©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

FOR IIT JEE ASPIRANTS OF CLASS 12 FOR

CHEMISTRY

CO-ORDINATE COMPOUNDS

Example

1. The EAN of Ni in $\left[N i(C N)_{4}\right]^{2-}$ is
A. 32
B. 35
C. 34
D. 36

Answer:

D Watch Video Solution

2. The chemical formula of diammine silver (I) chloride is
A. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right]$
B. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{3}\right] \mathrm{Cl}$
C. $\left[A g\left(N H_{4}\right)\right] C l$
D. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$

Answer:

(D) Watch Video Solution

3. The compexes $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
A. geometrical isomerism
B. isonisation energy
C. coordination isomerism
D. linkage isomerism

Answer:

- Watch Video Solution

4. Which one of the following high-spin complexes has the largest CFSE (Crystal Field stabilization energy) ?

- Watch Video Solution

5. Statement-1: $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is violet in colour while $T i^{3+}$ is colourless.

Statement-2: Light correspondign to dnergy of blue-green region is absorbed by the complex to excite the electron from $t_{2 g}$ level to e_{g} level.

- Watch Video Solution

6. Coloured Compounds
7. The colour of $\left.\left[\mathrm{Ti}_{2} \mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is due to

- Watch Video Solution

8. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ are of different colours in dilute solutions why?

- Watch Video Solution

9. What will be the correct order for the wavelengths of absorption in the visible region for the following:

$$
\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-},\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+},\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} ?
$$

- Watch Video Solution

10. Amog $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Fe}(\mathrm{Cl})_{6}\right]^{3-}$ species, the hybridisation state of the Fe atom are, respectively.
A. $d^{2} s p^{3}, d^{2} s p^{3}, s p^{3} d^{2}$
B. $s p^{3} d^{2}, d^{2} s p^{3}, d^{2} s p^{3}$
C. $s p^{3} d^{2}, d^{2} s p^{3}, s p^{3} d^{2}$
D. None of these

Answer:

11. The species having tetrahedral shape is
A. $\left.\left[N i C l_{4}\right)\right]^{2-}$
B. $\left[N i(C N)_{4}\right]^{2-}$
C. $\left[P d C l_{4}\right]^{2-}$
D. $\left[\operatorname{Pd}(C N)_{4}\right]^{2-}$

Answer:

D Watch Video Solution

12. Coordination compounds have great importance in biological system. In this context which of the following statements is incorrect ?
A. Haemoglobin is the red pigment of blood and contains iron
B. Cyanocobalamin is B_{12} and contains cobalt
C. Chlorophylls are green pigments in plant and contains calcium
D. Carboxypeptidase-A an enzyme that contains zinc

Answer:

- Watch Video Solution

1. The effective atomic number of cobalt in the complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is
A. 36
B. 24
C. 33
D. 30

Answer: A

- Watch Video Solution

2. The IUPAC name of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ is.......
A. hexammine cobalt (II) chloride
B. triammine cobalt (III) trichloride
C. hexammine cobalt (III) chloride
D. None of these

Answer: C

D Watch Video Solution

3. Which of the following cannot show linkage isomerism?
A. NO_{2}^{-}
B. NH_{3}
C. $C N^{-}$
D. $S C N^{-}$

D Watch Video Solution

Evaluate Yourself 2

1. What is the magnetic moment of $K_{3}\left[F e F_{6}\right]$?
A. 3.87 BM
B. 4.89 BM
C. 5.91 BM
D. 6.92 BM

Answer: C
2. Which one of the following is an example of octahedral complex?
A. $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$
B. $F e F_{6}^{3-}$
C. $\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$
D. $N i(C N)_{4}^{2-}$

Answer: B
3. Which of the following is not an organometallic compounds?
A. Sodium ethoxide
B. Trimethyl aluminium
C. Tetraethyl lead
D. ethyl magnesium bromide

Answer: A

- Watch Video Solution

Cuq

1. The following does not give a precipitate either with AgNO_{3} or $\mathrm{BaCL} L_{2}$
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\left[\mathrm{SO}_{4}\right.\right.$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)\right]_{4}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{4}\right] \mathrm{Cl}$

Answer: A::B::C::D

- Watch Video Solution

2. Which of the following has highest molar conductivity
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{3}\right.$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl} l_{2}\right] \mathrm{Cl}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$

Answer: A::B::C

D Watch Video Solution

3. The transition metals have a strong tendency to form complaexes because of
(i) smaller sizes of the metal ions
(ii) variable oxidation states
(iii) high ionic charges of metal ions
(iv) availability of vacant d-orbitals for bond formation.
A. I only

B. II only

C. I and II
D. I, II,III

Answer: D

D Watch Video Solution

4. The ionizable valency of Ni in $\mathrm{Ni}(\mathrm{CO})_{4}$ is
A. 2
B. 4
C. 0
D. 1

Answer: C

D Watch Video Solution

5. According to Werner's theory transition metals possesses
A. only one type of valency
B. two types of valencies
C. three types of valencies
D. four types of valenceis

- Watch Video Solution

6. The primary valency of the metal ion is satisfied by
A. neutral molecules
B. positive ions
C. negative ions
D. all the above

Answer: C
7. No of ionizable \& non-ionizable Cl^{-}ions in $\mathrm{CoCl}_{3} 5 \mathrm{NH}_{3}$ representively are
A. 3,0
B. 2,1
C. 1,2
D. 0,3

Answer: B::C

- Watch Video Solution

8. Central metal ion in complex compound acts as
A. Lewis acid
B. Lewis base
C. Arrhenium acid
D. Arrhenius base

Answer: A

- Watch Video Solution

9. Which one of the following acts as a Lewis base in complexes
A. CO_{2}
B. $B F_{3}$
C. NH_{3}
D. BCl_{3}

Answer: A::C::D

D Watch Video Solution

10. Potassium ferrocyanide is a
A. Complex salts
B. Normals salts
C. Double salts
D. Basic salts

Answer: A
11. Example for a coordination compound is
A. $\mathrm{KCl} . \mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right) \cdot 24 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{CoCl}_{3} .6 \mathrm{~N} . \mathrm{H}_{3}$
D. $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right) \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

Answer: C

- Watch Video Solution

12. in which of the following transition metal complexes does the metal exhibits zero oxidation state.
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{SO}_{4}$
C. $\left[\mathrm{Ni}\left(\mathrm{CO}_{4}\right)\right]$
D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$

Answer: C

D Watch Video Solution

13. The number of ions formed form a formula unit of potassium ferricyanide in solution is
A. 2
B. 4
C. 5
D. 6

Answer: B::C::D

- Watch Video Solution

14. Metal-Isothiocyananto is indicated by
A. M-SCN
B. M-NCS
C. M-CNS
D. M-CSN

Watch Video Solution

15. Number of chlorides satisifying secondary valency in $\mathrm{CoCl}_{3} 4 \mathrm{NH}_{3}$
A. 2
B. 3
C. 4
D. 1

Answer: A

- Watch Video Solution

16. Which of the following is cationic complex?
A. $K_{4}\left[F e(C N)_{6}\right]$
B. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
D. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$

Answer: D

- Watch Video Solution

17. The no. of moles of AgCl obtained when excess AgNO_{3} is added to one mole of $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

18. Ligand in a metal carbonyl complex is
A. NH_{3}
B. CO
C. CN
D. $S C N^{-}$

Answer: B

- Watch Video Solution

19. The no. of moles of AgCl precipitated when excess of
AgNO_{3} is mixed with one mole of $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$ is
A. 0
B. 1
C. 2
D. 3

Answer: A
20. IUPAC name of the complex $\mathrm{CoCl}_{3} 5 \mathrm{NH}_{3}$ is
A. Cobalt trichloride penta amonium
B. Penta amine carbonyl chloride
C. Trichloro penta amino cobalt
D. Pentaaminechlorocobalt (III) chloride

Answer: B::C::D

- Watch Video Solution

21. The property of possessing atleast one atom that is attached to four non-identical groups in tetrahedral geomentry is called
A. polarisation
B. chirality
C. enantiomerism
D. meridionity

Answer: A::B::C

D Watch Video Solution

22. A racemic mixture has a net rotation
A. to right of original plane
B. to left of original plane
C. toright or left of orignal plane
D. zero

Answer: D

D Watch Video Solution

23. Optical isomer have
A. property of chirality
B. almost identical chemical properties
C. almost identical physical properties
D. all the above

Answer: A::C::D
24. The effective atomic number of iron in $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is
A. 34
B. 36
C. 37
D. 35

Answer: D

- Watch Video Solution

25. Which does not obey EAN rule?
A. $F E(C O)_{5}$
B. $K_{4}\left[F e(C N)_{6}\right]$
C. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{3}$

Answer: A::B::C::D

- Watch Video Solution

26. The effective atomic number of central metal ion is wrongly calculated in the following complex?
A. In $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ the EAN of Ni is 36
B. In $K_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ the EAN of Ni is 36
C. In $K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ the EAN of Fe 35
D. In $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ the EAN of Cr is 33.

Answer: A::B::C::D

- Watch Video Solution

27. According to effective atomic number rule the central metal acquires:
A. inert gas configuration
B. octet
C. duplet
D. quartet

Answer: A

D Watch Video Solution

28. The shape of the complex species will be square planar if its coordination number is
A. 2
B. 6
C. 5
D. 4

Answer: D

29. Which of the following is outer orbital complex?
A. $\left[\mathrm{CoF}_{6}\right]^{3-}$
B. $\left[C u^{\mathrm{H}_{2} \mathrm{O}}\right]^{+2}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+2}$
D. Both 1 and 2

Answer: A::B::C::D

- Watch Video Solution

30. $s p^{3} d^{2}$ hybridisation is present in
A. $\left[\mathrm{CoF}_{6}\right]^{-3}$

> B. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
> C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+2}$
> D. $\left.\mathrm{Ni}(\mathrm{CN})_{4}\right]^{-2}$

Answer: A::C::D

D Watch Video Solution

31. The type of hybridisation present in $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}$ ion is
A. $s p^{3}$
B. $d s p^{2}$
C. $s p^{3} d$
D. $s p^{3} d^{2}$

Answer: B

D Watch Video Solution

32. The shape of $\left[\mathrm{CoF}_{6}\right]^{-3}$ is
A. Square Planar
B. Trigonal bipyramidal
C. Octahedral
D. Tetrahedral

Answer: A::B::C::D
33. The hybridisation of metal atom \& geometry of complex in $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{-3}$ are
A. sp, linear
B. $s p^{2}$, linear
C. $s p^{2}$, trigonal planar
D. sp, angular

Answer: A

- Watch Video Solution

34. The magnetic moment of $\left[N i(C l)_{4}\right]^{2-}$ is
A. 2.85 BM
B. 1.83 BM
C. 4.86 BM
D. 5.95 BM

Answer: A

D Watch Video Solution

35. Which of the following system has maximum number of the unpaired electrons in an inner octahedral complex?
A. d^{4}
B. d^{9}
C. d^{7}
D. d^{5}

Answer: A

- Watch Video Solution

36. In an octahedral crystal field, the correct set of low orbitals are
A. $d(x y), d_{x z}, d_{x^{2}-y^{2}}$
B. $d_{x^{2}-y^{2}}, d_{z^{2}}$
C. $d_{x y}, d_{x z}, d_{y z}$
D. $d_{x y}, d_{x^{2}-y^{2}}$

Answer: C

- Watch Video Solution

37. For the same metal, the stabiliing energies of tetrahedral and octahedral complex are related as
A. $\triangle_{t}=\triangle_{0}$
B. $\triangle_{t} \times 4=\triangle_{0} \times 6$
C. $\triangle_{t}=9=\triangle_{0} \times 4$
D. $\triangle_{t} \times 6=\triangle_{0} \times 4$

Answer: A::C::D

- Watch Video Solution

38. The orbitals having lower energy in tetrahedral complexs according to CFT are
A. $d_{x y}, d_{y z}, d_{z^{2}}$
B. $d_{x y}, d_{y z}, d_{x^{2}-y^{2}}$
C. $d_{x y}, d_{y z}, d_{z x}$
D. $d_{x^{2}-y^{2}}, d_{z^{2}}$

Answer: D

- Watch Video Solution

39. The metal which does not form poly nuclear carbonly is

A. Mg

B. Fe
C. Cr
D. Co

Answer: A

D Watch Video Solution

40. Nessler's reagent is
A. $\mathrm{K}_{2} \mathrm{Hg} I_{4}$
B. $\mathrm{K}_{2} \mathrm{Hg} I_{2}$
C. $\mathrm{K}_{2} \mathrm{HgCl}_{4}$
D. $H g I_{2}$

- Watch Video Solution

41. Among the following metal carbonyls, the $C-O$ bond order is lowest in
A. $\left[V(C O)_{6}\right]^{-}$
B. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
C. $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$
D. $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$

Answer: A

1. Which of the following is not a draw back of Werner's theory?
A. does not explain the valency of metal ions in the complex
B. does not give any explanation for the colour of complex compounds
C. does not explain the magnetic behaviour of complex
compounds
D. does not correlate electronic configuration of the metal with the formation of complex

Answer: A

D Watch Video Solution

2. Coordination compound.
A. Ferrous ammonium sulphate
B. Potassium ferrocyanide
C. Camallite
D. Gypsum

Answer: C

- Watch Video Solution

3. Aqueous solution of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Cl}$ gives precipitate with
A. $B a C l_{(2)(a q)}$
B. $\operatorname{AgNO}_{(3)(a q)}$
C. both 1 and 2
D. neither 1 nor 2

Answer: B

D Watch Video Solution

4. Silver chloride dissolves in excess ammonia due to the formation of a soluble compplex whose formula is
A. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right] \mathrm{Cl}$
B. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}^{2}\right)\right] \mathrm{Cl}$
C. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{3}\right] \mathrm{Cl}$
D. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}$

Answer: A::B::C

- Watch Video Solution

5. Zn^{+2} dissolves in excess of NaOH due to the formation of
A. Soluble $\mathrm{Zn}(\mathrm{OH})_{2}$
B. Soluble $N a_{2}\left(\mathrm{Zn}(\mathrm{OH})_{4}\right]$
C. Soluble $\mathrm{Na}\left[\mathrm{Zn}(\mathrm{OH})_{3}\right]$
D. ZnO

Answer: B

- Watch Video Solution

6. Example of neutral complex compound in the following is
A. $\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}$
B. $\mathrm{CoCl}_{3} \cdot 5 \mathrm{NH}_{3}$
C. $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}$
D. $\mathrm{CoCl}_{3} \cdot 3 \mathrm{NH}_{3}$

D Watch Video Solution

7. Which of the following releases metal slowly to give uniform coating in electroplating is?
A. metal salts
B. double salts
C. Complex salts
D. alums

Answer: C
8. IUPAC name of the complex $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$ is
A. cuprammonium sulphate
B. coopper sulphate tetraammonia
C. tetraamminecopper (II) sulphate
D. copper ammonium (IV) sulphate

Answer: C

- Watch Video Solution

9. Which of the following does not exhibit optical isomerism?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
B. $\left[\mathrm{Co}(e n)_{3}\right] C l_{3}$
C. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
D. $\left[\mathrm{Co}(e n)\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$

Answer: A

- Watch Video Solution

10.

Co-ordination
compounds
$\left.\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{NCS})\right]$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{SCN})\right]$ are example of -- isomerism
A. Co-ordination
B. Ionization
C. Linkage
D. Optical

Answer: C

D Watch Video Solution

11. Geometrical isomerism is observed in
A. Tetrahedral complex
B. Square planar comples
C. Linear complex
D. Planar triangle complexes

Answer: B
12. Stable complex based on EAN rule
A. $K_{4}\left[F e(C N)_{6}\right]$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
C. $\left[\mathrm{Ni}\left(\mathrm{CO}_{4}\right)\right]$
D. all of the above

Answer: D

- Watch Video Solution

13. The hybrdisation of the complex $\left[\mathrm{NiCl}_{4}\right]^{-2}$? is
A. $s p^{3}$
B. $d s p^{2}$
C. $s p^{3} d$
D. $s p^{3} d^{2}$

Answer: A

D Watch Video Solution

14. Which one of the following has a square planar geometry?
A. $\left[\mathrm{COCl}_{4}\right]^{-2}$
B. $\left[\mathrm{PtCl}_{4}\right]^{-2}$
C. $\left[N i C l_{4}\right]^{-2}$
D. $\left[F e C l_{4}\right]^{-2}$

Answer: B

- Watch Video Solution

15. Which of the following is paramagnetic
A. $N i(C O)_{4}$
B. $F e(C O)_{5}$
C. $V(C O)_{6}$
D. $\mathrm{Cr}(\mathrm{CO})_{6}$

D Watch Video Solution

16. The number of ions formed when cuprammonium sulphate is dissolved in water is
A. 1
B. 2
C. 4
D. zero

Answer: B

D Watch Video Solution
17. Which of the following is correct arrangement of ligands in terms of field strength

$$
\begin{aligned}
& \text { A. } \mathrm{Cl}^{-}<\mathrm{F}^{-}<\mathrm{NCS}^{-}<\mathrm{NH}_{3}<\mathrm{CN}^{-} \\
& \text {B. } \mathrm{NH}_{3}<\mathrm{F}^{-}<\mathrm{Cl}^{-}<\mathrm{NCS}^{-}<\mathrm{CN}^{-} \\
& \text {C. } \mathrm{Cl}^{-}<\mathrm{F}^{-}<\mathrm{NCS}^{-}<\mathrm{CN}^{-}<\mathrm{NH}_{3} \\
& \text { D. } \mathrm{NH}_{3}<\mathrm{CN}^{-}<\mathrm{NCS}^{-}<\mathrm{Cl}^{-}<\mathrm{F}^{-}
\end{aligned}
$$

Answer: A

- Watch Video Solution

18. In which of the following octahedral complexes of Co (at. no. 27), will the magnitude of Δ_{o} be the highest?
A. $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[C o(C N)_{6}\right]^{3-}$

Answer: A::B::C::D

D Watch Video Solution

19. If $\Delta_{0}<P$, the correct electronic configuration for d^{4}
system will be ($P=$ paiting energy)
A. $t_{2 g}^{4} e_{g}^{0}$
B. $t_{2 g}^{3} e_{g}^{1}$
C. $t_{2 g}^{0} e_{g}^{4}$
D. $t_{2 g}^{2} e_{g}^{2}$

Answer: A::B::D

- Watch Video Solution

20. Ammonium ions are detected with

A. Nessler's reagent
B. Borsh reagent
C. Tollen's reagent
D. Fehling's solution
21. $\left[\left(P h_{3} P\right)_{3} R h C l\right]$ is a familiar catalyst used in
A. hydrogentaion of oils
B. dehydration of alcohols
C. dehydration of alcohols
D. dehydration of aldehydes

Answer: B

22. Metals those can be extracted commercailly with aqueous solution of sodium cyanide as complexes are
A. Au and Ag
B. Fe and Ag
C. Au and Hg
D. Hg and Fe

Answer: A

- Watch Video Solution

23. If $\mathrm{Ag}^{+}+N H_{3} \Leftrightarrow\left[\mathrm{Ag}\left(N H_{3}\right)\right]^{+}, K_{1}=3.5 \times 10^{-3}$
and

$$
\left[A g\left(N H_{3}\right)\right]^{+}+N H_{3} \Leftrightarrow\left[A g\left(N H_{3}\right)_{2}\right]^{+}
$$

$K_{2}=1.74 \times 10^{-3}$. The formation constant of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is :
A. 1.7×10^{-3}
B. 5.92×10^{-6}
C. 1.8×10^{3}
D. 1.7×10^{7}

Answer: A: B

- Watch Video Solution

Exercise 1 H W

1. The complex formed by the combination of calcium ions and ethylene di ammine tetra acetate. $(E D T A)^{-4}$ Number of moles of calcium ions produced by dissolving of one moles of calcium ions produced by dissolving of one mole of that complex in excess of water is
A. one
B. two
C. four
D. five

Answer: A::B::C::D

- Watch Video Solution

2. Which is a doubt salt?
A. Carnalite
B. Potassium ferrocyanide
C. Potassium ferricyanide
D. Nessler's reagent

Answer: A

- Watch Video Solution

3. Bonds present in $K_{4}\left[F e(C N)_{6}\right]$ are
A. Only ionic
B. Only covalent
C. Ionic and Covalent
D. Ionic, covalent and coordinate covalent.

Answer: D

- Watch Video Solution

4. Copper sulphate solution forms blue coloured complex with excess of ammonia. Its formula is
A. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+3}$
B. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}$
C. $\left[\mathrm{Cu}\left(\mathrm{NH}_{4}\right)_{3}\right]^{+2}$
D. $\left[\mathrm{Cu}\left(\mathrm{NH}_{4}\right)_{3}\right]^{+3}$

Answer: B

- Watch Video Solution

5. Which of the following cannot act as a ligand?
A. $B F_{3}$
B. NH_{3}
C. NO^{+}
D. $C N^{-}$

Answer: A::C::D

- Watch Video Solution

6. Alum in aqueous solution gives positive test for
(A) K^{+}
(B) $A l^{3+}$
(C) SO_{4}^{2-}
A. A only
B. B only
C. A and B
D. A,B and C

Answer: A::B::C::D

D Watch Video Solution

7. Chelates are used in
A. Analytical chemistry
B. Water softning
C. Removal of Pb^{+2} from the blood
D. All of these

Answer: D

D Watch Video Solution

8. Hexaquotitanium (II) Chloride represented as
A. $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] C l_{3}$
B. $\left[\mathrm{TiCl}_{3}\right] 6 \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
D. $\left[T i\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right]$

D Watch Video Solution

9. IUPAC name of $L i\left[A I H_{4}\right]$ is
A. Lithium aluminium hydride
B. Lithium tetrahydrio aluminate [III]
C. Tetrahedride aluminium lithionate
D. Aluminium lithium hydride

Answer: B

D Watch Video Solution
10. Dipole moment will be zero in the complexes
A. $\left[N i(C N)_{4}\right]^{2-}$
B. $C i s-\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
C. Trans- $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
D. Both 1 and 3

Answer: A::B::C::D

D Watch Video Solution

11. The number of geometrical isomers of

$$
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{3}\right)_{3}\right] \text { is }
$$

A. 0
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

12. For the given complex $\left[\mathrm{CoCl}_{2}(e n)\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$, the number of geometrical isomers, the number of optical isomers and total number of isomers of all type possible respectively are
A. 2,2 and 4
B. 2,2 and 3
C. 2,0 and 2
D. 0,2 and 2

Answer: B

- Watch Video Solution

13. Which does not obey EAN rule?
A. $K_{4}\left[F e(C N)_{6}\right]$
B. $K_{3}\left[F e(C N)_{6}\right]$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
D. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$

- Watch Video Solution

14. The following solutions requires three moles of AgNO_{3} for the complete precipitation of all the chloride ions present in it
A. One litre of $1 \mathrm{M}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
B. Three litres of $1 \mathrm{M}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\right]_{2} \mathrm{Cl}$
C. One litre of $1.5 \mathrm{M}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
D. All of these

Answer: D
15. AgCl dissolved in excess of $\mathrm{NH}_{3}, \mathrm{KCN}$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solutions the complex produces ions

$$
\begin{aligned}
& \text { A. }\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+},\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-} \&\left[A g\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-} \\
& \text { B. } \left.\left[\mathrm{Ag}(\mathrm{NH})_{2}\right)_{2}\right]^{2+},\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{3-} \&\left[\mathrm{Ag}_{4}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{5}\right]^{2+} \\
& \text { C. }\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+},\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{+} \&\left[\mathrm{Ag}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{2-} \\
& \text { D. }\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+},\left[\mathrm{Ag}(\mathrm{CN})_{4}\right]^{3-} \&\left[A g_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{2-}
\end{aligned}
$$

Answer: A

D Watch Video Solution

16. The secondary valency of chromium in $\left[\mathrm{Cr}(e n)_{3}\right] \mathrm{Cl}_{3}$ is
A. 6
B. 3
C. 2
D. 4

Answer: A

- Watch Video Solution

17. Stabilisation energy of octahedral complex with d^{7} configuration
(A) $-1.8 \Delta_{0}$ with one unpaired electron
(B) $1.8 \Delta_{0}$ with three unpaired electrons
(C) $-0.8 \Delta_{0}$ with one unpaired electron
(D) $0.8 \Delta_{0}$ with three unpaired electrons
A. \triangle_{0} with one unpaired electron
B. \triangle_{0} with three unpaired electrons
C. \triangle_{0} with one unpaired electron
D. \triangle_{0} with three unpaired electrons

Answer: A

D Watch Video Solution

18. If $\Delta_{0}>P$, the correct electronic configuration for d^{4}
system will be ($p=$ pairing energy)
A. $t_{2 g}^{4} e_{g}^{0}$
B. $t_{2}^{3} e_{g}^{1}$
C. $t_{2 g}^{0} e_{g}^{1}$
D. $t_{2 g}^{0} e_{g}^{4}$

Answer: A

- Watch Video Solution

19. The ligand that gives dark blue color with curic ion in
the laboratory is
A. NH_{3}
B. I^{-}
C. $C N^{-}$
D. $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$

D Watch Video Solution

20. The configuration of an elements ' X ' is $3 d^{10} 4 s^{1}$. The wrong statement regarding the element ' X ' is
A. it forms complexes
B. it exhibits variable velency
C. it forms paramagnetic ions only
D. It can form coloured salts

Answer: A::C::D
21. In the qualitative analysis of group 3 cations blood red colouration is a test for
A. iron using cyanide as ligand
B. chromium using cyanide as ligand
C. iron using thiocyanide as ligand
D. chromium using thiocyanide as ligand

Answer: C

- Watch Video Solution

Exercise 2 C W

1. The oxidation number of cobalt in $\mathrm{K}\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$ is:
A. +1
B. +3
C. -1
D. -3

Answer: C

- Watch Video Solution

2. $E D T A^{4-}$ is an important ligand. Which statement about this ligand is/are true?
A. Monodentate ligand
B. Bidentate ligand
C. Tridentate ligand
D. Hexadentate ligand

Answer: B::C::D

D Watch Video Solution

3. en' is an example of a

D Watch Video Solution

4. The proper name for $K_{2}\left[\mathrm{PtCl}_{6}\right]$ is
A. Potassiumhexachloroplatinum
B. Potassiumhexachloroplatinum(IV)
C. Potassium hexachloroplatinate(IV)
D. Dipotassium hexa chloro platinum

Answer: C

D Watch Video Solution

5. IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{Br})\left(\mathrm{NO}_{2}\right) \mathrm{CI}\right] \mathrm{CI}$ is
A. Triamminechlorobromonitroplatinum (IV) chloride
B. Triamminebromonitrochloroplatinum (IV) chloride
C. Triamminebromochloronitroplatinum (IV) chloride
D. Triamminenitrochlorobromoplatinum (IV) chloride

Answer: C

- Watch Video Solution

6. Tetrammine diaqua copper (II) hydroxide is given by the formula
A. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right](\mathrm{OH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{OH})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](\mathrm{OH})_{2}$
D. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH})_{2}\right]$

Answer: C

7. The compexes $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
A. geometrical isomerism
B. Ionization isomerism
C. Co-ordination isomerism
D. linkage isomerism

Answer: C

- Watch Video Solution

8. Which of the following complex or the complex ion will show geometrical isomerism?
A. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
B. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{5}\right]$
C. $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{3+}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$

Answer: A

- Watch Video Solution

9. Which isomerism is exhibited by
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \mathrm{Cl}_{3} ?$
A. Geometrical isomerism
B. Linkage isomerism

C. Coordination isomerism

D. Ionization isomerism

Answer: A

- Watch Video Solution

10. The IUPA name of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}$ is
A. Linkage isomerism, jonization isomerism and geometrical isomerism w opbral 2
B. lonisation isomerism, geometrical isomerism and
optical isomerism
C. Linkage isomerism, geometrical isomerism and optical isomerism
D. Linkage isomerism, ionization isomerism and optical isomerism.

Answer: A

D Watch Video Solution

11. Which one of the following is an example of coordination isomerism?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{ONO}\right] \mathrm{Cl}_{2}$
C. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
D.

$$
\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right] \text { and }\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]
$$

Answer: D

- Watch Video Solution

12. $\left[\mathrm{FeF}_{6}\right]^{3+}$ has Fe atom Hybridized with unpaired

Electrons.
A. $d^{2} s p^{3}, 4$
B. $d^{2} s p^{3}, 5$
C. $s p^{3} d^{2}, 5$
D. $s p^{3} d^{2}, 3$

Answer: A::C::D

- Watch Video Solution

13. How many EDTA molecules are required to make an octahedral complex with a $C a^{2+}$ ion?
A. two
B. six
C. three
D. one

- Watch Video Solution

14. The d electron congfiguration of $\mathrm{Cr}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}$ and $N i^{2+}$ are $3 d^{4}, 3 d^{5}, 3 d^{6}$ and $3 d^{8}$ respectively. Which one of the folowing aqua complexes will exhibit the minimum paramagnetic behaviour ?
(At. No. Cr $=24, M n=25, F e=26, N i=28)$
A. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$
B. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$
C. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$
D. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$

Answer: D
15. The expected spin only magnetic mometum for $\left[F e(C N)_{6}\right]^{4-}$ and $\left[F e F_{6}\right]^{3+}$ are
A. 1.73 and 1.73 B.M
B. 1.73 and 5.93 B.M
C. 0.0 and 1.73 B.M
D. 0.0 and 5.92 B.M

Answer: D

- Watch Video Solution

16. The volume (in mL) of $1.0 \mathrm{M} \mathrm{AgNO}_{3}$ required for complete precipitation of chloride ions present in 30 mL of 0.01 M solution of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$, as silver chloride is close to
A. 3
B. 4
C. 5
D. 6

Answer: A::B::C::D

- Watch Video Solution

17. Among the following ions which one has the highest paramagnetism?
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[Z n\left(H_{2} O_{\square}\right)(2)\right]^{2+}$

Answer: A::B::C::D

- Watch Video Solution

18. Which of the following complex is an outer orbital complex?
A. $\left[F e(C N)_{6}\right]^{4-}$
B. $\left[M n(C N)_{6}\right]^{4-}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Ni}\left(N H_{3}\right)_{6}\right]^{2+}$

Answer: D

D Watch Video Solution
19. The EAN of cobalt in the complex ion $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$ is
A. 27
B. 36
C. 33
D. 35

Answer: B

- Watch Video Solution

20. For an octahedral complex, which of the following d electron configuration will give maximum crystal-field stabilisation energy?
A. High spin d^{6}
B. Low- spin d^{4}
C. Low spin d^{5}
D. High -spin d^{7}

Answer: C

- Watch Video Solution

21. Chromium compound widely used in tanning of leather is
A. $\mathrm{Cr}_{2} \mathrm{O}_{3}$
B. $\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}$
C. $\mathrm{Cr}_{2} \mathrm{O}_{3}$
D. $\mathrm{K}_{2} \mathrm{SO}_{4} \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} 24 \mathrm{H}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

22. Oxidation state of central metal atom and geometry for the Wilkinsons catalyst. $\left[R h\left(P h_{3} P\right)_{3} C l\right]$ used for hydrogenation of alkenes are
A. Hydrogenation of oils
B. Hydrogenation of alkynes
C. Hydrogenation of alkenes
D. Polymerisation of alkenes

Answer: C

- Watch Video Solution

23. Coordination compounds have great importance in biological system. In this context which of the following statements is incorrect?
A. Chlorophylls are green pigments in plants and contain calcium.
B. Haemoglobin is the red pigment of blood and contains iron.
C. Cyanocobalamin is B_{12} and contains cobalt.
D. Carboxypeptidase-A is an enzyme and contains zinc.

Answer: A

1. An ambidentate ligand is one which
A. is linked to the metal atom at two points
B. has two donor atons but only one of them has the capacity to form a coordinate bond.
C. has two donor atoms but either of the two can form a co-ordinate bond
D. forms chelate rings

Answer: C
2. Which of the following is not a chelating agent :
A. Thiosulphato
B. Oxalato
C. Glycinato
D. Ethylene diamine

Answer: A

- Watch Video Solution

3. IUPAC name of $\mathrm{Na}\left[\mathrm{CoCl}\left(\mathrm{NO}_{2}\right)_{5}\right]$ is
A. Sodium chloropentanitrocobaltate (II)
B. Sodium cobaltnitrate
C. Trisodium chloropentanitro cobalt
D. Pentanitrocobalt (II) trisodium complex

Answer: A

- Watch Video Solution

4. The IUPAC name of Wilkinsons catalyst $\left[\mathrm{RhCl}\left(P \mathrm{Ph} h_{3}\right)_{3}\right]$ is
A. Chlorotris (triphenylphopshine) rhodium (I)
B. Chlorotris (triphenylphosphine) rhodium (IV)
C. Chlorotris (triphenylphosphine) rhodium (0)
D. Chlotrotris (triphenylphosphine) rhodium (VI)

D Watch Video Solution

5. IUPAC name $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}_{2}$ is
A. Nitrito-N-pentaanmmine cobalt (I)chloride
B. Nitrito-N-pentaammine cobalt (II) chloride
C. Pentaammine nitrito-N-cobalt (II) chloride
D. Pentaammine nitrito-N-cobalt (II)chloride

Answer: D

- Watch Video Solution

6. Both geometrical and optical isomerism are shown by
A. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
D. $\left[C r(\otimes)_{3}\right]^{3-}$

Answer: A

D Watch Video Solution

7. Which of the following is not optically active?
A. $\left[C o(e n)_{3}\right]^{3+}$
B. $\left[C r(\otimes)_{3}\right]^{3-}$
C. cis $-\left[\mathrm{CoCl}_{2}(e n)_{2}\right]^{+}$
D. trans $-\left[\mathrm{CoCl}_{2}(e n)_{2}\right]^{+}$

Answer: D

- Watch Video Solution

8. Cis-trans isomerism is found in square planar complexes of molecular formula: (a and b are monodentate ligands)
A. $M a_{4}$
B. $M a_{3} b$
C. $M a_{2} b_{2}$
D. $M a b_{3}$

Answer: C

- Watch Video Solution

9. Which of the following isomeric pairs shows ionization isomerism?
A.

$$
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right] \text { and }\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]
$$

B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2}$
C. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtCl}_{4}\right]$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$

List-I List-II
 (A) $\mathrm{Ti}^{+3} 1$ Charge transfer phenomenon
 (B) $\mathrm{MnO}_{4}^{-} \quad 2$ Impurities
 (C) $F_{2} 3$ s-stransition
 (D) Gems 4 d-d transition
 5 Excitation of electron

The correct match which is responsible for colour
A. A-4, B-1, C-2, D-5
B. $A-4, B-1, C-5, D-2$
C. A-4, B-5, C-1, D-2
D. $A-5, B-2, C-3, D-4$

Answer: B
11. Coordination number of Cr is three. A comlex ion of Cr with $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ end and superoxide ion, O_{2}^{-}has the fomula, $\left[\mathrm{Cr}\left(\mathrm{CO}_{2} \mathrm{O}_{4}\right)_{x}(e n)_{y}\left(\mathrm{O}_{2}\right)_{z}\right]^{-}$The ratio $x: y: z$ will be
A. 1:1:2
B. 1:1:1
C. 1:2:2
D. 2:1:1

Answer: A

- Watch Video Solution

12. The geometries of $N i(\mathrm{CO})_{4}$ and $N i\left(P P h_{3}\right)_{2} C l_{2}$ are.
A. both square planar
B. tetrahedral and square planar
C. both tetrahedral
D. square planar and tetrahedral

Answer: A::B::C::D

- Watch Video Solution

13. What are the magnetic moment (in BM) for $\mathrm{Ni}(\mathrm{II})$ ion in square planar and octahedral geometry, respectrively?
B. 2.83 and 2.83
C. 0 and 1.73
D. 2.83 and 0

Answer: A

D Watch Video Solution

14. A solution containing 2.675 g of $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}$ (molar mass $=267.5 \mathrm{gmol}^{-1}$) is passed through a cation exchanger. The chloride ions obtained is solution were treated with excess of AgNO_{3} to give 4.73 g of AgCl (molar mass $=143.5 \mathrm{gmol}^{-1}$). The formula of the complex is (At. mass of $\mathrm{Ag}=108 \mathrm{u}$)
A. $\left[\mathrm{CoCl}_{3}\left(\mathrm{NH}_{3}\right)_{5}\right]$
B. $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
D. $\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}$

Answer: C

- Watch Video Solution

15. The complex $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ has Structure :
A. square planar
B. tetrahedral
C. pyramidal
D. pentagonal

Answer: A

- Watch Video Solution

16. Crystal field stabilization energy for high spin d^{4} octahedral complex is
A. $0.6 \triangle_{0}$
B. $1.8 \triangle_{0}$
C. 1.6 \triangle_{0}
D. 1.2 \triangle_{0}

- Watch Video Solution

17. Which of the following is antidote for lead poisoinig ?
A. CoCl_{3}
B. Cis-platin
C. EDTA
D. DMG

Answer: C

- Watch Video Solution

18. EDTA is used for the estimation of
A. $N a^{+}$and K^{+}ions
B. Cl^{-}and Br^{-}ions
C. Cu^{2+} and Ag^{+}ions
D. Ca^{2+} and Mg^{2+} ions

Answer: D

- Watch Video Solution

19. Wilkinson's catalyst used as a homogenous catalyst In the hydrogenation of alkene contains-
A. iron
B. aluminium

C. rhodium

D. cobalt

Answer: C

- Watch Video Solution

20. Ziegler-Natta catalyst is
A. Solution of SnCl_{4} trialkylaluminium
B. Solution of TiCl_{4} trialkylaluminium
C. Solution of $\mathrm{TiCl}_{4}+$ trialkylchromium
D. Solution of $\mathrm{SnCl}_{4}+$ Tollen's reagent

- Watch Video Solution

Exercise 3

1. Which of the following will give a pair of enontiomorphs
?
$e n=\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{NO}_{2}$
B. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
C. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
D. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtCl} l_{6}\right]$

Answer: C
2. Which of the following is organometallic compound
A. $\mathrm{CH}_{3} \mathrm{MgBr}$
B. $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{~Pb}$
C. $\mathrm{CH}_{3} \mathrm{COONa}$
D. All of these

Answer: A

- Watch Video Solution

3. Which of the following complexes exhibits the highest paramagnetic behaviour?

(At. no. $T i=22, V=23, F e=26, C o=27$)
A. $\left[V(g l y)_{2}(O H)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
B. $\left[F e(e n)(b g y)\left(N H_{3}\right)_{2}\right]^{2+}$
C. $\left[\mathrm{Co}(\otimes)_{2}(O H)_{2}\right]$
D. $\left[T i\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

Answer: C

- Watch Video Solution

4. In which of the following coordination entities the magnitude of Δo (CFSE in ocetahedral field) will be maximum?
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[C o(C N)_{6}\right]^{3-}$
D. $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$

Answer: C

5. Assertion: $\left[C o F_{6}\right]^{3-}$ is a paramagnetic.

Reason: Co^{3+} has $3 \mathrm{~d}^{6}$ outer electronic configuration.
The unpaired electrons do not pair up because of weak field provided by F^{-}.
A. Both Assertion and Reason are true and Reason is the correct explanation of Assertion
B. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion
C. Assertion is true but Reason is false
D. Both Assertion and Reason are false

Answer: A

6. Which of the following does not show optical isomerism
?
A. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]^{0}$
C. $\left[\mathrm{Co}(e n) \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
D. $\left[C o(e n)_{3}\right]^{3+}$

Answer: B

- Watch Video Solution

7. Which of the following complex ions is expected to absorb visible light?
A. $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]^{3+}$
B. $\left[\mathrm{Ti}(e n)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{4+}$
C. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

Answer: C

- Watch Video Solution

8. Which of the following coordination entities should be expected to absorb light of lowest frequency?
A. $\left[C r(e n)_{3}\right]^{2+}$
B. $\left[\mathrm{CrCl} l_{6}\right]^{3-}$
C. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left.\left[C r(C N)_{6}\right)\right]^{3-}$

Answer: B

D Watch Video Solution

9. Assertion : CO and $C N^{-}$are referred as p acid L
ligands.
Reason : In CO and $C N^{-}$vacant p type orbitals are present.
A. Both Assertion and Reason are true and Reason is the correct explanation of Assertion
B. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion
C. Assertion is true but Reason is false
D. Both Assertion and Reason are false

Answer: A

- View Text Solution

10. Assertion : If β_{4} for $\left[\mathrm{Cu}\left(N H_{3}\right)_{4}\right]^{2+}$ is 2.1×10^{13} its instability constant is 4.76×10^{-14}.

Reason :Overall dissociation equilibrium constant varies inversely with formation constant.
A. Both Assertion and Reason are true and Reason is
the correct explanation of Assertion
B. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion
C. Assertion is true but Reason is false
D. Both Assertion and Reason are false

Answer: A

- Watch Video Solution

11. Assertion: $K_{4}\left[F e\left(C N_{6}\right]\right.$ is diamagnetic and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ is paramagnetic.

Reason: Hybridisation of central metal in
$K_{4}\left[F e(C N)_{6}\right]$ is $s p^{3} d^{2}, \quad$ which in $\left[F e\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ is $d^{2} s p^{3}$.
A. Both Assertion and Reason are true and Reason is the correct explanation of Assertion
B. Both Assertion and Reason are true but Reason is not the correct explanation of Assertion
C. Assertion is true but Reason is false
D. Both Assertion and Reason are false
12. What is (are) number (s) of unpaired electron(s) in the square planar $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}$ ion ?
A. Zero
B. 1
C. 4
D. 6

Answer: A

- Watch Video Solution

13. IUPAC name of $\left[F e(C N)_{6}\right]^{3-}$ ion is
A. hexacyanoferrate (II) ion
B. hexacyanoferrate (III) ion
C. hexacyanide iron (III) ion
D. iron (III) hexacyanide ion

Answer: B

- Watch Video Solution

14. Crystal field stabilization energy for high spin d^{4} octahedral complex is
A. $-0.6 D_{0}$
B. $-1.8 D_{0}$
C. $-1.6 D_{0}+P$
D. $-1.2 D_{0}$

Answer: A::C::D

D Watch Video Solution

15. The existence of two different coloured comlexes with the composition $\left|\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right|^{+}$is due to
A. Ionisation isomerism
B. Linkage isomerism
C. Geometrical isomerism
D. Coordination isomerism

Answer: A::C::D

D Watch Video Solution

16. Which of the following complex ion is not expected to absorb visible light?
A. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
B. $\left[N o(C N)_{4}\right]^{2-}$
C. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

- Watch Video Solution

17. AgCl dissolved in excess of $\mathrm{NH}_{3}, \mathrm{KCN}$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solutions the complex produces ions
A. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{2+},\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{+}\right.$and $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}$ 1
B.

$$
\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+},\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{3-} \text { and }\left[\mathrm{Ag}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{2-}
$$

C.

$$
\begin{aligned}
& {\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+},\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{3-} \text { and }\left[\mathrm{Ag}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{2-} } \\
\text { D. } & {\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+},\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-} \text {and }\left[\mathrm{Ag}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-} }
\end{aligned}
$$

- Watch Video Solution

18. The most stable complex among the following
A. $\left[P d(C N)_{4}\right]^{4-}$
B. $\left[\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]\right.$
C. $\left[\left[N i(C N)_{4}\right]^{4-}\right.$
D. $\left[N i(C N)_{4}\right]^{3-}$

Answer: B

D View Text Solution

19. Choose the correct statement
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is oxidised to diamagnetic

$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ by the oxygen in air

B. Tetrhadral complexes are more stable than octahedral complexes
C. $\left[F e(C N)_{6}\right]^{3-}$ is stable but $\left[F e F_{6}\right]^{3-}$ is unstable
D. The $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ ion has a tetrahedral geometry and is dramagnetic X

Answer: A

- View Text Solution

20. In the complex ion $\left.\left.[\mathrm{CoNH})_{3}\right)_{6}\right]^{3+}$, the NH_{3} molecules are linked to the central metal ion by
A. ionic bonds
B. covalent bonds
C. coordinate bonds
D. hydrogen bonds

Answer: C

- Watch Video Solution

21. The d-electron configurations of $\mathrm{Cr}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}$ and $C o^{2+}$ are d^{4}, d^{5}, d^{6} and d^{7} respectively. Which one of the following will exhibit minimum paramagnetic behavious?
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: D

D Watch Video Solution

22. Of the following complex ions, which is diamagnetic in natures?
A. $\left[\mathrm{CoF}_{6}\right]^{3-}$
B. $\left[N i C l_{4}\right]^{2-}$
C. $\left[N i(C N)_{4}\right]^{2-}$
D. $\left[\mathrm{CuCl}_{2}\right]^{2-}$

Answer: C

- Watch Video Solution

23.

The
comlexes
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ are the examples of which type of isomerism?
A. Geometrical isomerism
B. Linkage isomerism
C. Ionisation isomerism
D. Coordination isomerism

- Watch Video Solution

24. The complex, $\left[\mathrm{Pt}(\mathrm{py})\left(\mathrm{NH}_{3}\right) \mathrm{BrCl}\right]$ will have how many geometrical isomers?
A. 2
B. 3
C. 4
D. 0

Answer: B

- Watch Video Solution

25. From four transition metal octahedral complexes, (the choice given below) low spin electronic configuration arises only for
A. d^{1} to d^{3} complexes
B. d^{4} to d^{7} complexes
C. d^{7} to d^{9} complexes
D. d^{7} to d^{0} complexes

Answer: B

- Watch Video Solution

26. Which one of the following is an outer orbital complex and exhibits paramagnetic behaviour?
A. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

Answer: B::C::D

- Watch Video Solution

27. A magnetic moment of 1.73 B.M. will be shown by one among the following:
A. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}$
B. $\left[N i(C N)_{4}\right]^{-2}$
C. TiCl_{4}
D. $\left[\mathrm{CoCl}_{6}\right]^{-4}$

Answer: A

- Watch Video Solution

28. Among the following complexes, the one which shows zero crystal field stabilization energy (CFSE) is
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: C

- Watch Video Solution

29. The name of complex ion, $\left[\mathrm{Fe}\left(\mathrm{CN}_{6}\right)\right]^{3-}$ is
A. Tricyanoferrate (III) ion
B. Hexacyanoferrate (III) ion
C. Hexacyanoiron (III) ion
D. Hexacyanitoferrate (III) ion

D Watch Video Solution

30. The hybridization involved in complex $\left[N i(C N)_{4}\right]^{2-}$ is $(A t . N o . N i=28)$
A. $d^{2} s p^{2}$
B. $d^{2} s p^{3}$
C. $d s p^{2}$
D. $s p^{3}$

Answer: C

- Watch Video Solution

31. The sum of coordination number and oxidation number of the metal M in the complex $\left[M(e n)_{2}\left(C_{2} O_{4}\right)\right] C l$ (where en is ethylenediamine) is:
A. 7
B. 8
C. 9
D. 6

Answer: C

32. Number of possible isomer for the complex $\left[C o(e n)_{2} C I_{2}\right] C I$ will be: (em = ethylenediamine)
A. 3
B. 4
C. 2
D. 1

Answer: A

- Watch Video Solution

33. Cobalt (III) chloride forms several octahedral complexes with amonia. Which of the following will not
give test for chloride ions with silver nitrate at $25^{\circ} \mathrm{C}$?

A. $\mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}$

B. $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}$
C. $\mathrm{CoCl}_{3} .3 \mathrm{NH}_{3}$
D. $\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$

Answer: C

D Watch Video Solution

34. Which of the following has longest $\left[\mathrm{CO}(\mathrm{CN})_{6}\right]^{3-}$ bond length?
A. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has four unpaired electrons and will be in a high-spin configuration
B. $\left[C o(C N)_{6}\right]^{3-}$ has four no unpaired electrons and
will be in a high-spin configuration
C. $\left[C o(C N)_{6}\right]^{3-}$ has four unpaired electrons and will be in a low-spin configuration
D. $\left[C o(C N)_{6}\right]^{3-}$ has four unpaired electrons and will be in a low-spin configuration

Answer: C

35. Which of the following has longest $C-O$ bond length? (Free $C-O$ bond length in CO is $1.128 \AA$).
A. $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$
B. $\mathrm{Ni}(\mathrm{CO})_{4}$
C. $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$
D. $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$

Answer: D

- Watch Video Solution

36. The correct increasing order of trans-effect of the following species is
A. d^{9}
B. d^{7}
C. d^{8}
D. d^{4}

Answer: C

D Watch Video Solution

37. Jahn - Teller effect is not observed in high spin complexes of
A. $K\left[A l F_{3} H\right]$
B. $K_{3}\left[A l F_{3} H_{3}\right]$
C. $K_{3}\left[A l F_{6}\right]$
D. AlH_{3}

Answer: C

- Watch Video Solution

38. $A I F_{3}$ is soluble in $H F$ only in presence of $K F$. It is due to the formation of

- Watch Video Solution

1. One mole of complex compound $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}_{3}$ gives 3 moles of ions on dissolution in water. One mole of same complex reacts with two moles of $A g N O_{3}$ to yield two moles of $A g C l(s)$. The complex is:
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\right] \mathrm{Cl}_{2} . \mathrm{NH}_{3}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right] 2 . \mathrm{NH}_{3}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} . \mathrm{NH}_{3}$

Answer: B

- Watch Video Solution

2. The primary and secondary valencies of chromium in the complex ion, dichlotodioxalatochromoium (III), are respectrively
A. 3,4
B. 4,3
C. 3,6
D. 6,3

Answer: C

- Watch Video Solution

3. In the complex with formula $\mathrm{MCl}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ the coordination number of the metal M is six. And there is a no molecule of hydration in it. The volume of 0.1 M AgNO 3 solution needed to precitate the free chloride ions in 200 ml of 0.01 M solution of the complex is
A. 40 ml
B. 20 ml
C. 60 ml
D. 80 ml

Answer: B

- Watch Video Solution

4. The molar ionic conductances of octahedral complexes.
(I) $\mathrm{PtCl}_{4} \cdot 5 \mathrm{NH}_{3}$
(II) $\mathrm{PtCl}_{4} \cdot 4 \mathrm{NH}_{3}$
(III) $\mathrm{PtCl}_{4} \cdot 3 \mathrm{NH}_{3}$
(IV) $\mathrm{PtCl}_{4} \cdot 2 \mathrm{NH}_{3}$
A. $I<I I I<I V$
B. $I V<I I I<I I<I$
C. $I I I<I V<I I<I$
D. $I V<I I I<I<I I I$

Answer: B

- Watch Video Solution

5. The coordination number of a central metal atom in a complex is determined by:
A. the number of ligands around a metal ion bonded
by sigma bonds
B. the number of ligands arounda metal ion bonded by
π-bonds
C. the number ofligands around a metal ion bounded by sigma and pi bonds both.
D. the number of only anionic ligands bonded to the metal ion.

Answer: A

6. Among the following which are ambidentate ligands?
(a) NO_{2}^{-}(b) NO_{3}^{-}(c) $E D T A^{+}$
(d) $\mathrm{C}_{2} \mathrm{O}_{4}^{2+}$ (e) SCN^{-}(f) $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
A. a and b
B. c and d
C. a and f
D. a and e

Answer: D

7. The number of donor sites in dimethyl glyoxime, glycinato, diethylene triamine and $E D T A$ are respectively
(a) 2, 2, 3 and 4
(b) 2, 2, 3 and 6
(c) 2, 2, 2 and 6
(d) $2,3,3$ and 6 .
A. 2,2,3 and 6
B. 2,2,3 and 4
C. 2,2,2 and 6
D. 2,3,3 and 6

Answer: A

8. The IUPAC name of the coordination compound $K_{3}\left[F e(C N)_{6}\right]$ is:
A. potassium hexacyanoferrate (II)
B. potassium hexacyanoferrate (III)
C. potassium hexacyanoiron (II)
D. tripotassium hexacyanoiron (II)

Answer: B

- Watch Video Solution

9. Which one of the following has largest number of isomers?
A. $\left[R u\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$
C. $\left[\operatorname{Ir}\left(P h_{3}\right)_{2} H(C O)\right]^{2+}$
D. $\left[\mathrm{Co}(e n)_{2} C l_{2}\right]$

Answer: D

- Watch Video Solution

10. Which of the following compounds shows optical isomerism?
A. $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
B. $\left[C o(C N)_{6}\right]^{3-}$
C. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
D. $\left[\mathrm{ZnCl}_{4}\right]^{2-}$

Answer: A

- Watch Video Solution

11. In which of the following pairs both the complexes do not show optical isomerism?

$$
\begin{aligned}
& \text { A. } \mathrm{cis}-\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2} \mathrm{Cl}_{2}\right]^{-3} \operatorname{trans-}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \\
& \text { B. }\left[\mathrm{Co}(e n)_{3}\right] \mathrm{Cl}_{3}, \mathrm{Cis}-\left[\mathrm{Co}(e n)_{2} \mathrm{Cl} l_{2}\right] \mathrm{Cl} \\
& \text { C. }\left[\mathrm{PtCl}_{2}(e n)\right],\left[\mathrm{NiCl}_{2} \mathrm{Br}_{2}\right]^{-2} \\
& \text { D. }\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right], \mathrm{cis}-\left[\mathrm{Pt}(e n)_{2} \mathrm{Cl}_{2}\right]
\end{aligned}
$$

Answer: C

- Watch Video Solution

12. Of the following, the optical isomers are

(III)

(IV)
A. I and II

B. I and III

C. II and IV
D. II and III

Answer: C

D View Text Solution

13. Which kind of isomerism is shown by $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br} r_{2} \mathrm{Cl}$
?
A. Optical and isomerism
B. Geometrical and optical
C. Geometrical and ionisation

D. Only geometrical

Answer: C

- Watch Video Solution

14. Which of the following does not have optical isomer
A. $\left[C o(e n)_{3}\right] C l_{3}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
C. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
D. $\left[\mathrm{Co}(e n)\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$

Answer: B
15. The complex $K_{3}\left[F e(C N)_{6}\right]$ should have a spin only magentic of
A. $\sqrt{48} B M$
B. $2 \sqrt{5} B M$
C. $\sqrt{35} B M$
D. 6 BM

Answer: C

- Watch Video Solution

16. Which of the following complex is an outer orbital complex?
A. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
B. $\left[M n(C N)_{6}\right]^{4-}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

Answer: D

- Watch Video Solution

17. The correct order of magnetic moments (spin values in
B.M.) among is:
A. $\left[\mathrm{MnCl}_{4}\right]^{2-}>\left[\mathrm{CoCl}_{4}\right]^{2-}>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
B. $\left[\mathrm{MnCl}_{4}\right]^{2-}>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}>\left[\mathrm{CoCl}_{4}\right]^{2-}$
C. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}>\left[\mathrm{MnCl}_{4}\right]^{2-}>\left[\mathrm{CoCl}_{4}\right]^{2-}$
D. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}>\left[\mathrm{CoCl}_{4}\right]^{2-}>\left[\mathrm{MnCl}_{4}\right]^{2-}$

Answer: B

- Watch Video Solution

18. Which one of the cyano complexes would exhibit the lowest value of para magnetic behaviour ?
(At. No. $\mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27$)
A. $\left[F e(C N)_{6}\right]^{3-}$
B. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
c. $\left[C r(C N)_{6}\right]^{3-}$
D. $\left[M n(C N)_{6}\right]^{3-}$

Answer: B

- Watch Video Solution

19. Which of the following statements is not correct?
A. The complexes $\left[N i C l_{4}\right]^{2-}$ and $\left[N i(C N)_{4}\right]^{2-}$
differ in their magnetic properties
B. The complexes $\left[\mathrm{Ni}(\mathrm{Cl})_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ differ in the state of hybridisation of nickel.
C. The complex $\left[\mathrm{Ni}(\mathrm{Cl})_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ differ in geometry.
D. The complexes $\left[\mathrm{Ni}(\mathrm{Cl})_{4}\right]^{-2}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ differ in primary valancies of nickel.

Answer: D

D Watch Video Solution

20. The species having tetrahedral shape is
A. $\left[P d C l_{4}\right]^{2-}$
B. $\left[N i(C N)_{4}\right]^{2-}$
C. $\left[\operatorname{Pd}\left(C N_{4}\right]^{2-}\right.$
D. $\left[\mathrm{NiCl}_{4}\right]^{2-}$

Answer: D

- Watch Video Solution

21. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-},\left[\mathrm{MnBr}_{4}\right]^{2-}$ and $\left[\mathrm{FeF}_{6}\right]^{3-}$. Geometry, hybridisation and magnetle moment of the ions respectively are
A. Tetrahedral ,square planar, octabedral:
$s p^{3}, d s p^{2}, s p^{3} d^{2}: 5.9,0,4.9$
B. Tetrahedral ,square planar, octahedral:
$d s p^{2}, s p^{3}, s p^{3} d^{2}: 0,5.9,4.9$
C. Square planar, tetra

$$
d s p^{2}, s p^{3}, d^{2} s p^{3}: 5,9,4.9,0
$$

D. Square planar, tetrahedral ,octahedral:

$$
d s p^{2}, s p^{3}, s p^{2} d^{2}: 0,5.9,4.9
$$

Answer: D

D View Text Solution

22. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ (at no. of $\mathrm{Cr}=24$) has a magnetic moment of $3.83 B . M$. The correct distribution of $3 d$ electrons the chromium of the complex.
A. $3 d_{x y}^{1}, 3 d_{y z}^{1}, 3 d_{z x}^{1}$
B. $3 d_{x y}^{1}, 3 d_{x y}^{1}, 3 d_{z^{2}}^{1}$
C. $3 d_{\left(x^{2}-y^{2}\right)^{1}, 3 d_{z^{2}}^{1}, 3 d_{x z}^{1}}$
D. $3 d_{x y}^{1}, 3 d_{\left(x^{2}-y^{2}\right)^{1}, 3 d_{y z}^{1}}$

Answer: A

D Watch Video Solution

23. In which of the following octahedral complexes will the magnitude of \triangle_{0} be the highest
A. $\left[C o(C N)_{6}\right]^{3-}$
B. $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

Answer: A

- Watch Video Solution

24. Which of the following is a correct Irving-Williams order? (Tendency of complex formation)
A. $\mathrm{Mn}^{1+}<\mathrm{Fe}^{2+}<\mathrm{Co}^{2+}<\mathrm{Ni}^{2+}$
B. $\mathrm{Ni}^{2+}<\mathrm{Co}^{2+}<\mathrm{Fe}^{2+}<\mathrm{Mn}^{2+}$
C. $\mathrm{Fe}^{2+}<\mathrm{Mn}^{2+}<\mathrm{Ni}^{2+}<\mathrm{Co}^{2+}$
D. $\mathrm{Co}^{2+}<\mathrm{Mn}^{2+}<\mathrm{Fe}^{2+}<\mathrm{Ni}^{2+}$

Answer: A
25. Which of the following order is correct in spectrochemical series of ligands?

$$
\begin{aligned}
& \text { A. } \mathrm{Cl}^{-}<\mathrm{F}^{-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{NO}_{2}^{2-}<\mathrm{CN}^{-} \\
& \text {B. } \mathrm{CN}^{-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{Cl}^{-}<\mathrm{NO}_{2}^{-}<\mathrm{F}^{-} \\
& \text {C. } \mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{F}^{-}<\mathrm{Cl}^{-}<\mathrm{NO}_{2}^{-}<\mathrm{CN}^{-} \\
& \text {D. } \mathrm{F}^{-}<\mathrm{Cl}^{-}<\mathrm{NO}_{2}^{-}<\mathrm{CN}^{-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}
\end{aligned}
$$

Answer: A

- Watch Video Solution

26. Which of the following ligands is calles π - acceptors?
$\mathrm{CO} \mathrm{CN}^{-} \quad \mathrm{NO}^{+}$
(I) (II) (III)
A. $I, I I, I I I$
B. I,I only
C. I, III only
D. III only

Answer: A

D Watch Video Solution

27. In $\mathrm{Fe}(\mathrm{CO})_{5}$. the $\mathrm{Fe}-\mathrm{C}$ bond possesses

D Watch Video Solution
28. Which is a low spin complex?
A. $\left[F e(C N)_{6}\right]^{3-}$
B. $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]^{3-}$
C. $\left[M n(C N)_{6}\right]^{3-}$
D. All of these

Answer: D

- Watch Video Solution

29. Aqueous solution of Ni^{2+} contains $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and its magnetic moment is 2.83 B.M. When ammonia is added in it, the predicted change in the magnetic moment of solution is:
A. It will remain same
B. It increases from 2.83 B.M.
C. It decreases from 2.83 B.M.
D. It can not be predicted theoretically.

Answer: A

D Watch Video Solution

30. Which of the following complexes is a paramagnetic complex?
A. $K_{2}\left[N i(C N)_{4}\right]$
B. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{2}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
D. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$

Answer: B

- Watch Video Solution

31. Which of the following are paramagnetic?
A. $K_{4}\left[F e(C N)_{6}\right]$
B. $K_{3}\left[C r(C N)_{6}\right]$
C. $K_{3}\left[C o\left(C N_{6}\right]\right.$
D. $K_{2}\left[N i(C N)_{4}\right]$

Answer: B
32. Which of the following pairs of d-electron configuration exhibit both low and high spin tetrahedral complex
A. d^{1}, d^{2}
B. d^{3}, d^{4}
C. d^{7}, d^{8}
D. d^{9}, d^{10}

Answer: B
33. Assign the hybridisation, shape and magnetic moment of $K_{2}\left[C u(C N)_{4}\right]$
A. $s p^{3}$ tetrahedral, 1.73 BM
B. $d s p^{2}$ square planar, 1.73 BM
C. $s p^{3}$ tetrahedral, 2.8 BM
D. $d s p^{2}$, square planar, 2.8 BM

Answer: B

- Watch Video Solution

34. Which of the following is most stable.
A. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[F e(C N)_{6}\right]^{3-}$
C. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
D. $\left[F e C l_{6}\right]^{3-}$

Answer: C

D View Text Solution

35. Valence bond theory successfully explains the magnetic behaviour of complexes. The substances which contains unpaired electrons. and paramagnetic character increases as the mumber of unpaired electrons increases.

Magnetic moment of a complex can be determined experimentally and by using formula $\sqrt{n(n+2)}$ and we can determine the number of unpaired electrons in it. This
information is important in writing the electronic structure of complex which in turm is also useful in deciding the geometry of complex.

The magnetic moments (spin only) of $\left[\mathrm{NiCl}_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ are:
A. 0,0
B. 2.82 B.M., 2.82 B.M.
C. 0,2.82 B.M.
D. 2.82 B.M., 0

Answer: D

36. There are four complexes of Ni. Select the complexes/es which will be attracted by magnetic field :
(I) $\left[N i(C N)_{4}\right]^{2-}$
(II) $\left[\mathrm{NiCl}_{4}\right]^{2-}$
(III) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
$\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
(IV)
A. I only
B. I and IV
C. II, III and IV
D. II and IV

Answer: D

- Watch Video Solution

37. The magnetic moment of complex given below are in the order:
(I) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(II) $\left[M n(C N)_{6}\right]^{4-}$
(III) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(IV) $\left[\mathrm{CoF}_{6}\right]^{3-}$
A. $I>I I>I I I>I V$
B. $I<I I<I I I<I V$
C. $I V>I I>I>I I I$
D. $I V<I I<I<I I I$

Answer: B
38. The magnetic moments of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ was found to be 1.73 B.M. The number of unpaired electrons in the complex is:
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

39. When two or more simple salts are mixed in stoichiometric proportions and allowed to crystallised together, crystals of new compounds are formed. The new compound is known as addition compound.

The addition compound is a
A. double salt only
B. coordination compound only
C. either double salt or coordination compound
D. mixture of two salts

Answer: C

D View Text Solution

40. Mohr's salt on dissociation in water gives
A. positive test for $F e^{2+}$
B. positive test for Fe^{2+} and SO_{4}^{2-}
C. positive test for $\mathrm{Fe}^{3+}, \mathrm{SO}_{4}^{2-}$ and NH_{4}^{\oplus}
D. positive test for $\mathrm{Fe}^{2+}, \mathrm{NH}_{4}^{+}$and SO_{4}^{2-}

Answer: D

- View Text Solution

41. Complex compound is made up of
A. simple cation and complex anion
B. complex cation and simple anion
C. complex cation and complex anion
D. all of these

Answer: D

- View Text Solution

42. When degenerate d-orbitals of an isolated atom/ion come under influence of magnetic field of ligands, the degeneray is lost. The two set
$t_{2 g}\left(d_{x y}, d_{y z}, d_{x z}\right)$ and $e_{g}\left(d_{x^{2}}-d_{x^{2}-y^{2}} \quad\right.$ are either
stabilized or destabilized depending upon the nature of magnetic field. it can be expressed diagrammatically as:

Value of CFSE depends upon nature of ligand and a spectrochemical series has been made experimentally, for tetrahedral complexes, Δ is about $4 / 9$ times to Δ_{0} (CFSE for octahedral complex). this energy lies in visible region and i.e., why electronic transition are responsible for colour. such transition are not possible with d^{0} and d^{10} configuration.
Q. The extent of crystal field splitting in octahedral complexes of the given metal with particular weak field ligand are:
A. the nature of the metal cation
B. nature of the ligands
C. geometry of the complex
D. all of these

Answer: D

- Watch Video Solution

43. The reducing power of the metal decreases in the order:
A. $\mathrm{CN}^{-}>\mathrm{NO}_{2}^{-}>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CN}^{-}>\mathrm{NH}_{3}>\mathrm{NO}_{2}^{-}>\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{NH}_{3}>\mathrm{CN}^{-}>\mathrm{NO}_{2}^{-}>\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}>\mathrm{NO}_{2}^{-}>\mathrm{CN}^{-}$

Answer: A

D Watch Video Solution

44. Which of these species has same number of unpaired electrons with weak field as well as with strong field ligands.
A. $T i^{2+}$
B. $C r^{3+}$
C. $N i^{2+}$
D. All of these

Answer: D
45. Why are low spin tetrahedral complexes not formed ?
A. For tetrahedral complexes, the CFSE is lower than pairing energy
B. For tetrahedral complexes, the CFSE is higher than
pairing energy.
C. Electrons do not to in case of tetrahedral complexes
D. Tetrahedral complexes are formned by weak field
ligands only

Answer: A

46. Value of CFSE, in tetrahedral complex having $3 d^{4}$ configuration of metal lon, surrounded by weak field
ligands. will be
A. $-\frac{2}{5} \triangle_{t}$
B. $+\frac{2}{5} \triangle_{t}$
C. $-\frac{4}{5} \triangle_{t}$
D. $+\frac{3}{5} \triangle_{t}$

Answer: A

- Watch Video Solution

47. The non -existant metal carbonyl among the following is ${ }^{`}$
A. $\mathrm{Cr}(\mathrm{CO})_{6}$
B. $\mathrm{Mn}(\mathrm{CO})_{5}$
C. $\mathrm{Ni}(\mathrm{CO})_{4}$
D. $\mathrm{Fe}(\mathrm{CO})_{5}$

Answer: A::B::C

- Watch Video Solution

48. The π - bounded organometallic compound which has
ethylene as one of its component is
A. Zeise's salt
B. ferrocene
C. dibenzene chromium
D. tetraethyl tin

Answer: A

D Watch Video Solution

49. If X^{\prime} is a Anti cancerous drug which of the following conversions will give ' X '
A. $\left.\left[P t C l_{4}\right)\right]^{2-} \xrightarrow{N H_{3}} Y \xrightarrow{N H_{3}} X$
B. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \xrightarrow{\mathrm{Cl}^{-}} Y \xrightarrow{\mathrm{Cl}^{-}} X$
C. $\left[P t\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \xrightarrow{\text { Acid }} Y \xrightarrow{\text { Alkali }} X$
D. $\operatorname{cis}\left[P t\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{2}\right]^{2+} \xrightarrow{\text { Acid }} Y \xrightarrow{\text { Alkali }} X$

Answer: A::B::C::D

- View Text Solution

50. Which of the following configuration will not give Johnteller distortion (In both HS \& LS complexes) ?
A. d^{8}
B. d^{7}
C. d^{6}
D. d^{4}

Answer: A

- Watch Video Solution

51. Which of the following does not have a metal carbon bond?
A. $\mathrm{Al}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right]_{3}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}$
C. $K\left[P t\left(C_{2} H_{4}\right) C l_{3}[\right.$
D. $\mathrm{Ni}(\mathrm{CO})_{4}$

Answer: A
52. $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$ a blue coloured complex. Average oxidation number of Fe in $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$ is 'a', oxidation number of central iron atom 'b', oxidation number of counter iron atom ' c ', $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are respectively:
A. $+\frac{5}{2},+2,+3$
B. $+\frac{5}{2},+3,+2$
C. $+\frac{18}{7},+2,+3$
D. $+\frac{18}{7},+3,+2$

Answer: A

- Watch Video Solution

53. Magnetic moment (spin only) of octahedron complex having SFSE=-0.8 Δ_{0} and surrounded by weak field ligands can be:
A. 4.9 B.M.
B. 3.87 B.M.
C. 5.91 B.M.
D. 0

Answer: A

- Watch Video Solution

54. Given that maximum absorption for d-d transition in $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ occurs at $20300 \mathrm{~cm}^{-1}$ predict where the peak (d-d transition) will occur for $\left[T i(C N)_{6}\right]^{3-}$ and $\left[T i(C I)_{6}\right]^{3-}$ respectively:
A. $2300 \mathrm{~cm}^{-1}, 32000 \mathrm{~cm}^{-1}$
B. $18000 \mathrm{~cm}^{-1}, 21300 \mathrm{~cm}^{-1}$
C. $23000 \mathrm{~cm}^{-1}, 17300 \mathrm{~cm}^{-1}$
D. $18000 \mathrm{~cm}^{-1}, 17300 \mathrm{~cm}^{-1}$

Answer: A

- Watch Video Solution

55. The CFSE for octahedral $\left[\mathrm{CoCl}_{6}\right]^{4-}$ is $18,000 \mathrm{~cm}^{-1}$. The CFSE for tetrahedral $\left[\mathrm{CoCl}_{4}\right]^{2-}$ will be
A. $18,000 \mathrm{~cm}^{-1}$
B. $16,000 \mathrm{~cm}^{-1}$
C. $8,000 \mathrm{~cm}^{-1}$
D. $20,000 \mathrm{~cm}^{-1}$

Answer: C

- Watch Video Solution

56. Which of the following ion does not exist
A. $\left[C u I_{4}\right]^{2-}$
B. $V O_{4}^{3-}$
C. $W P_{4}^{2-}$
D. CrO_{4}^{2-}

Answer: A

D View Text Solution

57. Low spin complex of d^{6}-cation in an octahedral field will have the following energy:

$$
\begin{aligned}
& \text { A. }-\frac{2}{5} \triangle_{0}+2 P \\
& \text { B. }-\frac{2}{5} \triangle_{0}+P \\
& \text { C. } \frac{-12}{5} \triangle_{0}+P
\end{aligned}
$$

D. $\frac{-12}{5} \triangle_{0}+3 P$

Answer: D

- Watch Video Solution

58. Which of the following complex (Werner presentation)
have minimum electrical conductance in aqueous solution

Answer: D

D View Text Solution

59. Which of the following octahedral complexes shown geometrical as well as optical isomerism

C. $\left[\left(\int_{0}\right) t^{\mathrm{M}}\right]^{ \pm n}$
D. None

Answer: C

- View Text Solution

60. The coordination number of Fe in $\left[\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$
is $2 x$. Then x will be
A. 2
B. 1
C. 5
D. 6

Answer: C

- Watch Video Solution

