# © 'doubtnut 

India's Number 1 Education App

## PHYSICS

## AIMED AT STUDENTS PREPARING FOR

## IIT JEE EXAMS

## WAVES

Illustration

1. Distinguish between sound waves and radio
waves of same frequency, say 15 kHz .

## - Watch Video Solution

2. An aeroplane flying horizontally makes a sound when its angle of elevation w.r.t a person on ground is $\theta$. But the sound reached the person, when the aeroplane was just over him. Find the mach.no. of the aeroplane. Also find its speed if speed of sound in air is ' $v_{s}^{\prime}$.
3. A simple harmonic wave has the equation
$y=3.5 \sin (314 t-1.57 x)$ where time is measured
in second, $x$ in metre and $y$ in c.m. Calculate
(a) Frequency
(b) Wavelength of the wave
Another wave has the equation
$y=0.1 \sin (314 t-1.57 x+1.57)$

Calculate the phase difference between this
wave and the wave represented by the earlier wave equation.
4. If a traveling wave is represented by
$y=\frac{1}{1+(2 t+3 x)}$ find the direction of wave and velocity.

## D Watch Video Solution

5. The displacement of a wave disturbance propagating in the positive $x$-direction is given by
$y=\frac{1}{1+x^{2}}$ at $t=0$ and $y=\frac{1}{1+(x-1)^{2}}$ at $t=2 s$
where, $x$ and $y$ are in meter. The shape of the
wave disturbance does not change during the propagation. what is the velocity of the wave?

## D Watch Video Solution

6. Given the equation for a wave in a string $y=0.03 \sin (3 x-2 t)$ where $y$ and $x$ are in metre and $t$ is in second, answer the following :
7. At $t=0$, what is the displacement at $x=0$ ?
8. At $x=0.1 m$, what is the displacment at
$t=0.2 s ?$
9. What is the velocity of propagation of the
wave?
10. What is the equation for the velocity of oscillation of the particles of the string? What is the maximum velocity of oscillation.

## D Watch Video Solution

7. A transverse wave described by
$y=(0.02 m) \sin \left[\left(1.0 m^{-1}\right) x+\left(30 s^{-1}\right) t\right]$
propagates on a stretched string having a
linear mass density of $1.2 \times 10^{-4} \mathrm{kgm}^{-1}$. Find the tension in the string.

## - Watch Video Solution

8. A wave travelling along the $x$-axis is described by the equation
$v(x, t)=0.005 \cos (\alpha x-\beta t)$. If the wavelength and the time period of the wave are 0.08 m and
2.0s, respectively, then $\alpha$ and $\beta$ in appropriate units are
9. (a) A string of mass ' m ' and length ' L ' is suspended from the ceiling and a mass $M$ is hanged from it. Transverse waves are produced at its lowest point (nearM) having wavelength $\lambda$, find its wavelength at a distance $x$ from the upper point.
(b) In the previous question, what time a transverse pulse will take to reach from it lowest point to its uppermost point, if the mass $M$ is not hanged from it
10. Two blocks each having a mass of 3.2 kg are connected by a wire CD and the system is suspended from the ceiling by another wire $A B$
. The linear mass density of the wire $A B$ is $10 \mathrm{gm}^{-1}$ and that of CD is $8 \mathrm{gm}^{-1}$. Find the speed of a transverse wave pulse produced in $A B$ and in CD.

## D Watch Video Solution

11. Two wire have cross section diameters $d_{1}$ and $d_{2}$, length $L_{1} \& L_{2} \&$ densities $\rho_{1} \& \rho_{2}$ such that
$d_{1}: d_{2}:: 1: 2, L_{1}: L_{2}:: 2: 1 \quad$ and $\quad \rho_{1}: \rho_{2}:: 1: 2$.
What weight must be suspended to the $2 n d$
wire if the transverse wave produced in it has
the same speed as that produced in 1 st wire,
which bears a load of 10 kgwt .

## D Watch Video Solution

12. The elongation in a stretched strings is $\frac{1}{n}$ times its original length. Prove that the ratio
of transverse wave velocity and longitudinal
wave velocity in the strings is $\frac{1}{\sqrt{n}}$.

## D View Text Solution

13. The temperature at which the velocity of
sound in air becomes double its velocity at
$0{ }^{\circ} \mathrm{C}$ is
A. $435^{\circ} \mathrm{C}$
B. $694^{\circ} \mathrm{C}$
C. $781{ }^{\circ} \mathrm{C}$
D. $819^{\circ} \mathrm{C}$

## Answer: D

## D Watch Video Solution

14. Find the speed of sound in a mixture of 1 mole of helium and 2 mole of oxygen at $27^{\circ} \mathrm{C}$
15. What are the factors that are affected for reflected and transmitted waves when a wave is travelled from (a) rarer to denser medium (b) denser to rarer medium?

## D Watch Video Solution

16. The transverse displacement of a string clamped at its both ends is given by $y(x, t)=0.06 \sin \left(\frac{2 \pi}{3} x\right) \cos (l 20 \pi t)$ where x and y
are in $m$ and $t$ in $s$. The length of the string is
1.5 m and its mass is $3 \times 10^{-2} \mathrm{~kg}$. The tension in the string is

## D Watch Video Solution

17. Two travalling wavews of equal amplitudes and equal frequencies move in opposite directions along a string. They interfere to produce a standing wave having the equation

$$
\begin{align*}
& y=A \cos k x \sin \omega t \quad \text { in } \\
& A=1.0 \mathrm{~mm}, k=1.57 \mathrm{~cm}^{-1} \text { and } \omega=78.5 \mathrm{~s}^{-1}
\end{align*}
$$

which

Find the velocity of the component travelling waves. (b) Find the node closet to the origin in the $x$ gt 0 . (c ) Find the antinode closet to the origin in the region $x$ gt 0 (d) Find the amplitude of the particle at $x=2.33 \mathrm{~cm}$.

## D Watch Video Solution

18. The equation of a stationary wave is
$y=20 \cos 0.5 \pi x \sin 100 \pi t$. Find the equations of
its parent progressive waves.
19. A one-metre long stretched string having a mass of 40 g is attached to a tuning fork. The fork vibrates at 128 Hz in a direction perpendicular to the string. What should be the tension in the string if it is to vibrate in four loops ?

## - Watch Video Solution

20. Standing waves are producedin a rubber tube 12 m long. If the tube vibrates in five
segmens and the velocity of the wave is $480 \mathrm{~m} / \mathrm{s}$, what is (a) the wave length of the waves (b) the frequency of the wave?

## D Watch Video Solution

21. If the lengths of the first and second resonating air columns are 16.5 cm and 51.5 cm respectively with a tuning fork of frequency 512 Hz , calculate the velocity of sound in air
22. Two coherent sources are at distances $x_{1}=0.2 m$ and $x_{2}=0.08 m$ from a point.

Consider the intensity of resultant wave at that point if the frequency of each wave is
$f=400 \mathrm{~Hz}$ and velocity of wave in the medium

$$
\text { is } V=192 \mathrm{~m} / \mathrm{s}
$$

The intensity of each wave is $I_{0}=60 \mathrm{~W} / \mathrm{m}^{2}$

## - Watch Video Solution

23. The frequency of tuning fork ' $A$ ' is 250 Hz . It produces 6 beats/sec, when sounded together
with another tunning fork $B$. If its arms are loaded with wax then it produces 4 beats $/ \mathrm{sec}$.

Find the frequency of tuning fork $B$.

## D Watch Video Solution

24. A tuning fork of frequency of 512 Hz when
sounded with unknown tunning fork produces

5 beats/sec. If arms of the unknown fork are
filed then it produces only 3 beats/sec. Find the frequency of unknown tunning fork.

## D Watch Video Solution

25. If two sound waves,
$y_{1}=0.3 \sin 596 \pi[t-x / 330]$
$y_{2}=0.5 \sin 640 \pi[t-x / 330]$ are superposed,
what will be the (a) frequency of resultant
wave (b) frequency at which the amplitude of resultant waves varies (c) Frequency at which
beats are produced. Find also the ratio of maximum and minimum intensities of beats

## D Watch Video Solution

26. When a train is approaching the observer,
the frequency of the whistle is 100 cps . When
it has passed observer, it is 50 cps . Calculate the frequncy when the observer moves with the train.

## - Watch Video Solution

27. A car approaching a crossing $C$ at a speed of $20 \mathrm{~m} / \mathrm{s}$ sounds a horn of frequency $500 \mathrm{H}_{Z}$ when 80 m from the crossing . Speed of sound
in air is $330 \mathrm{~m} / \mathrm{s}$. What frequency is heard by an observer (at rest) 60 m from the crossing on the straight road which crosses car road at right angles ?

## D Watch Video Solution

28. A whistle of frequency $540 H_{Z}$ rotates in a circle of radius 2 mat a linear speed of $30 \mathrm{~m} / \mathrm{s}$.

What is the lowest and highest frequency
heard by an observer a long distance away at rest with respect to the centre of circle ? Take
speed of sound of sound in air as $330 \mathrm{~m} / \mathrm{s}$. Can
the apparent frequency be ever equal to actual ?

## D Watch Video Solution

29. A source of sound is moving along a circular orbit of radius 3meter with an angular
velocity of 10rad/s. A sound detector located
far away from the source is executing linear simple harmonic motion along the line $B D$ with an amplitude $B C=C D=6$ meters. The
frequency of oscillation of the detector is $\frac{5}{\pi}$ per second. The source is at the point $A$ when
the detector is at the point $B$. If the source emits a continuous sound wave of frequency

340 Hz , Find the maximum and the minimum
frequencies recorded by the detector.


## D Watch Video Solution

30. The loudness level of ordinary
conversation is 60 dB . Find the intensity of the ordinary conservation.

## - Watch Video Solution

Evaluate yourself-1

1. An observer standing at the sea coast observes 54waves reaching the coast per
minute. If the wavelength of a wave is 10 m , its
speed is:
A. $90 \mathrm{~m} / \mathrm{s}$
B. $90 \mathrm{~cm} / \mathrm{s}$
C. $9 \mathrm{~m} / \mathrm{s}$
D. $900 \mathrm{~m} / \mathrm{s}$

Answer: C
( Watch Video Solution

## 2. Which of the following statements is correct

A. Both sound and light waves in air are transverse
B. Both sound and light waves in air longitudinal
C. Sound waves in air are transverse while light longitudinal

## D. Sound waves in air are longitudinal while

light waves are transverse

## Answer: D

## D Watch Video Solution

3. A student sees a jet plane flying from east to
west. When the jet is seen just above his head,
the sound of jet appears to reach him making angle of $60^{\circ}$ with the horizontal from the
east. If the velocity of the sound is $V$, then that of the jet plane is
A. 2 V
B. $\left(\frac{\sqrt{3}}{2}\right) V$
C. $\left(\frac{2}{\sqrt{3}}\right) V$
D. $\frac{V}{2}$

## Answer: D

4. Transverse waves are generated in two uniform wires $A$ and $B$ of the same material by attaching their free ends to a vibrating source of frequency 200 Hz . The cross sectional area of
$A$ is half that of $B$ while the tension on $A$ is twice that on $B$. The ratio of the wavelengths of the transverse waves in $A$ and $B$ is
A. $1: \sqrt{2}$
B. $\sqrt{2}: 1$
C. 1:2
D. $2: 1$

## Answer: A

## D Watch Video Solution

5. A metal wire is held at the two ends of rigid supports at $20^{\circ} \mathrm{C}$, the wire is just taut. The speed of transverse wave in this wire at $25^{\circ} \mathrm{C}$ will be $\left(\alpha=16 \times 10^{-6} / C, Y=9 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}\right.$, density of metal $=5 \mathrm{gm} / \mathrm{c} . \mathrm{c}$ )
A. $120 m s^{-1}$
B. $12 \mathrm{~ms}^{-1}$

## C. $240 \mathrm{~ms}^{-1}$

D. $1200 \mathrm{~ms}^{-1}$

## Answer: A

## D View Text Solution

6. Wave of frequency 500 Hz has a phase velocity $360 \mathrm{~m} / \mathrm{s}$. The phase difference between two displacement at a certain point at time $10^{-3} s$ apart will be
A. $\pi$ radian
B. $\pi / 2$ radian
C. $\pi / 4$ radian
D. $2 \pi$ radian

Answer: B

D Watch Video Solution
7. The wavelength of infrasonics in air is of the
order of
A. $10^{0} \mathrm{~m}$
B. $10^{3} \mathrm{~m}$
C. $10^{-1} \mathrm{~m}$
D. $10^{-2} m$

Answer: A

## D Watch Video Solution

8. If the bulk modulus of water is 2100 M Pa , what is the speed of sound in water?
A. $1450 \mathrm{~m} / \mathrm{s}$
B. $2100 \mathrm{~m} / \mathrm{s}$
C. $0.21 \mathrm{~m} / \mathrm{s}$
D. $21 \mathrm{~m} / \mathrm{s}$

## Answer: B

## D Watch Video Solution

9. A sound wave having a frequency of 500 Hz travels with a velocity of $360 \mathrm{~m} / \mathrm{s}$. What is the
distance between two particles on this wave, who have a phase difference of $60^{\circ}$ ?
A. 0.72 metre
B. 0.12 metre
C. 0.18 metre
D. 0.36 metre

Answer: D
( Watch Video Solution
10. A sound wave is passing through air column in the form of compression and rerefactions. In consecutive compressions and rerefactions.
A. Bulk modulus of air oscillates
B. Density remains constant
C. Boyle's law is obeyed
D. total amount of heat remains constant

## Answer: D

11. Which not correctly matched
A. Light tranverse wave
B. Sound Longitudinal mechanical wave
C. Light Progressive wave
D. Sound Longitudinal non-mechanical
wave

## Answer: D

12. A string of linear density $0.2 \mathrm{~kg} / \mathrm{m}$ is stretched with a force of 500 N . If a transverse wave of wavelength 4 m and amplitude $(1 / \pi)$ metre is travelling along it, then the speed of the wave will be
A. $50 \mathrm{~cm} / \mathrm{s}$
B. $12.5 \mathrm{~m} / \mathrm{s}$
C. $62.5 \mathrm{~m} / \mathrm{s}$
D. $2500 \mathrm{~m} / \mathrm{s}$

## Answer: A

## - Watch Video Solution

## Evaluate yourself-2

1. The relation between phase difference and path difference is
A. $\Delta \boldsymbol{\phi}=\frac{2 \pi}{\lambda} \Delta x$
B. $\Delta \boldsymbol{\phi}=2 \pi \lambda \Delta x$
C. $\Delta \boldsymbol{\phi}=\frac{2 \pi \lambda}{\Delta r}$

$$
\text { D. } \Delta \phi=\frac{\pi}{\lambda} \Delta r
$$

## Answer: A

## D Watch Video Solution

2. If the equation of progressive wave is given
by $y=4 \sin \pi\left[\frac{t}{5}-\frac{x}{9}+\frac{\pi}{6}\right]$ then, which of the
following is correct ? (Assume SI units )
A. $v=5 \mathrm{~cm} / \mathrm{sec}$
B. $\lambda=18 m$

## C. $A=0.04 \mathrm{~cm}$

$$
\text { D. } f=50 \mathrm{~Hz}
$$

Answer: B

## - Watch Video Solution

3. Write down the equation for a wave propagating with velocity $330 \mathrm{~m} / \mathrm{s}$ and having frequency 110 Hz . The amplitude is 0.05 m .'

$$
\text { A. } y=0.05 \sin 2 \pi\left[110 t+\frac{x}{3}\right]
$$

B. $y=0.05 \sin 2 \pi\left[110 t-\frac{x}{3}\right]$
C. $y=0.05 \sin 2 \pi\left[110 t \pm \frac{x}{3}\right]$
D. $y=0.05 \sin [110 t-330 x]$

## Answer: C

## D Watch Video Solution

4. A travelling wave in the gas along the positive $x$-direction has an amplitude of 2 cm , velocity $45 \mathrm{~m} / \mathrm{s}$ and frequency 75 Hz . Particle
acceleration after an interval of 3 sec at a distance of 135 cm from the origin is
A. $0.44 \times 10^{2} \mathrm{~cm} / \mathrm{s}^{2}$
B. $4.4 \times 10^{5} \mathrm{~cm} / \mathrm{s}^{2}$
C. $4.4 \times 10^{3} \mathrm{~cm} / \mathrm{s}^{2}$
D. $44 \times 10^{5} \mathrm{~cm} / \mathrm{s}^{2}$

Answer: B
( Watch Video Solution
5. The equation of a plane progressive wave is
given by $y=5 \cos \left(200 t-\frac{\pi}{150} x\right)$ where $x$ and $y$ in cm and $t$ is in second. The wavelength of the wave is

## - Watch Video Solution

6. A 5.5 m length of string has a mass of 0.035
kg . If the tension in the string is 77 N the speed of a wave on the string is
A. $110 m s^{-1}$
B. $165 \mathrm{~ms}^{-1}$
C. $77 m s^{-1}$
D. $102 \mathrm{~ms}^{-1}$

## Answer: C

## D Watch Video Solution

7. The velocity of sound in air is independent of changes is

## A. Pressure

B. Density
C. Temperature
D. Humidity

Answer: A

D Watch Video Solution
8. Amongst following media, which is rarest for sound waves
A. Vacuum
B. Air
C. Water
D. Steel

Answer: D

D Watch Video Solution
9. Which of the following is incorrect?
A. Frequency of waves doesn't changes
with change in medium
B. Velocity of transverse waves in a
stretched string is independent of
length of string it is clamped
horizontally
C. For a rope suspended vertically velocity
of transverse pulse produced at lower
end, increases as it moves up
D. Velocity of sound decreases with increase in humidity in air

## Answer: D

D Watch Video Solution

Evaluate yourself-3

1. A stretched wire of length 114 cm is divided
into three segments whose frequencies are in
the ratio $1: 3: 4$, the lengths of the segments must be in the ratio :
A. 18: $24: 72$
B. $24: 72: 18$
C. 24:18:72
D. $72: 24: 18$

Answer: D
( Watch Video Solution
2. A stone in hung in air from a wire which is
stretched over a sonometer. The bridges of
the sonometer are 40 cm apart when the wire is in unison with a tuning fork of frequency

256 Hz . When the stone is completely immersed in water, the length between the bridges is 22 cm for re-establishing unison.

The specific gravity of the material of the stone is

$$
\begin{aligned}
& \text { A. } \frac{(40)^{2}}{(40)^{2}+(22)^{2}} \\
& \text { B. } \frac{(40)^{2}}{(40)^{2}-(22)^{2}}
\end{aligned}
$$

> C. $256 \times \frac{22}{40}$
> D. $256 \times \frac{40}{22}$

Answer: B

## D Watch Video Solution

3. A hollow metallic tube of length $L$ and closed at one end produce resonance with a tuning fork of frequency n . The entire tube is
then heated carefully so that at equilibrium
temperature its length changes by l. If the
change in velocity $V$ of sound is $v$, the resonance will now produced by tuning fork of frequency:-
A. $\frac{(V+v)}{4(L+l)}$
B. $\frac{(V-v)}{4(L-l)}$
C. $\frac{(V+v)}{4(L-l)}$
D. $\frac{(V-v)}{4(L+l)}$

Answer: A

D Watch Video Solution
4. An open pipe is suddenly closed at one end with the result that the frequency of third harmonic of the closed pipe is found to be higher by 100 Hz then the fundamental frequency of the open pipe. The fundamental frequency of the open pipe is
A. 200 Hz
B. 300 Hz
C. 240 Hz
D. 480 Hz

Answer: A

## - Watch Video Solution

5. The equation $y=4 \cos \left(\frac{2 \pi x}{50}\right) \sin (100 \pi t)$
represents a stationary wave, where x and y
are in cm , and ' t ' is in s . Then a node occurs at a distance of origin
A. 12.5 cm
B. 50 cm
C. 20 cm

$$
\text { D. } \frac{100}{2 \pi} \mathrm{~cm}
$$

## Answer: A

## D Watch Video Solution

6. Standing waves are produced by superposition of two waves

$$
y_{1}=0.05 \sin (3 \pi t-2 x)
$$

$y_{2}=0.05 \sin (3 \pi t+2 x)$
where $x$ and $y$ are measured in metre and $t$ in
$=0.5 \mathrm{~m}$.
A. $0.054 m$
B. 0.54 m
C. 0.45 m
D. 0.95 m

Answer: A
( Watch Video Solution
7. In melde's experiment, when tension in the string is 100 gm wt and the tuning fork vibrates transversely, then the number of loops are 4. then the string in turned through $90^{\circ}$, so that is vibrates longitudinally. What is the extra tension required to form one loop in the string ?
A. 300 gm
B. 200 gm
C. 100 gm

## D. 50 gm

## Answer: A

## D Watch Video Solution

8. A particle executes simple harmonic motion
with a frequency. (f). The frequency with which
its kinetic energy oscillates is.
A. $f$
B. $2 f$
C. $4 f$
D. $f / 2$

## Answer: B

## D Watch Video Solution

9. Two oscillations $x_{1}=A \sin w t$ and $x_{2}=A \cos w t$
superimpose at right angles in $x$ and $y$ axis
respectively. What will be the resultant wave
form ?
A. ellipse
B. straight line
C. circle
D. parabola

## Answer: C

## D Watch Video Solution

10. When a sound wave goes from one medium to another, the quantity that remains
A. Frequency
B. Amplitude
C. Wavelength
D. Speed

Answer: A

- Watch Video Solution

Evaluate yourself-4

1. If two tuning fork $A$ and $B$ are sounded together they produce 4 beats per second. $A$ is
then slightly loaded with wax, they produce 2 beats when sounded again. The frequency of $A$ is 256 . The frequency of $B$ will be
A. 250 Hz
B. 252 Hz
C. 260 Hz
D. 262 Hz

Answer: B

## - Watch Video Solution

2. A tuning fork gives 4 beats with 50 cm length of a sonometer wire. If the length of the wire is shortened by 1 cm , the number of beats is still the same. The frequency of the fork is
A. 404
B. 400
C. 396
D. 384

## Answer: C

## D Watch Video Solution

3. When two waves of aimost equal frequenies
$n_{1}$ and $n_{2}$ are produced simultaneously, then
the time interval between successive mixima is

$$
\begin{aligned}
& \text { A. } \frac{1}{n_{1}-n_{2}} \\
& \text { B. } \frac{1}{n_{1}}-\frac{1}{n_{2}}
\end{aligned}
$$

C. $\frac{1}{n}+\frac{1}{n}$

$$
\begin{array}{ll}
n_{1} & n_{2}
\end{array}
$$

D. $\frac{1}{n_{1}+n_{2}}$

$$
n_{1}+n_{2}
$$

## Answer: A

## - Watch Video Solution

4. Two sinusoidal plane waves of same frequency having intensities $I_{0}$ and $4 I_{0}$ are travelling in the same direction. The resultant intensity at a point at which waves meet with a phase difference of zero radian is
A. $I_{0}$
B. $5 I_{0}$
C. $9 I_{0}$
D. $3 I_{0}$

Answer: C

D Watch Video Solution
5. Two periodic waves of intensities $I_{1}$ and $I_{2}$ pass through a region at the same time in the
same direction. The sum of the maximum and minimum intensities is:
A. $2\left(I_{1}+I_{2}\right)$
B. $I_{1}+I_{2}$
C. $\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}$
D. $\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}$

Answer: A
( Watch Video Solution
6. Water waves are

A. Longitudinal

B. Transverse

C. Both (1) and (2)
D. None of these

## Answer: C

7. A tuning fork of frequency 200 Hz is in unison with a sonometer wire. The number of beats heard per second when the tension is increased by $1 \%$ will be
A. 1
B. 2
C. 4
D. $1 / 2$

Answer: A

# 8. If the pressure amplitude in a sound wave is 

tripled, then by what factor the intensity of sound wave is increased?
A. 9
B. 2
C. 6
D. $\sqrt{3}$

Answer: A

## Watch Video Solution

Evaluate yourself-5

1. A rocket is going away from the earth at a speed 0.2 c , where $\mathrm{c}=$ speed of light. It emits a signal of frequency $4 \times 10^{7} \mathrm{~Hz}$. What will be
the frequency observed by an observer on the earth
A. $3.2 \times 10^{7} \mathrm{~Hz}$
B. $4.8 \times 10^{7} \mathrm{~Hz}$

$$
\text { C. } 4.0 \times 10^{7} \mathrm{~Hz}
$$

D. $5.3 \times 10^{7} \mathrm{~Hz}$

## Answer: B

## D Watch Video Solution

2. A bus is moving with a velocity of $5 \mathrm{~ms}^{-1}$ towards a huge wall. The driver sound a horn of frequency 165 Hz . If the speed of sound in air is $335 \mathrm{~ms}^{-1}$, the number of beats heard per second by a passenger inside the bus will be
A. 3
B. 4
C. 5
D. 6

## Answer: C

## D Watch Video Solution

3. When a train approaches a stationary observer, the apparent frequency of the whistle is $n^{\prime}$ and when the same train recedes
away from the observer, the apparent
frequency is $n$. Then the apperent frquency $n$ when the observer sitting in the train is :

$$
\begin{aligned}
& \text { A. } n=\frac{n^{\prime}+n^{\prime \prime}}{2} \\
& \text { B. } n=\sqrt{n^{\prime} n^{\prime \prime}} \\
& \text { C. } n=\frac{2 n^{\prime} n^{\prime \prime}}{n^{\prime}+n^{\prime \prime}} \\
& \text { D. } n=\frac{2 n^{\prime} n^{\prime \prime}}{n^{\prime}-n^{\prime \prime}}
\end{aligned}
$$

Answer: C

D Watch Video Solution
4. Velocity of sound is v. Source and observer move towards each other with velocities $V_{s}$ and $V_{0}$ respectively. Wind is blowing with a velocity $v_{m}$ in the direction opposite to the propagation of sound, n is the frequency of the sound. The apparent frequency of the sound heard by the observer is :-
A. $\left(\frac{V+V_{m}-V_{0}}{V+V_{m}+V_{s}}\right) n$
B. $\left(\frac{V-V_{m}+V_{0}}{V-V_{m}+V_{s}}\right) n$
C. $\left(\frac{V+V_{m}-V_{0}}{V-V_{m}-V_{s}}\right) n$

$$
\text { D. }\left(\frac{V-V_{m}+V_{0}}{V-V_{m}-V_{s}}\right) n
$$

## Answer: D

## D Watch Video Solution

5. A railway engine whistling at a constant frequency moves with a constant speed. It goes past a stationary observer standing beside the railway track. The frequency (n) of the sound heard by the observer is plotted
agains time ( $t$ ). Which of the following best represents the resulting curve?
A. $\xrightarrow{n \uparrow}$
B.

C.



Answer: D
6. The Kundt's tube experiment shows that the sound waves are
A. Longitudinal in nature
B. Transverse in nature
C. Electromagnetic waves
D. Polarised waves

Answer: A

- View Text Solution

7. A tuning fork of unknown frequency gives

4beats with a tuning fork of frequency 310 Hz .
It gives the same number of beats on filing.
Find the unknown frequency.
A. 258
B. 254
C. 250
D. Can't be determined

Answer: A

## - Watch Video Solution

## C.U.Q

1. The sound waves that can propagate in a metal bar may be
A. Longitudinal
B. Transverse
C. Torsional
D. Either longitudinal or transverse

## Answer: D

## D Watch Video Solution

2. When a waves is travelling in a medium, in
that process, the following is/are transporting
from one particle to other
A. energy
B. momentum
C. both $1 \& 2$
D. length

## Answer: C

## D View Text Solution

3. A plane progressive wave cannot be represented by
A. $y=a \sin (\omega t \pm k x)$
B. $y=a \sin 2 \pi\left(\frac{t}{T}-+\frac{x}{\lambda}\right)$
C. $y=a \sin \cdot \frac{2 \pi}{\lambda}(V t-+x)$
D. $y=A \log x+B \log x$

## Answer: D

## - Watch Video Solution

4. The speed of wave of time period $T$ and propagation constant $K$ is
A. $\frac{2 \pi}{T K}$

TK
B. $\frac{-}{2 \pi}$
C. $\frac{1}{T K}$
D. $\frac{T}{K}$

Answer: A

## D Watch Video Solution

5. What is the phase difference between the
incident and reflected wave when the wave is reflected by a rigid boundary.
A. 0
B. $\pi$
C. $3 \pi$
D. $2 \pi$

Answer: B

## D Watch Video Solution

6. A sound wave may be considered either as a
displacement wave or as a pressure wave .
When reflection takes place from as a rigid wall, what phase change do you except in its
displacement representation and in its pressure representation?
A. 0
B. $\pi$
C. $3 \pi$
D. $\pi / 2$

## Answer: A

## - Watch Video Solution

7. During propagation of longitudinal plane wave in a medium the two particles separated by a distance equivalent to one wavelength at an instant will be/have
A. in phase, same displacement
B. in phase, different displacement
C. different phase, same displacement
D. different phase, different displacement

## Answer: A

## D Watch Video Solution

8. The equation of a progressive wave is $Y=a \sin (\omega t-k x)$, then the velocity of the wave
A. $k \omega$
B. $k / \omega$
C. $\omega / k$
D. $a \omega$

## Answer: C

## D Watch Video Solution

9. When a progressive wave is propagating in
a medium, at a given instant, two particles
which are separated by three wave lengths will have.....
A. Different displacement in same direction
B. Different displacement in opposite direction
C. Same displacement in opposite direction
D. Same displacement in same direction

Answer: D
10. Which of the following represents progressive wave equation

$$
\begin{aligned}
& \text { A. } y=e\left(x^{2}-t^{2}\right) \\
& \text { B. } y=A \log k x \\
& \text { C. } y=A \log (k x-\omega t)^{2} \\
& \text { D. } y=\frac{1}{1+\left(x^{2}-t\right)}
\end{aligned}
$$

Answer: C

D Watch Video Solution
11. Phase difference between a particle at a compre-ssion and a particle at the next rarefaction is
A. Zero
B. $\pi / 2$
C. $\pi$
D. $\pi / 4$

Answer: C
12. One similarity between sound and light waves is that
A. both can propagat in vacuum
B. both have same speed
C. both can show polarization
D. both can show interference

Answer: D

- Watch Video Solution

13. When a body is undergoing undamped vibration, the physical quantity that remains constant is
A. amplitude
B. velocity
C. acceleration
D. phase

## Answer: A

14. The slope of a transversely vibrating string at any point on it is numerically equal to
A. The ratio of the particle speed at that point to the wave speed in the string
B. The ratio of the wave speed in the string
to the particle speed at that point
C. One
D. Zero

Answer: A
15. A metal string is fixed between rigid supports. It is initially at negligible tensin. Its

Young modulus is $Y$, density $\rho$ and coefficient of thermal expansion is $\alpha$. If it is now cooled through a temperature $=t$, transverse waves will move along it with speed
A. $\sqrt{\frac{Y \alpha t}{\rho}}$
B. $Y \sqrt{\frac{\alpha t}{\rho}}$
C. $\alpha \sqrt{\frac{Y t}{\rho}}$
D. $t \sqrt{\frac{\rho}{Y \alpha}}$

## Answer: A

## - Watch Video Solution

16. If in an experimental determination of the velocity of sound using a Kundt's tube, standing waves are set up in the metallic rod
as well as in the rigid tube containing air, then both the waves have the same
A. Amplitude

## B. Frequencies

C. Wavelengths
D. Particle velocities

Answer: B

## D Watch Video Solution

17. The phenomena arising due to the superposition of waves is/are
A. beats

## B. Stationary Waves

## C. Lissajous figures

D. All of these

## Answer: D

## D Watch Video Solution

18. Which of the following represents a standing wave?

$$
\text { A. } y=A \sin (\omega t-k x)
$$

$$
\text { B. } y=A e^{-b x} \sin (\omega t-k x+\alpha)
$$

C. $y=A \sin k x \sin (\omega t-\theta)$

$$
\text { D. } y=(a x+b) \sin (\omega t-k x)
$$

## Answer: C

## D Watch Video Solution

19. The interference phenomenon can take place
A. in transverse wave only
B. in longitudinal wave only
C. in electromagnetic waves only
D. in all the above waves

## Answer: D

## D View Text Solution

20. For superposition of two waves, the following is correct
A. they must have the same frequency and
wavelength
B. they must have equal frequencies but may have unequal wavelengths
C. they must have the same wave-length,
but may have different frequencies
D. they may have different wavelength and
different frequencies

## Answer: D

21. At a certain instant a stationary transverse
wave is found to have maximum kinetic energy.
The appearance of string at that instant is
A. sinusoidal shape with amplitude $A / 3$
B. sinusoidal shape with amplitude $A / 2$
C. sinusoidal shape with amplitude $A$
D. straight line

Answer: C

D Watch Video Solution
22. When stationary waves are set up, pick out the correct statement from the following
A. all the particles in the medium are in the
same phase of vibration at all times and
distances
B. the particles with an interval between
two consecutive nodes are in phase, but
the particles in two such consecutive
antinodes are of opposite phase
C. the phase lag along the path of the wave
increases as the distance from the
source increases
D. only antinodes are in same phase

Answer: B

## - View Text Solution

23. In a stationary wave along a string the strain is
A. zero at the antinodes
B. maximum at the antinodes
C. zero at the nodes
D. maximum at the nodes

Answer: D

D Watch Video Solution

## 24. In a stationary wave

A. phase is same at all points in a loop
B. amplitude is same at all points
C. energy is constant at all points
D. temperature is same at all points

Answer: A

- Watch Video Solution

25. A wave is represented by an equation,

## $Y=A \cos k x \sin \omega t$, then

A. it is a progresive wave with amplitude A
B. it is a progresive wave with amplitude A
coskx
C. it is a stationary wave with amplitude A
D. it is a stationary wave with amplitude A
coskx

## Answer: D

26. In a stationary wave
A. pressure change is maximum at nodes
B. pressure change is maximum at
anitnodes
C. pressure change is minimum at nodes
D. amplitude is zero at all points

Answer: A
27. A wire fixed at both ends in sonometer experiment is vibrating in the third overtone.

There are
A. two nodes, two antinodes
B. three nodes, three antinodes
C. four nodes, three antinodes
D. five nodes, four antinodes
28. $\lambda$ is maximum wavelength of a transverse wave that travels along a stretched wire whose two ends are fixed. The length of that wire is
A. $2 \lambda$
B. $\lambda$
C. $\lambda / 2$
D. $3 \lambda / 2$

## Answer: C

## D View Text Solution

29. A sonometer wire of density $\rho$ and radius $r$
is held between two bridges at a distance $L$ apart. Tension in the wire is $T$. then the fundamental frequency of the wire will be

> A. $\frac{1}{2 L} \sqrt{\frac{\pi a^{2}}{T \rho}}$
> B. $\frac{1}{2 L} \sqrt{\frac{T \rho}{\pi a^{2}}}$
C. $\frac{1}{2 L} \sqrt{\frac{T}{\pi a^{2}}}$
D. $\frac{1}{2 L} \sqrt{\frac{T}{\pi a^{2} \rho}}$

## Answer: D

## D Watch Video Solution

30. For a stretched string of given length,the tension ' T ' is plotted on the X -axis and the
frequency ' $f$ ' on the Y - axis. The graph is
rectangular hyperbola straight line through the origin
A. rectangular hyperbola
B. straight line through the origin
C. parabola
D. straight line not through the origin

Answer: C

## D Watch Video Solution

31. The equation of a stationary wave in a medium is given as $y=\sin \omega t \cos k x$. The length of a loop in fundamental mode is

> A. $\frac{\pi}{2 K}$ B. $\frac{\pi}{K}$ C. $\frac{2 \pi}{K}$ D. $\frac{K}{\pi}$

Answer: B

D Watch Video Solution
32. A stretched string of length I, fixed at both ends can sustain stationary waves of wavelength $\lambda$ given by

$$
\begin{aligned}
& \text { A. } \lambda=\frac{l^{2}}{2 p} \\
& \text { B. } \lambda=\frac{p^{2}}{2 l} \\
& \text { C. } \lambda=2 l p \\
& \text { D. } \lambda=\frac{2 l}{p}
\end{aligned}
$$

Answer: D

- Watch Video Solution

33. A knife-edge divides a sonometer wire into
two parts. The fundamental frequencies of the
two parts are $n_{1}$ and $n_{2}$. The fundamental
frequency of the sonometer wire when the knife-edge is removed will be
A. $n_{1}+n_{2}$
B. $\frac{1}{2}\left(n_{1}+n_{2}\right)$
C. $\sqrt{n_{1} n_{2}}$
D. $\frac{n_{1} n_{2}}{n_{1}+n_{2}}$

$$
n_{1}+n_{2}
$$

## Answer: D

34. According to Laplace correction, the propagation of sound in gas takes place under
A. isothermal condition
B. isobaric condition
C. isochoric condition
D. adiabatic condition

Answer: D
35. The velocity of sound is not affected by change in
A. temperature
B. medium
C. pressure
D. wavelength

Answer: C

- Watch Video Solution

36. Velocity of sound in air is
A. decreases with increase in pressure
B. may increase on decrease with pressure
C. it independent of the variation in
pressure
D. varies directly as the square root of pressure

Answer: C
37. If the temperature of the atmosphere is increased the following character of the sound wave is effected
A. amplitude
B. frequency
C. velocity
D. wavelength

## - Watch Video Solution

38. The graph between the $\left(\right.$ velocity $\left.^{2}\right)$ and temperature $T$ of a gas is

## - Watch Video Solution

39. A closed pipe has certain frequency. Now
its length is halved. Considering the end correction, its frequency will now become
B. more than double
C. less than double
D. four times

## Answer: C

## - Watch Video Solution

40. The fundamental frequency of a closed organ pipe is ' $n$ '. If its length is doubled then frequency will become (neglecting end correction)

# A. $\frac{n}{2}$ <br> B. $\frac{n}{3}$ <br> C. $n$ <br> D. $2 n$ 

Answer: A

## - Watch Video Solution

41. v31
A. $\lambda=l$
B. $\lambda=2 l$
C. $\lambda=4 l$
D. $\lambda=3 l$

Answer: B

D Watch Video Solution
42. In the case of closed end organ pipe
A. the maximum possible wavelength is
same as that of open end organ pipe
B. the maximum possible wavelength is
less than that of open end organ pipe
C. the maximum possible wavelength may
be less than that of open end organ pipe
D. the maximum possible wavelength is
greater than that of open end organ
pipe

## Answer: D

43. In the case of standing waves in organ
pipe, the value of $\frac{\delta y}{\delta x}$ at the open end is
A. $>0$
B. $<0$
C. $=0$
D. $=10$

Answer: C

D View Text Solution

# 44. The harmonics formed in air column in an 

 organ pipe closed at one end areA. only odd
B. only even
C. both odd and even
D. niether odd nor even

Answer: A

D Watch Video Solution
45. A tube with both ends closed has same set of natural frequency as
A. one end closed organ pipe
B. both end open organ pipe
C. vibratory string fixed at both ends
D. vibratory string fixed at one end

## Answer: B

46. The frequency of the sound emitted by an organ pipe will increase if the air in it is replaced by
(a) hot air (b) moist air (c) hydrogen
A. $a$ is true
B. $a, b$ are true
C. $b, c$ are true
D. $a, b, c$ are true

## Answer: D

47. An empty vessel is partially filled with water, then the frequency of vibration of air column in the vessel
A. increase
B. decrease
C. remains unchanged
D. insufficent data

Answer: A

D Watch Video Solution
48. End correction in a closed organ pipe of diameter ' d ' is
A. $0.6 d$
B. $1.2 d$
C. $0.3 d$
D. $2.4 d$

Answer: C

D View Text Solution
49. If oil of density higher than that of water is
used in place of water in a resonance tube its
frequency will be
A. increase
B. decrease
C. remain the same

# D. depend upon the density of the material 

of tube

Answer: C
50. If $\lambda_{1}, \lambda_{2}$ and $\lambda_{3}$ are the wavelengths of the wave giving resonance with the fundamental, first and second overtones respectively of a closed orga pipe Then the ratio of wavelength $\lambda_{1}, \lambda_{2}$ and $\lambda_{3}$ is
A. $1: 2: 3$
B. $1: \frac{1}{3}: \frac{1}{5}$
C. 1:3:5
D. $5: 3: 1$

Answer: B

## - Watch Video Solution

51. In closed pipes, the positions of antinodes
are obtained at -

$$
\begin{aligned}
& \text { A. } \frac{\lambda}{4}, \frac{3 \lambda}{4}, \frac{5 \lambda}{4} \\
& \text { B. } 0, \frac{\lambda}{2}, \lambda \\
& \text { C. } \lambda, 2 \lambda, 3 \lambda
\end{aligned}
$$

D. $2 \lambda, 4 \lambda, 6 \lambda$

Answer: B

## - Watch Video Solution

52. An open pipe of length $l$ vibrates in fundamental mode. The pressure variation is maximum at
A. $1 / 4$ from ends
B. the middle of pipe
C. the ends of pipe
D. at $1 / 8$ from ends of pipe

Answer: A

## - Watch Video Solution

53. Beats are produced by the superimposition of two waves of nearly equal frequencies. Which of the following statements is CORRECT?
A.all particles of the medium vibrate simple harmonically with frequency
equal to the difference between the
frequencies of component waves
B. the frequency of beats changes with the location of the observer
C. the frequency of beats changes with
time
D. amplitude of vibration of particle at any
point changes simple harmonically with
frequency equal to one half of the
difference between the component

## waves

## Answer: D

## D Watch Video Solution

54. When beats are formed by two waves of frequencies $n_{1}$ and $n_{2}$ the amplitude varies with frequency equal to

$$
\text { A. } n_{1}-n_{2}
$$

B. $2\left(n_{1}-n_{2}\right)$
C. $\left(n_{1}-n_{2}\right)^{2}$
D. $\left(n_{1}+n_{2}\right)^{2}$

## Answer: C

## D View Text Solution

55. Two wires are producing fundamental notes of the same frequency. Change in which of the following factors of one wire will not produce beats between them
A. stretching force
B. diameter of the wire
C. material of the wire
D. amplitude of the vibrations

## Answer: D

D Watch Video Solution
56. Beats are the result of
A. diffraction
B. destructive interference

## C. constructive and destructive

 interferenceD. superposition of two waves of nearly
equal frequencies

Answer: D

- Watch Video Solution

57. To hear beats, it is essential that the two sound waves in air should
A. be travelling in opposite directions
B. be travelling in the same directions
C. have slightly different amplitude
D. have slightly different wavelengths

## Answer: D

## D Watch Video Solution

58. When the beats are produced by vibration of two tunning forks of nearly equal frequencies then the velocity of propagation of beats
A. less than that of sound
B. depend upon the relative frequency
C. more than that of sound
D. equal to that of sound

## Answer: D

59. A certain number of beats are heard when two tuning forks of natural frequencies $n_{1}$ and $n_{2}$ are sounded together. The number of beats heard when one of the fork is loaded
A. increases
B. decreases
C. remains same
D. may increase or decrease

## - Watch Video Solution

60. The frequency of sound reaching a
stationery listener behind a moving source is
A. lower than source frequency
B. higher than source frequency
C. zero
D. same as the frequency of the source

Answer: A
61. Red shift means
A. Source is going away from observer
B. Source is coming towards observer
C. There is no relative motion between
observer \& source
D. None of these

Answer: A
62. Doppler's effect in sound is due to
A. motion of source
B. motion of observer
C. relative motion of source and observer
D. None of the above

Answer: C
(D) Watch Video Solution
63. Doppler shift in frequency does not depend upon
A. the frequency of wave produced
B. the speed of the source
C. distance between source and observer
D. the speed of the observer

Answer: C

- Watch Video Solution

64. An observer is moving away from a source
at rest. The pitch of the note heard by the observer is less because
A. the pitch of the source decreases
B. the velocity of sound in air increases
C. wave length of the wave becomes will
D. wavelength of the wave remains
unchanged but observer receives less
number of waves

## Answer: D

## D Watch Video Solution

65. Doppler effect is not applicable
A. sound Waves
B. light Waves
C. radio Waves
D. matter Waves
66. In Doppler effect, when a source moves towards a stationery observer, the apparent increase in frequency is due to
A. increase in wavelength of sound received by observer
B. decrease in wavelength of sound
received by observer
C. increase in number of waves received by
observer in one sound
D. decrease in number of waves received by
ovserver in one sound

## Answer: B

## D View Text Solution

67. When a source moves away from stationary observer with velocity v then apparent change
in frequency is $\Delta n_{1}$. When an observer
approaches the stationary source with same
velocity $v$ then change in frequency is $\Delta n_{2}$ then
A. $\Delta n_{1}=\Delta n_{2}$
B. $\Delta n_{1}>\Delta n_{2}$
C. $\Delta n_{1}<\Delta n_{2}$
D. $\frac{\Delta n_{1}}{\Delta n_{2}}<1$

Answer: C

- Watch Video Solution

68. A source of sound moves towards a stationary listener. The apparent pitch of the sound is found to be higher than the actual value. This happens because
A. wavelength of sound waves decreases
B. wavelength of sound waves increases
C. the number of waves received by the
listener increases
D. the number of waves received by the listener decreases

## Answer: A

## D Watch Video Solution

## Exercise-I (C.W)

1. Which of the following represents a
progressive wave
A. $\left.y=A \sin \left(k x^{3}-\omega t^{2}\right) 2\right)$
B. $y=e^{(k x-\omega t)}$
C. $y=A \sin (k x-\omega t)$
D. both 2 and 3

## Answer: D

## D Watch Video Solution

2. The equation of progressive wave is $y=0.01 \sin (100 t-x)$ where $x, y$ are in meter and $t$ in second, then
(a) Velocity of wave is $50 \mathrm{~m} / \mathrm{s}$
(b) Maximum velocity of particle is $1 \mathrm{~m} / \mathrm{s}$
(c) Wave length of wave is $2 \pi$ meter
A. only $a, c$ are true
B. only $a, b$ are true
C. only b, c are true
D. $a, b, c$ are true

## Answer: C

## D Watch Video Solution

3. The equation $y=A \cos ^{2}\left(2 \pi n t-2 \pi \frac{x}{\lambda}\right)$
represents a wave with
A. $\frac{A}{2}, 2 n$ and $\frac{\lambda}{2}$
B. $\frac{A}{2}, 2 n$ and $\lambda$
C. $A, 2 n$ and $2 \lambda$
D. $A, n$ and $\lambda$

Answer: A

D Watch Video Solution
4. A transverse wave is derscried by the
equation $y=y_{0} \sin 2 \pi\left(f t-\frac{x}{\lambda}\right)$. The maximum
particle velocity is equal to four times the wave velocity if :-
A. $\lambda=\pi Y_{0} / 4$
B. $\lambda=\pi Y_{0} / 2$
C. $\lambda=\pi Y_{0}$
D. $\lambda=2 \pi Y_{0}$

Answer: B
( Watch Video Solution
5. Two simple harmonic are represented by the equation
$y_{1}=0.1 \sin \left(100 \pi+\frac{\pi}{3}\right)$ and $y_{2}=0.1 \cos \pi t$.
The phase difference of the velocity of particle
1 with respect to the velocity of particle 2 is.
A. $-\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $-\frac{\pi}{3}$
D. $\frac{\pi}{6}$

Answer: A

## - Watch Video Solution

6. A transverse wave along a string is given by
$y=2 \sin \left(2 \pi(3 t-x)+\frac{\pi}{4}\right)$
where $x$ and $y$ are in cm and t in second. Find
acceleration of a particle located at $x=4 \mathrm{~cm}$ at $\mathrm{t}=1 \mathrm{~s}$.
A. $36 \sqrt{2} \pi^{2} \mathrm{~cm} / \mathrm{s}^{2}$
B. $36 \pi^{2} \mathrm{~cm} / \mathrm{s}^{2}$

## C. $-36 \sqrt{2} \pi^{2} \mathrm{~cm} / \mathrm{s}^{2}$

D. $-36 \pi^{2} \mathrm{~cm} / \mathrm{s}^{2}$

## Answer: C

## - Watch Video Solution

7. The frequency of a fork is 500 Hz . Velocity of sound in air is $350 \mathrm{~ms}^{-1}$. The distance through
which sound travel by the time the fork makes

125 vibrations is
A. 87.5 m
B. 700 m
C. 1400 m
D. 1.75 m

Answer: A

## D Watch Video Solution

8. The velocity of sound waves in air is $330 \mathrm{~m} / \mathrm{s}$.

For a particluar sound in air, a path difference
of 40 cm is equivalent to a phase difference of $1.6 \pi$. The frequency of this wave is
A. 165 Hz
B. 150 Hz
C. 660 Hz
D. 330 Hz

Answer: C

- Watch Video Solution

9. A wave has a frequency of 120 Hz . Two points
at a distance $9 m$ apart have a phase difference
of $1080^{\circ}$. The velocity of the wave is
A. $340 \mathrm{~m} / \mathrm{s}$
B. $300 \mathrm{~m} / \mathrm{s}$
C. $330 \mathrm{~m} / \mathrm{s}$
D. $360 \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution
10. A source of frequency 500 Hz emits waves of
wavelength $0.2 m$. How long does it take to
travel 300 m ?
A. 70 sec
B. 60 sec
C. 12 sec
D. 3 sec

Answer: D

- Watch Video Solution

11. The displacement of a wave disturbance propagating in the positive $x$-direction is given by
$y=\frac{1}{1+x^{2}}$ at $t=0$ and $y=\frac{1}{1+(x-1)^{2}}$ at $t=2 \mathrm{~s}$
where, $x$ and $y$ are in meter. The shape of the wave disturbance does not change during the propagation. what is the velocity of the wave?
A. $2 m s^{-1}$
B. $0.5 \mathrm{~ms}^{-1}$
C. $3 m s^{-1}$

## D. $1 \mathrm{~ms}^{-1}$

## Answer: B

## D Watch Video Solution

12. A wave of angular frequency $\omega$ propagates
so that a certain phase of oscillation moves
along $x$-axis, $y$-axis, $z$-axis with speeds $c_{1} c_{2}$ and
$c_{3}$ respectively.

$$
\text { A. } \frac{\omega}{\sqrt{c_{1}^{2}+c_{2}^{2}+c_{3}^{2}}}(\hat{i}+\hat{j}+\hat{k})
$$

$$
\begin{aligned}
& \text { B. } \frac{\omega}{c_{1}} \hat{i}+\frac{\omega}{c_{2}} \hat{j}+\frac{\omega}{c_{3}} \hat{k} \\
& \text { C. }(\omega \hat{i}+\omega \hat{j}+\omega \hat{k}) \frac{1}{c} \\
& \text { D. } \frac{\omega}{\left(c_{1}+c_{2}+c_{3}\right)}(\hat{i}+\hat{j}+\hat{k})
\end{aligned}
$$

Answer: B

## D Watch Video Solution

13. A travelling wave has the frequency $v$ and the particle displacement amplitude $A$. For the wave the particle velocity amplitude is

## amplitude is

A. $1: \omega^{2}$
B. $1: \sqrt{\omega}$
C. $1: \omega$
D. $1: \omega^{3}$

Answer: C
( Watch Video Solution
14. If Young's modulus of the material of a rod is $Y$ and density is $\rho$ then time taken by sound wave to travel $l$ length from bottom is
A. $l \sqrt{\frac{\rho}{Y}}$
B. $I \sqrt{\frac{Y}{\rho}}$
C. $\frac{1}{l} \sqrt{\frac{Y}{\rho}}$
D. $\frac{1}{l} \sqrt{\frac{\rho}{Y}}$

Answer: A
15. v20.1

A. $100 \mathrm{~ms}^{-1}$<br>B. $141.1 \mathrm{~ms}^{-1}$<br>C. $200 \mathrm{~ms}^{-1}$<br>D. $282.2 \mathrm{~ms}^{-1}$

Answer: B
16. A transverse wave propagating on a stretched string of linear density $3 \times 10^{-4} \mathrm{~kg}-\mathrm{m}^{-1}$ is represented by the equation
$y=0.2 \sin (1.5 x+60 t)$

Where $x$ is in metre and $t$ is in second. The tension in the string (in Newton) is
A. 0.24
B. 0.48
C. 1.20
D. 1.80

Answer: B

## D Watch Video Solution

17. The extension in a string, obeying Hooke's
law, is $x$. The speed of sound in the stretched
string is $v$. If the extension in the string is increased to $1.5 x$, the speed of sound will be :-
A. 1.22 V
B. 0.61 V
C. 1.50 V

## D. 0.75 V

## Answer: A

## D Watch Video Solution

18. A uniform rope of length 12 m and mass 6 kg
hangs vertically from a rigid support. A block of mass 2 kg is attached to the free end of the rope. A transverse pulse of wavelength 0.06 m is produced at the lower end of the rope.

What is the wavelength of the pulse when it

## reaches the top of the rope?

A. 0.06 m
B. 0.12 m
C. 0.24 m
D. 0.03 m

Answer: B
( Watch Video Solution
19. A string of length $l$ hangs freely from a
rigid support. The time required by a transverse pulse to travel from bottom to half length of the string is
A. $\sqrt{l g}$
B. $\sqrt{\frac{l}{g}}$
C. $\sqrt{\frac{l}{2 g}}$
D. $\sqrt{\frac{2 l}{g}}$

Answer: C
20. A transverse wave is passing through a light string shown in fig.The equation of wave is $y=A \sin (w t-k x)$ the area of cross-section of string $A$ and density is $\rho$ the hanging mass is

A. $A \omega$
B. $\frac{\omega}{\mathrm{kg}}$
C. $\frac{\rho A \omega^{2}}{k^{2} g}$
D. $\frac{k^{2} g}{\omega}$

## Answer: C

## D Watch Video Solution

21. The equation of a wave on a string of linear mass density $0.04 \mathrm{kgm}^{-1}$ is given by
$y=0.02(m) \sin \left[2 \pi\left(\frac{t}{0.04(s)}-\frac{x}{0.50(m)}\right)\right]$.
Then tension in the string is
A. 6.25 N
B. 4.0 N
C. 12.5
D. 0.5 N

## Answer: A

## D Watch Video Solution

22. In (Q. 24.) the tension in string is $T$ and the
linear mass density of string is $\mu$. The ratio of magnitude of maximum velocity of particle
and the magnitude of maximum acceleration
is

$$
\begin{aligned}
& \text { A. } \frac{1}{2 \pi} \sqrt{\left(\frac{\mu l^{2}}{T}\right)} \\
& \text { B. } 2 \pi \sqrt{\left(\frac{\mu l^{2}}{T}\right)} \\
& \text { C. } \frac{1}{2 \pi} \sqrt{\left(\frac{T}{\mu l^{2}}\right)} \\
& \text { D. } \frac{1}{4 \pi} \sqrt{\left(\frac{\mu l^{2}}{T}\right)}
\end{aligned}
$$

Answer: A
23. The speed of sound in air is $332 \mathrm{~m} / \mathrm{s}$ at NTP.

What will be its value in hydrogen at NTP, if density of hydrogen at NTP is $1 / 16$ th that of air?
A. $1238 \mathrm{~m} / \mathrm{s}$
B. $1328 \mathrm{~m} / \mathrm{s}$
C. $3218 \mathrm{~m} / \mathrm{s}$
D. $2831 \mathrm{~m} / \mathrm{s}$

## - Watch Video Solution

24. Calculate the ration of speed of sound in neon to that in water vapours at any temperature. Molecular weight on neon $=2.02 \times 10^{-2} \mathrm{~kg} /$ mole and for water vapours, molecular weight is $1.8 \times 10^{-2} \mathrm{~kg} / \mathrm{mole}$.
A. 0.155
B. 5.155
C. 1.055

## D. 1.55

## Answer: C

## D Watch Video Solution

25. The pressure of air increases by 100 mm of

Hg and the temperature decreases by $1^{\circ} \mathrm{C}$.

The change in the speed of sound in air at STP
is $\left(V_{0}=333 \mathrm{~m} / \mathrm{s}\right)$
A. $61 \mathrm{~ms}^{-1}$
B. $61 \mathrm{mms}^{-1}$
C. $61 \mathrm{cms}^{-1}$
D. $0.61 \mathrm{cms}^{-1}$

## Answer: C

## D View Text Solution

26. The temperature at which the velocity of sound in oxygen will be same as that of nitrogen at $15{ }^{\circ} \mathrm{C}$ is
A. $561^{\circ} \mathrm{C}$
B. $56.1^{\circ} \mathrm{C}$
C. $5.61^{\circ} \mathrm{C}$
D. $5.061^{\circ} \mathrm{C}$

Answer: B

D Watch Video Solution
27. The ratio of the speed of sound in nitrogen gas to that in helium gas, at 300 K is
A. $\sqrt{2}: \sqrt{7}$
B. $1: \sqrt{7}$
C. $\sqrt{3}: 5$
D. $\sqrt{6}: 5$

Answer: C

## D Watch Video Solution

28. A pressure of 100 kPa causes a decrease in
volume water by $5 \times 10^{-3}$ precent. The speed
of sound in water is
A. $1414 m s^{-1}$
B. $1000 \mathrm{~ms}^{-1}$
C. $2000 \mathrm{~ms}^{-1}$
D. $3000 \mathrm{~ms}^{-1}$

Answer: A

D View Text Solution
29. The speed of sound in hydrogen at STP is $V$
. The speed of sound in a mixture containing 3
parts of hydrogen and 2 parts of oxygen at

## STP will be

A. $V / 2$
B. $V / \sqrt{5}$
C. $\sqrt{7} V$
D. $V / \sqrt{7}$

Answer: D
(D) View Text Solution
30. Calculate the velocity of sound in a mixture of two gases obtained by mixing $m_{1}$ and $m_{2}$ of them if the velocity of sound in them be $C_{1}$ and $C_{2}$. The atomicity of the two gases is the same.

$$
\begin{aligned}
& \text { A. } c=\sqrt{\frac{m_{1} c_{1}^{2}+m_{2} c_{2}^{2}}{m_{1}+m_{2}}} \\
& \text { B. } c=\sqrt{\frac{m_{2} c_{1}^{2}+m_{1} c_{2}^{2}}{m_{1}+m_{2}}} \\
& \text { C. } c=\sqrt{\frac{m_{2} c_{2}+m_{1} c_{2}}{m_{1}+m_{2}}}
\end{aligned}
$$

D. $c=m_{2} \sqrt{\frac{c_{2}^{2}+c_{1}^{2}}{m_{1}+m_{2}}}$

## Answer: A

## D Watch Video Solution

31. Two waves given by $y_{1}=a \sin \omega t$ and $y_{2}=a \sin (\omega t+\pi / 2)$ reaching at a point superimpose. The resultant amplitude is
A. 0
B. $2 a$
C. $a \sqrt{2}$
D. $\frac{a}{\sqrt{2}}$

## Answer: C

## D View Text Solution

32. Two sound waves are represented by $y_{1}=\sin \omega t+\cos \omega t$ and $y_{2}=\frac{\sqrt{3}}{2} \sin \omega t+\frac{1}{2} \cos \omega t$.

The ratio of their amplitude is
A. $1: 1$
B. $\sqrt{3}: 2$
C. $2: \sqrt{3}$
D. $\sqrt{2}: 1$

## Answer: D

## D Watch Video Solution

33. A standing wave, having 5 nodes and 4 antinodes is formed between two atoms having a distance $1.21 \AA$ between them. The wavelength of the standing wave is
A. $1.21 \AA$
B. $2.42 \AA$
C. $6.05 \AA$
D. $0.605 \AA$

## Answer: D

## D Watch Video Solution

34. A tuning fork of frequency 480 Hz is used
to vibrate a sonometer wire having naturl
frequency 410 Hz . The wire wil vibrate with

## frequency

A. 410 Hz
B. 480 Hz
C. 820 Hz
D. 960 Hz

Answer: B

- Watch Video Solution

35. When the streching force of a wire is increased by 2.5 kg , the frequency of the note emitted is changed in the ratio $3 / 2$. Calculate the original stretching force
A. 3 kg
B. 2 kg
C. 1.5 kg
D. 1 kg

Answer: B
36. If $f_{1}$ and $f_{2}$ be the fundamental frequencies of the two segments into which a stretched string is divided by means of a bridge, then
find the original fundamental frequency $f$ of the complete string.

$$
\begin{aligned}
& \text { A. } f_{1} f_{2}=f\left[f_{1}+f_{2}\right] \\
& \text { B. } 2 f=f_{1}+f_{2} \\
& \text { C. } \sqrt{f}=\sqrt{f_{1}}+\sqrt{f_{2}} \\
& \text { D. } \sqrt{\overline{f_{1} f_{2}}}=2 f
\end{aligned}
$$

Answer: A

## D Watch Video Solution

37. Stationary waves are produced in 10 m long stretched string. If the string vibrates in 5
segments and wave velocity $20 \mathrm{~m} / \mathrm{s}$ then the frequency is :-
A. 2 Hz
B. 4 Hz
C. 5 Hz

## D. 10 Hz

## Answer: C

## D Watch Video Solution

38. The equation $y=5 \sin \left(\frac{\pi x}{25}\right) \cos (450 t)$
represents the stationary wave in a vibrating
sonometer wire, where $x, y$ are in cm and t in
sec. The distances of $2 n d$ and $3 r d$ nodes from one end are (in cm).
A. 50,75
B. 25,50
C. 15,50
D. 20,50

Answer: B

## - Watch Video Solution

39. v20
A. $5: 3$
B. $5: 2$
C. 2:5
D. $3: 5$

Answer: B

## D Watch Video Solution

40. If the length of a stretched string is shortened by $40 \%$ and the tension is increased by $44 \%$, then the ratio of the final and initial fundamental frequencies is
A. $2: 1$
B. $3: 2$
C. 3:4
D. $1: 3$

Answer: A

## D Watch Video Solution

41. The fundamental frequency of a stretched string with a weight of 9 kg is 289 Hz . The weight required to produce its octave is
A. 9 kgwt
B. 16 kgwt
C. 25 kgwt
D. 36 kgwt

## Answer: D

## D Watch Video Solution

42. in an experiment it was found that string
vibrates in $n$ loops when a mass $M$ is placed on
the pan. What mass should be placed on the
pan to make it vibrate in 2 n loops with same frequency? ( neglect the mass of pan )
A. $2 M$
B. $M / 4$
C. $4 M$
D. $M / 2$

Answer: B
( Watch Video Solution
43. Transverse waves are generated in two uniform wires $A$ and $B$ of the same material by attaching their free ends to a vibrating source of frequency 200 Hz . The cross sectiona of A is half that of $B$ while the tension on $A$ is twice that on B. The ratio of wavelengths of transverse waves in $A$ and $B$ is
A. $1: \sqrt{2}$
B. $\sqrt{2}: 1$
C. 1:2

## D. $2: 1$

## Answer: D

## - View Text Solution

44. A string is stretched between fixed points separated by 75.0 cm . It is observed to have resonant frequencies of 420 Hz and 315 Hz .

There are no other resonant frequencies
between these two. Then, the lowest resonant frequency for this string is
A. 105 Hz
B. 1.05 Hz
C. 1005 Hz
D. 10.5 Hz

Answer: A

D Watch Video Solution
45. A sound wave with an amplitude of 3 cm starts towards right from origin and gets reflected at a rigid wall after a second. If the
velocity of the wave is $340 \mathrm{~ms}^{-1}$ and it has a
wavelength of $2 m$, the equations of incident and reflected waves respectively are :

$$
\begin{aligned}
& \text { A. } y=3 \times 10^{-2} \sin \pi(340 t-x), \\
& \qquad y=-3 \times 10^{-2} \sin \pi(340 t+x) \text { towards left } \\
& \text { B. } y=3 \times 10^{-2} \sin \pi(340 t+x), \\
& y=-3 \times 10^{-2} \sin \pi(340 t+x) \text { towards left } \\
& \text { C. } y=3 \times 10^{-2} \sin \pi(340 t-x), \\
& y=-3 \times 10^{-2} \sin \pi(340 t-x) \text { towards left }
\end{aligned}
$$

$$
\begin{aligned}
& \text { D. } y=3 \times 10^{-2} \sin \pi(340 t-x) \\
& y=3 \times 10^{-2} \sin \pi(340 t+x) \text { towards left }
\end{aligned}
$$

## Answer: A

## D Watch Video Solution

46. Sound signal is sent through a composite tube as shown in the figure. The radius if the semicircular portion of the tube $r$. Speed of sound in air is $v$. The source of sound is capable of giving vaied frequencies in the
range of $v_{1}$ and $v_{2}$ (where $v_{2}>v_{1}$ ). If $n$ is an
integer then frequency for maximum intensity
is given by

A. $\frac{n V}{r}$
B. $\frac{n V}{r(\pi-2)}$
C. $\frac{n V}{\pi r}$
D. $\frac{n V}{(r-2) \pi}$

Answer: B

## - Watch Video Solution

47. Four simple harmonic vibrations

$$
\begin{aligned}
& y_{1}=8 \sin \omega t, \quad y_{2}=6 \sin (\omega t+\pi / 2), \\
& y_{3}=4 \sin (\omega t+\pi), y_{4}=2 \sin (\omega t+3 \pi / 2)
\end{aligned}
$$

are susperimposed on each other. The
resulting amplitude and phase are
respectively.
A. $\sqrt{45}$ and $\tan ^{-1}\left(\frac{1}{2}\right)$
B. $\sqrt{45}$ and $\tan ^{-1}\left(\frac{1}{3}\right)$
C. $\sqrt{75}$ and $\tan ^{-1}(2)$
D. $\sqrt{75}$ and $\tan ^{-1}\left(\frac{1}{3}\right)$

Answer: A

## D Watch Video Solution

48. A wave pulse on a string has the dimension
shown in figure.


The wave speed is $v=1 \mathrm{~cm} / \mathrm{s}$. If point $O$ is free end. The shape of wave at time $t=3 s$ is

A.

D.

1 cm

## Answer: D

## - Watch Video Solution

49. The length of a sonometer wire is 90 cm and the stationary wave setup in the wire is represented
$y=6 \sin \left(\frac{\pi x}{30}\right) \cos (250 t)$ where $x, y$ are in cm and $t$ is in second. The number of loops is
A. 1
B. 2
C. 4
D. 3

Answer: D

- View Text Solution

50. A sonometer is set on the floor of a lift.

When the lift is at rest, the sonometer wire vibrates with fundamental frequency 256 Hz .

When the lift goes up with acceleration a $=\frac{9 g}{16}$, the frequency of vibration of the same wire changes to
A. 512 Hz
B. 320 Hz
C. 256 Hz
D. 204 Hz

Answer: B

## - Watch Video Solution

51. Standing wave produced in a metal rod of
length $1 m$ is represented by the equation $y=10^{-6} \sin \cdot \frac{\pi x}{2} \sin 200 \pi t$ where $x$ is in metre and t is in seconds. The maximum tensile stress at the mid point of the rod is (Young's modulus of material of rod $=10^{12} \mathrm{~N} / \mathrm{m}^{2}$ )

$$
\text { A. } \frac{\pi}{2} \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}
$$

B. $2 \pi \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$

$$
\begin{aligned}
& \text { C. } \frac{\pi}{2 \sqrt{2}} \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \\
& \text { D. } \frac{2 \pi}{\sqrt{3}} \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

## Answer: C

## D Watch Video Solution

52. An addiditional bridge is kept below a sonometer wire so that it is divided into two
segments of lengths in the ratio $2: 3$ and $n_{1}$,
$n_{2}$ are their respective fundamental
frequencies. If the additional bridge is
removed then the fundamental frequency of
that sonometer wire is $n$, the ratio of $n, n_{1}, n_{2}$ is
A. $2: 3: 5$
B. 2:5:3
C. $4: 9: 25$
D. 6:15:10

## Answer: D

53. A piano wire 0.5 m long and mass 5 gm is
streteched by a tension of 400 N . The number
of highest overtone that can be heared by a person is
A. 160
B. 99
C. 140
D. 120

## Watch Video Solution

54. An iron load of 2 Kg is suspended in the air from the free end of a sonometer wire of length $1 \mathrm{~m} . \mathrm{A}$ tuning frok of frequency 256 Hz , is in resonace with $\frac{1}{\sqrt{7}}$ times the length of the sonometer wire. If the looad is immersed in
water, the length of the wire in metre that will be in resonance with the same tuning fork is
(specific gravity of iron=8)
A. $\sqrt{8}$
B. $\sqrt{6}$
C. $1 / \sqrt{6}$
D. $1 / \sqrt{8}$

## Answer: D

## D Watch Video Solution

55. The third overtone of a closed pipe is found to be in unison with the firest overtone of an open pipe. Find the ratio of the lengths of the pipes.
A. $6: 4$
B. 7:4
C. $4: 7$
D. $4: 6$

Answer: B

## D Watch Video Solution

56. Two closed organ pipes of length 100 cm and 101 cm 16 beats is 20 sec . When each pipe
is sounded in its fundamental mode calculate
the velocity of sound ${ }^{\prime}$

A. $303 m s^{-1}$<br>B. $332 m s^{-1}$<br>C. $323 m s^{-1}$<br>D. $300 \mathrm{~ms}^{-1}$

Answer: C
( Watch Video Solution
57. A cylinder resonance tube open at both
ends has fundamental frequency $F$ in air. Half of the length of the tube is dipped vertically in water. The fundamental frequency to the air column now is $\qquad$
A. $f / 2$
B. $f$
C. $3 f / 2$
D. $2 f$
58. A closed organ pipe is vibrating in first overtone and is in resonance with another open organ pipe vibrating in third harmonic. The ratio of lengths of the pipes respectively is
A. 1:2
B. $4: 1$
C. 8:3
D. 3:8

Answer: A

## - Watch Video Solution

59. A glass tube of 1.0 m length is filled with water. The water can be drained out slowly at the bottom of the tube. If a vibrating tuning fork of frequency $500 \mathrm{c} / \mathrm{s}$ is brought at the upper end of the tube and the velocity of sound is $300 \mathrm{~m} / \mathrm{s}$, then the total number of resonances obtained will be
A. 4
B. 3
C. 2
D. 1

Answer: B

## D Watch Video Solution

60. An open and a closed pipe have same
length. The ratio of frequency of their nth overtone is

> A. $\frac{1}{p}$
> B. $p$
> C. $\frac{2(p+1)}{2 p+1}$
> D. $\frac{2 p+1}{2(p+1)}$

## Answer: C

## D Watch Video Solution

61. A tube of a certain diameter and of length

48 cm is open at both ends. Its fundamental
frequency is found to be 320 Hz . The velocity of
sound in air is $320 \mathrm{~m} / \mathrm{sec}$. Estimate the
diameter of the tube.

One end of the tube is now closed. Calculate
the lowest frequency of resonance for the tube.
A. 1.33 cm
B. 2.33 cm
C. 3.33 cm
D. 4.33 cm

Answer: C
62. A closed organ pipe has length $l$. The air in
it is vibrating in 3rd overtone with a maximum
amplitude of $A$. Find the amplitude at a distance of $l / 4$ from closed end of the pipe
A. A
B. zero
C. $A / \sqrt{2}$
D. $\sqrt{3} A / 2$

## Answer: C

## D View Text Solution

63. The frequency of a streteched uniform wire
of certain length is in resonance with the
fundamental frequency of closed tube. If length of wire is decreased by 0.5 m , it is in resonance with first overtone of closed pipe.

The initial length of wire is
A. 0.5 m
B. 0.75 m
C. $1 m$
D. 1.5 m

Answer: B

## D Watch Video Solution

64. An open pipe resonates to a frequency $f_{1}$ and a closed pipe resonates to a frequency $f_{2}$. If they are joined together to form a longer
tube, then it will resonate to a frequency of
(neglect end corrections)

$$
\begin{aligned}
& \text { A. } \frac{f_{1} f_{2}}{2 f_{2}+f_{1}} \\
& \text { B. } \frac{f_{1} f_{2}}{f_{2}+2 f_{1}} \\
& \text { C. } \frac{2 f_{1} f_{2}}{f_{2}+f_{1}} \\
& \text { D. } \frac{f_{1}+2 f_{2}}{f_{1} f_{2}}
\end{aligned}
$$

Answer: A

D View Text Solution
65. The the resonance tube experiment first resonant length is $l_{1}$ and the second resonant length is $l_{2}$, then the third resonant length will be?
A. $2 l_{2}-l_{1}$
B. $l_{2}-2 l_{1}$
C. $l_{2}-l_{1}$
D. $3 l_{2}-l_{1}$

Answer: A
66. A pop- gun consists of a cylindrical barrel
$3 \mathrm{~cm}^{2}$ in cross section closed at one end by a cork and having a well fitting piston at the other. If the piston is pushed slowly, in the cork is finally ejected, giving a pop, the frequency of which is found to be 512 Hz .

Assuming that the initial distance between the cork and the piston was 25 cm and that there is no leaking of air, calculate the force required to eject the cork. Atmospheric pressure $=1 \mathrm{~kg} . \mathrm{cm}^{2}, v=340 \mathrm{~m} / \mathrm{s}$ (in kg. wt ).
67. There are two sources of sound of equal
intensity with frequencies 400 Hz and 408 Hz are vibrated together. The number of beats heard per second is
A. 0
B. 1
C. 8
D. 10

## Answer: C

## - Watch Video Solution

68. If a tuning fork of frequency 512 Hz is
sounded with a vibrating string of frequency
505.5 Hz the beats produced per sec will be
A. 6
B. 7
C. 6.5
D. Any of the above

## Answer: C

## D Watch Video Solution

69. The natural frequency of a tuning fork $P$ is

432 Hz .3 beats/s are produced when tuning
fork $P$ and another tuning fork $Q$ are sounded together. If $P$ is loaded with wax, the number of beats increases to 5 beats/s. The frequency of $Q$ is
A. 429 Hz
B. 435 Hz
C. 437 Hz
D. 427 Hz

Answer: B

- Watch Video Solution

70. Two organ (open) pipes of lengths 50 cm
and 51 cm produce 6 beats $/ \mathrm{s}$. Then the speed
of sound is nearly
A. $300 \mathrm{~m} / \mathrm{s}$
B. $306 \mathrm{~m} / \mathrm{s}$
C. $303 \mathrm{~m} / \mathrm{s}$
D. $350 \mathrm{~m} / \mathrm{s}$

## Answer: B

## D Watch Video Solution

71. An unknown frequency $x$ produces 8 beats per seconds with a freuquency of 250 Hz and 12 beats with 270 Hz . Source then $x$ is
A. 258 Hz
B. 242 Hz
C. 262 Hz
D. 282 Hz

Answer: A

## D Watch Video Solution

72. In an experiment it was found that when a sonometer in its fundamental mode of
vibration and a tunning fork gave 5 beats
when length of wire is 1.05 metre or 1 metre.

The velocity of transverse waves in sonometer wire when its length is $1 m$
A. $400 \mathrm{~m} / \mathrm{s}$
B. $210 \mathrm{~m} / \mathrm{s}$
C. $420 \mathrm{~m} / \mathrm{s}$
D. $450 \mathrm{~m} / \mathrm{s}$

## Answer: C

D View Text Solution
73. A sonometer has 25 forks. Each produces 4 beats with the next one. If the maximum frequency is 288 Hz , which is the frequency of last fork. The lowest frequency is
A. 72 Hz
B. 96 Hz
C. 128 Hz
D. 192 Hz

Answer: D

D Watch Video Solution
74. A tuning fork produces 6 beats $/ \mathrm{sec}$ with sonometer wire when its tensions are either 169 N or 196 N . The frequency of that fork is
A. 162 Hz
B. 190 Hz
C. 200 Hz
D. 80 Hz

Answer: A
75. In an open pipe when air column is 20 cm it is in resonance with tuning fork $A$. When length is increased by 2 cm then the air column is $t$ resonance with fork $B$. When $A$ and $B$ are sounded together 4 beats/sec are heard.

Frequencies of $A$ and $B$ are respectively (in Hz )
A. 40,44
B. 88,80
C. 80,88

## D. 44,40

## Answer: D

## D View Text Solution

76. A closed organ pipe and an open organ
pipe of same length produce 4 beats when
they are set into vibrations simultaneously. If
the length of each of them were twice their
initial lengths, the number of beats produced
will be
A. 2
B. 4
C. 1
D. 8

## Answer: A

## D Watch Video Solution

77. An air column in tun=be 32 cm long, closed at one end, is in resonace with a tuning fork.

The air column in another tube, open at both
ends, of length 66 cm is in resonance with another tuning frok.When those two tuning
forks are sounded together, they produce 8 beats per second together, they produce 8 beats per second. then the frquencies of the twpo tuning forks are, (consider fundamental frequencies only)
A. $250 \mathrm{~Hz}, 258 \mathrm{~Hz}$
B. $240 \mathrm{~Hz}, 248 \mathrm{~Hz}$
C. $264 \mathrm{~Hz}, 256 \mathrm{~Hz}$
D. $280 \mathrm{~Hz}, 272 \mathrm{~Hz}$

## Answer: C

## D Watch Video Solution

78. The string of a sonometer is divided into
two parts using wedge. Total length of string
is 1 m and two parts differ by 2 mm . When sounded together they produce 2 beats $/ \mathrm{sec}$.

The frequencies of two parts are
A. $501 \mathrm{~Hz}, 503 \mathrm{~Hz}$
B. $501 \mathrm{~Hz}, 499 \mathrm{~Hz}$

## C. $499 \mathrm{~Hz}, 497 \mathrm{~Hz}$

D. $497 \mathrm{~Hz}, 495 \mathrm{~Hz}$

Answer: B

## D Watch Video Solution

79. On vibrating an air column at $627^{\circ} \mathrm{C}$ and a tuning fork simultaneously, 6 beats $/ \mathrm{sec}$ are heard. The frequency of fork is less than that of air column. No beats are heard at $-48{ }^{\circ} \mathrm{C}$
.The frequency of fork is
A. 3 Hz
B. 6 Hz
C. 10 Hz
D. 15 Hz

Answer: B

## D Watch Video Solution

80. A string 25 cm long and having a mass of
2.5 gm is under tension. A pipe closed at one end is 40 cm long. When the string is set
vibrating in its first overtone and the air in the
pipe in its fundamental frequency, 8 beats per second are heard. It is observed that decreasing the tension in the string decreases beat frequency. If the speed of sound in air is $320 \mathrm{~m} / \mathrm{s}$, find the tension in the string.
A. $27 N$
B. $54 N$
C. 13.5 N
D. 108 N

## - Watch Video Solution

81. Two identical piano wires have fundemental
frequency of $600 \mathrm{vib} / \mathrm{sec}$, when kept under the
same tension. What frectional increase in the tension of one wire will lead to the occurrence of six beats per second when both wires
vibrate simuitaneously?
A. 0.01
B. 0.02
C. 0.03

## D. 0.04

## Answer: B

## D Watch Video Solution

82. The speed at which a source of sound
should move so that a stationary observer
finds the apparent frequency equal to 11 / 12 of
the original frequency
A. $V / 2$
B. 2 V
C. $V / 4$
D. $V / 11$

## Answer: D

## D Watch Video Solution

83. The difference between the apparent frequencies of whistle as received by an observe in rest during approach to recession

## $\mathrm{m} / \mathrm{sec}$, the velocity of the train is

A. $5.8 \mathrm{~km} /$ hour
B. $7.2 \mathrm{~km} / \mathrm{hour}$
C. $10.3 \mathrm{~km} / \mathrm{hour}$
D. $44.8 \mathrm{~km} / \mathrm{hour}$

Answer: A
( Watch Video Solution
84. A source of sound emitting a note of
frequency 200 Hz moves towards an observer
with a velocity v equal to the velocity of sound.
If the observer also moves away from the
source with the same velocity v , the apparent
frequency heard by the observer is
A. 50 Hz
B. 100 Hz
C. 150 Hz
D. 200 Hz

## Answer: D

## D Watch Video Solution

85. An engine giving whistle is moving towards
a stationary observer with $110 \mathrm{~m} / \mathrm{s}$ speed.

What will be the ratio of the frequency of the whistle heard when the engine is approaching and receding from the observer (the speed of sound is $330 \mathrm{~m} / \mathrm{s}$ ) ?
A. $4: 3$
B. $4: 1$
C. $3: 6$
D. $2: 1$

## Answer: D

## - Watch Video Solution

86. Two aeroplanes ' A ' and ' B ' are moving away
from one another with a speed of 720 kmph .

The frequency of the whistle emitted by ' A ' is
1100 Hz . The apparent frequency of the whistle
as heard by the passenger of the aeroplane ' $B$ '
is (velocity of sound in air is $350 \mathrm{~ms}^{-1}$ ).
A. 300 Hz
B. 400 Hz
C. 500 Hz
D. 600 Hz

Answer: A

D Watch Video Solution
87. An engine is moving on a circular path of radius 100 m with a speed of $20 \mathrm{~m} / \mathrm{s}$. What will be frequency noted by an observer standing stationary at the centre of the circular path when the engine blows a whistle of frequency 500 Hz ?
A. more than 500 Hz
B. less than 500 Hz
C. 500 Hz
D. no sound is heard

## Answer: C

## D Watch Video Solution

88. The frequency of a radar is 780 MHz . After getting reflected from an approaching
aeroplane, the apparent frequency is more
than the actual frequency by 2.6 kHz . The aeroplane has a speed of
A. $2 \mathrm{Km} / \mathrm{se}$
B. $1 \mathrm{Km} / \mathrm{se}$
C. $0.5 \mathrm{Km} / \mathrm{s}$
D. $0.25 \mathrm{Km} / \mathrm{s}$

## Answer: C

## D Watch Video Solution

89. An observer moves towards a stationary
source of sound, with a velocity one-fifth of
the velocity of sound. What is the percentage increase in the apparent frequency?
A. $5 \%$
B. 20 \%
C. zero
D. 0.5 \%

Answer: B

## D Watch Video Solution

90. A train is moving at $30 \mathrm{~m} / \mathrm{s}$ in still air. The frequency of the locomotive whistle is 500 Hz and the speed of sound is $345 \mathrm{~m} / \mathrm{s}$. The
apparent wavelengths of sound in front of and behind the locomotive are respectively
A. $0.63 m, 0.80 m$
B. $0.63 \mathrm{~m}, 0.75 \mathrm{~m}$
C. $0.60 \mathrm{~m}, 0.85 \mathrm{~m}$
D. $0.60 \mathrm{~m}, 0.75 \mathrm{~m}$

## Answer: B

## D Watch Video Solution

91. A vehicle, with a horn of frequency $n$ is
moving with a velocity of $30 \mathrm{~m} / \mathrm{s}$ in a direction
perpendicular to the straight line joining the observer and the vehicle. The observer perceives the sound to have a frequency $n+n_{1}$
. Then (if the sound velocity in air is $300 \mathrm{~m} / \mathrm{s}$ )

$$
\begin{aligned}
& \text { A. } n_{1}=10 n \\
& \text { B. } n_{1}=0 \\
& \text { C. } n_{1}=0.1 n \\
& \text { D. } n_{1}=-0.1 n
\end{aligned}
$$

Answer: B

## - Watch Video Solution

92. A source of sound is travelling towards a stationary observer. The frequency of sound heard by the observer is $25 \%$ more than the actual frequency. If the speed of sound is $v$, that of the source is
A. $V / 5$
B. $V / 4$
C. $V / 3$
D. $V / 2$

Answer: A

## D Watch Video Solution

93. A truck blowing horn of frequency 500 Hz travels towards a vertical mountain and driver
hears echo of frequency 600 Hz . If velocity of sound in air is $340 \mathrm{~m} / \mathrm{s}$ then speed of truck is
A. $31 \mathrm{~m} / \mathrm{s}$
B. $41 \mathrm{~m} / \mathrm{s}$
C. $51 \mathrm{~m} / \mathrm{s}$
D. $21 \mathrm{~m} / \mathrm{s}$

Answer: A

D View Text Solution
94. One train is approaching an observer at rest and another train is receding from him with the same velocity $4 \mathrm{~m} / \mathrm{s}$. Both trains blow
whistles of same frequency of $243 H_{Z}$. The beat frequency in $H_{Z}$ as heard by observer is (speed of sound in air $=320 \mathrm{~m} / \mathrm{s}$ )
A. 10
B. 6
C. 4
D. 1

Answer: B

D Watch Video Solution
95. A tuning fork of frequency 328 Hz is moved towards a wall at a speed of $2 \mathrm{~ms}^{-1}$. An observer standing on the same side as the
fork hears two sounds, one directly from the fork and the other reflected from the wall.

Number of beats per second is (Velocity of sound in air $330 \mathrm{~ms}^{-1}$ ).
A. 4
B. 5
C. 6
D. 7

Answer: A

## D Watch Video Solution

96. The frequency of the sound of a car horn
as recorded by an observer towards whom the
car is moving differs from the frequency of the
horn by $10 \%$. Assuming the velocity of sound
in air to be $330 \mathrm{~ms}^{-1}$, the velocity of the car is
A. $36.7 \mathrm{~ms}^{-1}$
B. $40 \mathrm{~ms}^{-1}$
C. $30 \mathrm{~ms}^{-1}$

D. $33 m s^{-1}$

## Answer: C

## D Watch Video Solution

97. Two trains are approaching each other on parallel tracks with same velocity. The whistle sound produced by one train is heard by a passenger in another train. If actual frequency of whistle is 620 Hz and apparent increase in
its frequency is 100 Hz , the velocity of one of
the two trains is (Velocity of sound in air $=335 \mathrm{~ms}^{-1}$ )
A. 90 kmph
B. 72 kmph
C. 54 kmph
D. 36 kmph

Answer: A

D View Text Solution
98. A girl swings in a cardle with period $\pi / 4$ second and amplitude $2 m$. A boy standing infront of it blows a whistle of natural frequency 1000 Hz . The minimum frequency as heard by the girl is (Velocity of sound in air is $320 \mathrm{~ms}^{-1}$ )
A. 850 Hz
B. 1000 Hz
C. 750 Hz
D. 950 Hz

## Answer: D

## D View Text Solution

99. The difference between the apparent
frequency of a source of sound as perceived by
an observer during its approach and recession
is $2 \%$ of the natural frequency of the source.

Then the speed of the source will be
A. $12 \mathrm{~m} / \mathrm{s}$
B. $6.2 \mathrm{~m} / \mathrm{s}$
C. $3.4 \mathrm{~m} / \mathrm{s}$
D. $1.5 \mathrm{~m} / \mathrm{s}$

## Answer: C

## D Watch Video Solution

100. Two different sound sources $S_{1}$ and $S_{2}$
have frequencies in the ratio $1: 2$. Source $S_{1}$ is
approaching towards observer and $S_{2}$
receding from same observer. Speeds of both
$S_{1}$ and $S_{2}$ are V each and speed of sound air is
$330 \mathrm{~m} / \mathrm{s}$. If no beats are heard by the observer
then the value of $V$ is
A. $50 \mathrm{~m} / \mathrm{s}$
B. $75 \mathrm{~m} / \mathrm{s}$
C. $110 \mathrm{~m} / \mathrm{s}$
D. $125 \mathrm{~m} / \mathrm{s}$

Answer: C
( Watch Video Solution
101. A stationary source emitting sound of
frequency 680 Hz is at the origin. An observer is moving with the velocity $\sqrt{2}(\hat{i}+\hat{j}) \mathrm{m} / \mathrm{s}$ at a certain instant. If the speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$ then the apparent frequency received by him at that instant is
A. 680 Hz
B. 676 Hz
C. 684 Hz
D. either 676 Hz or 684 Hz

## Answer: D

## - Watch Video Solution

102. A source $S$ emitting sound of frequency

300 Hz is fixed on block A which is attached to
the free end of a spring $S_{A}$ as shown in figure.

The detector $D$ fixed on block $B$ attached to
free end of spring $S_{B}$ detects this sound. The blocks A and B are simultaneously displaced towards each other through a distance of
$1.0 m$ and then left to vibrate. The maximum
and minimum frequencies of sound detected
by $D$, if the vibrational frequency of each block
is 2 Hz are (Velocity of sound $v=340 \mathrm{~m} / \mathrm{s}$ )

A. $378.6 \mathrm{~Hz}, 223 \mathrm{~Hz}$
B. $323 \mathrm{~Hz}, 278.6 \mathrm{~Hz}$
C. $178 \mathrm{~Hz}, 276 \mathrm{~Hz}$

## D. $420 \mathrm{~Hz}, 220 \mathrm{~Hz}$

## Answer: B

## - Watch Video Solution

103. An observer is standing 500 m away from
a vertical hill. Starting between the observer
and the hill, a police van sounding a siren of frequency 1000 Hz moves towards the hill with a uniform speed. If the frequency of the sound heard directly from the siren is 970 Hz , the
frequency of the sound heard after reflection
from the hill (in Hz) is about,(velocity of sound
$=330 \mathrm{~ms}^{-1}$
A. 1042
B. 1032
C. 1022
D. 1012

Answer: B

D Watch Video Solution
104. A star is moving away from the earth with
a velocity of $10^{5} \mathrm{~m} / \mathrm{sec}$. If wavelength of its
spectral line be $5700 \AA$, the Doppler's shift will be
A. $1.9 \AA$ towards violet end
B. $1.9 \AA$ towards red end
C. $3.8 \AA$ towards violet end
D. $3.8 \AA$ towards red end

Answer: B

## D Watch Video Solution

## Exercise-I (H.W)

1. Which of the following represents a progressive wave
A. $y=A \log (\omega t-k x)$

$$
\begin{aligned}
& \text { B. } y=\frac{8}{3+(x-v t)^{2}} \\
& \text { C. } y=\sqrt{y t-x}
\end{aligned}
$$

D. all the above

## - Watch Video Solution

2. A longitudinal progressive wave is given by
the equation $y=5 \times 10^{-2} \sin \pi(400 t+x)$. The amplitude and wave length of the wave are $(y, x$ are in m)
A. $A=5 \times 10^{-2} m, \lambda=2 m$
B. $A=5 \times 10^{-2} m, \lambda=3 m$
C. $A=5 \times 10^{-2} m, \lambda=4 m$
D. $A=5 \times 10^{-2} m, \lambda=5 m$

## Answer: A

## D View Text Solution

3. The equation of a progressive wave is
$y=0.05 \sin \left(200 t-\frac{x}{2}\right)$ where $\mathrm{x}, \mathrm{y}$ are in metres
and $t$ in seconds then
(a) velocity of wave is $100 \mathrm{~ms}^{-1}$
(b) max velocity of particle is $10 \mathrm{~ms}^{-1}$
(c) wavelength of wave is $4 m$
A. only a and c are true
B. only b and c are true
C. only a and b are true
D. $a, b, c$ are true

Answer: B

D View Text Solution
4. The equation of a transverse wave is
$y=a \sin 2 \pi[t-(x / 5)]$, then the ratio of
maximum particle velocity and wave velocity is
A. $\frac{2 \pi a}{\sqrt{5}}$
B. $\frac{2 \pi a}{5}$
C. $\frac{a}{5}$
D. $2 \pi a \sqrt{5}$

## Answer: B

## - Watch Video Solution

5. The frequency of a tuning fork is 256 Hz . The
velocity of sound in air is $344 \mathrm{~ms}^{-1}$. The distance travelled (in metres) by the sound
during the time in which the tuning fork

## completes 32vibrations

A. 21
B. 43
C. 86
D. 129

Answer: B
( Watch Video Solution
6. A progressive wave moves with a velocity of
$36 \mathrm{~m} / \mathrm{s}$ in a medium with a freqency of 200 Hz .

The phase difference between two particles separeted by a distance of 1 cm is
A. $40^{\circ}$
B. 20 rad
C. $\frac{\pi}{9} \mathrm{rad}$
D. $\left(\frac{\pi}{9}\right)^{\circ}$

Answer: C

# 7. The equation of a wave is <br> $y=4 \sin \left\{\frac{\pi}{2}\left(2 t+\frac{x}{8}\right)\right\}$ where $y, x$ are in cm and 

time in seconds. The acceleration of particle
located at $x=8 \mathrm{~cm}$ and $t=1 \mathrm{sec}$ is
A. $4 \pi^{2} \mathrm{~cm} / \mathrm{s}^{2}$
B. $-4 \pi^{2} \mathrm{~cm} / \mathrm{s}^{2}$
C. $16 \pi^{2} \mathrm{~cm} / \mathrm{s}^{2}$
D. $-16 \pi^{2} \mathrm{~cm} / \mathrm{s}^{2}$

Answer: A

## - Watch Video Solution

8. A standing wave set up in a medium is
$y=4 \cos \left(\frac{\pi x}{3}\right) \sin 40 \pi t$ where $\mathrm{x}, \mathrm{y}$ are in cm and t
in sec The velocity of medium perticle at
$x=6 \mathrm{~cm}$ at $t=1 / 8 \mathrm{sec}$ is
A. $40 \pi \mathrm{~cm} / \mathrm{s}$
B. $80 \pi \mathrm{~cm} / \mathrm{s}$
C. $120 \pi \mathrm{~cm} / \mathrm{s}$
D. $-160 \pi \mathrm{~cm} / \mathrm{s}$

## Answer: D

## D View Text Solution

9. A travelling wave pulse is given by
$y=\frac{10}{5+(x+2 t)^{2}}$
Here, $x$ and $y$ are in meter and $t$ in second. In
which direction and with what velocity is the
pulse propagation. What is the ampitude of pulse?
A. 2 units, -2 units
B. 2 units, 2 units
C. 10 units, 5 units
D. 10 units, 10 units

Answer: A

D Watch Video Solution
10. A wave of angular frequency $30 \mathrm{rad} / / \mathrm{sec}$ propagates so that a certain phase of oscillationn moves along $x$-axis, $y$-axis, $z$-axis with speeds $1 \mathrm{~m} / \mathrm{s}, 2 \mathrm{~m} / \mathrm{s}$ and $2 \mathrm{~m} / \mathrm{s}$ respectively.

The propagation constant $K$ is
A. $30 \hat{i}+15 \hat{j}+15 \hat{k}$
B. $10 \hat{i}+10 \hat{j}+10 \hat{k}$
C. $30 \hat{i}+30 \hat{j}+30 \hat{k}$
D. $6 \hat{i}+6 \hat{j}+6 \hat{k}$
11. The situation of a wave pulse is given as
$y=\frac{0.8}{(4 x+5 t)+4}$ the amplitude and velocity of pulse are
A. 0.2 units, 1.25 units along - ve $x$-axis
B. 0.2 units, 1.25 units along + ve $x$-axis
C. 0.4 units, 1.25 units along - ve $x$-axis
D. 0.4 units, 1.25 units along + ve $x$-axis

Answer: A

## D View Text Solution

12. A suspension bridge is to be built across
valley where it is known that the wind can gust
at 5 s intervals .It is estimated that the speed
of transverse waves along the span of the
bridge would be $400 \mathrm{~m} / \mathrm{s}$. The danger of resonant motions in the bridge at its
fundamental frequency would be greater if the
span had a length of
A. 2000 m
B. 1000 m
C. 400 m
D. 80 m

Answer: A

## D Watch Video Solution

13. A uniform rope of length 20 m and mass 5 kg
is hanging vertically from a rigid support. A
block of mass 4 kg is attached to the free end.

The wave length of the transverse wave pulse at the lower end of the rope is 0.04 m . The wavelength of the same pulse as it reaches the top is
A. 0.06 m
B. 0.12 m
C. $1.5 m$
D. $2.2 m$

## Answer: A

14. A uniform rope of mass 0.1 kg and length
$2.45 m$ hangs from a ceiling.
(a) Find the speed of transverse wave in the rope at a point 0.5 m distant from the lower end.
(b) Calculate the time taken by a transverse
wave to travel the full length of the rope.

A. $0.7 \mathrm{~m} / \mathrm{s}, 1 \mathrm{~s}$
B. $0.7 \mathrm{~m} / \mathrm{s}, 2 \mathrm{~s}$
C. $0.7 \mathrm{~m} / \mathrm{s}, 4 \mathrm{~s}$

## D. $0.7 \mathrm{~m} / \mathrm{s}, 6 \mathrm{~s}$

## Answer: A

## D Watch Video Solution

15. A rope of length $L$ and mass $m$ hangs freely
from the ceiling. The velocity of transverse wave as a function of position $x$ from the bottom is proportional to
A. $x^{\circ}$
B. $\sqrt{x}$
C. $\frac{1}{\sqrt{x}}$
D. $x$

## Answer: B

## - Watch Video Solution

16. A string of length 10.0 m and mass 1.25 kg
stretched with a tension of 50 N . If a transverse pulse is created at one end of the string, how long does it take to reach the other end ?
A. 0.5 s
B. 1.0 s
C. 1.5 s
D. 2.0 s

Answer: B

- Watch Video Solution

17. The linear density of a vibrating string is
$1.3 \times 10^{-4} \mathrm{~kg} / \mathrm{m} \quad$ A transverse wave is
propagating on the string and is described by
the equation $y=0.021 \sin (x+30 t)$ where x and
y are measured in meter and $\mathrm{t} t$ in second the tension in the string is :-
A. 0.12 N
B. 0.48 N
C. 1.2 N
D. 4.8 N

Answer: A

D Watch Video Solution
18. In the given arrangement, if hanging mass
will be changed by $4 \%$, then percentage
change in the wave speed in string will be:

A. $2 \%$
B. 8 \%
C. 3 \%
D. $4 \%$

Answer: A

## D Watch Video Solution

19. The extension in a string, obeying Hooke's
law is $x$. The speed of sound in the stretched
string is $V$. If the extension in the string is increased to $2 x$ then speed of sound will be
A. 1.5 V
B. 4.14 V
C. 1.414 V

## D. 2 V

## Answer: C

## D Watch Video Solution

20. The speed of transverse waves in a stretched string is $700 \mathrm{~cm} / \mathrm{s}$. If the string is 2 m
long, the frequency with which it resonates in fundamental mode is
A. $(7 / 12) \mathrm{Hz}$
B. $(7 / 4) \mathrm{Hz}$
C. 14 Hz
D. $(2 / 7) \mathrm{Hz}$

Answer: B

## - Watch Video Solution

21. Two waves represented by
$y=a \sin (\omega t-k x)$ and $y=a \sin \left(\omega t-k x+\frac{2 \pi}{3}\right)$
are superposed. What will be the amplitude of the resultant wave?
A. $2 a$
B. $3 a$
C. $4 a$
D. $a$

Answer: D
( Watch Video Solution
22. The minimum phase difference between
the two simple harmonic oscillations

$$
\begin{aligned}
& x_{1}=(1 / 2) \sin \omega t+(\sqrt{3} / 2) \cos \omega t \text { and } \\
& x_{2}=(\sqrt{3} / 2) \sin \omega t+(1 / 2) \cos \omega t \text { is }
\end{aligned}
$$

A. $30^{\circ}$
B. $60^{\circ}$
C. $45^{\circ}$
D. $0^{\circ}$

Answer: A
23. Two waves of amplitudes $A_{0} \& x A_{0}$ pass through a region. If $x>1$, the difference in the maximum and minimum resultant amplitude possible it
A. $(x+1) A_{0}$
B. $(x-1) A_{0}$
C. $2 x A_{0}$
D. $2 A_{0}$

## Answer: D

## D Watch Video Solution

24. A pulse in a rope approaches a solid wall and it gets reflected from it

The wave pulse after reflection is best represented by
A.

C.


Answer: C

## - Watch Video Solution

25. A wave pulse on a string has the dimension at time $t=0$ as shown below is reflected from
a fixed end $O$.


Its dimensions at $t=3 s$ is
A.

26. The length of a sonometer wire is 90 cm and the stationary wave setup in the wire is represented by an equation
$y=6 \sin \left(\frac{\pi x}{30}\right) \cos (250 t)$ where $x, y$ are in cm and $t$ is in second. The distances of successive antinodes from one end of the wire are
A. $22.5 \mathrm{~cm}, 67.5 \mathrm{~cm}$
B. $15 \mathrm{~cm}, 30 \mathrm{~cm}, 60 \mathrm{~cm}$
C. $15 \mathrm{~cm}, 45 \mathrm{~cm}, 75 \mathrm{~cm}$
D. $30 \mathrm{~cm}, 45 \mathrm{~cm}, 60 \mathrm{~cm}$

## Answer: C

## - Watch Video Solution

27. A sonometer consists of two wire of length
, same material whose radii are in the ratio
$2: 3$. The ratio of tension in two wire if their fundamental freqencies are equal is
A. $1: 4$
B. $2: 3$
C. 9:4

## D. $4: 9$

## Answer: D

## - Watch Video Solution

28. The bridge of a sonometer is slightly
displaced so that the length of wire is decreased by $0.5 \%$ and tension in the wire is increased by $1 \%$. The fundamental frequency of wire
A. increases by $1 \%$
B. decreases by $1 \%$
C. increases by 1.5 \%
D. decreases by 1.5 \%

## Answer: A

## D View Text Solution

29. A segment of wire vibrates with a
fundamental frequency of 450 Hz under a tension of $9 \mathrm{Kg}-\mathrm{wt}$.Then, tension at which the
fundamental frequency of the same wire becomes 900 Hz is
A. 36 kgwt
B. 27 kgwt
C. 18 kgwt
D. 72 kgwt

Answer: A
( Watch Video Solution
30. In Melde's experiment, the string vibrates
in 4 loops when a 50 gram weight is placed in
the pan of weight 15 gram . To make the string
to vibrates in 6 loops the weight that has to be removed from the pan is
A. 72 gm
B. 36 gm
C. 21 gm
D. 29 gm

## - Watch Video Solution

31. Two vibrating strings of the same material but lengths $L$ and $2 L$ have radii $2 r$ and $r$ respectively. They are stretched under the same tension. Both the string vibrate in their fundamental nodes, the one of length $L$ with freuqency $v_{1}$ and the other with frequency $v_{2}$. the ratio $v_{1} / v_{2}$ is given by
A. 2
B. 4
C. 8
D. 1

## Answer: D

## D Watch Video Solution

32. v20
A. $140 \mathrm{~m} / \mathrm{s}$
B. $360 \mathrm{~m} / \mathrm{s}$
C. $340 \mathrm{~m} / \mathrm{s}$

## D. $280 \mathrm{~m} / \mathrm{s}$

## Answer: D

## D Watch Video Solution

33. Two unifrom strectched strings $A$ and $B$, made of steel, are vibrating under the same tension. If the first overtone of $A$ is equal to the second overtone of $B$ and if the radius of $A$
is twice that of $B$, the ratio of the lengths of the strings is
A. $2: 3$
B. 1:2
C. 1:3
D. $1: 4$

## Answer: C

## D Watch Video Solution

34. A string of length I along $x$-axis is fixed at both ends and is vibrating in second harmonic. If at $t=0, y=2.5 \mathrm{~mm}$ for incident
wave, the equation of standing wave is ( $T$ is tension and $\mu$ is linear density)
A. $(2.5 \mathrm{~mm}) \sin \left(\frac{2 \pi}{l} x\right) \cos \left(2 \pi \sqrt{\left(\frac{T}{\mu l^{2}}\right) t}\right.$
B. $(5 \mathrm{~mm}) \sin \left(\frac{\pi}{l} x\right) \cos 2 \pi t$
C. $(5 m m) \sin \left(\frac{2 \pi}{l} x\right) \cos \left(2 \pi \sqrt{ }\left(\frac{T}{\mu l^{2}}\right) t\right)$
D. $(5 m m) \cos \left(\frac{2 \pi}{l} x\right) \cos \left(2 \pi \sqrt{\left.\left(\frac{T}{\mu l^{2}}\right) t\right)}\right.$

Answer: C
35. A steel wire of length 1 m , mass 0.1 kg and uniform cross-sectional area $10^{-6} \mathrm{~m}^{2}$ is rigidly
fixed at both ends. The temperature of the wire is lowered by $20^{\circ} \mathrm{C}$. If transverse waves are set up by plucking the string in the middle.Calculate the frequency of the
fundamental mode of vibration.

Given for steel $Y=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$

$$
\alpha=1.21 \times 10^{-5} \text { per }^{\circ} \mathrm{C}
$$

A. 21 Hz
B. 42 Hz
C. 11 Hz
D. 22 Hz

## Answer: C

## D Watch Video Solution

36. Two stereo speakers are separated by a distance of 2.40 m . A person stands at a distance of 3.20 m directly in front of one of the speakers as shown in figure. Find the
frequencies in the audible range $(20-2000 \mathrm{~Hz})$
for which the listener will hear a minimum
sound intensity. Speed of sound in air

$$
=320 \mathrm{~ms}^{-1}
$$


A. $160(2 n+1)$
B. $320(2 n+1)$
C. $200(2 n+1)$

## D. $100(2 n+1)$

## Answer: C

## D Watch Video Solution

37. A sound wave of wavelength 32 cm enters
the tube at $S$ as shown in the figure. Then the smallest radius $r$ so that a minimum of sound is heard at detector $D$ is

A. 7 cm
B. 14 cm
C. 21 cm
D. 28 cm

## Answer: D

## D Watch Video Solution

38. A sonometer wire with a suspended mass
of $M=1 \mathrm{~kg}$ is in resononce with a given tuning
fork. The apparatus is taken to the moon
where the acceleration due to gravity is $1 / 6^{\text {th }}$
that on earth. To obtain resonance on the moon, the value of $M$ should be
A. 1 kg
B. $\sqrt{6} \mathrm{~kg}$
C. 6 kg
D. 36 kg

Answer: C

D Watch Video Solution
39. A sonometer wire of length $L$ is plucked at a distance $L / 8$ from one end then it vibrates
with a minimum frequency $n$. If the same wire plucked at a distance $L / 6$ from another end the minimum frequency with which it vibrates is

$$
\begin{aligned}
& \text { A. } \frac{\sqrt{3}}{2} n \\
& \text { B. } \frac{3}{2} n \\
& \text { C. } \frac{3 n}{4} \\
& \text { D. } \frac{4 n}{3}
\end{aligned}
$$

## Answer: C

## D Watch Video Solution

40. A metal wire of linear mass density of
$9.8 \mathrm{~g} / \mathrm{m}$ is stretched with a tension of $10 \mathrm{~kg}-w t$
between two rigid support 1 meter apart. The wire passes at its middle point between the poles of a permanent magnet, and it vibrates in resonance when carrying an alternating current of frequency $n$. the frequency $n$ of the alternating source is
A. 50 Hz
B. 100 Hz
C. 200 Hz
D. 25 Hz

Answer: A

## D Watch Video Solution

41. A stretched wire of length 114 cm is divided into three segments whose frequencies are in
the ratio $1: 3: 4$, the lengths of the segments must be in the ratio :
A. 18: $24: 72$
B. $24: 72: 18$
C. 24:18:72
D. $72: 24: 18$

Answer: D
( Watch Video Solution
42. If $n_{1}, n_{2}$ and $n_{3}$ are the fundamental frequencies of three segments into which a string is divided, then the original fundamental frequency $n$ of the string is given by

$$
\begin{aligned}
& \text { A. } \frac{1}{n}=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}} \\
& \text { B. } \frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n_{1}}}+\frac{1}{\sqrt{n_{2}}}+\frac{1}{\sqrt{n_{3}}} \\
& \text { C. } \sqrt{n}=\sqrt{n_{1}}+\sqrt{n_{2}}+\sqrt{n_{3}} \\
& \text { D. } n=n_{1}+n_{2}+n_{3}
\end{aligned}
$$

43. If at STP, velocity of sound in a gas $(y=1.5)$
is $600 \mathrm{~m} / \mathrm{s}$, the rms velocity of the gas molecules at STP will be
A. $400 \mathrm{~m} / \mathrm{s}$
B. $600 \mathrm{~m} / \mathrm{s}$
C. $600 \sqrt{2} \mathrm{~m} / \mathrm{s}$
D. $300 \sqrt{2} \mathrm{~m} / \mathrm{s}$
44. If the speed of sound is changed by 1 per cent, how much must the temperature of air neae $0^{\circ} \mathrm{C}$ be changed
A. $5^{\circ} \mathrm{C}$
B. $6{ }^{\circ} \mathrm{C}$
C. $5.5^{\circ} \mathrm{C}$
D. $6.5^{\circ} \mathrm{C}$
45. Calculate the ration of speed of sound in neon to that in water vapours at any temperature. Molecular weight on neon $=2.02 \times 10^{-2} \mathrm{~kg} /$ mole and for water vapours, molecular weight is $1.8 \times 10^{-2} \mathrm{~kg} / \mathrm{mole}$.
A. $9 / 8$
B. $3 / 2 \sqrt{2}$
C. $3 / 2$
D. $3 / 4$

## Answer: B

## D Watch Video Solution

46. The speed of sound in oxygen $\left(\mathrm{O}_{2}\right)$ at a certain temperature is $460 \mathrm{~ms}^{-1}$. The speed of sound in helium (He) at the same temperature will be (assume both gases to be ideal)
A. $460 \mathrm{~ms}^{-1}$
B. $500 \mathrm{~ms}^{-1}$
C. $650 \mathrm{~ms}^{-1}$

D. $1420 \mathrm{~ms}^{-1}$

## Answer: D

## D Watch Video Solution

47. If the young's modulus of the material of the rod is $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and its density is $8000 \mathrm{~kg} / \mathrm{m}^{3}$ then the time taken by a sound wave to traverse 1 m of the rod will be
A. $1.11 \times 10^{-4} S$
B. $3 \times 10^{-4} s$
C. $2 \times 10^{-4}$ S
D. $1 \times 10^{-4} S$

Answer: C

## - Watch Video Solution

48. v34
A. $\sqrt{\frac{P}{Q}}$
B. $\sqrt{P Q}$
C. $\frac{P}{Q}$
D. $P Q$

Answer: A

## D Watch Video Solution

49. Velocity of hydrogen at NTP is V. The velocity of sound in a mixture of hydrogen and oxygen in the ratio of $4: 1$ at NTP is

$$
\begin{aligned}
& \text { A. } \frac{1}{5} V \\
& \text { B. } \frac{1}{4} V \\
& \text { C. } \frac{1}{3} V \\
& \text { D. } \frac{1}{2} V
\end{aligned}
$$

## Answer: D

## D Watch Video Solution

50. Calculate the velocity of sound in a mixture of two gases obtained by mixing $V_{1}$ and $V_{2}$ volumes of them if the velocity of sound in
them be $C_{1}$ and $C_{2}$. The atomicity of the gases
is the same.

$$
\begin{aligned}
& \text { A. } C_{1} C_{2} \sqrt{\frac{V_{1}+V_{2}}{V_{1} c_{2}^{2}+V_{2} c_{1}^{2}}} \\
& \text { B. } C_{1} C_{2} \sqrt{\frac{V_{1}+V_{2}}{V_{1} c_{1}^{2}+V_{2} c_{2}^{2}}} \\
& \text { C. } C_{1} C_{2} \sqrt{\frac{V_{1}+V_{2}}{V_{1}^{2} c_{1}+V_{2} c_{2}^{2}}} \\
& \text { D. } C_{1} C_{2} \sqrt{\frac{V_{1}+V_{2}}{V_{1}^{2} c_{1}+V_{2}^{2} c_{2}}}
\end{aligned}
$$

Answer: A
51. The air column in a pipe which is closed at one end will be in resonance with a vibrating tuning fork at a frequency 260 Hz , if the length of the air column is (speed of sound in air $=330 \mathrm{~ms}^{-1}$ )
A. 31.73 cm
B. 62.5 cm
C. 35.75 cm
D. 12.5 cm

Answer: A

## D View Text Solution

52. A cylindrical tube, open at the both ends,
has a fundamental frequency $f$ in air. The tube
is dipped vertically in water so that half of it is
in water. The fundamental frequency of the
air column is now-
A. $3 n$
B. $2 n / 3$

## C. $n / 3$

D. $n$

Answer: B

## - Watch Video Solution

53. An open pipe and a closed pipe are in resonance with each other with their first overtones. The ratio of their lengths are
A. $4: 3$
B. $3: 4$
C. 1:3
D. $3: 1$

Answer: A

## D Watch Video Solution

54. A pipe of length 85 cm is closed from one
end. Find the number of possible natural oscillations of air column in the pipe whose
frequencies lie below 1250 Hz . The velocity of sound in air is $34 \mathrm{~m} / \mathrm{s}$.
A. 12
B. 8
C. 6
D. 4

Answer: C
( Watch Video Solution
55. A tuning fork of frequency 340 Hz vibrated
above a cylindrical hallow tube closed at one end. The height of the tube is 120 cm . Water is
slowly poured in it. What is the minimum height of water required for resonance?
A. 25 cm
B. 45 cm
C. 75 cm
D. 95 cm

## - Watch Video Solution

56. An organ pipe $P_{1}$, closed at one end and containing a gas of density $\rho_{1}$ is vibrating in its first harmonic. Another organ pipe $P_{2}$, open at both ends and containing a gas of density
$\rho_{2}$, is vibrating in its third harmonic. Both the pipes are in resonance with a given tuning
fork. If the compressibility of gases is equal in both pipes, the ratio of the lengths of $P_{1}$ and $P_{2}$ is (assume the given gases to be monoatomic)

> A. $\frac{1}{3}$
> B. 3
> C. $\frac{1}{6} \sqrt{\frac{\rho_{1}}{\rho_{2}}}$
> D. $\frac{1}{6} \sqrt{\frac{\rho_{2}}{\rho_{1}}}$

## Answer: D

## D Watch Video Solution

57. The vibrations of four air columns are represented in the adjoining figures. The ratio
of frequencies $n_{p}: n_{q}: n_{r}: n_{s}$ is

A. 12:6:3:5
B. 1:2:4:3
C. $4: 2: 3: 1$
D. $6: 2: 3: 4$

Answer: B

- Watch Video Solution

58. An open pipe of length 24 cm is in resonance with a frequency 660 Hz in fundamental mode. The radius of pipe is

$$
\left(V=330 m s^{-1}\right)
$$

A. 3 cm
B. 0.83 cm
C. 3.5 cm
D. 2 cm

Answer: B
59. An open organ pipe has length $l$.The air in
it vibrating in $3^{r d}$ overtone with maximum
amplitude $A$. The amplitude at a distance of 1 $\overline{16}$ from any open end is.
A. $A$
B. Zero
c. $\frac{A}{\sqrt{2}}$
D. $\frac{\sqrt{3} A}{2}$

## - Watch Video Solution

60. The frequency of a stretched uniform wire under tension is in resonance with the fundamental frequency of a closed tube. If the tension in the wire is increased by 8 N , it is in resonance with the first overtone of the closed tube. The initial tension in the wire is
A. 16 N
B. 8 N
C. 4 N

## D. $1 N$

## Answer: D

## - Watch Video Solution

61. An open pipe resonates with frequency

100 Hz and a closed pipe resonates with
frequency 50 Hz . If they are joined to form a longer tube then it will resonate with frequency of (neglect end corrections)
A. 25 Hz
B. 50 Hz
C. 75 Hz
D. 100 Hz

Answer: A

## D View Text Solution

62. In a resonance column, first and second resonance are obtained at depths 22.7 cm and
70.2 cm . The third resonance will be obtained at a depth
A. 117.7 cm
B. 92.9 cm
C. 115.5 cm
D. 113.5 cm

Answer: A

## D Watch Video Solution

63. A 'pop' gun consists of a tube 25 cm long
closed at one end by a cork and at the other end by a tightly fitted piston. The piston is
pushed slowly in. When the pressure rises to one and half times the atmospheric pressure, the cork is violently blown out. Calculate the frequency of the 'pop' caused by its ejection. Speed ofsound in air is $340 \mathrm{~m} / \mathrm{s}$
A. 510 Hz
B. 1020 Hz
C. 205 Hz
D. 740 Hz

Answer: A
64. When tuning forks $A$ and $B$ are sounded together 5 beats per second are heard.

Frequency of A is 250 Hz . On loading A with wax 2 beats per second are produced with $B$.

The frequency of $B$ is
A. 255 Hz
B. 320 Hz
C. 245 Hz
D. 420 Hz

## D Watch Video Solution

65. Two open pipes of length 20 cm and 20.1 cm
produces 10 beats/s. The velocity of sound in
the gas is
A. $804 m s^{-1}$
B. $402 m s^{-1}$
C. $420 \mathrm{~ms}^{-1}$
D. $330 \mathrm{~ms}^{-1}$

Answer: A

## D Watch Video Solution

66. Two tuning forks have frequencies 200 Hz
and $x$. When they are sounded together 4 beats/sec are heard. The value of $x$ is
A. 200 Hz or 198 Hz
B. 196 Hz or 204 Hz
C. 205 Hz or 201 Hz
D. 200 Hz only

Answer: B

## D View Text Solution

67. A tuning fork of frequency 480 Hz produces

10 beats per second when sounded with a vibrating sonometer string. What must have been the frequency of the string if a slight increase in tension produces lesser beats per second than before
A. 460 Hz
B. 480 Hz

## C. 490 Hz

D. 470 Hz

## Answer: D

## D Watch Video Solution

68. Five beats per second are produced on
vibrating two closed organ pipes
simultaneously. If the ratio of their lengths is

21: 20, then their frequencies will be
A. 105 Hz and 100 Hz
B. 105 Hz and 110 Hz
C. 100 Hz and 105 Hz
D. 110 Hz and 105 Hz

## Answer: C

## D Watch Video Solution

69. An accurate and reliable audio oscillator is used to standardize a tuning fork. When the oscillator reading is 514 Hz , two beats are hear
per second. When the oscillator reading is

510 Hz , the beat frequency is 6 Hz . The frequency of the tuning fork is
A. 506
B. 510
C. 516
D. 158

Answer: C

D Watch Video Solution
70. 25 tuning forks are arranged in series in
the order of decreasing frequency. Any two
successive forks produce 3 beats $/ \mathrm{sec}$. If the
frequency of the first turning fork is the octave of the last fork, then the frequency of the 21st fork is
A. 72 Hz
B. 288 Hz
C. 84 Hz
D. 87 Hz

## Answer: C

## D Watch Video Solution

71. A tuning fork produces 4 beats/s with a sonometer wire when its lengths are 50 cm , 51 cm . The frequency of that tuning fork is
A. 400 Hz
B. 404 Hz
C. 408 Hz
D. 412 Hz

Answer: B

## D Watch Video Solution

72. In a closed tube when air column is 20 cm it
is in resonance with tuning fork $A$. When the
length is increased by 2 cm then the air column is in resonance with tuning fork $B$. When $A$ and
$B$ are sounded together they produce 8 beats
per second. The frequencies of the tuning forks $A$ and $B$ are (in Hz )
A. 40,44
B. 88,30
C. 80,88
D. 44,40

## Answer: B

## D Watch Video Solution

73. A closed organ pipe and an open organ pipe of some length produce 2beats when they are set up into vibration simultaneously in
their fundamental mode. The length of the open organ pipe is now halved and of the closed organ pipe is doubled, the number of beats produced will be
A. 8
B. 4
C. 7
D. 2

## Answer: C

74. A closed pipe is suddenly opened and changed to an open pipe of same length. The
fundamental frequency of the resulting open pipe is less than that of $3 r d$ hoarmonic of the earlier closed pipe by 55 Hz . Then , the value of fundamental frequency of the closed pipe is
A. 165 Hz
B. 100 Hz
C. 55 Hz
D. 220 Hz

## Answer: C

## D View Text Solution

75. A fork gives 5 beats with a 40 cm length of sonometer wire. If the length of the wire is
shortened by 1 cm , the number of beats is still
the same. The frequency of the fork is
A. 385 Hz
B. 320 Hz
C. 395 Hz

## D. 400 Hz

## Answer: C

## D Watch Video Solution

76. Two tuning forks $A$ and $B$ are sounded together and $8 b e a t s / s$ are heard. $A$ is in resonance with a column of air 32 cm long in a pipe closed at one end and $B$ is increased by one cm . Calculate the frequency of fork.
A. $264 \mathrm{~Hz}, 256 \mathrm{~Hz}$
B. $272 \mathrm{~Hz}, 264 \mathrm{~Hz}$
C. $231 \mathrm{~Hz}, 224 \mathrm{~Hz}$
D. $220 \mathrm{~Hz}, 512 \mathrm{~Hz}$

## Answer: C

## D Watch Video Solution

77. An organ pipe, open from both end produces 5 beats per second when vibrated with a source of frequency 200 Hz . The second harmonic of the same pipes produces 10 beats
per second with a source of frequency 420 Hz .

The frequency of source is
A. 195 Hz
B. 205 Hz
C. 190 Hz
D. 210 Hz

Answer: B
( Watch Video Solution
78. When a vibrating tuning fork is placed on a sound box of a sonometer, 8 beats per second are heard when the length of the sonometer wire is kept at 101 cm or 100 cm . Then the frequency of the tuning frok is (consider that the tension in the wire is kept constant)
A. 1616 Hz
B. 1608 Hz
C. 1632 Hz
D. 1600 Hz

Answer: B

## - Watch Video Solution

79. The two parts of a sonometer wire divided by a movable knife edge, differ in length by

2 mm and produce 1beat/s, when sounded together. Find their frequencies if the whole
length of wire is 1.00 m .
A. 250.5 and 249.5
B. 230.5 and 229.5
C. 220.5 and 219.5
D. 210.5 and 209.5

Answer: A

## D Watch Video Solution

80. When an air column at $27^{\circ} \mathrm{C}$ and a tuning
fork are sounded together, 5 beats per second
are produced. The frequency of the fork is less
than that of air column. No beat is heard at
$-3^{\circ} \mathrm{C}$. Determine the frequency of the fork.
A. 70 Hz
B. 147 Hz
C. 104 Hz
D. 90 Hz

## Answer: D

## D Watch Video Solution

81. The wavelength of two sound notes in air
are $\frac{40}{195} m$ and $\frac{40}{193} m$. Each note produces 9
beats per second, separately with a third note of fixed frequency. The velocity of sound in air in $\mathrm{m} / / \mathrm{s}$ is
A. 360
B. 320
C. 300
D. 340

Answer: A

D View Text Solution
82. A train in approaching a station with a uniform velocity of 72 kmph and the frequency of the whistle of that train is 480 Hz . The apparent increase in the frequency of that whistle heard by a stationary observer on the platform is (Velocity of sound in air is $340 \mathrm{~m} / \mathrm{s}$ )
A. 60 Hz
B. 45 Hz
C. 30 Hz
D. 15 Hz

## Answer: C

## - Watch Video Solution

83. A train is travelling at 120 kmph and blows a
whistle of frequency 1000 Hz . The frequency of
the note heard by a stationary observer if the train is approaching him and moving away
from him are (Velocity of sound in air

$$
\left.=330=m s^{-1}\right)
$$

A. $1112 \mathrm{~Hz}, 908 \mathrm{~Hz}$
B. $908 \mathrm{~Hz}, 1112 \mathrm{~Hz}$
C. $1080 \mathrm{~Hz}, 820 \mathrm{~Hz}$
D. $820 \mathrm{~Hz}, 1080 \mathrm{~Hz}$

## Answer: A

## D Watch Video Solution

84. A source and an observer move away from each other with a velocity of $10 \mathrm{~m} / \mathrm{s}$ with respect to ground. If the observer finds the
frequency of sound coming from the source as

1950 Hz , then actual frequency of the source
is (velocity of sound in air $=340 \mathrm{~m} / \mathrm{s}$ )
A. 2068 Hz
B. 1832 Hz
C. 1950 Hz
D. 1650 Hz

Answer: A
( Watch Video Solution
85. An observer is moving on a circular path of
radius $r$ with speed $V_{0}$ around source kept at
centre. The apparent frequency observed by observer is ( n is actual frequency)
A. greater than $n$
B. less than $n$
C. $n$
D. no sound is heard

## Answer: C

86. A source of sound moves towards a
listener with a velocity equal to that of sound.

If the source emits $n$ waves per second, then
the listener moving away from the source with
the same velocity receives
A. n waves per sec
B. 2 n waves per sec
C. zero waves per sec
D. $n / 2$

## Answer: C

## D Watch Video Solution

87. A source of sound and an observer are approaching each other with the same speed
which is equal to $\frac{1}{10}$ times the speed of sound.
The apparent change in the frequency of the source is
A. $22.2 \%$ increase
B. 22.2 \% decrease

## C. 18.2 \% decrease

D. 18.2 \% decrease

## Answer: A

## D Watch Video Solution

88. A source of sound produces waves of wave
length 48 cm . This source is moving towards north with speed $1 / 4$ th that of sound the apparent wave length of the waves to an
observer standing south of the moving source will be
A. 60 cm
B. 72 cm
C. 48 cm
D. 96 cm

Answer: A

D Watch Video Solution
89. A whistle producing sound waves of frequencies 9500 Hz and above is approaching a stationary person with speed $v m s^{-1}$. The velocity of sound in air is $300 \mathrm{~ms}^{-1}$. If the person can hear frequencies upto a maximum of $10,000 \mathrm{~Hz}$.The maximum value of $v$ upto which he can hear whistle is
A. $15 \sqrt{2} \mathrm{~ms}^{-1}$
B. $\frac{15}{2} m s^{-1}$
C. $15 m s^{-1}$

## D. $30 \mathrm{~ms}^{-1}$

## Answer: C

## D Watch Video Solution

90. A whistle of frequency 540 Hz rotates in a
horizontal circle of radius 2 m at an angular
speed of $15 \mathrm{rad} / / \mathrm{s}$. The highest frequency heard by a listener at rest with respect to the centre of circle (velocity of sound in air = $300 \mathrm{~ms}^{-1}$ )
A. 590 Hz
B. 594 Hz
C. 598 Hz
D. 602 Hz

## Answer: B

## D Watch Video Solution

91. If a source emitting waves of frequency $f$ moves towards an observer with a velocity $v / 3$
and the observer moves away from the source
with a velocity $v / 4$, the apparent frequency as
heard by the observer will be ( $v=$ velocity of sound)
A. $9 f / 8$
B. $8 f / 9$
C. $3 f / 4$
D. $4 f / 3$

Answer: A

D View Text Solution
92. The velocity of a listener who is moving away from a stationary source of sound such
that the listener notices 5\% apparent decrease in frequency of sound is
(Velocity of sound in air $=340 \mathrm{~m} / \mathrm{s}$ )
A. $12.5 \mathrm{~ms}^{-1}$
B. $17 \mathrm{~ms}^{-1}$
C. $25 \mathrm{~ms}^{-1}$
D. $34 m s^{-1}$
93. Two trains are moving towards each other on parallel tracks at speeds of 144 kmph and

54kmph. The first train sounds a whistle of frequency 600 Hz . Frequency of the whistle as heard by a passenger in the second train is ( $V=340 \mathrm{~m} / \mathrm{s})$
A. 510 Hz
B. 610 Hz
C. 710 Hz

D. 810 Hz

## Answer: C

## D Watch Video Solution

94. A boy sitting on a swing which is moving to
an angle of $30^{\circ}$ from the vertical is blowing a whistle which is of frequency 1000 Hz . The whistle is $2 m$ from the point of support of the
swing. If a girl stands in front of the swing, the maximum and minimum frequencies she will
hear are
(velocity of sound $=330 \mathrm{~m} / \mathrm{s}, g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ )
A. $1000,990 \mathrm{~Hz}$
B. $1007,1000 \mathrm{~Hz}$
C. $1007,993 \mathrm{~Hz}$
D. $1100,900 \mathrm{~Hz}$

Answer: C

D Watch Video Solution
95. A source of sound produces waves of wave
length 48 cm . This source is moving towards north with speed $V / 4$ where V is speed of sound. The apparent wavelength of the waves
to an observer standing south of the moving
source will be
A. 48 cm
B. 60 cm
C. 72 cm
D. 96 cm

Answer: B

## D Watch Video Solution

96. A siren of frequency $n$ approaches $a$ stationary observer and then receedes from
the observer. If the velocity of source $(V) \ll$
the velocity of sound (C), the apparent change
in frequency is
A. $2 n V / C$
B. $2 n C / V$
C. $n / V$

D. $2 V C / n$

## Answer: A

## D View Text Solution

97. Two sources $S_{1}$ and $S_{2}$ of sound having
frequencies $338,342 \mathrm{~Hz}$ are separated by a
large distance. The speed of sound is $340 \mathrm{~m} / \mathrm{s}$.
The velocity of the observer who is moving
from $S_{2}$ to $S_{1}$ so that he does not hear any beats is
A. $1 \mathrm{~m} / \mathrm{s}$
B. $2 \mathrm{~m} / \mathrm{s}$
C. $3 \mathrm{~m} / \mathrm{s}$
D. $4 \mathrm{~m} / \mathrm{s}$

Answer: B
( Watch Video Solution
98. A vehicle moving on a straight road sounds
a whistle of frequency 256 Hz while nearing a
hill with a velocity $10 \mathrm{~ms}^{-1}$. The number of beats per second observed by a person travelling in the vehicle is $\left(V=330 \mathrm{~ms}^{-1}\right)$
A. zero
B. 10
C. 14
D. 16
99. If a vibrating tuning fork of frequency

255 Hz is approaching with a velocity $4 \mathrm{~m} / \mathrm{s}$ perpendicular to a wall. The number of beats produced per sec is (speed of sound in air $=340 \mathrm{~m} / \mathrm{s}$ )
A. 3
B. 4
C. 5
D. 6

## Answer: D

## D Watch Video Solution

100. Two sources $A$ and $B$ are sounding notes
of frequency 680 Hz . A listener moves from A
to $B$ with a constant velocity $u$. If the speed of
sound is $340 \mathrm{~m} / \mathrm{s}$, What must be the value of $u$
so that he hears 10 beats per second?
A. $2.0 \mathrm{~ms}^{-1}$
B. $2.5 \mathrm{~ms}^{-1}$
C. $3.0 \mathrm{~ms}^{-1}$
D. $3.5 \mathrm{~ms}^{-1}$

Answer: B
(D) Watch Video Solution

101.

A source of sound $S$ is travelling at $\frac{100}{3} \frac{\mathrm{~m}}{\mathrm{~s}}$ along a road, towards a point $A$. When the source is 3 m away from A , a person standint at a point $O$ on a road perpendicular to AS
hears a sound of requency $v^{\prime}$. The distance of
$O$ from $A$ at that time is 4 m . If the original
frequency is 640 Hz , then the value of $v^{\prime}$ is
(velocity of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$ )
A. 620 Hz
B. 680 Hz
C. 720 Hz
D. 840 Hz

Answer: B

## Exercise-II (C.W)

1. Figure shows the shape of a string, the pairs of points which are in opposite phase is

A. $A$ and $B$
B. B and $C$
C. $C$ and $E$

## D. $A$ and ${ }^{`} \mathrm{E}$

## Answer: B

## D View Text Solution

2. Transverse waves are produced in a long
string by attaching its free end to a vibrating
tuning fork. Figure shows the shape of a part
of the string. The points in phase are

A. $A$ and $D$
B. $B$ and $E$
C. $C$ and $F$
D. $A$ and ${ }^{`} G$

Answer: D

- View Text Solution

3. $y-x$ graph of a transverse wave at a given instant is shown in figure. Match the following two columns.

A. $a-r, b-p, c-r d-s$

$$
\text { B. } a-p, b-p, c-p, d-r
$$

$$
\text { C. } a-r, b-s, c-q, d-p
$$

$$
\text { D. } a-q, b-p, c-s, d-r
$$

## Answer: D

## D View Text Solution

4. Shows a snapshot of a travelling wave taken
at $t=0.3 \mathrm{~s}$. The wavelength is 7.5 cm and amplitude is 2 cm . if the crest $P$ was at $x=0$ at
$\mathrm{t}=0$, write the equation of travelling wave.

A. $y=2 \sin \left(\frac{4 \pi}{15} x-\frac{16 \pi}{15} t\right)$
B. $y=2 \cos \left(\frac{16 \pi}{15} t-\frac{4 \pi}{15} x\right)$
C. $y=2 \sin \left(\frac{16 \pi}{15} t-\frac{4 \pi}{15} x\right)$
D. $y=-2 \cos \left(\frac{16 \pi}{15} t-\frac{4 \pi}{15} x\right)$

Answer: B

## - Watch Video Solution

5. A uniform rope having some mass hinges
vertically from a rigid support. A transverse wave pulse is produced at the lower end. The speed (v) of the wave pulse varies with height (h) from the lower end as :-



Answer: A

- Watch Video Solution

6. Two pulse in a stretched string whose centers are initially 8 cm apart are moving towards each other as shown in the figure. The speed of each pulse is $2 \mathrm{~cm} / \mathrm{s}$. After 2 seconds, the total energy of the pulse will be

A. Zero
B. Purely kinetic

## C. Purely potential

D. Partly kinetic and partly potential

## Answer: B

## D Watch Video Solution

## 7. The graph between distance between source

 and observer and apparent frequency in the case of Doppler's effect will be


Answer: D

- Watch Video Solution

8. The distribution of the sound intensity of
the whistle as observed by the passengers in
train $A$ is best represented by
A.

B.

C.

D.


## Answer: A

## List - I <br> List - II

In a stretched string $\%$ Change in frequency
a) Length increases by $2 \%$ e) Decreases by $\mathbf{4} \%$
b) Radius increases by 4\% f) Increases by $1 \%$
c) Tension increases by $2 \%$ g)Decreases by $2 \%$
d) Density decreases by $\mathbf{2 \%}$ h)Increases by $\mathbf{1 \%}$

## 9.

i) Changes by $8 \%$

The correct match is
A. $a-g, b-e, c-h, d-f$
B. $a-h, b-i, c-g, d-h$
C. $a-e, b-g, c-f, d-h$
D. $a-f, b-i, c-e, d-g$

Answer: A

## D Watch Video Solution

10. Transverse waves are produced in a stretched wire. Both ends of the string are
fixed. Let us compare between second overtone mode (in numerator) and fifth
harmonic, mode (in denominator).

# match the following column-I with column-II 

Column-1
(A) Frequency ratio
(B) Number of nodes ratio
(C) Number of antinodes ratio
(D) Wavelensth ratio

## Column-II

(p) $\frac{2}{3}$
(q) $\frac{4}{5}$
(r) $\frac{3}{5}$
(s) $\frac{5}{3}$
A. $a-r, b-p, c-r, d-s$
B. $a-q, b-p, c-s, d-s$
C. $a-r, b-s, c-q, d-p$
D. $a-s, b-p, c-r, d-p$

Answer: A
11. A wave travels from a denser medium to
rarer medium, then match the following two

## columns

Columns<br>(a) speed of wave<br>(b) wavelength of wave<br>(d )frequency of wave decrease

Column - II
(p) will increase
(q) will decrease
(r) will remain constant
(s) may increase or

$$
\text { A. } a-r, b-p, c-r, d-s
$$

B. $a-p, b-p, c-q, d-r$
C. $a-r, b-s, c-q, d-p$

$$
\text { D. } a-s, b-p, c-r, d-p
$$

Answer: B

## D Watch Video Solution

12. A tuning fork ' P ' of frequency 280 Hz produces 6 beats/s with unknown tuning fork
'Q'
Column-I
A) $P$ is waxed and number of beats decreases
B) $Q$ is filed and numbered beats Hz
decreases
C) $P$ is filed and number of beats remains same
$D)$ ' $Q$ ' is filed and
R) Frequency of ${ }^{\prime}$ ' is $\mathbf{2 7 2 ~ H z}$ number of beats increase 288 Hz
$A \quad B \quad C \quad D$
A.
$Q \quad R \quad S \quad R$
$A \quad B \quad C \quad D$
B.
$Q \quad R \quad Q \quad P$
$\begin{array}{llll}A & B & C & D\end{array}$
C. P. Q Q.R RMS $P$
$A \quad B \quad C \quad D$
D.
R. S QR $\quad S \quad R$

Answer: B

## - Watch Video Solution

13. A string of length 1 is stretched along the $x$
-axis and is rigidly clamped at $x=0$ and $x=1$.
Transverse vibrations are produced in the string. For $n^{\text {th }}$ harmonic which of the following relations may represents the shape of the string at any time
(a) $y=2 A \cos \omega t \cos \left(\frac{n \pi x}{l}\right)$
(b) $y=2 A \sin \omega t \cos \left(\frac{n \pi x}{l}\right)$
(c) $y=2 A \cos \omega t \sin \left(\frac{n \pi x}{l}\right)$
(d) $y=2 A \sin \omega t \sin \left(\frac{n \pi x}{l}\right)$
A. c only
B. $c$ and donly
C. a only
D. $a, b, c$ and $d$

Answer: B
14. The tension in a stretched string fixed at both ends is changed by $2 \%$, the
fundamental frequency is found to get changed by 15 Hz .
(a) wavelength of the string of fundamental
frequency does not change
(b) velocity of propagation of wave changes by
$2 \%$
(c) velocity of propagation of wave changes by
$1 \%$
(d) original frequency is 1500 Hz
A. c only correct

## B. $c$ and $d$ are correct

## C. $a, c$ and $d$ are correct

## D. $b$ and $d$ are correct

## Answer: C

## D Watch Video Solution

15. The equation of the standing wave in a string clamped at both ends, vibrating in its third harmonic is given by

$$
y=0.4 \sin (0.314 x) \cos (600 \pi t)
$$

where, $x$ and $y$ are in cm and $t$ in sec.
(a) the frequency of vibration is 300 Hz
(b) the length of the string is 30 cm
(c) the nodes are located at $x=0,10 \mathrm{~cm}, 30 \mathrm{~cm}$
A. Only a is true
B. $a, b$ are true
C. $b, c$ are true
D. $a, b, c$ are true

## Answer: D

## Exercise-II (H.W)

1. A transverse wave is travelling along a string
from left to right. The figure below represents
the shape of the string at a given instant. At
this instant the points have an upward velocity are (here X -wave displacement, Y -
particle displacement)

A. $D, E, F$
B. $A, B, H$
C. $B, D, F$
D. $A, E, H$

Answer: A
2. At any instant a wave travelling along the string shown in figure. Here, point A is moving upward. Which of the following statement is true?

A. the wave is travelling to the light
B. the displacement amplitude of wave is equal to displacement of $B$ at this instant
C. at this instant, C also directed upward
D. 1 and 3

## Answer: B

- Watch Video Solution

3. The figure shows an instantaneous profile of a rope carrying a progressive wave moving from left to right, then

(a) the phase at A is greater than the phase at B
(b) the phase at B is greater than the phase at A
(c) A is moving upwards
(d) B is moving upwards
A. $a$ and $c$
B. $a$ and $d$
C. $b$ and $c$
D. $b$ and $d$

Answer: D

D View Text Solution
4.


The diagram below shows an instantaneous position of a string as a transverse progressive wave travels along it from left to right Which one of the following correctly shows the direction of the velocity of the points 1,2 and 3 on the string?
A.
B. $\rightarrow$
C.
D.

## Answer: D

## D Watch Video Solution

5. A sinusoidal wave travelling in the positive $x$ direction has an amplitude of 15 cm , wavelength 40 cm and frequency 8 Hz . The vertical displacement of the medium at $t=0$
and $x=0$ is also 15 cm , as shown

(b) Determine the phase constant $\phi$, and write a general expression for the wave function.
A. $\frac{\pi}{2}, \cos \left(16 \pi t-\frac{\pi}{20} x\right)$
B. $0, \sin \left(16 \pi t-\frac{\pi}{20} x\right)$
C. $\frac{\pi}{2}, \sin \left(16 \pi t-\frac{\pi}{20} x\right)$
D. $\frac{\pi}{4}, \sin \left(16 \pi t-\frac{\pi}{20} x+\frac{\pi}{4}\right)$

Answer: A

## D Watch Video Solution

6. The rope shown at an instant is carrying a wave travelling towards right, created by a source vibrating at a frequency n . Consider the following statements

I. The speed of the wave is $4 n \times a b$
II. The medium at a will be in the same phase
as d after $\frac{4}{3 n} s$
III. The phase difference between $b$ and $e$ is $\frac{3 \pi}{2}$

Which of these statements are correct
A. I, II and III
B. II only
C. I and III
D. III only

Answer: C
7. Of the following the graph that better represents the variation of frequency ' $v$ ' of a vibrating string with the square root of tension $\sqrt{T}$ is
A. $\xrightarrow{\text { 号 }}$

c.



## Answer: B

## D Watch Video Solution

8. A man is standing on a railway platform
listening to the whistle of an engine, that passes the man at constant speed without stopping. If the engine passes the man at time $t_{0}$, how does the frequency f of the whistle as
head by the man changes with time ?
(a)

(b)

(c)

(d)

A.

B.



Answer: A

- Watch Video Solution


A wave motion has the function
$y=a_{0} \sin (\omega t-k x)$. The graph in figure shows how the displacement $y$ at a fixed point varies
with time $t$. Which one of the labelled points

Shows a displacement equal to that at the position $x=\frac{\pi}{2 k}$ at time $t=0$ ?
A. $P$
B. $Q$

## C. $R$

D. $S$

Answer: B
(D) Watch Video Solution


The displacement time graph for two sound waves $A$ and $B$ are shown in the figure. Then the ratio of their intensities $I_{A} / I_{B}$ is equal to
A. 1:4
B. 1:16
C. 1:2
D. $1: 1$

## Answer: D

## D Watch Video Solution

11. A string of length 1 m stretched at both ends vibrating with frequency 300 Hz which is 3
times the fundamental frequency

Column-I
A) Number of loops
B) Number of antinodes
C) Distance between two successive antinodes
D) 2nd harmonic

|  | A | B |
| :--- | :--- | :--- |
| $1)$ | Q | $\mathrm{R}, \mathrm{S}$ |
| $2)$ | T | $\mathrm{Q}, \mathrm{R}$ |
| $3)$ | $\mathrm{P}, \mathrm{Q}$ | $\mathrm{R}, \mathrm{S}$ |
| $4)$ | S | S |

Column-II
P) $\frac{1}{3} m$
Q) 200 Hz
R)1st overtone
S) 3

C D
$\begin{array}{ll}\text { P,R } & \text { Q,S } \\ \mathrm{P} & \mathrm{S}, \mathrm{T}\end{array}$
$\begin{array}{ll}P, R, T & Q \\ P & Q, R\end{array}$

D Watch Video Solution

Column-I
A) Beats

Column-II
P) Ratio of harmonics is 1:2:3
B) open organ pipe Q)Transverse stationary waves
C) string stretched at $\mathbf{R}$ ) Superposition of both ends
sound waves of nearly equal frequencies
D) closed organ pipe $S$ ) longitudinal stationary waves
T) Interference in time
1)
2)
3)
4)
)

B
C D
A
R,T
Q,R
S,T
Q
P,S
P,Q S
S,T
Q,R,T
P, Q
R,S,T Q
P $\quad$ Q
R,S T

## 13. <br> Match the following

Column-I Column-II
A) Laplace equation $P$ ) humidity
B) Newton equation $\mathbf{Q )} \sqrt{\frac{\gamma p}{d}}$
C) Speed of
longitudinal wave depends on
1)
2)
3)
4)
R) Temperature
S) isothermal proces
T) $\sqrt{\frac{P}{d}}$

B
Q
S,T
R,S
P,Q,R
R,S

## - Watch Video Solution

List - I List - II
a) Resonance
b) Reflection
c) Source is in motion
e)Law of conservation of energy

| List - I <br> a) Resonance | List - II <br> e) Law of conservation <br> of energy |
| :--- | :--- |
| b) Reflection | f) Doppler effect is due <br> to change in wave length |
| c) Source is in |  |
| motion | g) Doppler effect is due <br> to number of waves <br> reaching the observer |
| d) Observer is | h) Special case of <br> in motion <br> forced vibrations <br> i) Reverberation |
| 14. |  |

A. $a-e, b-h, c-g, d-i$
B. $a-f, b-g, c-e, d-h$
C. $a-g, b-h, c-e, d-f$
D. $a-h, b-i, c-f, d-g$

Answer: D
15. In case of superposition of waves (at $x=0$ ),
$y_{1}=4 \sin (1026 \pi t)$ and $y_{2}=2 \sin (1014 \pi t)$
(a) the frequency of resulting wave is 510 Hz
(b) the amplitude of resulting wave varies at
frequency 3 Hz
(c) the frequency of beats is 6 per second
(d) the ratio of maximum to minimum
intensity is 9

The correct statements are
A. $a, d$
B. $b, d$
C. $a, c, d$
D. all

## Answer: A

## D View Text Solution

16. In case of stationary sound waves in air the
correct statements(s) is a/are
(A) each air particle vibrates with the same amplitude
(B) amplitude is maximum for some particles
and minimum for some other particles
(C) the particles do not execute periodic motion
$(D)$ phase of particles in a loop is same
A. $A, C$
B. $B, D$
C. $C, D$
D. $B, C$

Answer: B
17. The equational of a stationary wave in a
string is $y=(4 m m) \sin \left[\left(314 m^{-1} x\right] \cos \omega t\right.$. Select
the correct alternative (s).
A. $a, c$ are correct
B. b, c are correct
C. $a, d$ are correct
D. all are correct

## - Watch Video Solution

## Exercise-III

1. Which of the following statements is true?
A. Both light and sound waves in air are
transverse
B. The sound waves in air are logitudinal
while the light waves are transverse
C. Both light and sound waves in air aire

## logitudinal

# D. Both light and sound waves can travel in 

## vacuum

## Answer: B

## - View Text Solution

2. A transverse wave propagating along $x$-axis

# $y(x, t)=8.0 \sin \left(0.5 \pi x-4 \pi t-\frac{\pi}{4}\right)$ Where $x$ is in 

metres and $t$ is in seconds. The speed of the wave is:
A. $4 \pi m / s$
B. $0.5 \mathrm{\pi m} / \mathrm{s}$
C. $\frac{\pi}{4} \mathrm{~m} / \mathrm{s}$
D. $8 \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution
3. Two sound waves with wavelengths 5.0 m
and $5.5 m$ respectively, each propagates in a gas with velocity $30 \mathrm{~m} / \mathrm{s}$ We expect the following number of beats per second:
A. 12
B. 0
C. 1
D. 6

Answer: D
4. Velocity of star is $10^{6} \mathrm{~m} / \mathrm{s}$ and frequency of emitted light is $4.5 \times 10^{14} \mathrm{~Hz}$. If star is moving away, then apparent frequency will be
A. 4.5 Hz
B. $4.5 \times 10^{16} \mathrm{~Hz}$
C. $4.485 \mathrm{X} 10^{14} \mathrm{~Hz}$
D. $4.5 \mathrm{X} 10^{8} \mathrm{~Hz}$

Answer: C
5. A boat at anchore is rocked by waves whose crests are 100 m apart and velocity is $25 \mathrm{~m} / \mathrm{s}$ The boat bounces up once in every
A. 2500 s
B. 75 s
C. 4 s
D. 0.25 s

## - Watch Video Solution

6. Which of the following is true regarding beats?
A. Frequency different, amplitude same
B. Frequency same, amplitude same
C. Frequency same, amplitude different
D. None of the above

Answer: A
7. Three progressive waves $A, B, C$ are shown in the figure


With respect to A , the progressive wave
A. $B$ lags by $\frac{\pi}{2}$ and $C$ leads by $\frac{\pi}{2}$
B. $B$ lags by $\pi$ and $C$ leads by $\pi$
C. $B$ leads by $\frac{\pi}{2}$ and $C$ lags by $\frac{\pi}{2}$
D. $B$ leads by $\pi$ and $C$ lags by $\pi$

## Answer: C

## D Watch Video Solution

8. The intensity of sound increases at night due to
A. Increase in density of air
B. decrease in density of air

## C. low temperature

D. None of the above

## Answer: A

## D Watch Video Solution

9. A boat at anchor is rocked by waves whose crests are 100 m apart and whose speed is $25 \mathrm{~m} / \mathrm{s}$. These waves reach the boat once every
A. 5.0 sec
B. 4.0 sec
C. 2.0 sec
D. 0.25 sec

Answer: A

## D Watch Video Solution

10. The equation of a wave travelling on a
string is $y=4 \sin \left[\frac{\pi}{2}\left(8 t-\frac{x}{8}\right)\right]$, where $x, y$ are in
cm and t in second. They velocity of the wave
is
A. $64 \mathrm{cms}^{-1}$ in $-x$ direction
B. $32 \mathrm{cms}^{-1}$ in $-x$ direction
C. $32 \mathrm{cms}^{-1}$ in $+x$ direction
D. $64 \mathrm{cms}^{-1}$ in $+x$ direction

Answer: D
( Watch Video Solution
11. An observer moves towards a stationary
source of sound with a speed $\left(\frac{1}{5}\right)$ th of the speed of sound. The wavelength and frequency of the source emitted are $\lambda$ and f , respectively. The apparent frequency and wavelength recorded by the observer are, respectively.
A. $f, 1.2 \lambda$
B. $0.8 f, 0.8 \lambda$
C. $1.2 f, 1.2 \lambda$

## D. $1.2 f, \lambda$

## Answer: D

## D Watch Video Solution

12. Two waves having the intensities in the ratio of 9:1 produce interference. The ratio of maximum to minimum intensity is equal to
A. $10: 8$
B. $9: 1$
C. $4: 1$
D. $2: 1$

## Answer: C

## D Watch Video Solution

13. The wave decribed by $y=0.25 \sin (10 \pi x-2 \pi t)$
. Where $x$ and $y$ are in metre and $t$ is second, is
a wave travelling along the Therefore, the
wave is travelling along $+v e \mathrm{x}$ direction with frequency 1 Hzand wavelength 0.2 m
A. - ve $x$ direction with frequency 1 Hz
B. + ve $x$ direction with frequency $\pi H z$ and

## wavelength $\lambda=0.2 m$

C. + ve $x$ direction with frequency 1 Hz and
wavelength $\lambda=0.2 m$
D. - ve $x$ direction with amplitude $0.2 m$
and wavelength $\lambda=0.2 m$

## Answer: C

## D Watch Video Solution

14. The equation of a simple harmonic wave is given by $Y=5 \sin \frac{\pi}{2}(100 t-x)$, where x and y are in metre and time is in second. The time period of the wave ( m seconds) will be
A. 0.04
B. 0.01
C. 1
D. 5

Answer: A
15. A tuning fork A produces 4 beats $s^{-1}$ with another tuning fork B of frequency 320 Hz . ON
filing one of the prongs of $\mathrm{A}, 4$ beats $s^{-1}$ are again heard when sounded with the same fork
B. Then the frequency of the fork a before
filling is
A. 328 Hz
B. 316 Hz
C. 324 Hz
D. 320 Hz

## Answer: B

## D Watch Video Solution

16. Two sound waves of slightly different
frequencies propagating in the same direction produce beats due to
A. Interference
B. diffraction

## C. reflection

D. refraction

## Answer: A

## D Watch Video Solution

17. Change in frequency due to Doppler's effect
is produced when
A. the source and the observer are moving
in the same direction
B. the source and the observer are both at rest
C. there is a relative motion between the source the observer
D. there is a resultant motion between the
source \& observer

Answer: C

- Watch Video Solution

18. Two points are located at a distance of 10 m
and 15 m from the source of oscillation. The
period of oscillation is 0.05 s and the velocity
of the wave is $300 \mathrm{~m} / \mathrm{s}$. What is the phase difference between the oscillation of two points?

> A. $\frac{\pi}{6}$
> B. $\frac{\pi}{3}$
> C. $\frac{2 \pi}{3}$
D. $\pi$

## Answer: C

## D Watch Video Solution

19. The driver of a car travelling with speed
$30 \mathrm{~ms}^{-1}$ towards a hill sounds a horn of
frequency 600 Hz . If the velocity of sound in air
is $330 \mathrm{~ms}^{-1}$, the frequency of reflected sound
as heard by driver is
A. 555.5 Hz
B. 720 Hz

## C. 500 Hz

D. 550 Hz

Answer: B

## D Watch Video Solution

20. Each of the two strings of length 51.6 cm and 49.1 cm are tensioned separately by 20 N
force. Mass per unit length of both the strings is same and equal to $1 \mathrm{~g} / \mathrm{m}$. When both the
strings vibrate simultaneously, the number of beats is
A. 7
B. 8
C. 3
D. 5

Answer: A
( Watch Video Solution
21. If $\lambda_{1}, \lambda_{2}$ and $\lambda_{3}$ are the wavelengths of the wave giving resonance with the fundamental,
first and second overtones respectively of a closed orga pipe Then the ratio of wavelength $\lambda_{1}, \lambda_{2}$ and $\lambda_{3}$ is
A. 1:3:5
B. 1:2:3
C. $5: 3: 1$
D. $1: \frac{1}{3}: \frac{1}{5}$

Answer: D

## - Watch Video Solution

22. The ratio of intensities between two
coherent sound sources is $4: 1$ the difference of loudness in decibels between maximum and minimum intensities, when they interfere in space, is
A. 10log2
B. $20 \log 3$
C. 10log3

## D. 20log2

## Answer: A

## D Watch Video Solution

23. A closed organ pipe of length 1.2 m vibrates in its first overtone mode. The pressure variation is maximum at
A. $0.4 m$ from the open end
B. 0.4 m from the closed end
C. Both (1) and (2)
D. 0.8 m from the open end

## Answer: A

## D Watch Video Solution

24. A wave in a string has an amplitude of 2 cm .

The wave travels in the $+v e$ direction of x axis
with a speed of $128 \mathrm{~ms}^{-1}$ and it is noted that 5
complete waves fit in $4 m$ length of the string.

The equation describing the wave is

$$
\begin{aligned}
& \text { A. } y=(0.02) m \sin (7.85+1005 t) \\
& \text { B. } y=(0.02) m \sin (15.7 x-2010 t) \\
& \text { C. } y=(0.02) m \sin (15.7 x+2010 t) \\
& \text { D. } y=(0.02) m \sin (7.85-1005 t)
\end{aligned}
$$

## Answer: D

## D Watch Video Solution

25. A tuning fork of frequency 512 Hz makes 4 beats $/ / s$ with the vibrating string of a piano.

The beat frequency decreases to 2 beats $/ / s$
when the tension in the piano string is slightly
increased.The frequency of the piano string before increasing the tension was
A. 510 Hz
B. 514 Hz
C. 516 Hz
D. 508 Hz

Answer: C

D Watch Video Solution
26. A transverse wave is represented by $y=A \sin (\omega t-k x)$. For what value of the wavelength is the wave velocity equal to the maximum particle velocity?
A. $\pi A / 2$
B. $\pi A$
C. $2 \pi A$
D. $A$

Answer: C

D Watch Video Solution
27. The equation $y=4+2 \sin (6 t-3 x)$ represents a wave motion. Then, wave speed and amplitude, respectively are
A. wave speed 1 unit, amplitude 6 unit
B. wave speed 2 unit, amplitude 2 unit
C. wave speed 4 unit, amplitude $1 / 2$ unit

## D. wave speed $1 / 2$ unit, amplitude 5 unit

## Answer: B

28. Two waves
$y_{1}=A_{1} \sin \left(\omega t-\beta_{1}\right), y_{2}=A_{2} \sin \left(\omega t-\beta_{2}\right.$
Superimpose to form a resultant wave whose amplitude is

$$
\begin{aligned}
& \text { A. } \sqrt{A_{1}^{2}+A_{2}^{2}+A_{1} A_{2} \cos \left(\beta_{1}-\beta_{2}\right)} \\
& \text { B. } \sqrt{A_{1}^{2}+A_{2}^{2}+A_{1} A_{2} \sin \left(\beta_{1}-\beta_{2}\right)} \\
& \text { C. } A_{1}+A_{2}(4)\left|A_{1}+A_{2}\right| \\
& \text { D. }-
\end{aligned}
$$

Answer: A

## - Watch Video Solution

29. A fork A has frequency $2 \%$ more than the standard fork and $B$ has a frequency $3 \%$ less
than the frequency of same standard frok. The forks $A$ and $B$ when sounded together produced 6 beats/s. The frequency of fork $A$ is
A. 116.4 Hz
B. 120 Hz
C. 122.4 Hz
D. 238.8 Hz

## Answer: C

## D Watch Video Solution

30. Two instruments having stretched strings
are being played in unison. When the tension
in one of the instruments is increases by
$1 \%, 3$ beats are produced in $2 s$. The initial frequency of vibration of each wire is
A. 600 Hz
B. 300 Hz
C. 200 Hz
D. 150 Hz

## Answer: B

## D Watch Video Solution

31. A point source emits sound equally in all directions in a non-absorbing medium. Two point $P$ and $Q$ are at distance of $2 m$ and $3 m$
respectively from the source. The ratio of the intensities of the wave at $P$ and $Q$ is :
A. 9:4
B. $2: 3$
C. $3: 2$
D. $4: 9$

Answer: A
( Watch Video Solution
32. Sounds waves travel at $350 \mathrm{~m} / \mathrm{s}$ through a warm air and at $3500 \mathrm{~m} / \mathrm{s}$ through brass. The wavelength of a 700 Hz . Acoustic wave as it enters brass from warm air
A. Decreases by a factor 20
B. Decreases by a factor 10
C. Increases by a factor 20
D. Increases by a factor 10

## Answer: D

33. A source of sound moves towards an observer with a velocity $108 \mathrm{~km} / \mathrm{h}$ and the observer also moves towards the source with the velocity $5 \mathrm{~km} / \mathrm{h}$, then the velocity of sound is
A. $320 m s^{-1}$
B. $330 \mathrm{~ms}^{-1}$
C. $340 \mathrm{~ms}^{-1}$
D. Data insufficient

## Answer: D

## D View Text Solution

34. A train is moving with a constant speed
along a circular track. The engine of the train
emits a sound of frequency $f$. The frequency
heard by the guard at the rear end of the train.
A. less than $f$

$$
\text { B.equal } \rightarrow f^{\prime}
$$

## C. isgreaterthanf

D. may be greater than, less than or equal
to depending on the factiors like speed
of train, length of train and radius of
circular track

## Answer: D

## D Watch Video Solution

35. The equation of a wave is
$y=5 \sin \left(\frac{t}{0.04}-\frac{x}{4}\right)$ where $x$ is in cm and t is in
seccond. The velocity of the wave will be
A. $1 \mathrm{~ms}^{-1}$
B. $2 m s^{-1}$
C. $1.5 \mathrm{~ms}^{-1}$
D. $1.25 \mathrm{~ms}^{-1}$

Answer: D

D Watch Video Solution
36. Two vibrating strings of the same material but lengths $L$ and $2 L$ have radii $2 r$ and $r$ respectively. They are stretched under the same tension. Both the string vibrate in their
fundamental nodes, the one of length $L$ with freuqency $v_{1}$ and the other with frequency $v_{2}$. the ratio $v_{1} / v_{2}$ is given by
A. 2
B. 4
C. 3
D. 1

## Answer: D

## D Watch Video Solution

37. Two waves are represented by the equations
$y_{1}=a \sin (\omega t+k x+0.57) m$ and
$y_{2}=a \cos (\omega t+k x) m$,
where $x$ is in metres and $t$ is in seconds. The phase difference between them is
A. 1.25 rad
B. 1.57 rad
C. 0.57 rad
D. 1.0 rad

## Answer: D

## D Watch Video Solution

38. A source of sound $S$ is moving with a velocity of $50 \mathrm{~m} / \mathrm{s}$ towards a stationary observer. The observer measures the
frequency of the source as 1000 Hz . What will be the apparent frequency of the source as

1000 Hz . What will be the apparent frequency of the source when it is moving away from the observer after crossing him? The velocity of the sound in the medium is $350 \mathrm{~m} / \mathrm{s}$
A. 750 Hz
B. 857 Hz
C. 1143 Hz
D. 1333 Hz

## - Watch Video Solution


39.

A source of sound $S$ is travelling at $\frac{100}{3} \frac{\mathrm{~m}}{\mathrm{~s}}$ along a road, towards a point $A$. When the
source is 3 m away from A , a person standint
at a point $O$ on a road perpendicular to AS
hears a sound of requency $v^{\prime}$. The distance of
$O$ from $A$ at that time is 4 m . If the original frequency is 640 Hz , then the value of $v^{\prime}$ is
(velocity of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$ )
A. 620 Hz
B. 680 Hz
C. 720 Hz
D. 840 Hz

Answer: B

## D Watch Video Solution

40. The equation of a simple harmonic wave is
given by
$y=3 \sin \frac{\pi}{2}(50 t-x)$
where $x$ and $y$ are in meters and $x$ is in second
.The ratio of maximum particle velocity to the
wave velocity is
A. $2 \pi$
B. $\frac{3}{2} \pi$
C. $3 \pi$
D. $\frac{2}{3} \pi$

Answer: B

## D Watch Video Solution

41. A train moving at a speed of $220 \mathrm{~ms}^{-1}$ towards a stationary object emits a sound of frequency 1000 Hz . Some of the sound reaching the object gets reflected back to the
train as echo. The frequency of the echo as detected by the driver of the train is (speed of sound in air is $330 \mathrm{~ms}^{-1}$ )
A. 3500 Hz
B. 4000 Hz
C. 5000 HZ
D. 3000 Hz

Answer: C

D Watch Video Solution
42. When a string is divided into three segments of
lengths $l_{1}, l_{2}$ and $l_{3}$ the fundamental
frequencies of
these three segments are $v_{1}, v_{2}$ and $v_{3}$ respectively.

The original fundamental frequency (v) of the string is

$$
\begin{aligned}
& \text { A. } v=v_{1}+v_{2}+v_{3} \\
& \text { B. } \frac{1}{v}=\frac{1}{v_{1}}+\frac{1}{v_{2}}+\frac{1}{v_{3}} \\
& \text { C. } \frac{1}{\sqrt{v}}=\frac{1}{\sqrt{v_{1}}}+\frac{1}{\sqrt{v_{2}}}+\frac{1}{\sqrt{v_{3}}}
\end{aligned}
$$

$$
\text { D. } \sqrt{v}=\sqrt{v_{1}}+\sqrt{v_{2}}+\sqrt{v_{3}}
$$

## Answer: B

## D Watch Video Solution

43. Two sources of sound placed closed to
each other, are emitting progressive waves
given by
$y_{1}=4 \sin 600 \pi t$
and $y_{2}=5 \sin 608 \pi t$

An observer located near these two sources of sound will hear
A. 8 beats per second with itensity ratio

25: 16 between waxing and waning
B. 8 beats per second with itensity ratio

81:1 between waxing and waning
C. 4 beats per second with itensity ratio

81: 1 between waxing and waning
D. 4 beats per second with itensity ratio

25: 16 between waxing and waning

## Answer: C

## D Watch Video Solution

44. If we study the vibration of a pipe open at both ends, then the following statements is not true
A. Odd harmonics of the fundamental
frequency will be generated
B. All harmonics of the fundamental
frequency will be generated.
C. Pressure change will be maximum at both end.

## D. Open end will be antimode

## Answer: C

## D Watch Video Solution

45. A source of unknown frequency gives 4 beats//s, when sounded with a source of known frequency 250 Hz . The second harmonic of the source of unknown frequency gives five
beats per second, when sounded with a source

## of frequency 513 The unknown frequency is

A. 246 Hz
B. 240 Hz
C. 260 Hz
D. 254 Hz

Answer: D
( Watch Video Solution
46. A wave travelling in the $+v e$-direction having displacement along y-direction as 1 m , wavelength $2 \pi \mathrm{~m}$ and frequency of $1 / \pi \mathrm{Hz}$ is represented by
A. $y=\sin (2 \pi x-2 \pi t)$
B. $y=\sin (10 \pi x-20 \pi t)$
C. $y=\sin (2 \pi x+2 \pi t)$
D. $y=\sin (x-2 t)$

## Answer: D

47. If $n_{1}, n_{2}$ and $n_{3}$ are the fundamental frequencies of three segments into which a string is divided, then the original fundamental frequency $n$ of the string is given by

$$
\begin{aligned}
& \text { A. } n=n_{1}+n_{2}+n_{3} \\
& \text { B. } \frac{1}{n}=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}} \\
& \text { C. } \frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n_{1}}}+\frac{1}{\sqrt{n_{2}}}+\frac{1}{\sqrt{n_{3}}} \\
& \text { D. } \sqrt{n}=\sqrt{n_{1}}+\sqrt{n_{2}}+\sqrt{n_{3}}
\end{aligned}
$$

Answer: B

## - Watch Video Solution

48. A speed ign motorcyclist sees traffic ham ahead of him. He slows doen to $36 \mathrm{~km} / \mathrm{h}$ He
finds that traffic has eased and a car moving ahead of him at $18 \mathrm{~km} / \mathrm{h}$ is honking at a frequency of 1392 Hz . If the speed of sound is $343 \mathrm{~m} / \mathrm{s}$, the frequency of the honk as heard by him will be
A. 1454 Hz
B. 1332 Hz
C. 172 Hz
D. 1412 Hz

## Answer: D

## D Watch Video Solution

49. The number of possible natural oscillations
of air column in a pipe closed at one end of
length 85 cm whose frequencies lie below 1250
Hz are (velocity of sound $=340 \mathrm{~ms}^{-1}$ ).
A. 6
B. 4
C. 5
D. 7

Answer: A
( Watch Video Solution

50.

A source of sound $S$ emitting waves of
frequency 100 Hz and an observer $O$ are located at some distance from each other. The source is moving with a speed of $19.4 \mathrm{~ms}^{-1}$ at an angle of $60^{\circ}$ with the source observer line as shown in the figure. The observer is at rest.

The apparent frequency observed by the observer (velocity of sound in air $330 \mathrm{~ms}^{-1}$ ) is
A. 97 Hz
B. 100 Hz
C. 103 Hz
D. 106 Hz

## Answer: C

## D Watch Video Solution

51. A string is stretched between fixed points separated by 75.0 cm . It is observed to have resonant frequencies of 420 Hz and 315 Hz .

There are no other resonant frequencies between these two. Then, the lowest resonant frequency for this string is
A. 105 Hz
B. 155 Hz
C. 205 Hz
D. 10.5 Hz

Answer: A

D Watch Video Solution
52. The fundamental frequency of a closed organ pipe of length 20 cm is equal to the second overtone of an organ pipe open at both the ends. The length of organ pipe open at both the ends is
A. 140 cm
B. 80 cm
C. 100 cm
D. 120 cm
53. Three sound waves of equal amplitudes
have frequencies ( $n-1$ ) ,n $(n+1)$.They
superimpose to give beats.The number of beats produced per second will be
A. 3
B. 2
C. 1
D. 4

Answer: B

## D Watch Video Solution

54. The second overtone of an open organ
pipe has the same frequency as the first overtone of a closed pipe $L$ metre long. The length of the open pipe will be
A. $L / 2$
B. 4 L
C. $L$

## D. $2 L$

## Answer: D

## D Watch Video Solution

55. A siren emitting a sound of frequency 800

Hz moves away from an observer towards a
cliff at a speed of $15 \mathrm{~ms}^{-1}$. Then the frequency of sound that the observer hears in the echo reflected from the cliff is (Take velocity of sound in air $=330 \mathrm{~ms}^{-1}$ )
A. 885 Hz
B. 765 Hz
C. 800 Hz
D. 838 Hz

## Answer: D

## D Watch Video Solution

56. A uniform rope of legnth $L$ and mass $m_{1}$ hangs vertically from a rigid support. A block of mass $m_{2}$ is attached to the free end of the
rope. A transverse pulse of wavelength $\lambda_{1}$ is produced at the lower end of the rope. The wavelength of the pulse when it reaches the top of the rope is $\lambda_{2}$. The ratio $\frac{\lambda_{2}}{\lambda_{1}}$ is
A. $\sqrt{\frac{m_{1}+m_{2}}{m_{1}}}$
B. $\sqrt{\frac{m_{1}}{m_{2}}}$
C. $\sqrt{\frac{m_{1}+m_{2}}{m_{2}}}$
D. $\sqrt{\frac{m_{2}}{m_{1}}}$

## Answer: C

## - Watch Video Solution

## Exercise-IV

## 1. The transverse displacement $y(x, t)$ of a wave

on a string is
given
by
$\left.y(x, t)=e^{-\left(a x^{2}+b t^{2}+2 \sqrt{(a b)} x t\right.}\right)$. This represents
a:
A. Wave movinig in -ve $x$ direction with speed $\sqrt{b / a}$
B. Wave moving in + ve $x$ direction with
speed $\sqrt{b / a}$
C. Standing wave of frequency $\sqrt{b}$
D. Standing wave of frequency $\frac{1}{\sqrt{b}}$

## Answer: A

## - <br> Watch Video Solution

2. A travelling wave pulse is given by
$y=\frac{4}{3 x^{2}+48 t^{2}+24 x t+2}$
where $x$ and $y$ are in metre and $t$ is in second.

The velocity of wave is :-
A. $4 \mathrm{~m} / \mathrm{s}$
B. $2 \mathrm{~m} / \mathrm{s}$
C. $8 \mathrm{~m} / \mathrm{s}$
D. $12 \mathrm{~m} / \mathrm{s}$

Answer: A
3. Two sinusoidal waves are superposed. Their equations are
$y_{1}=A \sin \left(k x-\omega t+\frac{\pi}{6}\right)$ and $y_{2}=A \sin \left(k x-\omega t-\frac{\pi}{6}\right)$
the equation of their resultant is

$$
\begin{aligned}
& \text { A. } y=\frac{A}{\sqrt{3}} \sin (k x-\omega t) \\
& \text { B. } y=A \sqrt{3} \sin (k x-\omega t) \\
& \text { C. } y=A \sqrt{3} \sin \left(k x-\omega t-\frac{\pi}{3}\right) \\
& \text { D. } y=\frac{A}{\sqrt{3}} \sin \left(k x-\omega t-\frac{\pi}{3}\right)
\end{aligned}
$$

## Answer: B

## D Watch Video Solution

4. A plane progressive wave is shown in the adjoining phase diagram. The wave equation of this wave, if its position is shown at $t=0$,is | $y$ (in metre) |
| :--- |
| 0 |

A. $y=0.05 \sin 2 \pi(300 t-x)$
B. $y=0.05 \sin 2 \pi(300 t+x)$
C. $y=0.05 \sin 8 \pi(300 t+x)$
D. $y=0.05 \sin 8 \pi(300 t-x)$

## Answer: D

## D Watch Video Solution

5. Intensity of a point source of sound is
$0.2 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$ at a place. If the distance of source and
power are doubled,the intensity at that place becomes to

$$
\begin{aligned}
& \text { A. } 0.05 \frac{\mathrm{~W}}{\mathrm{~m}^{2}} \\
& \text { B. } 0.2 \frac{\mathrm{~W}}{\mathrm{~m}^{2}} \\
& \text { C. } 0.1 \frac{\mathrm{~W}}{\mathrm{~m}^{2}} \\
& \text { D. } 3.8 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}
\end{aligned}
$$

Answer: C
6. the maximum pressure variation that the human ear can tolerate in loud sound is about $30 \mathrm{~N} / \mathrm{m}^{2}$. The corresponding maximum displacement for a sound wave ina air having a frequency of $10^{3} \mathrm{Hzis}$
take velocity of sound in air as $300 \mathrm{~m} / \mathrm{s}$ and density of air $1.5 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{aligned}
& \text { A. } \frac{10^{-4}}{3 \pi} \mathrm{~m} \\
& \text { B. } \frac{\pi X 10^{-2}}{3} \mathrm{~m} \\
& \text { C. } \frac{2 X 10^{-4}}{\pi} \mathrm{~m}
\end{aligned}
$$

# $2 \pi X 10^{-2}$ <br> D. $\frac{3}{m}$ 

## Answer: A

## D Watch Video Solution

7. A travelling wave represented by
$y=A \sin (\omega t-k x)$
is superimposed on another wave represented
by
$y=A \sin (\omega t+k x)$. The resultant is
A. a standing wave
B. a wave travelling along $+x$ direction
C. a wave travelling along $-x$ direction
D. None of the Above

## Answer: A

## D Watch Video Solution

8. In a sonometer wire, the tension is maintained by suspending a 20 kg mass from
the free end of the wire. The fundamental frequency of vibration is 300 Hz .

If the tension is provided by two masses of 6 kg and 14 kg suspended from a pulley as show in the figure the fundamental frequency will
A. still remain 300 Hz
B. become larger
C. become smaller
D. decrease in the present situation and increase if the suspended masses of 6 kg
and 14 kg are interchanged

## Answer: C

## D Watch Video Solution

9. The length of the wire shown in figure between the pulley is 1.5 m and its mass is 12.0
g. Find the frequency of vibration with which
the wire vibrates in two loops leaving the middle point of the wire between the pulleys
at rest.

A. 35 Hz
B. 40 Hz
C. 70 Hz
D. 80 Hz

Answer: C

- Watch Video Solution

10. A rod $P Q$ of length ' $L$ ' is hung from two identical wires $A$ and $B$. A block of mass ' $m$ ' is
hung at point R of the rod as shown in figure.

The value of ' $x$ ' so that the fundamental mode
in wire $A$ is in resonance with first overtone of
$B$ is

A. $\frac{4 L}{5}$
B. $\frac{L}{4}$
C. $\frac{L}{5}$
D. $\frac{2 L}{3}$

## Answer: C

## - Watch Video Solution

11. Two wires are fixed in a sanometer. Their tension are in the ratio $8: 1$ The lengths are in the ratio $36: 35$ The diameter are in the ratio

4:1 Densities of the materials are in the ratio
$1: 2$ if the lower frequency in the setting is
360 Hz . The beat frequency when the two wires are sounded together is
A. 20 Hz
B. 10 Hz
C. 30 Hz
D. 40 Hz

Answer: B

## D Watch Video Solution

12. A string of mass $M$ as a circular loop
rotates abot its axis on a frictionless
horizontal plane at a uniform rate so that the
tangential plane at a uniform rate so that the
tangential speed of any particle of the string
is $v$. If a small transverse disturbance is
produced at a point of the loop, then speed
(relative to the string) of disturbance on the string is

$$
\text { A. } v \sqrt{\frac{M}{2}}
$$

B. $\sqrt{2} v$
C. $v$
D. $\frac{v}{\sqrt{2}}$

Answer: C

## D Watch Video Solution

13. A stone is hung in air from a wire which is
stretched over a sonometer. The bridges of
the sonometer are $L \mathrm{~cm}$ apart when the wire is
in unison with a tuning fork of frequency $N$.

When the stone is completely immersed in
water, the length between the bridges is 1 cm
for re-establishing unison, the specific gravity
of the material of the stone is

$$
\begin{aligned}
& \text { A. } \frac{L^{2}}{L^{2}+I^{2}} \\
& \text { B. } \frac{L^{2}-l^{2}}{L^{2}} \\
& \text { C. } \frac{L^{2}}{L^{2}-l^{2}} \\
& \text { D. } \frac{L^{2}+l^{2}}{L^{2}}
\end{aligned}
$$

## Answer: C

## D Watch Video Solution

14. A uniform rope of mass 0.1 kg and length
$2.45 m$ hangs from a ceiling.
(a) Find the speed of transverse wave in the rope at a point 0.5 m distant from the lower end.
(b) Calculate the time taken by a transverse wave to travel the full length of the rope.


$$
\begin{aligned}
& \text { A. } \sqrt{\frac{l}{g+a}} \\
& \text { B. } 2 \sqrt{\frac{l}{g+a}} \\
& \text { C. } \sqrt{\frac{g+a}{l}} \\
& \text { D. } 2 \sqrt{\frac{g+a}{l}}
\end{aligned}
$$

Answer: B

## D Watch Video Solution

15. A string of length $L$ is stretched by $L / 20$ and speed transverse wave alon it is v . The
speed of wave ehen it is stretched by $L / 10$ will be (assume that Hooke law is applicable)
A. $2 v$
B. $\frac{v}{\sqrt{2}}$
C. $\sqrt{2} v$
D. $4 v$

## Answer: C

16. Transverse waves pass through the strings
$A$ and $B$ attached to an object of mass ' $m$ ' as
shown. If $\mu$ is the linear density of each of the strings, the velocity of the transverse waves
produced in the strings $A$ and $B$ is

## 3L/4

## m

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{m g}{\mu}} \\
& \text { B. } \sqrt{\frac{2 m g}{\mu}}
\end{aligned}
$$

C. $\sqrt{\frac{\sqrt{7} m g}{2 \mu}}$
D. $\sqrt{\frac{2 m g}{\sqrt{7} \mu}}$

## Answer: D

## D View Text Solution

17. the fundamental frequency of a sonometer wire of length is $f_{0}$.A bridge is now introduced at a distance of $\Delta l$ from the centre of the wire ( $\Delta l \ll l$ ). The number of beats heard if their fundamental mode are

$$
\begin{aligned}
& \text { A. } \frac{8 f_{0} \Delta l}{l} \\
& \text { B. } \frac{f_{0} \Delta l}{l} \\
& \text { C. } \frac{2 f_{0} \Delta l}{l} \\
& \text { D. } \frac{4 f_{0} \Delta l}{l}
\end{aligned}
$$

## Answer: C

## D Watch Video Solution

18. Two wires of radii $r$ and $2 r$ are welded
as a sonometer wire and is kept under a tension $T$. The welded point lies midway between the bridges. The ratio of the number of loops formed in the wires, such that the joint is a node when the stationary waves are set up in the wire is
A. $1 / 4$
B. $1 / 3$
C. $1 / 2$
D. $2 / 3$

## - Watch Video Solution

19. The displacement $y$ of a particle executing
periodic motion is given by
$y=4 \cos ^{2}\left(\frac{1}{2} t\right) \sin (1000 t)$
This expression may be considereed to be a result of the superposition of
A. two waves
B. three waves
C. five waves

## D. four waves

## Answer: B

## D Watch Video Solution

20. If the two waves of the same frequency and same amplitude, on superposition produce a resultant disturbance of the same amplitude, then the phase difference between the two arriving wave will be
B. $\frac{2 \pi}{3}$
C. $\frac{\pi}{3}$
D. $3 \pi$

## Answer: B

## D Watch Video Solution

21. Three waves of amplitudes $12 \mu \mathrm{~m}, 4 \mu \mathrm{~m}$ \& $9 \mu m$ but of same frequency arrive at a point in
a medium with a successive phase difference
of $\left(\frac{\pi}{2}\right)$. Then the resultant amplitude in $\mu m$ is
A. 4
B. 7
C. 5
D. 25

## Answer: C

22. The ratio of the velocity of sound in

Hydrogen gas $\left(Y=\frac{7}{5}\right)$ to that in Helium gas
$\left(y=\frac{5}{3}\right)$ at the same temperature is $\sqrt{\frac{21}{3}}$.
A. $\sqrt{\frac{21}{5}}$
B. $\frac{\sqrt{21}}{5}$
C. $\frac{21}{5}$
D. $\frac{5}{21}$

Answer: B
23. How long will it take sound waves to travel
a distance $l$ between points $A$ and $B$ if the air temperature between them varies linearly from $T_{1}$ and $T_{2}$ ? (The velocity of sound in air at temperature $T$ is given by $v=\alpha \sqrt{T}$, where $\alpha$ is a constant)

$$
\begin{aligned}
& \text { A. } t=\frac{2 l}{\alpha\left[\sqrt{T_{2}}+\sqrt{T_{1}}\right]} \\
& \text { B. } t=\frac{4 l}{\alpha\left[\sqrt{T_{1}}+\sqrt{T_{2}}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } t=\frac{4 l}{\alpha\left[\sqrt{T_{1}} \sqrt{T_{2}}\right]} \\
& \text { D. } t=\frac{2 l}{\alpha\left[\sqrt{T_{1}}+\sqrt{T_{2}}\right]}
\end{aligned}
$$

## Answer: A

## D Watch Video Solution

24. A wave represented by $y=100 \sin (a x+b t)$
is reflected from a dense plane at the origin.If
$36 \%$ of energy is lost and rest of the energy
is reflected then the equation of the reflected wave will be -

$$
\begin{aligned}
& \text { A. } y=-8.1 \sin (a x-b t) \\
& \text { B. } y=8.1 \sin (a x+b t) \\
& \text { C. } y=-80 \sin (a x-b t) \\
& \text { D. } y=-10 \sin (a x-b t)
\end{aligned}
$$

Answer: A

## D Watch Video Solution

25. In a stationary wave pattern that forms as
a result of reflection pf waves from an obstacle
the ratio of the amplitude at an antinode and
a node is $\beta=1.5$. What percentage of the energy passes across the obstacle?
A. 96 \%
B. $4 \%$
C. $94 \%$
D. $6 \%$

Answer: C

## - Watch Video Solution

26. The vibrations of a string fixed at both
ends are represented
$y=16 \sin \left(\frac{\pi x}{15}\right) \cos (96 \pi t)$. Where ' $x$ ' and ' $y$ ' are in
cm and ' t ' in seconds. Then the phase difference between the points at $x=13 \mathrm{~cm}$ and $x=16$ in radian is
A. $\pi / 5$
B. $\pi$
C. 0
D. $2 \pi / 5$

## Answer: A

## D Watch Video Solution

27. An open organ pipe of length 1 and fundamental frequency $n$ is gradually dipped into water with uniform speed ' $v$ '. The rate of change in its fundamental frequency is
A. $-\frac{V}{l}$
B. $-\frac{V}{4 l^{2}} v$
C. $-\frac{V}{2 l^{2}} v$
D. $\frac{V}{4 l^{2}} v$

Answer: B

## D Watch Video Solution

28. Air column of 20 cm length in a resonance
tube resonates with a certain tuning fork
when sounded at its upper open end. The
lower end of the tube is closed and adjustable
by changing the quantity of mercury filled inside the tube. The temperature of the air is
$27^{\circ} \mathrm{C}$. The change in length of the air column
required, if the temperature falls to $7{ }^{\circ} \mathrm{C}$ and
the same tuning fork is again sounded at the upper open end is nearly
A. 1 mm
B. 7 mm
C. 5 mm
D. 13 mm

Answer: B

## - Watch Video Solution

29. $A B$ is a cylinder of length $1 m$ fitted with a
thin flexible diaphragm $C$ at the middle and other thin flexible diaphragms $A$ and $B$ at the ends. The portions $A C$ and $B C$ contain hydrogen and oxygen gases respectively. The diaphragms $A$ and $B$ are set into vibrations of same frequency. What is the minimum frequency of these vibrations for which
diaphragms $C$ is a node? (Under the conditions of experiment $v_{\mathrm{H}_{2}=1100 \mathrm{~m} / \mathrm{s}}, v_{0_{2}}=$ $300 \mathrm{~m} / \mathrm{s}$ ).

A. 1100 Hz
B. 3300 Hz
C. 1650 Hz
D. 1500 Hz

## Answer: C

## - Watch Video Solution

30. While measuring the speed of sound by performing a resonance column experiment, a
student gets the first resonance condition at a column length of 18 cm during winter.

Repeating the same experiment during summer, she measures the column length to be $x c m$ for the second resonance. Then
A. $18>x$
B. $x>54$
C. $54>x>36$
D. $36>x>18$

Answer: B

D Watch Video Solution
31. Two tuning forks $P$ and $Q$ are vibrated together. The number of beats produced are represented by the straight line $O A$ in the
following graph. After loading Q with wax again these are vibrated together and the beats produced are represented by the line OB. If the frequency of P is 341 Hz , the frequency of $Q$ will be

A. 341 Hz
B. 338 Hz
C. 344 Hz
D. 330 Hz

## Answer: C

## D Watch Video Solution

32. A driver in a stationary car blows a horn which produces monochromatic sound waves
of freqeuncy 1000 Hz normally towards a
reflecting wall. The wall approaches the car with a speed of $3.3 \frac{\mathrm{~m}}{\mathrm{~s}}$.
A. the frequency of sound reflected from
wall and heard by the driver is 1000 Hz
B. the frequency of sound reflected from
wall and heard by the driver is 980 Hz
C. the percentage increase in frequency of
sound after reflection from wall is $2 \%$
D. the percentage decrease in frequency of

Answer: C

## - Watch Video Solution

33. A source of sonic oscillations with frequency $n=1700 \mathrm{~Hz}$ and a receiver are located on the same normal to a wall. Both the source and receiver are stationary, and the wall recedes from the source with velocity $u=6.0 \frac{\mathrm{~m}}{\mathrm{~s}}$. Find the beat frequency registered by the receiver. The velocity of sound is
$v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$.
A. 0.2 Hz
B. 0.3 Hz
C. 0.4 Hz
D. 0.6 Hz

## Answer: D

## D Watch Video Solution

34. A motor cycle starts from rest and accelerates along a straight path at $2 \mathrm{~m} / \mathrm{s}^{2}$. At the starting point of the motor cycle there is a
stationary electric siren. How far has the motor cycle gone when the driver hears the frequency of the siren at $94 \%$ of its value when the motor cycle was at rest ? (Speed of sound $=330 \mathrm{~ms}^{-2}$ )
A. $49 m$
B. $98 m$
C. $147 m$
D. 196 m
35. A train moves towards a stationary observer with speed $34 \mathrm{~m} / \mathrm{s}$. The train sounds a whistle and its frequency registered by the observer is $f_{1}$. If the speed of train is reduced to $17 \mathrm{~m} / \mathrm{s}$, the frequency registered is $f_{2}$. If speed fo sound is $340 \mathrm{~m} / \mathrm{s}$, then the ratio $f_{1} / f_{2}$ is :

$$
\begin{aligned}
& \text { A. } \frac{18}{19} \\
& \text { B. } \frac{1}{2}
\end{aligned}
$$

C. 2

$$
\text { D. } \frac{19}{18}
$$

## Answer: D

## D Watch Video Solution

36. Two sound sources emitting sound each of wavelength $\lambda$ are fixed at a given distance apart. A listener moves with a velocity $u$ along
the line joining the two suorces. The number of beats heard by him per second is

> A. $\frac{2 u}{\lambda}$
> B. $\frac{u}{\lambda}$
> C. $\sqrt{\underline{a m b d a}}$
> D. $\frac{u}{2 \lambda}$

## Answer: A

## D Watch Video Solution

37. A source of sound is travelling with a velocity of $30 \frac{\mathrm{~m}}{\mathrm{~s}}$ towards a stationary observer.

If actual frequency of source is 1000 Hz and the wind is blowing with velocity $20 \frac{\mathrm{~m}}{\mathrm{~s}}$ in a direction at $60^{\circ} \mathrm{C}$ with the direction of motion of source, then the apparent frequency heard by observer is (speed of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$ )
A. 1011 Hz
B. 1094 Hz
C. 1000 Hz
D. 1086 Hz

Answer: B

## - Watch Video Solution

38. A band playing music at a frequency $f_{0}$ is moving towareds a wall at a speed $v_{0}$. A motorist is following the band with a speed $v_{m}$
. If $v$ be the speed of the sound the expression
for beat frequency heard by motorist is

$$
\begin{aligned}
& \text { A. } \frac{v+v_{m}}{v-v_{b}} f \\
& \text { B. } \frac{v+v_{m}}{v+v_{b}} f
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \frac{2 v_{b}\left(v+v_{m}\right)}{v^{2}-v_{b}^{2}} f \\
& \text { D. } \frac{2 v_{m}\left(v+v_{b}\right)}{v^{2}-v_{m}^{2}} f
\end{aligned}
$$

## Answer: C

## D Watch Video Solution

39. A train has just completed a U-curve in a trash which is a semi circle. The engine is at
the forward end of the semi circular part of the trash while the last carriage is at the rear
end of the semi circular track. The driver blows
a whistle of frequency 200 Hz . Velocity of sound is $340 \frac{\mathrm{~m}}{\mathrm{~s}}$. Then the apparent frequency as observed by a passenger in the middle of the train, when the speed of the train is 30 $\mathrm{m} / \mathrm{s}$, is
A. 219 Hz
B. 188 Hz
C. 200 Hz
D. 181 Hz

## Answer: C

## D Watch Video Solution

40. A source emitting a sound of frequency 'f'
is placed at a large distacnce from an observer.

The source starts moving towards the oberver with a uniform acceleration 'a'. Find frequency
heard by the observer corresponding to the wave emitted just after the source starts. The speed of sound in medium is $v$
A. $\frac{v f^{2}}{2 v f-a}$
B. $\frac{2 v f^{2}}{2 v f+a}$
C. $\frac{2 v f^{2}}{3 v f-a}$
D. $\frac{2 v f^{2}}{2 v f-a}$

## Answer: D

## D View Text Solution

41. The waves produced by a motor boat sailing in water are :
A. neighter longitudinal nor transverse
B. both longitudinal and transverse
C. only longitudinal
D. only transverse

## Answer: B

## - Watch Video Solution

42. Sound waves of wavelength $\lambda$ travelling in a medium with a speed of $\mathrm{vm} / \mathrm{s}$ enter into another medium where its speed is $2 \mathrm{vm} / \mathrm{s}$.

Wavelength of sound waves iin the second medium is
A. $\lambda$
B. $\frac{\lambda}{2}$
C. $2 \lambda$
D. $4 \lambda$

Answer: C
( Watch Video Solution
43. Speed of sound waves in air
A. is independent of temperature
B. increases with pressure
C. increases with increase in humidity
D. decreases with increase in humidity

Answer: C
44. Change in temperature of the medium changes
A. frequency of sound waves
B. amplitude of sound waves
C. wavelength of sound waves
D. loudness of sound waves

Answer: C

- Watch Video Solution

45. With the propagation of a longitudinal wave through a material medium, the quantities transmitted in the propagation direction are
A. matter

B. energy

C. energy and matter
D. energy, matter and momentum

## Answer: B

46. Which of the following statements are true
for wave motion? Statement 1 - Mechanical
transverse waves can propagate through all media Statement2- Longitudinal waves can propagate through solids only Statement3 -

Mechanical transverse waves can propagate through solids only Statement4- Longitudinal
waves can propagate through vacuum.
A. Mechanical transverse waves can
propagate through all media
B. Longitudinal waves can propagate
through solids only
C. Mechanical transverse wa
propagate through solids only
D. Longitudinal waves can propagate
through vacuum.

Answer: C

- Watch Video Solution

47. A sound wave is passing through air column in the form of compression and rerefactions. In consecutive compressions and rerefactions.
A. density remains constant
B. Boyle's law is obeyed
C. bulk modulus of air oscillates
D. there is no transfer of heat

## Answer: D

48. Equation of a plane progressive wave is
given by $y=0.6 \sin 2 \pi\left(t-\frac{x}{2}\right)$. On reflection
from a denser medium, its amplitude becomes
$2 / 3$ of the amplitude of the incident wave. The equation of the reflected wave is

$$
\begin{aligned}
& \text { A. } y=0.6 \sin 2 \pi\left(t+\frac{x}{2}\right) \\
& \text { В. } y=-0.4 \sin 2 \pi\left(t+\frac{x}{2}\right) \\
& \text { C. } y=0.4 \sin 2 \pi\left(t+\frac{x}{2}\right)
\end{aligned}
$$

$$
\text { D. } y=-0.4 \sin 2 \pi\left(t-\frac{x}{2}\right)
$$

## Answer: B

## - Watch Video Solution

49. A string of mass 2.50 kg is under a tension os 200 N . The length of the stretched string is
20.0m. If the transverse jerk is struck at one end of the string, how long does the disturbance take to reach the other end?
A. 1 s
B. 0.5 s
C. 2 s
D. data given is insufficient

Answer: B

D Watch Video Solution
50. A transverse harmonic wave on a string is
described by $y(x, t)=3.0 \sin \left(36 t+0.018 x+\frac{\pi}{4}\right)$
where $x$ and $y$ are in cm and ' t ' is in sec. The positive direction of ' $x$ ' is from left to right Which of the following are true
(a) the wave is travelling from right to left
(b) the speed of the wave is $20 \mathrm{~m} / \mathrm{s}$
(c) frequency of the wave is 5.7 Hz
(d) the least distance between two successive
crests in the wave is 2.5 cm .
A. $a, b$
B. $a, b, c$
C. $c, d$

## D. $a, c, d$

## Answer: B

## D View Text Solution

51. The displacement of a string is given by $y(x, t)=0.06 \sin (2 \pi x / 3) \cos (120 \pi t)$ where x and y are in m and t in s . The lengthe of the string is 1.5 m and its mass is $3.0 \times 10^{-2} \mathrm{~kg}$.
A. It represents a progressive wave of frequency 60 Hz
B. It represents a stationary wave of
frequency 50 Hz
C. It is the result of superposition of two
waves of wavelength $3 m$, frequency 60 Hz
each travelling with a speed of $180 \mathrm{~m} / \mathrm{s}$ in
opposite direction
D. Amplitude of this wave is constant.

Answer: C

## 52. v31

A. $a, b$
B. $b, c$
C. $c, d$
D. $a, b, c$

Answer: C
53. During propagation of a plane progressive mechanical wave

Which of the following are true
(a) all the particles are vibrating in the same phase
(b) amplitude of all the particles is equal
(c) particles of the medium executes SHM
(d) wave velocity depends upon the nature of
the medium
A. $c, d$
B. $b, c, d$
C. $a, c, b$
D. $a, b, c, d$

Answer: B

## D Watch Video Solution

54. The transverse displacement of a string
(clamped at its both ends ) is given by
$y(x, t)=0.06 \sin (2 \pi x / 3) \cos (120 \pi t)$.

All the points on the string between two

## consecutive nodes vibrate with

A. $a, b$
B. $b, c$
C. $c, d$
D. $a, b, d$

Answer: D
( Watch Video Solution
55. A train, standing in a station yard, blows a whistle of frequency 400 Hz in still air. The wind starts blowing in the direction from the yard to the station with a speed of $10 \mathrm{~m} / / \mathrm{s}$.

Given that the speed sound in still air is ` $34 \mathrm{om} / / \mathrm{s}$,
A. $a, b$ are true
B. $b, c$ are true
C. only $c$ true
D. $a, b, d$ are true

## Answer: A

## D Watch Video Solution

56. Which of the following statement(s) is are true for a stationary wave. I) Every particle has
a fixed amplitude which is different from the amplitude of its nearest particle. II) All the particles cross their mean positions at the same time. III) There is no net transfer of energy across any plane.
A. $a, b, c$
B. $a, b, d, e$
C. $b, c, d, e$
D. all

Answer: B

- Watch Video Solution

