adjacent sides is
A. $3 \sqrt{8} m^{2}$

$$
\text { B. } 24 m^{2}
$$

C. $8 \sqrt{3} m^{2}$
D. $4 \sqrt{3} m^{2}$

Answer: C

D Watch Video Solution

27. Find the value of x and y for which vectors

$$
\vec{A}=6 \hat{i}+x \hat{j}-2 \hat{k} \text { and } \vec{B}=5 \hat{i}-6 \hat{j}-y \hat{k}
$$

may be parallel

$$
\text { A. } x=0, y=\frac{2}{3}
$$

> B. $x=\frac{-36}{5}, y=\frac{5}{3}$
> C. $x=\frac{-15}{3}, y=\frac{23}{5}$
> D. $x=\frac{36}{3}, y=\frac{15}{14}$

Answer: B

- Watch Video Solution

Level li H W

1. A particle has a displacement of 12 m towards east then 5 m forwards north and
then 6 m vertically upwards the resultant

displacement is nearly

A. 10.4 m
B. 12.19 m
C. 14.32 m
D. 13.06 m

Answer: C
(Watch Video Solution

2. Four co-planar concurrent forces are acting

 on a body as shown in the figure to keep it in equilibrium. The the values of P and θ are.
A. $P=4 N, \theta=0^{\circ}$
B. $P=2 N, \theta=90^{\circ}$

$$
\text { C. } P=2 N, \theta=0^{\circ}
$$

$$
\text { D. } P=4 N, \theta=90^{\circ}
$$

Answer: B

D Watch Video Solution

3. O is apoint on the gournd chosen as origin.

A boby first suffers a displacement of $10 \sqrt{2} \mathrm{~m}$
North-East, next 10 m north and finally $10 \sqrt{2}$

North-West. How far it is from the origin.
A. 30n north
B. 30 m south
C. 30 m west
D. 30 m east

Answer: A

D Watch Video Solution
4. If the two directional cosiness of a vectors
are $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{3}}$ then the value of third

directional consine is

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{6}} \\
& \text { B. } \frac{1}{\sqrt{5}} \\
& \text { C. } \frac{1}{\sqrt{7}} \\
& \text { D. } \frac{1}{\sqrt{10}}
\end{aligned}
$$

Answer: A

D Watch Video Solution
5. A force $\vec{F}=3 \hat{i}+c \hat{j}+2 \hat{k} N$ acting on a particle causes a a displacement
$\vec{S}=-4 \hat{i}+2 \hat{j}-3 \hat{k} \mathrm{~m}$. if the workdone is 6 joule, the value of of c is
A. 0
B. 1
C. 12
D. 6

Answer: C
6. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicular to each other, then the angle between \vec{a} and \vec{b} is
A. 120°
B. 90°
C. 60°
D. 45°

Answer: C

- Watch Video Solution

$$
\begin{aligned}
& \text { 7. If } \vec{A}=9 \hat{i}-7 \hat{j}+5 \hat{k} \text { and } \\
& \vec{B}=3 \hat{i}-2 \hat{j}-6 \hat{k} \text { then the value of } \\
& (\vec{A}+\vec{B}) \cdot(\vec{A}-\vec{B}) \text { is }
\end{aligned}
$$

A. 206
B. 128
C. 106

D. -17

Answer: C

D Watch Video Solution

8. The work done by a force $2 \hat{i}-\hat{j}+5 \hat{k}$ when
it displaces the body from a point (7.2.5) is
A. 5units
B. 7units
C. 1units
D. 15 units

Answer: A

D View Text Solution

9. The component of \vec{A} along \vec{B} is $\sqrt{3}$ times that of the component of \vec{B} along \vec{A}. Then $A: B$ is
A. $1: \sqrt{3}$
B. $\sqrt{3}: 1$

C. $2: \sqrt{3}$

D. $\sqrt{3}: 2$

Answer: B

D Watch Video Solution

10. If $\vec{A}=(2 \hat{i}+3 \hat{j})$ and $\vec{B}=(\hat{i}-\hat{j})$ then component of \vec{A} perpendicular to vector \vec{B}
and in the same plane is
A. $\frac{5}{2}(\hat{i}+\hat{j})$
B. $\frac{5}{\sqrt{2}}(\hat{i}+\hat{j})$
C. $\frac{\sqrt{5}}{2}(\hat{i}+\hat{j})$
D. $\frac{5}{\sqrt{2}}(\hat{i}+\hat{k})$

Answer: A

D Watch Video Solution

11. If $\vec{A}+\vec{B}=\vec{R}$ and $2 \vec{A}+\vec{B} \quad$ is perpendicular to \vec{B} then
A. $A=R$
B. $B=2 R$
C. $B=R$
D. $B=A$

Answer: A

D Watch Video Solution

12. If $\vec{A}=\frac{1}{\sqrt{2}} \cos \theta \hat{i}+\frac{1}{\sqrt{2}} \sin \theta \hat{j}$, what will be the unit vector perpendiuclar to \vec{A}.
A. $\cos \theta \hat{i}+\sin \theta \hat{j}$
B. $-\cos \theta \hat{i}+\sin \theta \hat{j}$
C. $\frac{\cos \theta \hat{i}+\sin \theta \hat{j}}{\sqrt{2}}$
D. $\sin \theta \hat{i}-\cos \theta \hat{j}$

Answer: D

- Watch Video Solution

13. $(\hat{i}+\hat{j}) \times(\hat{i}-\hat{j})=$
A. $-2 \hat{k}$
B. $2 \hat{k}$

C. zero

D. $2 \hat{i}$

Answer: A

D Watch Video Solution

14. The diagonals of a parallelogram are $\vec{A}=2 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{B}=-2 \hat{i}+4 \hat{j}-\hat{k}$ what is the area of the paralleogram?
A. 2 units

B. 4 units

C. $\sqrt{5}$ units
D. $\frac{\sqrt{5}}{2}$ units

Answer: D

- Watch Video Solution

