©゙doubtnut

India's Number 1 Education App

PHYSICS

FOR IIT JEE ASPIRANTS OF CLASS 12
 FOR PHYSICS

ALTERNATING CURRENT

Example

1. You have two copper cables of equal length
for carrying current. One of them has a single
wire of area of across section A, the other has
ten wires each of cross section area $A / 10$. Judge their suitability for transporting $a c$ and $d c$.

D Watch Video Solution

2. If the voltage in an ac circuit is represented by the equation.
$V=220 \sqrt{2} \sin (314 t-\phi)$ volt calculate (a) peak and rms value of the voltage, (b) average voltage, (c) frequency of $a c$.
3. A current is made of two components a dc component $i_{1}=3 A$ and an ac component $i_{2}=4 \sqrt{2} \sin \omega t$. Find the reading of hot wire ammeter?

D Watch Video Solution

4. If a direct current of value a ampere is superimposed on an alternating current
$1=b \sin \omega t$ flowing through a wire, what is the
effective value of the resulting current in the circuit?

D Watch Video Solution
5. Use a phasor diagram to represent the sine waves in the following Figure.

- Watch Video Solution

6. An alternating voltage $E=200 \sqrt{2} \sin (100 t) V$ is connected to a $1 \mu \mathrm{~F}$ capacitor through an ac ammeter (it reads rms value). What will be the reading of he ammeter?
7. Find the maximum value of current when inductance of two henry is connected to 150 volt, 50 cycle supply.

D Watch Video Solution

8. An inductor of 1 henry is connected across a
$220 \mathrm{v}, 50 \mathrm{~Hz}$ supply. The peak value of the current is approximately.

9. A capacitor of capacitance $2 \mu \mathrm{~F}$ is connected

in the tank circuit of an oscillator oscillating
with a frequency of 1 kHz . If the current flowing
in the circuit is $2 m A$, the voltage across the capacitor will be

- Watch Video Solution

10. A 0.21 H inductor and a 12 ohm resistance are
connected in series to a 220 V .50 Hz ac source.
Calculate the current in the circuit and the
phase angle between the current and the source voltage.

- Watch Video Solution

11. When 100 voltdc is applied across a coil, a current of 1 amp flows through it, when 100 V ac of 50 Hz is applied to the same coil, only 0.5 amp flows. Calculate the resistance and inductance of the coil.
12. A $10 \mu \mathrm{~g}$ capacitor is in series with a 50Ω resistance and the combination is connected to
a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ line. Calculate (i) the capactive reactance, (ii) the impedance of the circuit and
(iii) the current in the circuit.

D Watch Video Solution

13. A coil has an inductance of 0.7 H and is
joined in series with a resistance of 220 ohm.
Find the wattless component of current in the
circuit, when an alternating e.m.f. of 220 V at a frequency of 50 Hz is supplied to it.

D Watch Video Solution

14. In a circuit L, C and R are connected in series with an alternating voltage source of frequency f. The current lead the voltages by 45°. The value of C is :

D Watch Video Solution

15. In a series LCR circuit, the voltage across the resistance, capacitance and inductance is 10 V each. If the capacitance is short circuited, the voltage across the inductance will be

- Watch Video Solution

16. An inductance of $\frac{200}{\pi} m H$ a capacitance of
10^{-3}
and a resistance of 10Ω are connected in π
series with an $A C$ source of $220 \mathrm{~V}, 50 \mathrm{~Hz}$. The phase angle of the circuit is
17. In a series LCR circuit $R=200(\Omega)$ and the voltage and the frequency of the main supply is 220 V and 50 Hz respectively. On taking out the capacitance from the circuit the current lags behind the voltage by $30\left({ }^{\circ}\right)$. On taking out the inductor from the circuit the current leads the voltage by $30\left({ }^{\circ}\right)$. The power dissipated in the LCR circuit is
18. An $L C R$ circuit has $L=10 \mathrm{mH} . R=3$ ohm
and $C=1 \mu F$ connected in series to a source is
$15 \cos \omega t$ volt. What is average power dissipated per cycle at a frequency that is 10% lower than the resonant requency?

D Watch Video Solution

19. A $750 \mathrm{~Hz}, 20 \mathrm{~V}$ source is connected to as resistance of 100Ω an inductance of $0.1803 H$ and a capacitance of $10 \mu \mathrm{~F}$ all in sereis.Calculate the time in which the resistance
(thermalcapacity $2 \mathrm{~J} / .^{\circ} \mathrm{C}$) wil get heated by $10{ }^{\circ} \mathrm{C}$.

- Watch Video Solution

20. An ideal choke coil takes a current fo 8 ampere when connected to an $A C$ supply of 100 volt and 50 Hz . A pure resistor under the same conditions takes a current of 10 ampere.

If the two are connected to an $A C$ supply of 150
volts and 40 Hz then the current in a series
combination of the above resistor and inductor

(D) Watch Video Solution

21. An electric bulb has a rated power of 50 W at 100 V . If it is used on $A C$ source of $200 \mathrm{~V}, 50 \mathrm{~Hz}$, a choke has to be used in series with it. This choke should have an inductance of

- Watch Video Solution

22. A transformer having efficiency 90% is working on 100 V and at 2.0 kW power. If the
current in the seconary coil is $5 A$, calculate (i)
the current in the primary coil and (ii) voltage across the secondary coil.

D Watch Video Solution

23. A step up transformer operates on a 230 V line and a load current of 2 ampere. The ratio of the primary and secondary windings is $1: 25$. What is the current in the primary?

D Watch Video Solution

1. In an ac circuit the current
A. is in phase with the voltage
B. leads the voltage
C. lags the voltage
D. any of the above depending on the

circumstances

Answer: D

2. The average emf during the positive half cycle of an ac supply of peak value E_{0} is .
A. E_{0} / π
B. $E_{0} / \sqrt{2}$
C. $E_{0} / 2 \pi$
D. $2 E_{0} / \pi$

Answer: 4
3. Alternating current is transmitted to distant places at
A. high voltage and low current
B. high voltage and high current
C. low voltage and low current
D. low voltage and high current

Answer: 1

4. In case of a.c circuit, Ohm's law holds good
for
a) Peak values of voltage and current
b) Effective values of voltage and current
c) Instantaneous values of voltage and current
A. only a is true
B. only a and b are true
C. only c is true
D. a,b and c are true

- Watch Video Solution

5. In case of $A C$ circuits the relation $V=i Z$, where Z is impedance, can directly applied to
A. peak value of voltage and current only
B. rms values of voltage and current only
C. instantaneous value of voltage and current only

D. both 1 and 2 are true

- Watch Video Solution

6. Alternating current can not be measured by
D.C. Ammeter because
A. alternating current can not pass through an ammeter
B. the average value of current for complete
cycle is zero
C. some amount of alternating current is
destroyed in the ammeter

D. peak value of current is zero

Answer: 2

D Watch Video Solution

7. The r.m.s value of Potential due to superposition of given two alternating potentials $E_{1}=E_{0} \sin \omega t$ and $E_{2}=E_{0} \cos \omega t$ will be
A. E_{0}
B. $2 E_{0}$
C. $E_{0} \sqrt{2}$

D. Zero

Answer: 1

D Watch Video Solution

8. If the instantaneous current in a circuit is given by $i=2 \cos (\omega t-\phi)$ ampere, the r.m.s. value of the current is
A. 2
B. $\sqrt{2}$
C. $2 \sqrt{2}$

D. zero

Answer: 2

D Watch Video Solution

9. If a capacitor is connected to two different
A. C generators, then the value of capactive reactance is
A. directly protortional frequency
B. inversely proportional to frequency
C. independent of frequency

D. inversely protortional to the square of

frequency

Answer: 2

(D) Watch Video Solution

10. In general in an alternating current circuit
A. the average value of current is zero
B. the average value of square of the
current is zero
C. average power dissipation is zero
D. the phase difference between voltage
and current is zero

Answer: 1

D Watch Video Solution
11. The magnitude inducted e.m.f. in an $L R$ circuit at brea of circuit as compared to its value at make of circuit will be
A. less
B. more
C. some times less and some times more
D. nothing can be said

Answer: 2
12. The emf and current in a circuit are such
that $E=E_{0} \sin \omega t$ and $I-I_{0} \sin (\omega t-\theta)$. This $A C$ circuit contains
A. R and L
B. R and C
C. only R
D. only C

Answer: 1
13. The correct variation of resistance R with
frequency f is given by
A.

B.
2) $\underbrace{\text { C }}_{f}$
3) ${ }_{f}^{\mathrm{Y} \uparrow} \mathrm{X}$
C.

Answer: 1

- Watch Video Solution

14. Same current is flowing in two alternating circuits. The first circuit contains only inductances and the other contains only a capacitor, if the frequency of the e.m.f of $A C$ is increased, the effect on the value of the current will be
A. increases in first circuit and decrease in the other
B. increase in both circuits

C. decrease in both circuits

D. decrease in first circuit and increase in
the other

Answer: 4

- Watch Video Solution

15. When an a.c source is connected across a resistor
A. The current leads the voltage in phase
B. The current lags behind the voltage in phase
C. The current and voltage are in same phase

D. The current and voltage are out of phase

Answer: 3

D Watch Video Solution

16. The phase angle between current and voltage in a purely inductive circuit is
A. zero
B. π
C. $\pi / 4$
D. $\pi / 2$

Answer: 4

D Watch Video Solution
17. Ratio of impedence to capactive reactance
has

A. no units

B. ohm

C. ampere
D. tesla

Answer: 1

D Watch Video Solution

18. An inductor-coil having some resistance is
connected to an AC source. Which of the
following quantities have zero average value over a cycle?
A. induced emf in the inductor only
B. current only
C. both 1 and 2
D. neither 1 nor 2

Answer: 3

D Watch Video Solution
19. Why the current does not rise immediately in a circuit containing inductance
A. because of induced emf
B. because of high voltage drop
C. both 1 and 2
D. because of joule heating

Answer: 3

- Watch Video Solution

20. In an $A C$ circuit containing only capacitance
the current
A. leads the voltage by 180°
B. lags the voltage by 90°
C. leads the voltage by 90°
D. remains in phase with the voltage

Answer: 3
21. A bulb is connected first with $D C$ and the
then $A C$ of same voltage then it will shine brightly with
A. $A C$
B. $D C$
C. Equally with both
D. Brightness will be in ratio $1 / 4$

Answer: 3
22. A capacitor of capacity C is connected in
A. C circuit. If the applied emf is $V=V_{0} \sin \omega t$, then the current is

$$
\begin{aligned}
& \text { A. } I=\frac{V_{0}}{L \omega} \sin \omega t \\
& \text { B. } I=\frac{V_{0}}{\omega C} \sin \left(\omega t+\frac{\pi}{2}\right) \\
& \text { C. } I=V_{0} C \omega \sin \omega t \\
& \text { D. } t=V_{0} C \omega \sin \left(\omega t+\frac{\pi}{2}\right)
\end{aligned}
$$

Answer: 4

23. At low frequency a condenser offers

A. high impedance
B. low impedance
C. zero impedance
D. impedance of condenser is independent of frequency

Answer: 1
24. Statement (A) : The reactance offered by an inductance in A.C. Circuit decreases with increase of $A C$ frequency

Statement (B) : The reactance offered by capacitor in $A C$ circuit increases with increase of $A C$ frequency.
A. A is ture but B is false
B. Both A and B are true
C. A is false but B is true
D. Both A and B are false

Answer: 4

D Watch Video Solution

25. Statement (A) : With increase in frequency
of $A C$ supply inductive reactance increases.

Statement (B) : With increase in frequency of

$A C$ supply capacitive reactance increase

A. A is ture but B is false
B. Both A and B are true
C. A is false but B is true

D. Both A and B are false

Answer: 1

D Watch Video Solution

26. In an A. C circuit having resistance and capacitance
A. emf leads the current
B. current lags behind the emf
C. both the current and emf are in phase

D. current leads the emf.

Answer: 4

D Watch Video Solution

27. Select the correct options among the following In an $R-C$ circuit
(a) instantaneous A.C is given by
$I=I_{0} \sin (w t+\phi)$
(b) the alternating current in the circuit leads
the emf by a phase angle ϕ.
(c) Its impedance is $\sqrt{R^{2}+(\omega C)^{2}}$
(d) It capacitive reactance is ωc
A. a, b are true
B. b, c, d are true
C. c, d are true
D. a, c are ture

Answer: 1
28. If the frequency of alternating e.m.f. is in
$L-C-R$ circuit, then the value of impedance Z
will change with \log (frequency) as
A. increase
B. increases and then becomes equal to
resistance, then it will start decreasing
C. decreases and when it becomes minimum
equal to the resistance then it will start
increasing
D. go on decreasing

Answer: 3

D Watch Video Solution

29. An inductor and a resistor are connected in series with an ac source. In this circuit.
A. the current and P. d across the resistance
lead P. d across the inductance by $\pi / 2$
B. the current and P. d acorss the resistance
lags behind the P.d across the inductance by angle $\pi / 2$
C. The currentd across resistance leads and
the $P . d$ across resistance lags behind the
P. d across the inductance by $\pi / 2$

D. the current across resistance lags behind

and the P. d across the resistance leads
the P. d across the inductance by $\pi / 2$

Answer: 2

- Watch Video Solution

30. An $L C R$ circuit is connected to a source of alternating current. At resonance, the applied voltage and the current flowing through the circuit will have a phase difference of
A. $\pi / 4$
B. zero
C. π
D. $\pi / 2$

Answer: 2
31. The incorrect statement for $L-R-C$ series circuit is
A. The potential difference across the resistance and the applied current are always in same phase.
B. The phase difference across inductive coil
is 90°
C. The phase difference between the
potential difference across inductance is
90°
D. The phase difference between potential
difference acorss capacitor and potential
difference across resistance is 90°

Answer: 3

D Watch Video Solution

32. In series $L-C-R$ resonant circuit, to increase the resonant frequency

A. L will have to be increased

B. C will have to be increased
C. $L C$ will have to be decreased

D. $L C$ will have to be increased

Answer: 3

D Watch Video Solution

33. In an $L C R$ series ac circuit the voltage across L, C and R are V_{1}, V_{2} and V_{3} respectively

The voltage of the source is .

> A. $V_{1}+V_{2}+V_{3}$
> B. $\sqrt{V_{1}^{2}+\left(V_{2}+V_{3}\right)^{2}}$
> C. $V_{1}-V_{2}-V_{3}$
> D. $\sqrt{V_{1}^{2}-\left(V_{2}-V_{3}\right)^{2}}$

Answer: 4

D Watch Video Solution

34. In the non-resonant circuit, what will be the nature of the circuit for frequencies heigher than the resonant frequency?
A. resistive

B. capacitive

C. inductive

D. both 1 and 2

Answer: 3
(D) Watch Video Solution
35. The phase difference between voltage and current in an $L C R$ series circuit is
A. zero always
B. $\pi / 4$ always
C. π

D. between 0 and $\pi / 2$

Answer: 4
(D) Watch Video Solution
36. In an $L C R$ a.c. circuit at resonance, the current
A. Is always in phase with the voltage
B. Always leads the voltage
C. Always lags behind the voltage

D. May lead or lag behind the voltage

Answer: 1

- Watch Video Solution

37. An inductance L and capacitance C and resistance R are connected in series across an
$A C$ source of angular frequency ω. If $\omega^{2}>\frac{1}{L C}$ then
A. emf leads the current
B. both the emf and the current are in
phase
C. current lead the emf
D. emf lags behind the current

Answer: 1
38. Consider the following two statements A
and B and identify the correct answer.
A) At resonance of $L-C$ series circuit, the reactance of circuit is minimum.
B) The reactance of a capacitor is an A. C circuit is similar to the reactance of a capacitor in a $D . C$ circuit
A. A is true but B is false
B. Both A and B are ture
C. A is false but B is true
D. Both A and B are false

Answer: 1

D Watch Video Solution

39. Choose the wrong statement of the following
A. The peak voltage acorss the indcutor can
be less than the peak voltage of the source in an $L C R$ circuit
B. In a circuit containing a capacitor and an
ac soruce the currentsd is zero at the
instant source voltage is maximum
C. When an $A C$ source is connected to a
capacitor, then the rms current in the
circuit gets increased if a dielectic slab is
inserted into the capacitor

D. In a pure inductive circuitd emf will be in

phase with the current.

Answer: 4

40. The essential difference between a d.c dynamo and an a.c dynamo is that
A. a.c. has an electromagent but d.c. has a permanent magnet
B. a.c. will generate a higher voltage
C. a.c. has slip rings but the d.c has a commutator
D. a.c. dynamo has a coil wound on soft iron,
but the d.c. dynamo has a coil wound on

copper

D Watch Video Solution

41. The unit of impedence is

A. ohm

B. mho
C. ampere
D. volt

D Watch Video Solution

42. The power factor of an AC circuit having resistance (R) and inductance (L) connected in series and an angular velocity ω is

$$
\sqrt{R^{2}+\omega^{2} L^{2}}
$$

A.

R
R
B. $\frac{R}{\sqrt{R^{2}+\omega^{2} L^{2}}}$
C. $\frac{\omega L}{R}$
D. $\frac{R}{\omega L}$

D Watch Video Solution

43. The capacitor offers zero resistance to
A. D. C only
B. A. $C \& D . C$
C. A. C only
D. neither A. C nor D. C

- Watch Video Solution

44. Power factor is defined as
A. apparent power/ ture power
B. true power / apparent power
C. true power (apparent power) ${ }^{2}$

D. true power x apparent power

Answer: 2
45. The core of any transformaer is laminated so as to
A. energy loss due to eddy currents may be reduced
B. rusting of the core may be prevented
C. change in flux may be increased
D. ratio of voltage in the primary to that in
the secondary may be increased
46. A step up transformer is used to
A. increase the current and increase the voltage
B. decrease the currentd and increase the
voltage
C. increase the current and decrease the
voltage

D. decrease the current and decrease the

voltage

Answer: 2

D Watch Video Solution

47. A transformer changes the voltage
A. without changing the current and
frequency
B. without changing the current but changes the frequency
C. without changing the frequency but changesf the current
D. without changing the frequency as well
as the current

Answer: 3

D Watch Video Solution
48. A step up transformer is connected on the primary side to a rechargable battery which can deliver a large current. If a bulb is connected in the secondary, then
A. the bulb will glow very bright
B. the bulb will get fused
C. the bulb will glow, but with less
brightness
D. the bulb will not glow

- Watch Video Solution

49. The ratio of primary voltage to secondary voltage in a transformer is ' n '. The ratio of the primary current to secondary current in the transformer is
A. n
B. $1 / n$
C. n^{2}
D. $1 / n^{2}$

Answer: 2

- Watch Video Solution

50. In a step down transformer, the number of turns in the primary is always
A. greater than the number of turns in the secondary
B. less than the number of turns in the
C. equal to the number of turns in the secondary

D. either greater than or less than the number of turns in the secondary

Answer: 1

D Watch Video Solution
51. The transformer ratio of a step up transformer is
A. greater than one
B. less than one
C. less than one and some times greater
than one
D. greater than one and some times less
than one

Answer: 1
52. A setup transformer develops 440 V in secondary coil for an input of 200VA. C Then the type of transformer is
A. Steped down
B. steped up
C. Same
D. Same but with reversed direction

Answer: 2
53. Assertion (A) : If changing current is flowing
through a machine with iron parts, results in loss of energy.

Reason (R): Changing magnetic flux through an area of the iron parts causes eddy currents.
A. Both A and R are individually true and R
is the correct explanation of A
B. Both A and R are individually true but R
is not the correct explanation of A
C. A is true but R is false

D. Both A and R are false

Answer: 1

D Watch Video Solution

54. Transformers are used
A. d.c circuit only
B. a.c. circuit only
C. Both a.c and d.c circuits
D. Integrated circuits

Answer: 2

D Watch Video Solution

55. The magnitude of the e.m.f. across the secondary of a transformer does not depend on
A. The number of thef turns in the primary
B. The number of the turns in the secondary
C. The magnitude of the e.m.f applied across
the primary

D. The resistance of the primary and the

secondary

Answer: 4

D Watch Video Solution

56. For an ideal transformer ratio of output ot the input power is always
A. greater than one
B. equal ot one
C. less than one
D. zero

Answer: 2

D Watch Video Solution

57. Consider the following two statements A and B and identify the correct answer.
(A) In a transformer a large alternating current at low voltage can be transformed into a small alternating current at high voltage
(B) Energy in current carrying coil is stored in the form of magnetic field.

A. A is true but B is false

B. Both A and B is true
C. A is false but $B \mathrm{~d}$ is true
D. Both A and B are false

Answer: 2

D Watch Video Solution
58. Statement (A) : Flux leakage in a transformer can be minimized by winding the primary and secondary coils one over the other.

Statement (B) : Core of the transformer is made of soft iron
A. A is true but B is false
B. Both A and B is true
C. A is false but $B d$ is true
D. Both A and B are false
59. Statement (A) : In high current low voltage windings of a transformer thick wire is used to minimize energy loss due to heat produced

Statement (B) : The core of any transformer is laminated so as to reduce the erergy loss due to eddy currents.
A. A is true but B is false
B. Both A and B is true
C. A is false but $B d$ is true

D. Both A and B are false

Answer: 2

- Watch Video Solution

60. Statement (A) : Step up transformer converts low voltage, high current to high voltage, low current

Statement (B) : Transformer works on both ac and dc.
A. A is true but B is false

B. Both A and B is true

C. A is false but $B \mathrm{~d}$ is true

D. Both A and B are false

Answer: 1

(Watch Video Solution
61. To reduce the iron losses in a transformer,
the core must be made of a material having
A. low permeability and high resistivity
B. high permeability and high resistivity
C. low permeability and low resisttivity
D. high permeability and low resistivity

Answer: 2
(Watch Video Solution
62. Maximum efficiency of a transformer depends on
A. the working condtitions of technicians.
B. weather copper loss $=1 / 2 x$ irons loss
C. weather copper loss = iron loss
D. weather copper loss $=2 x$ iron loss

Answer: 3
(Watch Video Solution
63. For an LCR series circuit with an aac source
of angular frequency ω.
A. circuit will be capactive if $\omega>\frac{1}{\sqrt{L C}}$

B. circuit will be inductive if $\omega=\frac{1}{\sqrt{L C}}$

C. power factor of circuit will be unity of capacitive reactance equal inductive reactance D. current will be leading voltage if

$$
\omega>\frac{1}{\sqrt{L C}}
$$

Answer: 3

D Watch Video Solution
64. The value of current in tow series LCR circuits at resonance is same, then
A. both circuits must be having same value
of capacitance and inductance
B. in both circuits ratio of L and C will be
same
C. for both the circuit X_{L} / X_{C} must be same
at the frequency
D. both circuits must have same impedance
at all frequencies

Answer: 3

D Watch Video Solution

65. When an ac source of emfe $=E_{0} \sin (100 t)$ is
connected across a circuit, the phase difference between emf e and currnet I in the circuit is observed to be $(\pi) /(4)$ as shown in fig. If the circuit consists possibly only of R-C or R-C of L-R series, find the relationship find the
relationship between the two elements.

A. $R=1 \mathrm{k} \Omega, C=10 \mu F$
B. $R=1 \mathrm{k} \Omega, C=1 \mu F$
C. $R=1 \mathrm{k} \Omega, L=10 H$
D. $R=k \Omega, L=1 H$

Answer: 1
66. An AC voltage source of variable angular frequency (ω) and fixed amplitude V_{0} is connected in series with a capacitance C and an electric bulb of resistance R (inductance zero). When (ω) is increased
A. the bulb glows dimmer
B. the bulb glows brighter
C. total impendance of the circuits is unchanged

D. total impendance of the circuit increases

Answer: 2

D Watch Video Solution

67. In an ac circuit the current

D Watch Video Solution
68. The average emf during the positive half
cycle of an ac supply of peak value E_{0} is .

- Watch Video Solution

69. Alternating current is transmitted to distant places at

Watch Video Solution

70. In case of a.c circuit, Ohm's law holds good for
a) Peak values of voltage and current
b) Effective values of voltage and current
c) Instantaneous values of voltage and current

- Watch Video Solution

71. In case of $A C$ circuits the relation $V=i Z$, where Z is impedance, can directly applied to

D Watch Video Solution

72. Alternating current can not be measured by
D.C. Ammeter because
73. The r.m.s value of Potential due to
superposition of given two alternating
potentials $E_{1}=E_{0} \sin \omega t$ and $E_{2}=E_{0} \cos \omega t$ will be

D Watch Video Solution

74. If the instantaneous current in a circuit is given by $I=2 \cos (\omega t+\phi) A$, the rms value of the current is
75. If a capacitor is connected to two different
A. C generators, then the value of capactive reactance is

D Watch Video Solution

76. In general in an alternating current circuit
77. The magnitude inducted e.m.f. in an $L R$ circuit at brea of circuit as compared to its
value at make of circuit will be

D Watch Video Solution

78. The emf and current in a circuit are such
that $E=E_{0} \sin \omega t$ and $I=I_{0} \sin (\omega t-\theta)$. This $A C$

circuit contains

(Watch Video Solution
79. Same current is flowing in two alternating circuits. The first circuit contains only inductances and the other contains only a capacitor, if the frequency of the e.m.f of $A C$ is increased, the effect on the value of the current will be
(Watch Video Solution
80. When an a.c source is connected across a resistor
81. The phase angle between current and voltage in a purely inductive circuit is

- Watch Video Solution

82. Ratio of impedence to capactive reactance has
83. An inductor-coil having some resistance is
connected to an AC source. Which of the following quantities have zero average value over a cycle?

- Watch Video Solution

84. Why the current does not rise immediately
in a circuit containing inductance
(Watch Video Solution
85. In an AC circuit containing only capacitance
the current

D Watch Video Solution

86. A bulb is connected first with $D C$ and the
then $A C$ of same voltage then it will shine brightly with
87. A capacitor of capacity C is connected in
A. C circuit. If the applied emf is $V=V_{0} \sin \omega t$, then the current is

- Watch Video Solution

88. At low frequency a condenser offers

Watch Video Solution
89. Statement (A) : The reactance offered by an inductance in A.C. Circuit decreases with increase of $A C$ frequency

Statement (B) : The reactance offered by capacitor in $A C$ circuit increases with increase of $A C$ frequency.

- Watch Video Solution

90. Statement (A) : With increase in frequency of $A C$ supply inductive reactance increases.

Statement (B) : With increase in frequency of

$A C$ supply capacitive reactance increase

D Watch Video Solution

91. In an A. C circuit having resistance and capacitance

D Watch Video Solution

92. Select the correct options among the following In an $R-C$ circuit
(a) instantaneous $A . C$ is given by
$I=I_{0} \sin (w t+\phi)$
(b) the alternating current in the circuit leads
the emf by a phase angle ϕ.
(c) Its impedance is $\sqrt{R^{2}+(\omega C)^{2}}$
(d) It capacitive reactance is ωc

- Watch Video Solution

93. If the frequency of alternating e.m.f. is in
$L-C-R$ circuit, then the value of impedance Z
will change with log (frequency) as
94. An inductance and a resistance are connected in series with an AC potential . In this circuit

- Watch Video Solution

95. An $L C R$ circuit is connected to a source of alternating current. At resonance, the applied voltage and the current flowing through the circuit will have a phase difference of

- Watch Video Solution

96. The incorrect statement for $L-R-C$ series
circuit is

D Watch Video Solution

97. In series $L-C-R$ resonant circuit, to
increase the resonant frequency

D Watch Video Solution
98. In an $L C R$ series ac circuit the voltage across L, C and R are V_{1}, V_{2} and V_{3} respectively The voltage of the source is .

D Watch Video Solution

99. In the non-resonant circuit, what will be the nature of the circuit for frequencies heigher than the resonant frequency?

D Watch Video Solution

100. The phase difference between voltage and
current in an $L C R$ series circuit is

D Watch Video Solution

101. In an $L C R$ a.c. circuit at resonance, the

current

D Watch Video Solution
102. An inductance L and capacitance C and
resistance R are connected in series across an
$A C$ source of angular frequency ω. If $\omega^{2}>\frac{1}{L C}$ then

- Watch Video Solution

103. Consider the following two statements A and B and identify the correct answer.
A) At resonance of $L-C$ series circuit, the reactance of circuit is minimum.
B) The reactance of a capacitor is an A.C
circuit is similar to the reactance of a capacitor in a D. C circuit

D Watch Video Solution

104. Choose the wrong statement of the following

- Watch Video Solution

105. The essential difference between a d.c dynamo and an a.c dynamo is that

Watch Video Solution

106. The unit of impedence is

D Watch Video Solution

107. The power factor of an AC circuit having resistance (R) and inductance (L) connected in series and an angular velocity ω is

108. The capacitor offers zero resistance to

- Watch Video Solution

109. Power factor is defined as

- Watch Video Solution

110. The core of transformer is laminated so
that

D Watch Video Solution

111. A step up transformer is used to

(Watch Video Solution
112. A transformer changes the voltage
(Watch Video Solution
113. A step up transformer is connected on the primary side to a rechargeable battery which
can deliver a large current. If a bulb is connected in the secondary, then

D Watch Video Solution

114. The ratio of primary voltage to secondary voltage in a transformer is ' n '. The ratio of the primary current to secondary current in the transformer is

- Watch Video Solution

115. In a step down transformer, the number of turns in the primary is always

- Watch Video Solution

116. The transformer ratio of a step up transformer is

Watch Video Solution
117. A setup transformer develops 440 V in secondary coil for an input of 200VA. C Then the type of transformer is

D Watch Video Solution

118. Assertion (A) : If changing current is flowing
through a machine with iron parts, results in loss of energy.

Reason (R): Changing magnetic flux through an area of the iron parts causes eddy currents.
119. Transformers are used

D Watch Video Solution

120. The magnitude of the e.m.f. across the
secondary of a transformer does not depend on

D Watch Video Solution
121. For an ideal transformer ratio of output ot
the input power is always

- Watch Video Solution

122. Consider the following two statements A and B and identify the correct answer.
(A) In a transformer a large alternating current at low voltage can be transformed into a small alternating current at high voltage
(B) Energy in current carrying coil is stored in the form of magnetic field.

- Watch Video Solution

123. Statement (A) : Flux leakage in a transformer can be minimized by winding the primary and secondary coils one over the other. Statement (B): Core of the transformer is made of soft iron

D Watch Video Solution

124. Statement (A) : In high current low voltage
windings of a transformer thick wire is used to
minimize energy loss due to heat produced

Statement (B) : The core of any transformer is laminated so as to reduce the erergy loss due to eddy currents.

- Watch Video Solution

125. Statement (A) : Step up transformer converts low voltage, high current to high voltage, low current Statement (B) : Transformer works on both ac and dc.
126. To reduce the iron losses in a transformer, the core must be made of a material having

D Watch Video Solution

127. Maximum efficiency of a transformer depends on
(D) Watch Video Solution
128. For an LCR series circuit with an aac source
of angular frequency ω.

- Watch Video Solution

129. The value of current in two series $L C R$
circuits at resonance is same when connected across a sinusodial voltage source. Then:
130. When an AC source of emfe $=E_{0} \sin (100 t)$ is
connected across a circuit i in the circuit, the phase difference between the emf e and the current i in the circuit is observed to be ($\pi / 4$), as shown in the diagram. If the circuit consists possibly only of R-C or R-L or L-C in series, find the relationship between the two elements

131. An AC voltage source of variable angular
frequency (ω) and fixed amplitude V_{0} is connected in series with a capacitance C and an electric bulb of resistance R (inductance zero).

When (ω) is increased

D Watch Video Solution

132. In an ac circuit the current
133. The average emf during the positive half cycle of an ac supply of peak value E_{0} is .

D Watch Video Solution

134. Alternating current is transmitted to distant places at

D Watch Video Solution
135. In case of $a . c$ circuit, Ohm's law holds good
for
a) Peak values of voltage and current
b) Effective values of voltage and current
c) Instantaneous values of voltage and current

D Watch Video Solution

136. In case of $A C$ circuits the relation $V=i Z$,
where Z is impedance, can directly applied to
137. Alternating current can not be measured by D.C. Ammeter because

D Watch Video Solution

138. The r.m.s value of Potential due to superposition of given two alternating potentials $E_{1}=E_{0} \sin \omega t$ and $E_{2}=E_{0} \cos \omega t$ will be

- Watch Video Solution

139. If the instantaneous current in a circuit is

given by $i=2 \cos (\omega t-\phi)$ ampere, the r.m.s. value of the current is

- Watch Video Solution

140. If a capacitor is connected to two different
A. C generators, then the value of capactive reactance is
141. In general in an alternating current circuit
(Watch Video Solution
142. The magnitude inducted e.m.f. in an $L R$
circuit at brea of circuit as compared to its
value at make of circuit will be
(Watch Video Solution
143. The emf and current in a circuit are such
that $E=E_{0} \sin \omega t$ and $I=I_{0} \sin (\omega t-\theta)$. This $A C$ circuit contains

- Watch Video Solution

144. The correct variation of resistance R with
frequency f is given by
145. Same current is flowing in two alternating circuits. The first circuit contains only inductances and the other contains only a capacitor, if the frequency of the e.m.f of $A C$ is increased, the effect on the value of the current will be

D Watch Video Solution

146. When an a.c source is connected across a resistor
147. The phase angle between current and voltage in a purely inductive circuit is

D Watch Video Solution
148. Ratio of impedence to capactive reactance has
149. An inductor-coil having some resistance is
connected to an AC source. Which of the following quantities have zero average value over a cycle?

D Watch Video Solution

150. Why the current does not rise immediately in a circuit containing inductance

D Watch Video Solution

151. In an $A C$ circuit containing only capacitance the current

D Watch Video Solution

152. A bulb is connected first with $D C$ and the
then $A C$ of same voltage then it will shine brightly with
153. A capacitor of capacity C is connected in
A. C circuit. If the applied emf is $V=V_{0} \sin \omega t$, then the current is

- Watch Video Solution

154. At low frequency a condenser offers

- Watch Video Solution

155. Statement (A) : The reactance offered by an inductance in A.C. Circuit decreases with increase of $A C$ frequency

Statement (B) : The reactance offered by capacitor in $A C$ circuit increases with increase of $A C$ frequency.

D Watch Video Solution

156. Statement (A) : With increase in frequency of $A C$ supply inductive reactance increases.

Statement (B) : With increase in frequency of

$A C$ supply capacitive reactance increase

- Watch Video Solution

157. In an A. C circuit having resistance and capacitance

D Watch Video Solution

158. Select the correct options among the following In an $R-C$ circuit
(a) instantaneous $A . C$ is given by
$I=I_{0} \sin (w t+\phi)$
(b) the alternating current in the circuit leads
the emf by a phase angle ϕ.
(c) Its impedance is $\sqrt{R^{2}+(\omega C)^{2}}$
(d) It capacitive reactance is ωc

- Watch Video Solution

159. If the frequency of alternating e.m.f. is in
$L-C-R$ circuit, then the value of impedance Z will change with log (frequency) as
160. An inductance and a resistance are connected in series with an AC potential . In this circuit

D Watch Video Solution

161. An $L C R$ circuit is connected to a source of
alternating current. At resonance, the applied
voltage and the current flowing through the
circuit will have a phase difference of

- Watch Video Solution

162. The incorrect statement for $L-R-C$ series circuit is

D Watch Video Solution

163. In series $L-C-R$ resonant circuit, to
increase the resonant frequency

D Watch Video Solution
164. If in a series L-C-R ac circuit, the voltages
across R,L,C are V_{1}, V_{2}, V_{3} respectively. Then the voltage of applied AC source is always equal to

D Watch Video Solution

165. In the non-resonant circuit, what will be the nature of the circuit for frequencies heigher than the resonant frequency?

D Watch Video Solution

166. The phase difference between voltage and current in an $L C R$ series circuit is

D Watch Video Solution

167. In an $L C R$ a.c. circuit at resonance, the

current

- Watch Video Solution

168. An inductance L and capacitance C and
resistance R are connected in series across an
$A C$ source of angular frequency ω. If $\omega^{2}>\frac{1}{L C}$ then

- Watch Video Solution

169. Consider the following two statements A and B and identify the correct answer.
A) At resonance of $L-C$ series circuit, the reactance of circuit is minimum.
B) The reactance of a capacitor is an A.C
circuit is similar to the reactance of a capacitor in a D. C circuit

(Watch Video Solution

170. Choose the wrong statement of the following
(Watch Video Solution
171. The essential difference between a d.c dynamo and an a.c dynamo is that

Watch Video Solution

172. The unit of impedence is

D Watch Video Solution

173. The power factor of an AC circuit having resistance (R) and inductance (L) connected in series and an angular velocity ω is
174. The capacitor offers zero resistance to

- Watch Video Solution

175. Power factor is defined as

- Watch Video Solution

176. The core of transformer is laminated so
that
(Watch Video Solution

177. A step up transformer is used to

- Watch Video Solution

178. A transformer changes the voltage

- Watch Video Solution

179. A step up transformer is connected on the primary side to a rechargeable battery which
can deliver a large current. If a bulb is connected in the secondary, then

D Watch Video Solution

180. The ratio of primary voltage to secondary voltage in a transformer is ' n '. The ratio of the primary current to secondary current in the transformer is

- Watch Video Solution

181. In a step down transformer, the number of

turns in the primary is always

- Watch Video Solution

182. The transformer ratio of a step up transformer is

Watch Video Solution
183. A setup transformer develops 440 V in secondary coil for an input of 200VA. C Then the type of transformer is

- Watch Video Solution

184. Assertion (A) : If changing current is
flowing through a machine with iron parts, results in loss of energy.

Reason (R) : Changing magnetic flux through an area of the iron parts causes eddy currents.
185. Transformers are used

- Watch Video Solution

186. The magnitude of the e.m.f. across the
secondary of a transformer does not depend on
(D) Watch Video Solution

187. For an ideal transformer ratio of output ot

the input power is always

- Watch Video Solution

188. Consider the following two statements A
and B and identify the correct answer.
(A) In a transformer a large alternating current at low voltage can be transformed into a small alternating current at high voltage
(B) Energy in current carrying coil is stored in the form of magnetic field.

- Watch Video Solution

189. Statement (A) : Flux leakage in a transformer can be minimized by winding the primary and secondary coils one over the other. Statement (B): Core of the transformer is made of soft iron

D Watch Video Solution

190. Statement (A) : In high current low voltage windings of a transformer thick wire is used to
minimize energy loss due to heat produced

Statement (B) : The core of any transformer is laminated so as to reduce the erergy loss due to eddy currents.

- Watch Video Solution

191. Statement (A) : Step up transformer converts low voltage, high current to high voltage, low current

Statement (B) : Transformer works on both ac and dc.
192. To reduce the iron losses in a transformer, the core must be made of a material having

D Watch Video Solution

193. Maximum efficiency of a transformer depends on
(Watch Video Solution
194. For an LCR series circuit with an aac source of angular frequency ω.

- Watch Video Solution

195. The value of current in two series $L C R$
circuits at resonance is same when connected across a sinusodial voltage source. Then:
196. When an AC source of emfe $=E_{0} \sin (100 t)$ is
connected across a circuit i in the circuit, the phase difference between the emf e and the current i in the circuit is observed to be ($\pi / 4$), as shown in the diagram. If the circuit consists possibly only of R-C or R-L or L-C in series, find the relationship between the two elements

197. An AC voltage source of variable angular
frequency (ω) and fixed amplitude V_{0} is connected in series with a capacitance C and an electric bulb of resistance R (inductance zero). When (ω) is increased

- Watch Video Solution

Assertion \& Reason

1. Assertion (A) : The average value of $<\sin ^{2} \omega t>$ is zero.

Reason (R): The average value of function $F(t)$
over a period T is $\langle F(t)\rangle=\frac{1}{T} \int_{0}^{T} F(t) d t$
A. Both Assertion and Reason are true and

Reason is the correct explanation of

Assertion.
B. Both Assertion and Reason are true but

Reason is not the correct explanation of

Assertion.

C. Assertion is true but Reason is false

D. Assertion is false but Reason is true

Answer: 4

- Watch Video Solution

2. Assertion (A) : If current varies sinusoidally the average power consumed in a cycle is zero. Reason (R) : If current sinusoidally the average power consumed is zero
A. Both Assertion and Reason are true and

Reason is the correct explanation of

Assertion.
B. Both Assertion and Reason are true but

Reason is not the correct explanation of

Assertion.
C. Assertion is true but Reason is false
D. Assertion is false but Reason is true

Answer: 4

3. Assertion (A) : The power consumed in an electric circuit is never negative

Reason (R): The aveage power consumed in an electric circuit is $P=\frac{V^{2}}{R}=I^{2} R$
A. Both Assertion and Reason are true and

Reason is the correct explanation of

Assertion.
B. Both Assertion and Reason are true but

Reason is not the correct explanation of

Assertion.

C. Assertion is true but Reason is false

D. Assertion is false but Reason is true

Answer: 1

D Watch Video Solution

4. Assertion (A) : The inductive reactance limits
the currents in a purely inductive circuit in the same way as the resistancefsd circuit.

Reason (R) : The inductive reactance is directly
propontional to the inductance and to the frequency of tha varying current.
A. Both Assertion and Reason are true and

Reason is the correct explanation of

Assertion.
B. Both Assertion and Reason are true but

Reason is not the correct explanation of

Assertion.
C. Assertion is true but Reason is false
D. Assertion is false but Reason is true

Answer: 2

D Watch Video Solution

5. Assertion (A) : An ac emf which oscillates
symmetrically about zero, the current it
sustains also oscillates symmetrically about zero.

Reason (R): In any circuit element, current is always in the phase with voltage
A. Both Assertion and Reason are true and

Reason is the correct explanation of

Assertion.
B. Both Assertion and Reason are true but

Reason is not the correct explanation of

Assertion.
C. Assertion is true but Reason is false
D. Assertion is false but Reason is true

Answer: 4

6. Assertion (A) : A lamp is connected in series
with a capacitor and ac source connected across their terminal consequently current flow in the circuit and the lamp will shine.

Reason (R) : Capacitor block dc current and allow ac current
A. Both Assertion and Reason are true and

Reason is the correct explanation of

Assertion.
B. Both Assertion and Reason are true but

Reason is not the correct explanation of

Assertion.

C. Assertion is true but Reason is false

D. Assertion is false but Reason is true

Answer: 1

D Watch Video Solution

7. Assertion (A) : An electric lamp is connected in series with a long solenoid of copper with air
core and then connected to $A C$ source. If an iron rod is inserted in solenoid the lamp will become dim.

Reason (R): If iron rod is inserted in solenoid, the induction of solenoid increases.
A. Both Assertion and Reason are true and

Reason is the correct explanation of

Assertion.
B. Both Assertion and Reason are true but

Reason is not the correct explanation of

Assertion.

C. Assertion is true but Reason is false

D. Assertion is false but Reason is true

Answer: 1

D Watch Video Solution

8. An inductor, a capacitor, and a resistor are connected in series. The combination is connected across an ac source.

Statement 1: Peak current through each remains same.

Statement 2: Average power dielivered by source is equal to average power developed across resistance.
A. Both Assertion and Reason are true and Reason is the correct explanation of

Assertion.
B. Both Assertion and Reason are true but

Reason is not the correct explanation of

Assertion.
C. Assertion is true but Reason is false
D. Assertion is false but Reason is true

Answer: 2

D Watch Video Solution

9. Assertion: When frequency is greater than resonace frequency is a series $L C R$ circuit, it will the an inductive circuit.

Reason : Resultant voltage will lead the current.
A. Both Assertion and Reason are true and

Reason is the correct explanation of

Assertion.
B. Both Assertion and Reason are true but

Reason is not the correct explanation of

Assertion.

C. Assertion is true but Reason is false

D. Assertion is false but Reason is true

Answer: 1

D Watch Video Solution

10. Assertion (A) : Maximum power is dessipated in a circuit (through R) in resonace

Reason (R) : At resonance in a series $L C R$ circuit, the voltage across inductor and capacitor are out phase.
A. Both Assertion and Reason are true and

Reason is the correct explanation of

Assertion.
B. Both Assertion and Reason are true but

Reason is not the correct explanation of

Assertion.
C. Assertion is true but Reason is false
D. Assertion is false but Reason is true

Answer: 1

D Watch Video Solution

11. Statement 1: Both dc and ac can be measured by a hot wire instrument.

Statement 2: the hot wire instrument is based on the principle of magnetic effect of current.
A. Both Assertion and Reason are true and

Reason is the correct explanation of

Assertion.

B. Both Assertion and Reason are true but

Reason is not the correct explanation of

Assertion.

C. Assertion is true but Reason is false

D. Assertion is false but Reason is true

Answer: 3

- Watch Video Solution

12. Assertion (A) : The electrostatic energy
stored in inductor will always be zero in series
$L C R$ circuit driven by ac voltage source under condition of resonance.

Reason (R) : The complete voltage of ac source appears across the resistor in a series $L C R$ circuit driven by ac voltage source under condition of resonance.
A. Both Assertion and Reason are true and

Reason is the correct explanation of

Assertion.
B. Both Assertion and Reason are true but

Reason is not the correct explanation of

Assertion.

C. Assertion is true but Reason is false

D. Assertion is false but Reason is true

Answer: 4

- Watch Video Solution

13. Assertion (A) : The r.m.s value of alternating
current is defined as the square root of the
average of I^{2} during a complete cycle.

Reason (R): For sinusoidal a.c.
$\left(I=I_{0} \sin w t\right) I_{\mathrm{rms}}=\frac{I_{0}}{\sqrt{2}}$
A. Both Assertion and Reason are true and

Reason is the correct explanation of

Assertion.
B. Both Assertion and Reason are true but

Reason is not the correct explanation of

Assertion.
C. Assertion is true but Reason is false

D. Assertion is false but Reason is true

Answer: 2

D Watch Video Solution

14. Assertion: In series $L C R$ circuit resonance can take place.

Reason: Resonance takes place if inductance and capacitive reactance are equal and opposite.
A. Both Assertion and Reason are true and

Reason is the correct explanation of

Assertion.
B. Both Assertion and Reason are true but

Reason is not the correct explanation of

Assertion.
C. Assertion is true but Reason is false
D. Assertion is false but Reason is true

Answer: 1

LEVEL-I (C.W)

1. The r.m.s value of an a.c of 59 Hz is 10 A . The
time taken by the alternating current in reaching from zero to maximum valuef and the peak value of current will be
A. 2×10^{-2} sec and $14.14 A$
B. $1 \times 10^{-2} \mathrm{sec}$ and 7.07 A
C. 5×10^{-3} sec and 7.07 A
D. $5 \times 10^{-3} \mathrm{sec}$ and 14.14 A

- Watch Video Solution

2. An inductor has a resistance R inductance L.

It is connected to an A. C source of e.m.f. E_{V} and angular frequency ω then the current I_{v} in the circuit is

$$
\begin{aligned}
& \text { A. } \frac{E_{V}}{\omega L} \\
& \text { B. } \frac{E_{V}}{R}
\end{aligned}
$$

$$
\begin{aligned}
& \text { c. } \frac{E_{V}}{\sqrt{R^{2}+\omega^{2} L^{2}}} \\
& \text { D. } \sqrt{\left(\frac{E_{V}}{R}\right)^{2}+\left(\frac{E_{V}}{\omega L}\right)^{2}}
\end{aligned}
$$

Answer: 3

D Watch Video Solution

3. The peak value of $A C$ mains (in volt) is
A. 155.6
B. 220.0
C. 311
D. 440.0

Answer: 3

D Watch Video Solution

4. The peak value A. C is $2 \sqrt{2} A$. It's apparent
value will be
A. $1 A$
B. $2 A$
C. $4 A$
D. zero

Answer: 2

D Watch Video Solution

5. Alternating current in circuit is given by
$I=I_{0} \sin 2 \pi n t$. Then the time by the current to
rise from zero to r.m.s value is equal to
A. $1 / 2 n$
B. $1 / n$
C. $1 / 4 n$
D. $1 / 8 n$

Answer: 4

- Watch Video Solution

6. Using an ac voltmeter, the potential difference in the electrical line in a house is read to be 234 V . If the line freqency is known
to be 50 cycles per second, the equation for the line voltage is
A. $V=165 \sin (100 \pi t)$
B. $V=331 \sin (100 \pi t)$
C. $V=220 \sin (100 \pi t)$
D. $V=440 \sin (100 \pi t)$

Answer: 2

D Watch Video Solution
7. A mixer of 100Ω resistance is connected to an
A. C source of 200 V and $50 \mathrm{cycles} / \mathrm{sec}$. The value of average potentail difference across the mixer will be
A. 308 V
B. 264 V
C. 220 V
D. zero

Answer: 4
8. The equation of an alternating voltage is
$E=220 \sin (\omega t+\pi / 6)$ and the equation of the
current in the circuit is $I=10 \sin (\omega t-\pi / 6)$. Then
the impedance of the circuit is
A. 10 ohm
B. 22 ohm
C. 11 ohm
D. 17 ohm

- Watch Video Solution

9. A steady P. D of 10 V produces heat at a rate
' x ' in resistor. The peak value of A. C voltage which will produce heat at rate of $x / 2$ is same resistor is
A. 5 V
B. $5 \sqrt{2}$
C. 10 V
D. $10 \sqrt{2} V$

Answer: 3

D Watch Video Solution

10. An alternating voltage $E=200 \sqrt{2} \sin (100 t) V$
is connected to a $1 \mu F$ capacitor through an ac ammeter (it reads rms value). What will be the reading of he ammeter?
A. 10 mA
B. 40 mA
C. 80 mA

D. 20 mA

Answer: 4

D Watch Video Solution

11. A 120 volt $A C$ source is connected across a pure inductor of inductance 0.70 henry. If the frequency of the source is 60 Hz , the current passing through the inductor is
A. 4.55 A
B. 0.355 A

C. $0.455 A$

D. 3.55 A

Answer: 3

- Watch Video Solution

12. A transformer steps an A. C voltage from

230 V ot 2300 V . If the number of turns in the secondary coil is 1000 , the number of turns in the primary coil will be
B. 10,000
C. 500
D. 1000

Answer: 1

- Watch Video Solution

13. The transformer ratio of a transformer is 5 .

If the primary voltage of the transformer is
$400 \mathrm{~V}, 50 \mathrm{~Hz}$ the secondary voltage will be
A. $2000 \mathrm{~V}, 250 \mathrm{~Hz}$
B. $80 \mathrm{~V}, 50 \mathrm{~Hz}$
C. $80 \mathrm{~V}, 10 \mathrm{~Hz}$
D. $2000 \mathrm{~V}, 50 \mathrm{~Hz}$

Answer: 4

D Watch Video Solution

14. A step-up transformer works on 220 V and gives $2 A$ to an external resistor. The turn ratio between the primary and secondary coils is 2 :
15. Assuming 100% efficiency, find the secondary voltage, primary current and power delivered respectively
A. $2750 \mathrm{~V}, 25 \mathrm{~A}, 5500 \mathrm{~W}$
B. $2750 \mathrm{~V}, 20 \mathrm{~A}, 5000 \mathrm{~W}$
C. $2570 \mathrm{~V}, 25 \mathrm{~A}, 550 \mathrm{~W}$
D. $2750 \mathrm{~V}, 20 \mathrm{~A}, 55 \mathrm{~W}$

Answer: 1

15. A coil of self-inductance $\left(\frac{1}{\pi}\right) H$ is connected is series with a 300Ω resistance. A voltage of 200 V at frequency 200 Hz is applied to this combination. The phase difference between the voltage and the current will be
A. $\tan ^{-1}\left(\frac{4}{3}\right)$
B. $\tan ^{-1}\left(\frac{3}{4}\right)$
C. $\tan ^{-1}\left(\frac{1}{4}\right)$
D. $\tan ^{-1}\left(\frac{5}{4}\right)$

Answer: 1

D Watch Video Solution

16. A condenser of $10 \mu F$ and an inductor of $1 H$ are connected in series with an A. C source of
frequency 50 Hz . The impedance of the combination will be (take $\pi^{2}=10$)
A. zero
B. Inifinity
C. 44.7Ω

D. 5.67Ω

Answer: 1

- Watch Video Solution

17. A 100 km telegraph wire hasd capacity of
$0.02 \mu \mathrm{~F} / \mathrm{km}$, if it carries an alternating current of
frequency 5 kHZ . The value of an inductrance
required to be connected in series so that the impedance is minimum.
A. 50.7 mH
B. 5.07 mH
C. 0.507 mH

D. 507 mH

Answer: 3

- Watch Video Solution

18. In an $L C R$ series circuit the rms voltages across R, L and C are foundd to be $10 \mathrm{~V}, 10 \mathrm{~V}$ and 20 V respectively. The rms voltage across the entire combination is
A. 30 V
B. 1 V
C. 20 V
D. $10 \sqrt{2} V$

Answer: 4

D Watch Video Solution

19. In the circuit shown, a 30 V d.c. source gives
a current 2.0 A as recorded in the ammeter A
and 30 V a.c. source of frequency 100 Hz gives a
currentd $1.2 A$. The inductive reactance is

A. 10 ohm

B. 20 ohm
C. $5 \sqrt{34}$ ohm
D. 40 ohm

Answer: 2
20. A choke coil has negligible resistance. The alternating potential drop across it is 220 volt and the current is $5 m A$. The power consumed is
A. $220 \times \frac{5}{1000} W$
B. $\frac{220}{5} W$
C. zero
D. $2.20 \times 5 \mathrm{~W}$

Answer: 3
21. In an $A C$ circuit, the instantaneous values of e.m.f and current are $e=200 \sin 314 t$ volt and
$i=\sin \left(314 t+\frac{\pi}{3}\right)$ ampere. The average power consumed in watt is
A. 200
B. 100
C. 0
D. 50

- Watch Video Solution

22. In a black box of unknown elements (L or R or any other combination), an ac voltage $\left.E=E_{0} \sin (\omega t)+\phi\right)$ is applied and current in the circuit was found to be $I=\left(I_{0}\right) \sin [\omega t+\phi+(\pi / 4)]$. Then the unknown
elements in the box may be

A. only capacitor
B. both inductor and resistor
C. either capacitor, resistor and inductor or

D. only resistor

Answer: 3

- Watch Video Solution

23. The voltage time (V-t) graoh for triangular wave having peak value $\left(V_{0}\right)$ is as shown in fig.

$$
\begin{aligned}
& \text { A. } \frac{V_{0}}{\sqrt{3}} \\
& \text { B. } \frac{V_{0}}{2} \\
& \text { C. } \frac{V_{0}}{\sqrt{2}} \\
& \text { D. } 2 V_{0}
\end{aligned}
$$

Answer: 1

(D) Watch Video Solution

LEVEL - II (C.W)

1. The average current of a sinusoidally varrying alternating current of peak value $5 A$ with initial
phase zero, between the instants $t=T / 8$ to
$t=T / 4$ is (where ' T^{\prime} is time period)

$$
\begin{aligned}
& \text { A. } \frac{10}{\pi} \sqrt{2} A \\
& \text { B. } \frac{5}{\pi} \sqrt{2} A \\
& \text { C. } \frac{20 \sqrt{2}}{\pi} \\
& \text { D. } \frac{10}{\pi} A
\end{aligned}
$$

Answer: 1

2. A 100Ω resistance is connected in series with

 a $4 H$ inductor. The voltage across the resistor is $V_{R}=2 \sin (1000 t) V$. The voltage across the inductors isA. $80 \sin \left(1000 t+\frac{\pi}{2}\right)$
B. $40 \sin \left(1000 t+\frac{\pi}{2}\right)$
C. $80 \sin \left(1000 t-\frac{\pi}{2}\right)$
D. $40 \sin \left(1000 \pi-\frac{\pi}{2}\right)$

Answer: 1

D Watch Video Solution

3. The reading of voltemeter and ammeter in the following figure will respectively be

A. 0 and $2 A$
B. $2 A$ and $0 V$
C. $2 V$ and $2 A$

D. 0 V and 0 A

Answer: 1

D Watch Video Solution
4. In the following circuit, the value of current
flowing in the circuit at $f=0$ and $f=\infty$ will
respectively be

A. $8 A$ and $0 A$
B. $0 A$ and $0 A$
C. $8 A$ and $8 A$
D. $0 A$ and $8 A$

Answer: 2

- Watch Video Solution

5. In the series LCR circuit , the voltmeter and ammeter reading are:

A. $V=100$ volt, $I=2 A$
B. $V=100$ volt, $I=5 A$
C. $V=1000$ volt, $I=2 A$

$$
\text { D. } V=300 \text { volt, } I=1 A
$$

Answer: 1

- Watch Video Solution

6. The potential difference between the ends of
a resistance R is V_{R}, between the ends of capacitor is $V_{C}=2 V_{R}$ and between the ends of inductance is $V_{L}=3 V_{R}$. Then the alternating potential of the source in terms of V_{R} will be
B. V_{R}
C. $\frac{V_{R}}{\sqrt{2}}$
D. $5 V_{R}$

Answer: 1

D Watch Video Solution

7. A $220-\mathrm{V}, 50 \mathrm{~Hz}$, ac generator is connected to an inductor and a 50Ω resistance in series. The
current in the circuit is 1.0 A . What is the PD
across inductor?
A. 102.2 V

B. 186.4 V

C. 213.6 V
D. 302 V

Answer: 3

(Watch Video Solution

8. The figure shows variation of R, X_{L} and X_{C} with frequency f in a series L, C, R circuit. Then for what frequency point, the circuit is
inductive?

A. A
B. B
C. C
D. All points

Answer: 3
9. A constant voltage at different frequencies is applied across a capacitance C as shown in the figure. Which of the following graphs correctly depicts the variation of current with frequency

A.C. generator

Answer: 2
(D) Watch Video Solution
10. In a series LCR circuit $R=200(\Omega)$ and the voltage and the frequency of the main supply is

220 V and 50 Hz respectively. On taking out the
capacitance from the circuit the current lags behind the voltage by $30(\circ)$. On taking out the inductor from the circuit the current leads the voltage by $30(\circ)$. The power dissipated in the LCR circuit is
A. 305 W
B. 210 W
C. zero

D. 242 W

Answer: 4

- Watch Video Solution

11. In a series resonant LCR circuit the voltage across R is 100 volts and $\mathrm{R}=1 k(\Omega)$ with $C=2(\mu) F$
. The resonant frequency (ω) is 200rad/s. At resonance the voltage across L is

$$
\text { A. } 2.5 \times 10^{-2} V
$$

B. 40 V
C. 250 V

$$
\text { D. } 4 \times 10^{-3} V
$$

Answer: 2

D Watch Video Solution

LEVEL - III (C.W)

1. An AC voltage source of variable angular frequency (ω) and fixed amplitude V_{0} is connected in series with a capacitance C and an
electric bulb of resistance R (inductance zero).

When (ω) is increased
A. The bulb glows dimmer
B. The bulb glows brighter
C. Total impendance of the circuits is
unchanged

D. Total impendance of the circuit increases

Answer: 2
2. In an A. C circuit the instantaneous values of
current and voltage are $I=120 \sin \omega t$ ampare and $E=300 \sin (\omega t+\pi / 3)$ volt respectively.

What will be the inductive reactance of series
LCR circuit if the resistance and capacitve reactrance are 2 ohm and 1 ohm respectively?
A. 4.5 ohms
B. 2 ohms
C. 2.5 ohms
D. 3 ohms

Answer: 1

D Watch Video Solution

3. A pure resistive circuit element ' x ' when connected to an A.C supply of peak voltage 100 V gives a peak current of $4 A$ which is in phase with the voltage. A second circuit element ' y ' when connected to the same $A C$ supply also gives the same value of peak current but the current lags behind by 90°. If the series combination to of ' x ' and ' y ' is
connected to the same supply. R.M.S value of current is

5
A. $\frac{5}{\sqrt{2}} A$

B. $2 A$
C. $1 / 2 A$
D. $\frac{\sqrt{2}}{5} A$

Answer: 2

D Watch Video Solution
4. An ideal inductor takes a current of 10 A when connected to a $125 \mathrm{~V}, 50 \mathrm{HzAC}$ supply, A pure resistor across the same source takes $12.5 A$. If the two are connected in series across a $100 \sqrt{2} \mathrm{~V}, 40 \mathrm{~Hz}$ supply, the current through the circuit will be
A. 10 A
B. 12.5 A
C. 20 A
D. 25 A

Answer: 1

D Watch Video Solution

5. A circuit contanining resistance R_{1}, Inductance L_{1} and capacitance C_{1} connected in
series resonates at the same frequency' n ' as a second combination of R_{2}, L_{2} and C_{2}. If the two are connected in series. Then the circuit will resonates at
A. n
B. $2 n$
C. $\sqrt{\frac{L_{2} C_{2}}{L_{1} C_{1}}}$
D. $\sqrt{\frac{L_{1} C_{1}}{L_{2} C_{2}}}$

Answer: 1

D Watch Video Solution

6. An $A C$ source of variable frequency is applied
across a series $L-C-R$ circuit. At a requency double the resonace frequency. The impedance
is $\sqrt{10}$ times the minimum impedance. . The inductive reactance is
A. R
B. $2 R$
C. $3 R$
D. $4 R$

Answer: 4
7. A $750 \mathrm{~Hz}, 20 \mathrm{~V}$ source is connected to as resistance of 100Ω an inductance of $0.1803 H$ and a capacitance of $10 \mu F$ all in sereis.Calculate the time in which the resistance
(thermalcapacity $2 \mathrm{~J} / .^{\circ} \mathrm{C}$) wil get heated by $10^{\circ} \mathrm{C}$.
A. 328 sec
B. 348 sec
C. 3.48 sec
D. 4.32 sec

Answer: 2

D Watch Video Solution

8. An ac source of angular frequency ω is fed across a resistor R and a capacitor C in series.

The current registered is I. If now the frequency of source is changed to $\omega / 3$ (but maintaining
the same voltage), the current in the circuit is
found to be halved. Calculate the ratio of the reactance to resistance at the original frequency ω.
A. $\sqrt{\frac{3}{5}}$
B. $\sqrt{\frac{5}{3}}$
C. $\frac{3}{5}$
D. $\frac{5}{3}$

Answer: 1

D Watch Video Solution

9. An $L C R$ circuit has $L=10 m L, R=3 \Omega$, and
$C=1 \mu F$ connected in series to a source of
$15 \cos \omega t$ volt. The current amplitude at a
frequency that is 10% lower then the resonant frequency is
A. $0.5 A$
B. 0.7 A
C. $0.9 A$
D. $1.1 A$

Answer: 2

Watch Video Solution
10. In the circuit shown, R is a pure resistor, L is an inductor of negligible resistance (as compared to R) and S is a $100 \mathrm{~V}, 50 \mathrm{HzAC}$ source of negligible resistance. With eigther key k_{1} alone or k_{2} alone closed, the current is I_{0}. if the source is changed to $100 \mathrm{~V}, 100 \mathrm{~Hz}$, the current with k_{1} alone closed and with k_{2} alone closed will be respectively

A. $I, I / 2$
B. I, $2 I$
C. 2I, I
D. $2 I, I / 2$

Answer: 1

D Watch Video Solution

11. A capacitor has a resistance of $1200 M \Omega$ and
capacitance of $22 \mu F$. When connected to an a.c.
supply of frequency 80 hertz, then the
alternating voltage supply requried to drive a current of 10 virtual ampere is
A. $904 \sqrt{2} V$
B. 904 V
C. $904 \sqrt{2} V$
D. 452 V

Answer: 2

D Watch Video Solution
12. A $120 \mathrm{~V}, 60 \mathrm{~Hz}$ a.c. power is connected 800Ω non-inductive resistance and unknown
capacitance in series. The voltage drop across
the resistance is found to be 102 V , then
voltage drop across capacitor is
A. 8 V
B. 102 V
C. 63 V
D. 55 V

D Watch Video Solution

13. A 100 V a.c. source of frequency 50 Hz is
connected to a $L C R$ circuit with $L=8.1$ millihenry, $C=12.5 \mu F$ and $R=10$ ohm, all connected in series. What is the potential difference across the resistance?
A. 100 V
B. 200 V
C. 300 V
D. 450 V

Answer: 1

- Watch Video Solution

14. A coil has an inductance of 0.7 H and is
joined in series with a resistance of 220Ω.

When an alternating e.m.f of 220 V at 50 c.p.s. is
applied to it, then the wattless component of
the current in the circuit is
A. 5 ampere
B. 0.5 ampere

C. 0.7 ampere

D. 7 ampere

Answer: 2

D Watch Video Solution

15. Two alternating voltage generators produce emfs of the same amplitude $\left(E_{0}\right)$ but with a phase difference of $(\pi) / 3$. The resultant emf is

$$
\text { A. } E_{0} \sin \left(\omega t+\frac{\pi}{3}\right)
$$

> B. $E_{0} \sin \left(\omega t+\frac{\pi}{6}\right)$
> C. $\sqrt{3} E_{0} \sin \left(\omega t+\frac{\pi}{6}\right)$
> D. $\sqrt{3} E_{0} \sin \left(\omega+\frac{\pi}{2}\right)$

Answer: 3

D Watch Video Solution

16. The potential difference across a $2 H$ inductor as a function of time is shown in figure. At time $t=0$, current is zero

Current $t=2$ second is

A. $1 A$
B. $3 A$
C. $4 A$
D. $5 A$

Answer: 4
17. For the circuit shown in the figure the rms
value of voltage across R and coil are E_{1} and E_{2}
respectively.

The power (thermal) developed across the coil is

$$
\begin{aligned}
& \text { A. } \frac{E-E_{1}^{2}}{2 R} \\
& \text { B. } \frac{E-E_{1}^{2}-E_{2}^{2}}{2 R} \\
& \text { C. } \frac{E^{2}}{2 R} \\
& \text { D. } \frac{\left(E-E_{1}\right)^{2}}{2 R}
\end{aligned}
$$

Answer: 2

D Watch Video Solution

18. A bulb is rated at $100 \mathrm{~V}, 100 \mathrm{~W}$. It can be treated as a resistor. Find out the inductance of
an inductor (called choke coil) that should be connected in series with the bulb at its rated power with the help of an ac source of 200 V and 50 Hz .

$$
\text { A. } \frac{\pi}{\sqrt{3}} H
$$

B. 100 H
C. $\frac{\sqrt{2}}{\pi} H$
D. $\frac{\sqrt{3}}{\pi} H$

Answer: 4
19. In the circuit shown in fig.
$X_{C}=100 \Omega,\left(X_{L}\right)=200 \Omega$ and $R=100 \Omega$. The effective current through the source is

A. $2 A$
B. $2 \sqrt{2} A$
C. $0.5 A$

D. $\sqrt{0.4} A$

Answer: 2

- Watch Video Solution

20. When the rms voltages V_{L}, V_{C} and V_{R} are measured respectively across the inductor L,
the capacitor C and the resistor R in a series
$L C R$ circuit connected to an $A C$ source, it is
found that the ratio $V_{L}: V_{C}: V_{R}=1: 2: 3$. If the rms voltage of the $A C$ sources is $100 V$, the V_{R} is close to:
A. 50 V
B. 70 V
C. 90 V
D. 100 V

Answer: 3

D Watch Video Solution

21. A sinusoidal voltage $V(t)=100 \sin (500 t)$ is applied across a pure inductance of $L=0.02 \mathrm{H}$.

The current through the coil is :
A. $10 \cos (500 t)$
B. $-10 \cos (500 t)$
C. $10 \sin (500 t)$

D. $-10 \sin (500 t)$

Answer: 2

D Watch Video Solution

22. For the $L C R$ circuit, shown here, the current
is observed to lead the applied voltage. An additional capacitor C^{\prime}, when joined with the
capacitor C present in the circuit, makes the power factor of the circuit unity. The capacitor C^{\prime} must have been connected in:

A. series with C and has magnitude

$$
\frac{C}{\left(\omega^{2} L C-1\right)}
$$

B. series with C and has a magnitde

$$
\frac{1-\omega^{2} L C}{\omega^{2} L}
$$

C. parallel with C and has a magnitude

$$
\frac{1-\omega^{2} L C}{\omega^{2} L}
$$

D. parallel with C and has a magnitude

$$
\frac{C}{\left(\omega^{2} L C-1\right)}
$$

Answer: 3
23. An LCR curcuit is equivalent to a damped pendulum. In an LCR circuit the capacitor is charged to $\left(Q_{0}\right)$ and then connected to the L ans R as shown below.

If a student plaots graphs of the square of maximum charge $\left(Q_{\max }^{2}\right)$ on the capacitor with time (t) for two different values
L_{1} and $L_{2}\left(L_{1}>L_{2}\right)$ of L then which of the following represents this graph correclty? (plots are schematic and not drawn to scale).
A.

B.

C.

24. An are lamp requires a direct current of 10 A at 80 V to function. If it is connected to a 220 V (rms), 50 Hz AC supply, the series inductor needed for it to work is close to:
A. 80 H
B. 0.08 H
C. 0.044 H
D. 0.065 H

Answer: 4

D Watch Video Solution

NCERT Based Question

1. At resonance, V_{L} and V_{C} both very much greater than the applied potential, V itself. The quantity factor for an $L C R$ circuit in resonance
is given by $Q=\frac{X_{L}}{R}$. In pratice, $Q=200$ has been achieved.

At resonance, the capacitor has been adjusted for
(1). $200 \times 10^{-6} \mu F$
(2) $0.00013 \mu F$
(3). $0.0012 \mu F$
(4). $0.0013 F$

At resonance, the potential difference across
the inductance is
(1) 1.3 V
(2) 13 V
(3). 0.3 V
(d) none of these

The potential across the capacitor at resosnance is
(1) 1.3 V
(2) 13 V
(3) $<13 \mathrm{~V}$
(4) none of these

The Q factor is
(1) $\frac{V_{L}}{V_{C}}$
(2) $\frac{V_{C}}{V_{L}}$
(3) $\frac{V_{C}}{V}$
(d) $\frac{V_{L}}{V}$
(e) choose the right statement.
(1) $V_{L}+V_{C}$ can be greater than $V_{\text {applied }}$
(2) $V_{L}+V_{C}=V_{\text {applied }}$
(3) $V_{L}+V_{C}<V_{\text {applied }}$
(4) none of these

D View Text Solution

LEVEL - IV NCERT Based Questions

1. If the rms current in a 50 Hz ac circuit is 5 A , the value of the current $1 / 300$ second after its value becomes zero is
A. $5 \sqrt{2} A$
B. $5 \sqrt{\frac{3}{2}} A$
C. $\frac{5}{6} A$
D. $\frac{5}{\sqrt{2}} A$

Answer: 2
2. An alternating current generator has an internal resistance R_{g} and an internal reactance X_{g}. It is used to supply power to a passive load consisting of a resistance R_{g} and a rectance X_{L}. For maximum power to be delivered from the generator to the load, the value of X_{L} is equal to

A. zero
B. X_{g}
C. $-X_{g}$
D. R_{g}

D Watch Video Solution

3. When a voltage measuring device is connected to a.c. mains the meter shows the steady input voltage of 220 V . This means
A. input voltage cannot be a.c. voltage, but a.d.c voltage.
B. maximum input voltage is 220 V
C. the meter reads not v but $\left\langle v^{2}\right\rangle$ and is
calibrated to read $\sqrt{\left\langle v^{2}\right\rangle}$.

D. the pointer of the meter is stuck by some

mechanical defect

Answer: 3
(D) Watch Video Solution
4. To reduce the resonant frequency in an $L C R$
series circuit with a generator
A. the generator frequency should be reduced
B. another capacitor should be added in
parallel to the first
C. the iron core of the inductor should be

removed

D. dielectric in the capacitor should be removed.

Answer: 2
5. Which of the following combinations should be selected for better turning of an LCR circuit used for communication?

$$
\begin{aligned}
& \text { A. } R=20 \Omega, L=1.5 H, C=35 \mu F \\
& \text { B. } R=25 \Omega, L=2.5 H, C=45 \mu F \\
& \text { C. } R=15 \Omega, L=3.5 H, C=30 \mu F \\
& \text { D. } R=25 \Omega, L=1.5 H, C=45 \mu F
\end{aligned}
$$

Answer: 3
6. A inductor of reactance 1Ω and a resistor of
2Ω are connected in series to the terminals of a

6 V (rms) a.c. source. The power dissipated in
the circuit is
A. 8 W
B. 12 W
C. 14.4 W
D. 18 W

- Watch Video Solution

7. The output of a step-down transformer is measured to be $24 V$ when connected to a 12 watt light bulb. The value of the peak current is
A. $\frac{1}{\sqrt{2}}$
B. $\sqrt{2} A$
C. $2 A$
D. $2 \sqrt{2} A$

- Watch Video Solution

8. As the frequency of an ac circuit increases,
the current first increases and then decreases.
What combination of circuit elements is most
likely to comprise the circuit ?
A. Inductor and capacitor
B. Resistor and inductor
C. Resistor and capacitor
D. Resistor, inductor and capacitor

Answer: 1,4

D Watch Video Solution

9. In an alternating current circuit consisting of
elements in series, the current increases on
increasing the frequency of supply. Which of
the following elements are likely to consitute the circuit?
A. Only resistor
B. Resistor and an inductor

C. Resistor and a capacitor

D. Only a capacitor

Answer: 3,4

D Watch Video Solution

10. Electrical energy is transmitted over large distances at high alternating voltages. Which of the following statements is (are) correct?
A. For a given power level, there is a lower current.
B. Lower current implies less power less.
C. Transmission lines can be made thinner.
D. It is easy reduce the voltage at the

receving end using step-down

transformers

Answer: 1,2,4
11. For an LCR circuit, the power transferred from the driving source to the driven oscillator is $P=I^{2} Z \cos \phi$.
A. Here, the power factor $\cos \phi \geq 0, P \geq 0$.
B. The driving force can give no energy to
the oscillator $(P=0)$ in some cases.
C. The driving force cannot syphone out
$(P>0)$ the energy out of osillator.
D. The driving force take away energy out of
the oscillator.

- Watch Video Solution

12. When an A. C voltage of 220 V is applied to the capacitor C
A. The maximum voltage between plates is

220 V
B. the current is in phase with the applied
voltage

C. the change on the plates is in phase with

the applied voltage.
D. power delivered to the capacitor is zero.

Answer: 3,4

- Watch Video Solution

13. The line the draws power supply to your house from street has
A. zero average current.
B. 220 V average voltage
C. voltage and current out of phase by 90°
D. voltage and current possibly differing in
phase ϕ such that $|\phi| \leq \frac{\pi}{2}$

Answer: 1,4

(Watch Video Solution

14. An $L C$ circuit contains a $20 m H$ inductor asn
a $50 \mu \mathrm{~F}$ capacitor with initial change of 10 mC .

The resistance of the circuit is negligible. Let
the instant the circuit is closed be $t=0$.

A. Energy stored in the circuit in completely
electrical at $t=\frac{n \pi}{2000}$
B. Energy stored in the circuitin completely
magnetic at $t=\frac{(2 n+1) \pi}{2000}$
C. Energy stored in the circuit in shared equally between the inductor and
capacitor at $t=\frac{(2 n+1) \pi}{4000}$
D. Energy stored in the circuit is shared
euqally between the inductor and
capacitor at $t=\frac{n \pi}{2000}$

Answer: 1,2,3

D Watch Video Solution
15. If the three elements, L, C and R are arranged in parallel. Source has emf 230 V and $L=5.0 H, C=80 \mu \mathrm{~F}$ and $R=40 \Omega$

A. The minimum impedance in the circuit is
B. The maximum impedance in the circuit is

40Ω

C. The impedance is minimum at

$\omega=50 \mathrm{rads}^{-1}$ of the source.

D. The impedance is maximum at

$\omega=50 \mathrm{rads}^{-1}$ of the source

Answer: 2,3

D Watch Video Solution

1. The value of current in two series $L C R$ circuits at resonance is same when connected across a sinusodial voltage source. Then:
A. both circuits must be having same value
of capacitance and inductor
B. in both circuits ratio of L and C will be
same
C. for both the circuits X_{L} / X_{C} must be same
at that frequency

D. both circuits must have same impedance

at all frequencies

Answer: C

D Watch Video Solution

2. The series $R L C$ circuit in resonance is called:

A. Selector circuit
B. rejector circuit
C. amplifier circuit

D. oscillator circuit

Answer: A

D Watch Video Solution

3. In a series R-L-C circuit, the frequency of the source is half of the resonance frequency. The nature of the circuit will be
A. capacitive
B. inductive

C. purely resistive

D. selective

Answer: A

- Watch Video Solution

4. The graphs given below depict the dependence of two reactive impedences X_{1} and
X_{2} on the frequency of the alternating e.m.f.
applied individually to them. We can then say
that

A. X_{1} is an inductor and X_{2} is a capacitor
B. X_{L} is a resistor and X_{2} is a capacitor
C. X_{1} is a capacitor and X_{2} is an inductor
D. X_{1} is an inductor and X_{2} is a resistor

Answer: C

5. In which of the following electrical applianes

will $A C$ fail to function where $D C$ is normally used?
A. electric light
B. voltmeter
C. solenoid for electromagnet
D. a cathode ray tube

Answer: C

6. Instantaneous values of current and e.m.f in
an AC circuit are $I=I / \sqrt{2} \sin 314$ tamp and
$E=\sqrt{2} \sin (314 t-\pi / 6) V$ respectively. The phase difference between E and I will be
A. $-\frac{\pi}{6} \mathrm{rad}$
B. $-\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{3} \mathrm{rad}$

Answer: A
7. The rms value of an ac of 50 Hz is 10 A . The time taken by an alternating current in reaching from zero to maximum value and the peak value will be
A. $2 \times 10^{-2} \mathrm{sec}$ and 14.14 amp
B. $1 \times 10^{-2} \mathrm{sec}$ and 7.07 amp
C. $5 \times 10^{-3} \mathrm{sec}$ and 7.07 amp
D. $5 \times 10^{-3} \mathrm{sec}$ and 14.14 amp

- Watch Video Solution

8. The voltage time (V-t) graoh for triangular wave having peak value $\left(V_{0}\right)$ is as shown in fig.

$$
\begin{aligned}
& \text { A. } \frac{V_{0}}{3} \\
& \text { B. } \frac{V_{0}}{2}
\end{aligned}
$$

C. $\frac{V_{0}}{\sqrt{2}}$
D. $\frac{V_{0}}{\sqrt{3}}$

Answer: D

Watch Video Solution

9. The average value for the saw-tooth voltage of peak value of V_{0} over half the cycle as shown
in figure is

$$
\begin{aligned}
& \text { A. } \frac{V_{0}}{\sqrt{3}} \\
& \text { B. } \frac{V_{0}}{\sqrt{2}} \\
& \text { C. } \frac{2 V_{0}}{3} \\
& \text { D. } \frac{V_{0}}{3}
\end{aligned}
$$

Answer: D
10. An alternating voltage is given by: $e=e_{1} \sin \omega t+e_{2} \cos \omega t$. Then the root mean square value of voltage is given by:
A. $\sqrt{e_{1}^{2}+e_{2}^{2}}$
B. $\sqrt{e_{1} e_{2}}$
C. $\sqrt{\frac{e_{1} e_{2}}{2}}$
D. $\sqrt{\frac{e_{1}^{2} e_{2}^{2}}{2}}$

Answer: D

D Watch Video Solution

11. If $i=t^{2}, 0<t<T$ then r.m.s. value of
current is

$$
\begin{aligned}
& \text { A. } \frac{T^{2}}{\sqrt{2}} \\
& \text { B. } \frac{T^{2}}{2} \\
& \text { C. } \frac{T^{2}}{\sqrt{5}} \\
& \text { D. } \frac{T^{2}}{5}
\end{aligned}
$$

Answer: C

D Watch Video Solution

12. An alternating voltage $V=100 \sin \omega t$ is applied across an $L C R$ circuit as shown. At the instant when voltage drop across source is
$50 \sqrt{3}$ volts then at that instant

$$
R=30 \Omega \quad X_{L}=60 \Omega \quad X_{C}=20 \Omega
$$

A. voltage drop across inductor is

$$
\left(120 \cos 7^{\circ}\right) \text { volts }
$$

B. voltage drop across capacitor is
$\left(40 \cos 173^{\circ}\right)$ volts
C. voltage drop across resistor is $\left(60 \cos 7^{\circ}\right)$ volts

D. All the above

Answer: D

13. The rms and the average value of the voltage wave shown in figure are

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{32}{3}} V, 1 V \\
& \text { B. } \sqrt{\frac{11}{3}} V, 1 V
\end{aligned}
$$

C. $\sqrt{\frac{11}{3}} V, 3 V$
D. $\sqrt{\frac{32}{3}} V, 3 V$

Answer: A

D Watch Video Solution

14. If $i_{1}=i_{0} \sin (\omega t), i_{2}=i_{0_{2}} \sin (\omega t+\phi)$, then $i_{3}=$

A. $\sqrt{i_{0_{1}}^{2}+i_{0_{2}}^{2}} \sin \{\phi+\omega t\}$
B. $\left(i_{0_{1}}+i_{0_{2}}\right) \sin \left(\frac{\phi}{2}+\omega t\right)$

$$
\begin{aligned}
& \text { C. }\left(\sqrt{i_{0_{1}}^{2}+i_{0_{2}}^{2}+2 i_{0_{1}} i_{0_{2}} \cos \phi}\right) \sin [\phi+\omega t] \\
& \text { D. }\left(\sqrt{i_{0_{0_{1}}}^{2}+i_{0_{2}}^{2}+2 i_{0_{1}} i_{0_{2}} \cos \phi}\right) \sin [\alpha+\omega t] \\
& \text { where } \alpha=\tan ^{-1}\left[\frac{i_{0_{2}} \sin \phi}{i_{0_{1}}+i_{0_{2}} \cos \phi}\right]
\end{aligned}
$$

Answer: D

D Watch Video Solution

15. The average and effective values for the waveshaphe shown in figure are:

A. $\frac{2}{\pi} V_{m}$ and $\frac{V_{m}}{2}$
B. $\frac{V_{m}}{\pi}$ and $\frac{V_{m}}{\sqrt{2}}$
C. $\frac{2}{\pi} V_{m}$ and $\frac{V_{m}}{\sqrt{2}}$
D. $\frac{V_{m}}{\pi \sqrt{2}}$ and $\frac{V_{m}}{\sqrt{2}}$

Answer: C
16. Calculate the reading which will be given by
a hot-wire voltmeter if it is connected across
the terminals of generator whose voltage
waveform is represented by
$v=200 \sin \omega t+100 \sin 3 \omega t+50 \sin \omega t$
A. 110 V
B. 162 V
C. 200 V
D. 220 V

- Watch Video Solution

17. An alternating current I in an inductance coil varies with time t according to the graph as
shown: Which one of the following graph gives
the variation of voltage with time?

A.
A)
B.

C.

D.

Answer: B

D Watch Video Solution
18. Find the rms and average value of the wavefrom shown in figure

Time \longrightarrow
A. 8.5,10
B. 10.3,20
C. $15.2,15$

D. 26,5

Answer: C

D Watch Video Solution

19. Determine the rms value of a semi-circular current wave which has a maximum value of a.

A. 2.515 a
B. 1.815 a
C. 0.615 a
D. 0.816 a

Answer: D

D Watch Video Solution

20. An electric bulb is designed to operate at 12
volts $D C$. If this bulb is connected to an $A C$
source and gives normal brightness, what would be the peak voltage of the source?
A. 37 V
B. 17 V
C. 18 V
D. 10 V

Answer: B
21. The current in a discharging $L R$ circuit is given by $I=i_{0} e^{-\frac{t}{\tau}}$ where τ is the time constant of the circuit. Calculate the rms current for the period $t=0$ to $t=\tau$.

$$
\begin{aligned}
& \text { A. } \frac{i_{0}}{e} \sqrt{\frac{\left(e^{2}-1\right)}{2}} \\
& \text { B. } \frac{i_{0}}{e} \sqrt{\frac{\left(e^{-2}+1\right)}{2}} \\
& \text { C. } \frac{i_{0}}{e} \sqrt{\frac{(e+2)}{3}} \\
& \text { D. } \frac{i_{0}}{e} \sqrt{\frac{\left(e^{2}-1\right)}{2}}
\end{aligned}
$$

D Watch Video Solution

22. The figure represents the voltage applied across a pure inductor. The diagram which correctly represents the variation of curent i
with time t is given by

D.

D)
$\xrightarrow{i \uparrow}$

Answer: D

- Watch Video Solution

23. A constant voltage at different frequencies
is applied across a capacitance C as shown in
the figure. Which of the following graphs correctly depicts the variation of current with
frequency

A.C. generator

A.

C.

D.

Answer: B

D Watch Video Solution

24. The resonance point in $X_{L}-f$ and $X_{C}-f$
curves is

A. P
B. Q
C. R
D. S

Answer: C
(D) Watch Video Solution
25. When 100 V DC is applied across a solenoid, a current of 1.0 A flows in it. When 100 V AC is applied across the same coil. The current drops to $0.5 A$. If the frequency of the ac source is

50 Hz , the impedance and inductance of the solenoid are
A. 200 ohm and 0.55 henry
B. 100 ohm and 0.86 henry
C. 100 ohm and 1.0 henry

D. 100 ohm and 0.93 henry.

Answer: A

- Watch Video Solution

26. A coil having an inductance of $1 / \pi$ henry is connected in series with a resistance of 300Ω. If

20 volt from a 200 cycle source are impressed across the combination, the value of the phase angle between the voltage and the current is :

$$
\text { A. } \tan ^{-1} \frac{5}{4}
$$

B. $\tan ^{-1} \frac{4}{5}$
C. $\tan ^{-1} \frac{3}{4}$
D. $\tan ^{-1} \frac{4}{3}$

Answer: D

- Watch Video Solution

27. In a circuit containing an inductance of zero
resistance, the current leads the applied a.c.
voltage by a phase angle at
A. 90°
B. -90°
C. 0°
D. 180°

Answer: B

D Watch Video Solution

28. In $R L C$ circuit, at a frequency v, the potential difference across each device are

$$
\left(\Delta V_{R}\right)_{\max }=8.8 \mathrm{~V},\left(\Delta V_{L}\right)_{\max }=2.6 \mathrm{~V} \quad \text { and }
$$

$\left(\Delta V_{C}\right)_{\max }=7.4 \mathrm{~V}$. The composed potential difference $\left(\Delta V_{C}+\Delta V_{L}\right)_{\text {max }}$ across inductor and capacitor is
A. 10 V
B. 7.8 V
C. 7.4 V
D. 4.8 V

Answer: D
29. The natural frequency of the circuit shown in the figure is

A. $\frac{1}{2 \pi \sqrt{L C}}$
B. $\frac{1}{\pi \sqrt{L C}}$
C. $\frac{2}{\pi \sqrt{L C}}$
D. none

D Watch Video Solution

30. If the phase difference between voltage and current is $\pi / 6$ and the resistance in the circuit
is $\sqrt{300} \Omega$, then the impedance of the circuit will be
A. 40Ω
B. 20Ω
C. 50Ω

D. 13Ω

Answer: B

D Watch Video Solution

31. In the circuit as shown in the figure, if value of $R=60 \Omega$, then the current flowing through
the condenser will be

A. $0.5 A$
B. 0.25 A
C. $0.75 A$
D. 1.0 A

- Watch Video Solution

32. The power in ac circuit is given by $P=E_{r m s} I_{r m s} \cos \phi$. The vale of cos phi in series

LCR circuit at resonance is:
A. zero
B. 1
C. $\frac{1}{2}$
D. $\frac{1}{\sqrt{2}}$

- Watch Video Solution

33. A generator with an adjustable frequency of oscillaton is connected to resistance,
$R=1000 \Omega, \quad$ inductance, $\quad L_{1}=1.7 \mathrm{mH} \quad$ and $L_{2}=2.3 \mathrm{mH}$ and capacitance,
$C_{1}=4 \mu F, C_{2}=2.5 \mu F$ and $C_{3}=3.5 \mu F$. The resonant angular frequency of the circuit is

A. $0.5 \mathrm{rad} / \mathrm{s}$

B. $0.5 \times 10^{4} \mathrm{rad} / \mathrm{s}$
C. $2 \mathrm{rad} / \mathrm{s}$

$$
\text { D. } 2 \times 10^{-4} \mathrm{rad} / \mathrm{s}
$$

Answer: B

D Watch Video Solution

34. In the a.c circuit shown in figure, the supply voltage has a constant r.m.s value but variable
frquency f. Resonance frequency is

A. 10 Hz
B. 100 Hz
C. 1000 Hz
D. 200 Hz

- Watch Video Solution

35. in a LCR circuit capacitance is chagned from

C to 2C. For the resomat frequency to remain
unchaged, the inductance should be chagned from L to
A. $4 L$
B. $2 L$
C. $L / 2$
D. $L / 4$

Answer: C

D Watch Video Solution

36. In an $A C$ circuit, V and I are given by
$V=100 \sin (100 t) v o<s, I=100 \sin \left(100 t+\frac{\pi}{3}\right) m A$
. The power dissipated in circuit is
A. 10^{4} watt
B. 10 watt
C. 2.5 watt

D. 5 watt

Answer: C

- Watch Video Solution

37. A series combination of $R, L C$ is connected to an a.c source. If the resistance is 3Ω and the reactance is 4Ω, the power factor of the circuit is
A. 0.4
B. 0.6

C. 0.8

D. 1.0

Answer: B

D Watch Video Solution

38. In an a.c. Circuit the voltage applied is $E=E_{0} \sin (\omega) t$. The resulting current in the circuit is $I=I_{0} \sin \left((\omega) t-\left(\frac{\pi}{2}\right)\right)$. The power consumption in the circuit is given by
A. $E_{0} I_{0} / \sqrt{2}$
B. $E_{0} I_{0} / 2$
C. $E I / \sqrt{2}$
D. zero

Answer: D

D Watch Video Solution

39. In a series $C-R$ circuit shown in figureure,
the applied voltage is 10 V and the voltage across capacitor is found to 8 V . The voltage
across R, and the phase difference between current and the applied voltage will respectively be

A. $6 V, \tan ^{-1}\left(\frac{4}{4}\right)$
B. $3 V, \tan ^{-1}\left(\frac{3}{4}\right)$
C. $6 V, \tan ^{-1}\left(\frac{5}{3}\right)$

$$
\text { D. } 3 V, \tan ^{-1}\left(\frac{4}{3}\right)
$$

Answer: A

D Watch Video Solution

40. An inductor of inductance L and ressistor of resistance R are joined in series and connected by a source of frequency ω. Power dissipated in the circuit is

$$
\frac{\left(R^{2}+\omega^{2} L^{2}\right)}{V}
$$

B.
$\left(R^{2}+\omega^{2} L^{2}\right)$
C. $\frac{V}{}$
$\left(R^{2}+\omega^{2} L^{2}\right)$
$\sqrt{R^{2}+\omega^{2} L^{2}}$
D.

$$
V^{2}
$$

Answer: B

D Watch Video Solution

41. Power loss in $A C$ circuit will be minimum when

A. Inductance is high, resistance is high

B. Inductance is low, resistance is high
C. Inductance is low, resistance is low

D. Inductance is high, resistance is low

Answer: D

(Watch Video Solution

42. In the circuit, as shown in the figure, if the
value of R.M.S current is 2.2 ampere, the
power factor of the box is $(E=220 \mathrm{~V})$

A. $\frac{1}{\sqrt{2}}$
B. 1
C. $\frac{\sqrt{3}}{3}$
D. $\frac{1}{2}$

- Watch Video Solution

43. The impedance of a sereis $R L$ circuit is same as the series $R C$ circuit when connected to the same $A C$ source separately keeping the same resistance. The frequency of the source is

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{L C}} \\
& \text { B. } \frac{1}{2 \pi \sqrt{L C}} \\
& \text { C. } \frac{R}{L} \\
& \text { D. } \frac{1}{R C}
\end{aligned}
$$

Answer: B

D Watch Video Solution

44. A current source sends a current
$I=\left(i_{0}\right) \cos (\omega t)$, When connected across an unknown load, it gives a voltages output of $v=v_{0} \sin [\omega t+(\pi / 4)]$ across that load. Then the voltage across the current source may bebroaught in phase with the current through

A. Connectinng an inductor in series with
the load
B. Connecting a capacitor in series with the
load
C. Connecting a capacitor in parallel with
the load

D. Connecting a capacitor in parallel with

the load

Answer: B

D Watch Video Solution

45. A combination of elements is enclosed in a black box an the voltage and currents are measured across this black box. The expression
for applied voltage, and the current flowing in it is $V=V_{0} \sin \omega t$,
$i=2 \sqrt{2} \sin (\omega+\pi / 4) \quad$ where $\quad \omega=100 \pi \mathrm{rad} / \mathrm{sec}$

Then the wrong statement is

A. The must be a capacitor is the black box
B. Power factor of circuit $=0.707$
C. There must be a resistor in the box
D. There must be an inductor in the box

- Watch Video Solution

46. A high impedance $A C$ voltmeter is connected in turn across the inductor, the capacitor and the resistor in a series circuit having an $A C$ source of 100 V (rms) and gives the same reading in volts in each case. This reading is:
A. 100 V
B. 141 V
C. 150 V

D. 200 V

Answer: A

- Watch Video Solution

47. In a black box of unknown elements (L or R or any other combination), an ac voltage $\left.E=E_{0} \sin (\omega t)+\phi\right)$ is applied and current in the circuit was found to be $I=\left(I_{0}\right) \sin [\omega t+\phi+(\pi / 4)]$. Then the unknown
elements in the box may be

A. only capacitor
B. inductor and resistor both
C. either capacitor, resistor and inductor or

D. only resistor

Answer: C

- Watch Video Solution

48. A given alternating current has an rms value of 5.6 ampere. If this current flows in a circuit containing 10Ω of resistance in series with 20Ω of inductive reactance, the power consumed in the circuit will be A. 313.6 W
B. 940.8 W
C. 627.2 W

D. 168 W

Answer: A

- Watch Video Solution

49. In an a.c circuit, V \& I are given by
$V=100 \sin (100 t)$ volt.
$I=100 \sin \left(100 t+\frac{\pi}{2}\right) m A$
The power dissipated in the circuit is:
A. 1 watt
B. 10 watt
C. zero

D. 5 watt

Answer: C

D Watch Video Solution
50. In R-L-C series circuit, we have same
current at angular frequencies ω_{1} and ω_{2}. The resonant frequency of circuit is

> A. $\frac{\omega_{1}^{2}}{\omega_{2}}$ B. $\frac{\omega_{2}^{2}}{\omega_{1}}$ C. $\sqrt{\omega_{1} \omega_{2}}$ D. $\omega_{1}+\omega_{2}$

Answer: C

- Watch Video Solution

51. A choke coil of resistance R and inductance
L is connected to A. C sourceof frequency f and
maximum voltage V_{0}. Then, the average power dissipated in the choke is proportional to:
A. f^{2}
B. f^{-2}
C. f^{1}
D. f^{0}

Answer: D
52. When two A. C generators of emfs V_{1} and
V_{2} and same frequency connected in series, the emf across A and B is ($\phi=$ phase angle difference between the generators):

> A. $\frac{V_{1}+V_{2}}{2}$
> B. $\sqrt{V_{1}+V_{2}}$
C. $\sqrt{V_{1}^{2}+V_{2}^{2}+2 V_{1} V_{2} \cos \phi}$
D. $\sqrt{V_{1}^{2}+V_{2}^{2}}$

Answer: C

D Watch Video Solution

53. At resonance of the given series $R-L-C$
circuit:

$$
\text { A. } V^{2}=\left|V_{1}-V_{2}\right|^{2}+V_{3}^{2}
$$

B. $V_{3}=0$
C. $V_{1}=0$
D. $V_{2}=0$

Answer: C

D Watch Video Solution

54. If the reading of the voltmeters vary with
time
as:
$V_{1}=20 \sin \omega t$
and
$V_{2}=-20 \cos \left(\omega t+\frac{\pi}{6}\right)$ then the unknown circuit element x is a:

A. pure (or ideal) inductor
B. practical inductor
C. pure (or ideal) capacitor
D. practical capacitor

Answer: D

- Watch Video Solution

55. In a series $L C R$ circuit, at the frequencies f_{1}
and f_{2} of $A C$ source, the current amplitude falls
to $\frac{1}{\sqrt{2}}$ of the current amplitude at resonance.
Then the value of $f_{2}-f_{1}$ is

$$
\begin{aligned}
& \text { A. } \frac{R}{2 \pi L} \\
& \text { B. } \frac{R}{L} \\
& \text { C. } \frac{R}{\pi L}
\end{aligned}
$$

D. $\frac{R}{\pi^{2} L}$

Answer: A

D Watch Video Solution

56. In the figure, which of the phasor diagrams represents $R L C$ circuit driven at resonance?

Answer: C

D Watch Video Solution

57. In $L C R$ circuit at resonance current in the
circuit is $10 \sqrt{2} A$. If tnow frequency of the
source is changed such that now current lags
by 45° that applied voltage in the circuit. Which of the following is correct.
A. Frequency must be increased and current
after the change is 10 A
B. Frequency must be decreases and current
after the change is 10 A
C. Frequency must be decreased and
current is same as that of initial value
D. The given information is insufficient to
conclude anything

Answer: A

D Watch Video Solution

58. A pure resistive circuit element X when connected to an sinusoidal $A C$ supply peak voltage 200 V gives a peak current of 5 A which
is in phase with the voltage. A second circuit element Y, when connected to the same $A C$ supply also gives the same value of peak currrent but the current lags behind by 90°. If
the series combination of X and Y is connected
to the same supply. the rms value of current is

$$
\begin{aligned}
& \text { A. } \frac{10}{\sqrt{2}} A \\
& \text { B. } \frac{5}{\sqrt{2}} A \\
& \text { C. } \frac{5}{2} A \\
& \text { D. } 5 A
\end{aligned}
$$

Answer: C
59. An A. C circuit contains a resistor ${ }^{\prime} R$ ' an
inductor ' L ' and a capacitor ${ }^{\prime} C$ ' connected in series. When it is connected to an A.C generator of fixed output voltage and varialbe frequency, the current in the circuit is found to be leading the applied voltage $\frac{\pi}{4}$ read, when the frequency is f_{1}. when the frequency of the generator increased to f_{2} the current is found to be lagging behind the applied voltage by $\frac{\pi}{4}$ rad. The resonant frequency of the circuit is

$$
\text { A. } \frac{f_{1} f_{2}}{f_{1}+f_{2}}
$$

$$
\begin{aligned}
& \text { B. } \frac{f_{1}+f_{2}}{2} \\
& \text { C. } \frac{2 f_{1} f_{2}}{f_{1}+f_{2}} \\
& \text { D. } \sqrt{f_{1} f_{2}}
\end{aligned}
$$

Answer: D

D Watch Video Solution

60. An alternative voltage $V=10 \sin \omega t$ (in volts)
is applied across a parallel arrangement as
shown current (in A) through the source is best
described by

A. $i=0.05 \sin \omega t$
B. $i=0.7 \sin \left(\omega t+\frac{\pi}{6}\right)$

> C. $i=0.7 \sin \left(\omega t+\frac{\pi}{4}\right)$
> D. $i=0.05 \sin \left(\omega t+\frac{\pi}{2}\right)$

Answer: C

D Watch Video Solution

61. A radio tuner has a frequency range from

500 kHz to $5 M H z$. If its $L C$ circuit has an effective inductance of $200 \mu H$, what is the range of it varialbe capacitors? (Take $\pi^{2}=10$).
A. 2.5 pF to 250 pF
B. 5.0 pF to 500 pF
C. 7.5 pF to 750 pF

D. 10 pF to 1000 pF

Answer: A

D Watch Video Solution

62. In a series $L C R$ circuit the frequency of a
$10 \mathrm{~V}, \mathrm{AC}$ voltage soure is adjusted in such a
fashion that the reactance of the inductor
meausers 15Ω and that of the capacitor 11Ω. If
$R=3 \Omega$, the potentail difference across the series combination of L and C will be:
A. 8 V
B. 10 V
C. 22 V
D. 52 V

Answer: A

D Watch Video Solution
63. A resistor of resistance 100Ω is connected
to an $A C$ source $\varepsilon=(12 V) \sin \left(250 \pi s^{-1}\right) t$. Find the energy dissipated as heat during $t=0$ to $t=1.0 \mathrm{~ms}$.
A. $0.61 \times 10^{4} \mathrm{~J}$
B. $0.61 \times 10^{-4} \mathrm{~J}$
C. $2.61 \times 10^{-4} \mathrm{~J}$
D. $2.61 \times 10^{-6} \mathrm{~J}$

Answer: C
64. A lamp consumes only 50% of peak power
in an $a . c$. circuit. What is the phase difference
between the applied voltage and the circuit
current

$$
\begin{aligned}
& \text { A. } \frac{\pi}{6} \\
& \text { B. } \frac{\pi}{3} \\
& \text { C. } \frac{\pi}{4} \\
& \text { D. } \frac{\pi}{2}
\end{aligned}
$$

65. Voltage and current for a circuit with two elements in series are expressed as
$V(t)=170 \sin \left(6280 t+\frac{\pi}{3}\right) v o<$
$i(t)=8.5 \sin \left(6280 t+\frac{\pi}{2}\right) a m p$
(a) Plot the two waveforms.
(b) Determine the frequency in Hz .
(c) Determine the power factor starting its nature.
(d) What are the values of the elements?

$$
\text { A. } R=27.32 \Omega, C=25.92 m F
$$

$$
\text { B. } R=17.32 \Omega, C=15.92 \mathrm{mF}
$$

C. $R=7.32 \Omega, C=5.92 m F$

$$
\text { D. } R=10.32 \Omega, C=5.92 m F
$$

Answer: B

D Watch Video Solution

66. When an ac source of emfe $=E_{0} \sin (100 t)$ is
connected across a circuit, the phase difference
between emf e and currnet I in the circuit is
observed to be $(\pi) /(4)$ as shown in fig. If the circuit consists possibly only of R-C or R-C of L-R series, find the relationship find the relationship between the two elements.

A. $R=1 k \Omega, C=10 \mu F$
B. $R=1 k \Omega, C=1 \mu F$
C. $R=1 \mathrm{k} \Omega, H=10 H$

$$
\text { D. } R=1 k \Omega, L=1 H
$$

Answer: C

D Watch Video Solution

67. The figure shows variation of R, X_{L} and X_{C} with frequency f in a series L, C, R circuit. Then
for what frequency point, the circuit is
inductive?

A. A
B. B
C. C
D. All points

Answer: C
68. Which of the following plots may represent the reactance of a series $L C$ combination?

A. a
B. b
C. c
D. d

Answer: D

D Watch Video Solution

69. An inductor-coil, a capacitor and an AC source of rms voltage 24 V are connected in
series. When the frequency of the source is
varied, a maximum rms current of 6.0 A is
observed. If this inductor coil is connected to a
battery of emf12V and internal resistance 4.0Ω,
what will be the current?
A. $2 A$
B. 1.5 A
C. $0.5 A$
D. 2.5 A

Answer: B

- Watch Video Solution

70. A circuit consisting of a capacitor and a coil in series is connected to the mains. Varying the capacitance of the capacitor, the heat power genergated in the coil was increased $n=1.7$
times. How much (in per cent) was the value of $\cos \varphi$ changed in the process ?
A. 80%
B. 25 \%
C. 50 \%
D. 30%

Answer: D
71. An AC source producing emf
$\varepsilon=\varepsilon_{0}\left[\cos \left(100 \pi \mathrm{~s}^{-1}\right) t+\cos \left(500 \pi \mathrm{~s}^{-1}\right) t\right]$
is connected in series with a capacitor and a resistor. The steady-state current in the circuit is found to be

$$
I=i_{1} \cos \left[\left(100 \pi s^{-1} t+\varphi_{1}\right]+i_{2} \cos \left[\left(500 \pi s^{-1}\right) t+\phi_{2}\right]\right.
$$

A. $i_{1} \geq i_{2}$
B. $i_{1}=i_{2}$
C. $i_{1} \leq i_{2}$

D. the information is insufficient to find the

relation between i_{1} and i_{2}.

Answer: C

D Watch Video Solution

72. In the circuit shown in figureure the $A C$ source gives a voltage $V=20 \cos (2000 t)$.

Neglecting source resistance, the voltmeter
and and ammeter readings will be

A. $0 V, 0.47 A$
B. $1.68 \mathrm{~V}, 0.47 \mathrm{~A}$
C. $0 \mathrm{~V}, 1.4 \mathrm{~A}$
D. $5.6 \mathrm{~V}, 1.4 \mathrm{~A}$
73. In figure $i_{1}=10 e^{-2 t} A, i_{2}=4 A, v_{C}=3 e^{-2 t} V$

The current i_{L} is

$$
\begin{aligned}
& \text { A. }\left[2-2\left(1-e^{-2 t}\right)\right] A \\
& \text { B. }\left[2+2\left(1-e^{-2 t}\right)\right] A \\
& \text { C. }\left[3-2\left(1-e^{-2 t}\right)\right] A \\
& \text { D. }\left[2+3\left(1-e^{-2 t}\right)\right] A
\end{aligned}
$$

Answer: B

D Watch Video Solution

74. In figure $i_{1}=10 e^{-2 t} A, i_{2}=4 A, v_{C}=3 e^{-2 t} V$

The variaton of current in the inductor with
time can be repesented as :
A.

B.

C.

D.

Answer: D
(D) Watch Video Solution
75. In figure $i_{1}=10 e^{-2 t} A, i_{2}=4 A, v_{C}=3 e^{-2 t} V$

The potential difference across inductor V_{L} is :
A. $8 e^{-2 t} V$
B. $9 e^{-2 t} V$
C. $16 e^{-2 t} V$
D. $18 e^{-2 t} V$

Answer: C

- Watch Video Solution

76. In figure $i_{1}=10 e^{-2 t} A, i_{2}=4 A, v_{C}=3 e^{-2 t} V$

The variation of potential difference acorss A and C with time can be represented as

A.
B.
B) ${ }^{2}$

C.

Answer: A

D Watch Video Solution
77. In figure $i_{1}=10 e^{-2 t} A, i_{2}=4 A, v_{C}=3 e^{-2 t} V$

The potential difference across $A B\left(V_{A B}\right)$ is:
A. $8 e^{-2 t} V$
B. $\frac{1}{2} e^{-3 t} V$
C. $17 e^{-2 t}$
D. $16 e^{-2 t} V$

Answer: C

- Watch Video Solution

78. In figure $i_{1}=10 e^{-2 t} A, i_{2}=4 A, v_{C}=3 e^{-2 t} V$

The variation of potential difference acorss A and C with time can be represented as

Answer: B

D Watch Video Solution

79. An ac generator G with an adjustable frequency of oscillation is used in the circuit, as
shown.

Current drawn from the ac souce will be maximum if its angular frequency is
A. $10^{5} \mathrm{rad} / \mathrm{s}$
B. $10^{4} \mathrm{rad} / \mathrm{s}$
C. 5000rad/s
D. $50 \mathrm{rad} / \mathrm{s}$

- Watch Video Solution

80. An ac generator G with an adjustable frequency of oscillation is used in the circuit, as shown.

To increase resonant frequency of the circuit, some of the changes in the circuit are carried out. Which changes would certainly result in the increase in resonnatn frequency?
A. R is increased
B. L_{1} is increased and C_{1} is decreased
C. L_{2} is decreased and C_{2} is increased
D. C_{3} is removed from the circuit

Answer: D
(D) Watch Video Solution
81. An ac generator G with an adjustable frequency of oscillation is used in the circuit, as shown.

If the ac source G is 100 V rating at resonant frequency of the circuit, then average power supplied by the source is
A. 50 W
B. 100 W
C. 500 W
D. 1000 W

Answer: B

D Watch Video Solution

82. An ac generator G with an adjustable frequency of oscillation is used in the circuit, as
shown.

Average energy stored by the inductor L_{2} (source is at resonance frequency) is equal to
A. zero

B. 1.2 mJ

C. $2.4 m J$
D. 4 mJ

Answer: B

D Watch Video Solution

83. An ac generator G with an adjustable
frequency of oscillation is used in the circuit, as
shown.

If the ac source G is 100 V rating at resonant frequency of the circuit, then average power supplied by the source is
A. 0 J
B. 1 mJ
C. 100 mJ
D. not possible to calcualte from the given

Answer: D

- Watch Video Solution

LEVEL - VI

1. If a direct current of value ' a ' ampere is
supermposed on an alternating current
$I=b \sin \omega t$ flowing through a wire, what is the
effective value of the resulting current in the
circuit?

A. $\sqrt{a^{2}+b^{2}}$
B. $\sqrt{a^{2}+\frac{b^{2}}{2}}$
C. $\sqrt{\frac{a^{2}}{2}+b^{2}}$
D. $\sqrt{a^{2}+\frac{b^{2}}{3}}$

Answer: B
2. The secondary coil of an ideal step down transformer is delivering 500 watt power at $12.5 A$ current. If the ratio of turns in the primary to the secondary is $5: 1$ then the current flowing in the primary coil will be:
A. $62.5 A$
B. 2.5 A
C. $6 A$
D. $0.4 A$

Answer: B

D Watch Video Solution

3. In a step-up transformer the turn's ratio is 10.

If the frequency of the current in the primary
coil is 50 Hz then of the frequency of the
current in the second ary coil will be
A. 500 Hz
B. 5 Hz
C. 60 Hz

D. 50 Hz

Answer: D

- Watch Video Solution

4. An alternating voltage of 200 volt, at 400
cycyles/sec in applied in a circuit containing an inductance of 0.01 henry in series with a resistanceof 22.8 ohms. The voltage across the inductance is
A. 148.2 volt
B. 392.4 volt
C. 74.1 volt

D. 196.2 volt

Answer: A

D Watch Video Solution
5. If the readings V_{1} and V_{3} are 10 . volt each, then reading of V_{2} is:

A. 0 volt
B. 100 volt

C. 200 volt

D. cannot be determined by given

information

Answer: C
6. In the a.c. circuit shown in the figure. The supply voltage has a constant r.m.s value V but varialbe frequency f. Resonance frequency in hertz is

A. 10
B. 100

C. 1000

D. 200

Answer: C

- Watch Video Solution

7. If the power factor is $1 / 2$ in a series $R L$ circuit with $R=100 \Omega$. If $A C$ mains, 50 Hz is used then L is
A. $\frac{\sqrt{3}}{\pi}$ henry
B. π henry
C. $\sqrt{3}$ henry
D. $\sqrt{3} \pi$ henry

Answer: A

D Watch Video Solution

8. An inductor $\left(X_{L}=2 \Omega\right)$ a capacitor $\left(X_{C}=8 \Omega\right)$ and a resistance (8) are
connected in series with an ac source. The voltage output of A. C source is given by $v=10 \cos 100 \pi t$. The instantaneous p.d. between
A and B when is half of the voltage output from source will be:

A. $\frac{24}{7}$ volt
B. $\frac{24}{5}$ volt
C. $\frac{7}{24}$ volts
D. $\frac{5}{24}$ volts

Answer: B

- Watch Video Solution

9. A resistor of resistance 100Ω is connected to
an $A C$ source $\varepsilon=(12 V) \sin \left(250 \pi s^{-1}\right) t$. Find the energy dissipated as heat during $t=0$ to $t=1.0 \mathrm{~ms}$.
A. $0.61 \times 10^{4} \mathrm{~J}$

$$
\text { B. } 0.61 \times 10^{-4} J
$$

C. $2.61 \times 10^{-4} \mathrm{~J}$

D. $2.61 \times 10^{-6} \mathrm{~J}$

Answer: C

- Watch Video Solution

10. In the given $A C$, circuit, which of the following in incorrect:

A. Voltage across resistance is lagging by
90° than the voltage across capacitor
B. Voltage across capacitor is lagging by
180° than voltage across inductor
C. Voltage across inductor is leading by 90°
than voltage across resistance

D. resistance of the cicuit is equal to

impedance reactance of circuit

Answer: A

D Watch Video Solution

11. In the series circuit shown in the figure the voltmeter reading will be (all the meters are
ideal).

A. 300 V
B. 200 V
C. 100 V
D. 600 V

Answer: B

- Watch Video Solution

12. In the circuit shown in fig.
$X_{C}=100 \Omega,\left(X_{L}\right)=200 \Omega$ and $R=100 \Omega . \quad$ The effective current through the source is

A. $2 A$
B. $2 \sqrt{A}$
C. $0.5 A$
D. $\sqrt{0.4} A$

Answer: B

D Watch Video Solution

13. In the given circuit assuming inductor and source to be ideal, the phase differece between
current I_{1} and I_{2} :

A. $\tan ^{-1}\left(\frac{X_{C}}{R}\right)-\frac{\pi}{2}$
B. $\tan ^{-1}\left(\frac{X_{C}}{R}\right)$
C. $\tan ^{-1}\left(\frac{X_{C}}{R}\right)+\frac{\pi}{2}$
D. $\frac{\pi}{2}$

Answer: C

D Watch Video Solution

14. In the circuit current through source will be
$\left[\right.$ Given $\left.\left(\cos ^{-1}(0.6)=53^{\circ}\right)\right]$

$$
V=10+10 \sqrt{2} \sin \left(100 \pi+45^{\circ}\right)
$$

A. $\frac{1}{3}+\frac{\sqrt{2}}{5} \sin \left(100 \pi t-8^{\circ}\right)$
B. $\frac{1}{5}+\frac{\sqrt{2}}{5} \sin \left(100 \pi t-8^{\circ}\right)$
C. $\frac{1}{3}+\frac{\sqrt{2}}{5} \sin \left(100 \pi t-98^{\circ}\right)$
D. $\frac{1}{3}+\frac{\sqrt{2}}{5} \sin \left(100 \pi t+98^{\circ}\right)$

Answer: B

D Watch Video Solution

15. In figure below if $Z_{1}=Z_{C}$ and reading of ammeter is $1 A$. Find value of source voltage V.

A. 80 volt
B. 60 volt

C. 100 volt

D. None

Answer: C

- Watch Video Solution

16. As shown in figure value of inductive reactance X_{L} will be (source voltage is 100 volt)

A. 40Ω
B. 30Ω
C. 50Ω
D. Can have any value

Answer: C
17. The power factor of the circuit shown in the figure is

A. 0.4
B. 0.2
C. 0.8
D. 0.6

Answer: D

D Watch Video Solution

18. In an $L-R-C$ circuit the current is given by
$i=I \cos \omega t$. The voltage amplitudes for the resistor. Inductor and capacitor are V_{R}, V_{L} and V_{C} respectively.
(a) The instantaneous power into the resistor is
$P_{R}=V_{R} I \cos ^{2} \omega t$.
(b) The instantaneous into the inductor is
$P_{L}=-V_{L} I \sin \omega t \cos \omega t$
(c) The instantaneous power into the capacitor is $P_{c}=V_{c} I \sin \omega t \cos \omega t$.
(d) $p_{R}+p_{L}+P_{c}$ equals total power p supplied by the source at each instant of time.
A. (a),(c),(d) are correct
B. (b),(c) are correct
C. (a) is correct
D. (a),(b),(c),(d) are correct

Answer: D
19. The diagram shows a capacitor C and a resistor R connected in series to an AC source.
V_{1} and V_{2} are voltmeters and A is ammeter

Now, consider the following statemensts :
(I) Reading in A and V_{2} are always in phase.
(II) Reading in V_{1} is ahead in phase with reading in V_{2},
(III) Reading in A and V_{1} are always in phase.

Which of these statements are/is correct

A. I only

B. II only
C. I and II only
D. II and III only

Answer: A

D Watch Video Solution

20. Two impedances Z_{1} and Z_{2} when connected separately across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply consume 100 W and 60 W at power factor of 0.5 lagging
and 0.6 leading respectively. If these impedances are now connected in series across
the same supply, find
(a) total power absorbed and overall power factor
(b) the value of reactance to be added in series
so as to raise the overall power factor to unity.
A. $19 W, 295 \Omega$
B. $19 W, 95 \Omega$
C. $99 W, 195 \Omega$
D. $75 W, 195 \Omega$

Answer: C

D Watch Video Solution

21. In the $L C R$ circuit shown in figure

(a) current will lead the voltage
(2) rms value of current in 20 A
(3) power factor of the circuit is $\frac{1}{\sqrt{2}}$
(4) voltage drop across resistance is 100 V
A. (1) and (3) are correct
B. (1) and (4) are correct
C. (2) and (3) are correct
D. (3) and (4) are correct

Answer: A
22. The A. C circuit shown in figure. Find the frequency $\left(w_{0}\right)$ of the $A C$ voltage source so that current through the source will be in same phase with the voltage of source.

A. $W_{0}=\sqrt{\frac{1}{L C}+\frac{R^{2}}{L^{2}}}$
B. $W_{0}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}$
C. $W_{0}=\frac{1}{\sqrt{L C}}$
D. $W_{0}=\sqrt{\frac{1}{L C}+\frac{R^{2}}{4 L}+\frac{R}{2 L}}$

Answer: B

D Watch Video Solution

23. A resistance \& ideal inductor is connected
in the A. C circuit. Here $V_{1}, V_{2} \& V_{3}$ are the
reading of three hotwire ideal voltmeter

A. $V_{3}=V_{2}+V_{1}$
B. $V_{3}>\left(V_{1}+V_{2}\right)$
C. $V_{3}<\left(V_{1}+V_{2}\right)$
D. informations are insufficients to decide

- Watch Video Solution

24. In an AC series circuit, the instanctaneous
current is zero when the instantaneous voltage
is xamimum. Connected to the source may be a
A. pure inductors
B. pure capacitor
C. pure resistor
D. cambination of an inductor and a
capacitor

Answer: A,B,D

D Watch Video Solution

25. Which statement(s) is False for the series resonant condition
A. current maximum and phase difference
between E and i is $\pi / 2$
B. current maximum and phase difference
C. voltage maximum and phase difference between E and i is zero

D. voltage maximum and phase difference between E and i is $\pi / 2$

Answer: A,C,D

D Watch Video Solution

26. An alternating EMF of frequency $\frac{1}{2 \pi \sqrt{L C}}$ is applied to a series LCR circuit. For this
frequency of the applied EMF,
A. The circuit is at resonance and its impedance is made up only of a resistive part
B. The current in the circuit is in phase with
the applied e.m.f and the voltage across R
equal this applied emf
C. The sum of the p.d'a across the inductance and capacitance equals the
applied e.m.f which is 180° ahead of
phase of the current in the circuit
D. The quality factor of the circuit is $\omega L / R$
or $1 / \omega C R$ and this is a measure of the
voltage magnification (produced by the
circuit at resonance) as well as the sharpness of resonance of the circiut.

Answer: A,B,C

27. An LC source rated 100 V (rms) supplies a
current of $10 A$ (rms) to a circuit. The average power delivered by the source
A. must be 1000 W
B. may be 1000 W
C. may be greater than 1000 W
D. may be less than 1000 W

Answer: B,D

D Watch Video Solution
28. In a $L-R$ circuit, the value of L is $\left(\frac{0.4}{\pi}\right)$
henry and the value of R is 30 ohm. If in the
circuit, an alternating e.m.f of 200 vol at 50
cycles per sec is connected, the impendence of
the circuit will be
A. 50 ohm
B. 60 ohm
C. 2 amphere
D. 4 amphere

- Watch Video Solution

29. A circuit has three elements, a resistance fo
11Ω, a coil of inductaive reactance 120Ω and a capacitve reactance of 120Ω in series and connected to an A.C source of $110 \mathrm{~V}, 60 \mathrm{~Hz}$.

Which of the three elements have minimum potential difference?
A. Resistance

B. Capacitance

C. Inductor

D. All will have equal potential difference

Answer: A

D Watch Video Solution

30. An inductor 20×10^{-3} henry, a capacitor $100 \mu F$ and a resistor 50Ω are connected in series across a source of emf $V=10 \sin 314 t$.
(a) The energy dissipated in the circuit in 20 minutues is 951 J .
(b) If resistance is removed from the circuit and the value of inductance is doubled, then the
varation of current with time in the new circuit is $0.52 \cos (314 t)$
A. Both (a) and (b) are correct B. Both (a) and (b) are false
C. Only (a) is corrects
D. Only (b) is correct

Answer: A
31. In a series $L C R$ circuit

A. the voltage V_{L} across the inductance
leads the current in the circuit by a phase
angle of $\pi / 2$
B. the voltage V_{C} across the capacitance
lags behind the current by a phase angle
C. the voltage V_{R} across the resistance is in
phase with the current
D. the voltage across sereis combination of

$$
L, C \text { and } R \text { is } V=V_{L}+V_{C}+V_{R}
$$

Answer: A,B,C

D Watch Video Solution
32. In the figure shown $R=100 \Omega L=\frac{2}{\pi} H$ and 8
$C=\frac{1}{\pi} \mu F$ are connected in series with a.c source of 200 volt and frequency ' f '. V_{1} and V_{2} are two hot-wire voltmeters. If the readings of
V_{1} and V_{2} are same then:

A. $f=125 \mathrm{~Hz}$
B. $f=250 \mathrm{~Hz}$

C. Current through R is $2 A$

$$
\text { D. } V_{1}=V_{2}=1000 \text { volt }
$$

Answer: A,C,D

D Watch Video Solution

33. Choose correct statement if capcitance increases from zero (0) to inifinity ∞

A. Current increases from 0 (Zero) to
maximum then decreases to zero
B. Reading of voltmeter first increases and it
will be maximum when $X_{L}=X_{C}$
C. Power factor of circuit first increases then
decreases
D. V_{1} may be greater than V, V_{1} may be equal V, V_{1} maybe less than V, where V_{1} is reading of volmeter and V is source voltage.

Answer: A,B,C,D

D Watch Video Solution

34. A box P and a coil Q are connected in series with an $A C$ source of variable frequency. The emf of the source is constant at 10 V . Box P
contains a capacitance of $1 \mu F$ in series with a resistance of 32Ω. Coil Q has a self-inductance 4.9 mH and a resistance of 68Ω in series. The frequency is adjusted to that the maximum current flows in P and Q. At this frequency
(a) The impedance of P is 77Ω
(b) The impedance of Q is 85Ω
(c) Voltage across P is 7.7 V
(d) Voltage across Q is 9.7 V

A. Only (a),(c) are correct
B. Only (a),(d) are correctd
C. Only (c), (d) are correct
D. (a),(c),(d) are correct

Answer: D

- Watch Video Solution

35. A series $L C R$ circuit containing a resistance of 120Ω has angular resonance frequency
$4 \times 10^{5} \mathrm{rads}^{-1}$. At resonance the voltages across resistance and inductance are 60 V and 40 V respectively.
(a) The value of L and C are $0.2 \mathrm{mH}, \frac{1}{32} \mu F$
(b) If angular frequency is changed to $8 \times 10^{5} \mathrm{rad} / \mathrm{s}$, the current lags the voltage by
45°
(c) If angular frequency is charged to
$6 \times 10^{5} \mathrm{rad} / \mathrm{s}$, the current lags the voltage by 45°
A. (a),(c) are correct B. (a),(b) are correct
C. (a),(b) (c) are correct
D. (a),(b),(c) are wrong

Answer: B
36. A current of $4 A$ flows in a coil when
connected to a 12 VDC source. If the same coil
is connected to a $12 \mathrm{~V}, 50 \mathrm{rad} / \mathrm{sAC}$ source, a
current of 2.4 A flows in the circuit. Determine
the inductance of the coil. Also, find the power developed in the circuit if a $2500 \mu \mathrm{~F}$ capacitor is
connected in series with the coil.
A. (a), (c) are correct
B. (b), (c) are correct
C. (a), (b), (c) are correct
D. Only (b) is correct

Answer: (A),(B),(C) are correct

- Watch Video Solution

37. In the given series $R-L-C$ circuit,
$R=100 \Omega, L=10^{-3} H, C=0.1 \mu F, V_{0}=200 V$
(a) The resonant frequency is 15924 Hz
(b) The current at resosnance is $1 A$
(c) The power dissipated in the circuitd at
resonance is 100 W

A. (a),(b),(c) are correct
B. (a),(b),(c) are wrong
C. Only (a),(b) are correct
D. Only (b),(c) are correct

Answer: A
38. An alternating emf of frequency $f=50 \mathrm{~Hz}$ peak voltage $V_{0}=21$ volt is applied to a series circuit of resistance $R=20$ ohm, an inductance
$L=100 \mathrm{mH}$ and a capacitor of $C=30 \mu F$.
(a) The maximum currentd is 3 A

The phase difference between current and applied voltage is 75°
(c) The current i as a function of time ' t ' is
$i=3 \sin \left(314 t+75^{\circ}\right)$
A. Only (a),(b) are correct

B. Only (b),(c) are correct

C. (a),(b),(c) are correct

D. (a),(b),(c) are wrong

Answer: C

- Watch Video Solution

39. A resistor R is connected in series with a
coil. The system is subjected to an AC supply of peak voltage V_{0}. If the peak voltages dropped across the resistor R and the coil are V_{1} and V_{2}
respectively
(a) The powerr dissipated in the coil is

$$
\frac{V_{0}^{2}-V_{1}^{2}-V_{2}^{2}}{2 R}
$$

The power dissipated in the circuit is

$$
\frac{V_{0}^{2}+V_{1}^{2}-V_{2}^{2}}{2 R}
$$

Coil.

A. Only (a) is correct
B. Only (b) is correct
C. (a),(b) are wrong

D. (a),(b) are correct

Answer: D

D Watch Video Solution

40. For the $A C$ circuit shown, the reading of ammeter and voltmeter are $5 A$ and $50 \sqrt{5}$ volts
respectively, then

A. average power deliverd by the source is

250W
B. rms value of $A C$ source is 50 volts
C. voltage gain is 2
D. frequency of ac source is 1000rad/s

Answer: A,B,C,D

D Watch Video Solution

41. In the circuit shown in Fig. If both the lamps
L_{1} and L_{2} are identical.

A. their brightness will be same
B. L_{1} will be brighter than L_{2}
C. As the frequency of supply voltage in increased, brightness of L_{1} will increase and that of L_{1} will decrease

D. Only L_{2} will glow because the capacitor

has infinite resistance

Answer: B,C

D Watch Video Solution
42. A series LCR circuit with
$L=0.12 H, C=480 n F, \quad$ and $\quad R=23 \Omega \quad$ is
connected to a 230 V variable frequency supply.
(a) What is the source frequency for which
current amplitude is maximum? Find this maximum value.
(b) What is the source frequency for which average power absorbed by the circuit is maximum? Obtain the value of maximum power.
(c) For which frequencies of the source is the power transferred to the circuit half the power
at resonant frequency?
(d) What is the Q-factor of the circuit?
A. The source frequency 663 Hz , current
amplitude is maximum and this maximum
value is $14.1 A$.
B. At the source frequency 663 Hz average
power absorbed by the circuit is
maximum and the value of this maximum
power is 2300 W

C. At the frequencies $648 \mathrm{~Hz}, 678 \mathrm{~Hz}$ of the

 source, the power transferred to thecircuit is half the power at resonant frequency. The current amplitude at these frequencies is $10 A$

D. The Q-factor of the given circuit is 21.7

Answer: A,B,C,D

D Watch Video Solution
43. An ac source of angular frequency ω is fed across a resistor R and a capacitor C in series.

The current registered is I. If now the frequency of source is changed to $\omega / 3$ (but maintaining the same voltage), the current in the circuit is
found to be halved. Calculate the ratio of the reactance to resistance at the original
frequency ω.
A. $\sqrt{\frac{3}{5}}$
B. $\sqrt{\frac{5}{3}}$
C. $\sqrt{\frac{3}{4}}$
D. $\sqrt{\frac{4}{3}}$

Answer: A

D Watch Video Solution

44. A circuit has a coil of resistance 60 ohm and inductance 3 henry. It is connected in series with a capacitor of $4 \mu F$ and A. C supply voltage of 200 V and 50 cycle/sec

A. the impedance of the coil is 943Ω

B. the impedance of the coil is 843Ω
C. the p.d. across the inductor coil is 1110 V
D. the p.d. across the capacitor is 924 V

Answer: A,C,D

D Watch Video Solution

45. A circuit consists of a noniductive resistor of 50Ω, a coil of inductance $0.3 H$ and resistance
2Ω, and a capacitor of $40 \mu F$ in series and is
supplied with 200 volt rms at 50 cycles / sec.

Then
A. the current lag or lead by an angle $15^{\circ} 5^{1}$
B. the power in the circuit is 710.4 W
C. the power in th circuit is 640 W
D. the current lag or lead by an angle $12^{\circ} 5^{1}$

Answer: A,B

D Watch Video Solution

46. A coil of resistance 300Ω and inductance 1.0

henry is connected across an voltages source of frequency $300 / 2 \pi H z$. The phase difference between the voltage and current in the circuit is

$$
\begin{aligned}
& \text { A. } \frac{\pi}{2} \\
& \text { B. } \frac{\pi}{4} \\
& \text { C. } \frac{\pi}{3} \\
& \text { D. } \frac{\pi}{6}
\end{aligned}
$$

- Watch Video Solution

47. A circuit draws a power of 550 watt from a source of 220 volt, 50 Hz . The power factor of the circuit is 0.8 and the current lags in phase behind the potential difference. To make the power factor of the circuit as 1.0, The capacitance should be connected in series with it is
A. $75 \mu \mathrm{~F}$
B. $60 \mu \mathrm{~F}$

C. $50 \mu F$

D. $65 \mu F$

Answer: A

D Watch Video Solution

48. In the figure shown V_{1}, V_{2}, V_{3} are $A C$ voltmeters and A is $A C$ ammeter. The readings of V_{1}, V_{2}, V_{3} and $10 \mathrm{~V}, 20 \mathrm{~V}, 20 \mathrm{~V}, 2 \mathrm{~A}$ respectively.

If the inductor is short circuited, then

A. the reading of V_{1} is $2 \sqrt{5} \mathrm{~V}$
B. the reading of V_{2} is $4 \sqrt{5} \mathrm{~V}$
C. the reading of V_{2} is $2 \sqrt{5} \mathrm{~V}$
D. the value of A is $\frac{2}{\sqrt{5}} A$

Answer: A,B,D
49. In a series $L C R$ circuit with an ac source of
$50 \mathrm{~V}, R=300 \Omega$,frequency $v=\frac{50}{\pi} \mathrm{~Hz}$. The average
electric field energy, stored in the capacitor and
average magnetic energy stored in the coil are
25 mJ and 5 mJ respectively.The $R M S$ current in
the circuit is $0.10 A$.Then find
A. capacitance C of capacitor is $20 \mu F$
B. inductance L of inductor is $2 H$
C. peak voltage of source is 50 V

D. the sum of rms voltage across the three

elements is 35.4 V

Answer: A,B,C,D

D Watch Video Solution

50. An $L-C-R$ series circuit with 100Ω
resistance is connected to an $A C$ source of

200 V and angular frequency $300 \mathrm{rad} / \mathrm{s}$. When
only the capacitance is removed, the current lags behind the voltage by 60°. When only the
inductance is removed the current leads the voltage by 60°. Calculate the current and the power dissipated in the $L-C-R$ circuit
A. 200 W
B. 100 W
C. 50 W
D. 400 W

Answer: D

D Watch Video Solution
51. The given graph shows variation with time in the source voltage and steady state current drawn by a series $R L C$ circuit. Given curve through origin is the current variation.

Which of the following statements is/are correct ?

A. current lag the voltage
B. Resistance in the circuits is $250 \sqrt{3} \Omega$
C. If capacitive reactance is 74Ω, inductance in the circuit is approximately 560 mH .
D. Average power dissipation in the circuit is
$20 \sqrt{3} W$.

Answer: A,B,D

D Watch Video Solution

52. A 100Ω resistance is connected in series
with a $4 H$ inductor. The voltage across the
resistor is, $V_{R}=(2.0 \mathrm{~V}) \sin \left(10^{3} t\right)$.
Find the expression of circuit current

$$
\begin{aligned}
& \text { A. }\left(2 \times 10^{-2} A\right) \sin \left(10^{3} t\right) \\
& \text { B. }\left(2 \times 10^{-3} A\right) \sin \left(10^{2} t\right) \\
& \text { C. }\left(2 \times 10^{-3} A\right) \sin \left(10^{3} t\right) \\
& \text { D. }\left(2 \times 10^{-2} A\right) \sin \left(10^{2} t\right)
\end{aligned}
$$

Answer: A
53. A 100Ω resistance is connected in series
with a $4 H$ inductor. The voltage across the resistor is, $V_{R}=(2.0 \mathrm{~V}) \sin \left(10^{3} t\right)$.

Find the inductive reactance
A. 2×10^{3} ohm
B. $3 \times 10^{3} \mathrm{ohm}$
C. $4 \times 10^{3} \mathrm{ohm}$
D. $5 \times 10^{3} \mathrm{ohm}$

Answer: C
54. A 100Ω resistance is connected in series
with a $4 H$ inductor. The voltage across the resistor is, $V_{R}=(2.0 \mathrm{~V}) \sin \left(10^{3} t\right)$.

Find amplitude of the voltage across the inductor.
A. 40 V
B. 60 V
C. 80 V
D. 90 V

Answer: C

D Watch Video Solution

55. If various elements, i.e., resistance capacitance and inductance which are in series and having values $1000 \Omega, 1 \mu F$ and $2.0 H$ respectively. Given emf as, $V=100 \sqrt{2} \sin 1000 t$ volts

Voltage across the resistor is
A. 70.7 Volts

B. 100 Volts

C. 141.4 Volts

D. 270.7 Volts

Answer: A

- Watch Video Solution

56. If various elements, i.e., resistance
capacitance and inductance which are in series
and having values $1000 \Omega, 1 \mu F$ and $2.0 H$
respectively. Given emf as, $V=100 \sqrt{2} \sin 1000 t$
volts
voltage across the inductor is
A. 70.7 Volts
B. 101 Volts
C. 141.4 Volts
D. 270.7 Volts

Answer: C

D Watch Video Solution
57. If various elements, i.e., resistance
capacitance and inductance which are in series
and having values $1000 \Omega, 1 \mu F$ and $2.0 H$ respectively. Given emf as, $V=100 \sqrt{2} \sin 1000 t$ volts
voltages across the capacitor is
A. 70.7 Volts
B. 102 Volts
C. 141.4 Volts
D. 270.7 Volts

Answer: A

D Watch Video Solution

58. One application of $L-R-C$ series circuit is in high pass or low pass filter, which out either the low or high frequency components of a signal. A has pass filter is shown in figure where the output voltage is taken across the $L-R$ where $L-R$ combination represents and inductive coil that also has resistance due to the large length of the wire in the coil.

Find the ratio $V_{\text {out }} / V_{s}$ as a function of the angular frequency ω of the source
A. $\sqrt{\frac{R^{2}+\omega L^{2}}{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}$
B. $\sqrt{\frac{R^{2}+\omega^{2} L^{2}}{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}$
c. $\sqrt{\frac{R^{2}+\omega^{2} L}{R^{2}+\left(\omega C-\frac{1}{\omega L}\right)^{2}}}$
D. 1

Answer: B

- Watch Video Solution

59. One application of $L-R-C$ series circuit is in high pass or low pass filter, which out either the low or high frequency components of a signal. A has pass filter is shown in figure where
the output voltage is taken across the $L-R$ where $L-R$ combination represents and inductive coil that also has resistance due to the large length of the wire in the coil.

which of the following statementds is correct
when ω is samll in the case of $V_{\text {out }} / V_{s}$
A. $\omega R C$
B. $\frac{\omega R}{L}$
C. $\omega R L$
D. $\frac{\omega R}{C}$

Answer: A

D Watch Video Solution

60. One application of $L-R-C$ series circuit is
in high pass or low pass filter, which out either
the low or high frequency components of a
signal. A has pass filter is shown in figure where
the output voltage is taken across the $L-R$
where $L-R$ combination represents and inductive coil that also has resistance due to the large length of the wire in the coil.

Which statement is correct in the limit of large frequency is reached? (for $V_{\text {out }} / V_{s}$) A. 1
B. $\omega R C$
C. $\omega R L$

D. $\frac{\omega R}{L}$

Answer: A

- Watch Video Solution

61. In A. C source peak value of $A . C$ is the maximum value of current in either direction of the cycle. Root moon square $(R M S)$ is also defined as the direct current which produces the same heating effect in a resistors as the actual A. C
A. C mesuring instrument measures its
A. rms value
B. Peak value
C. Average value

D. Square of current

Answer: A

D Watch Video Solution

62. In A. C source peak value of $A . C$ is the maximum value of current in either direction of
the cycle. Root moon square ($R M S$) is also
defined as the direct current which produces
the same heating effect in a resistors as the actual A. C

Current time graph of different souce is given which one will have R. M. S value V_{0}
A.

B.
B)
C.

D Watch Video Solution

63. In A. C source peak value of $A . C$ is the maximum value of current in either direction of the cycle. Root moon square $(R M S)$ is also defined as the direct current which produces
the same heating effect in a resistors as the actual A. C

Average voltage for the given source is

A. V_{0}
B. $2 V_{0}$
C. $\frac{V_{0}}{2}$
$3 V_{0}$
D. $\frac{}{2}$

Answer: C
64. A steady $4 A$ flows in an inductor coil when
connected to a 12 V source as shown in figure. If
the same coil is connected to an ac source of
$12 \mathrm{~V}, 50 \mathrm{rad} / \mathrm{s}$ a currentd of 2.4 A flows in the
circuit as shown in figure2. Now after these observations, a capacitor fo capacitance $\frac{1}{50} F$ is connected in series with the coil and with same
$A C$ source as shown in figure 3.

The resistance of the coil is:
A. 0.01 H
B. 0.02 H
C. $0.04 H$
D. 0.08 H

Answer: A
65. A steady $4 A$ flows in an inductor coil when
connected to a 12 V source as shown in figure. If
the same coil is connected to an ac source of
$12 \mathrm{~V}, 50 \mathrm{rad} / \mathrm{s}$ a currentd of 2.4 A flows in the
circuit as shown in figure2. Now after these
observations, a capacitor fo capacitance $\frac{1}{50} F$ is connected in series with the coil and with same
$A C$ source as shown in figure 3.

The resistance of the coil is:
A. 1Ω
B. 2Ω
C. 3Ω
D. 4Ω

Answer: C

- Watch Video Solution

66. A steady $4 A$ flows in an inductor coil when
connected to a 12 V source as shown in figure. If
the same coil is connected to an ac source of
$12 \mathrm{~V}, 50 \mathrm{rad} / \mathrm{s}$ a currentd of 2.4 A flows in the circuit as shown in figure2. Now after these observations, a capacitor fo capacitance $\frac{1}{50} F$ is connected in series with the coil and with same
$A C$ source as shown in figure 3.

The resistance of the coil is:
A. $24 W$
B. 72 W
C. 144 W

D. 18.2 W

Answer: D

- Watch Video Solution

67. In a series L-R circuit, connected with a
sinusoidal ac source, the maximum potential difference across L and R are respectivaly 3 volts and 4 volts.

At an instant the potemtial difference across resistor is 2 volts. The potential difference in
volt, across the inductor at the same instant

will be:

A. $3 \cos 30^{\circ}$
B. $3 \cos 60^{\circ}$
C. $6 \cos 45^{\circ}$
D. 6

Answer: A
68. In a series $L-R$ circuit, connected with a
sinusoidal ac source, the maximum potential difference acrosssd L and R are respectively 3
volts and 4 volts

At the same instant, the magnitude of the potential difference in volt, across the ac source will be
A. $3 \cos 67^{\circ}$
B. $5 \sin 37^{\circ}$
C. $4 \cos 97^{\circ}$
D. 0

Answer: B

D Watch Video Solution

69. In a series $L-R$ circuit, connected with a
sinusoidal ac source, the maximum potential
difference acrosssd L and R are respectively 3
volts and 4 volts

If the current at this instant is decreasing the magnitude of potential difference at that instant across the ac source is
A. increasing

B. decreasing

C. Constant

D. Can't be said

Answer: A

- Watch Video Solution

70. A constant voltage at a frequency of 1 MHz
is applied to an inductor in series with variable capacitor, when capacitor is 500 pF , the current has its maximum value, while it is reduced to
half when capacitance is $600 p F$. Find

Resistance (R)
A. 30Ω
B. 20Ω
C. 40Ω
D. 50Ω

Answer: A

D Watch Video Solution
71. A constant voltage at a frequency of 1 MHz
is applied to an inductor in series with variable
capacitor, when capacitor is 500 pF , the current
has its maximum value, while it is reduced to
half when capacitance is $600 p F$. Find
The inductance L
A. 0.05 mH
B. 0.5 mH
C. 0.005 mH
D. 5 mH

Answer: A

- Watch Video Solution

72. A constant voltage at a frequency of 1 MHz
is applied to an inductor in series with variable
capacitor, when capacitor is 500 pF , the current has its maximum value, while it is reduced to half when capacitance is $600 p F$. Find
Q factor of the circuit is
A. 10.4
B. 20.8
C. 5.2
D. 9.4

Answer: A

- Watch Video Solution

73. When $1 A$ is passed through three coils
A, B, C in series the voltage drops are respectively 6,3 and 8 volt on direct current source and 7,5 and 10 volt on Alternating
current source

Power factor of coil B, will be

A. 0.6
B. 0.8
C. 0.7
D. None

Answer: A

D Watch Video Solution
74. When $1 A$ is passed through three coils
A, B, C in series the voltage drops are respectively 6,3 and 8 volt on direct current source and 7,5 and 10 volt on Alternating

current source

Power dissipated in coil C
A. 10 watt
B. 6 watt
C. 5 watt
D. 8 watt

Answer: D

D Watch Video Solution

75. When $1 A$ is passed through three coils
A, B, C in series the voltage drops are respectively 6,3 and 8 volt on direct current source and 7,5 and 10 volt on Alternating current source

Power factor of whole circuit when atlernating current flow
A. 0.6
B. 0.8
C. 0.78
D. 1

Answer: C

D Watch Video Solution

76. A series circuit connected across a $200 \mathrm{~V}, 60 \mathrm{~Hz}$ line consists of a capacitive reactance 30Ω non inductive resistor of 44Ω and a coil of inductive reactance 90Ω and
resistance 36Ω as shown in the diagram

The potentail difference across the coil is
A. $100 v$
B. 194 V
C. 97 V
D. zero

Answer: B

- Watch Video Solution

77. A series circuit connected across a $200 \mathrm{~V}, 60 \mathrm{~Hz}$ line consists of a capacitive reactance 30Ω non inductive resistor of 44Ω and a coil of inductive reactance 90Ω and resistance 36Ω as shown in the diagram

The power used in the circuit is
A. 320 W
B. 144 W
C. 160 W
D. 96 W
78. A series circuit connected across a $200 \mathrm{~V}, 60 \mathrm{~Hz}$ line consists of a capacitive reactance 30Ω non inductive resistor of 44Ω and a coil of inductive reactance 90Ω and resistance 36Ω as shown in the diagram

The power dissipated in the inductance coil is
A. zero
B. 320 W
C. 144 W
D. 160 W

Answer: C

- Watch Video Solution

79. The maximum values of the phasors (currents and voltage) in $A C$ circuits can be treated as vectors rotating with an angular
frequency equal to the angular frequency of the rotor of the generator. If the phase difference between two phasors A_{1} and A_{2} is ϕ the resultant phasor is :

$A=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \phi}$
and the phase of \vec{A} with respects to A_{1} is
$\beta=\tan ^{-1} \frac{A_{2} \sin \phi}{A_{1}+A_{2} \cos \phi}$
$R H S$ value

The rms value of $y=f(t)$ is
$y_{\mathrm{rms}}=\left\{\frac{\int_{0}^{T}[f(t)]^{2} d t}{T}\right\}^{\frac{1}{2}}$
Average value
$\int_{0}^{T} y d t$
The average value of $y=f(t)$ is $y_{a v}=\frac{}{T}$
Using the above concept, answer the following questions.

The current i_{1} and i_{2} in A. C circuit are given as:
$i_{1}=4 \sin \left(\omega t-\frac{\pi}{3}\right)$ and $i_{2}=4 \sin \left(\omega t+\frac{\pi}{3}\right)$

The current i_{3} can be given as :

A. $4 \sqrt{3} \sin \left(\omega t-\frac{2 \pi}{3}\right)$
B. $2 \sqrt{3} \cos \left(\omega t+\frac{\pi}{3}\right)$
C. $4 \sin (\omega t)$
D. $4 \cos (\omega t)$

Answer: C
80. The maximum values of the phasors (currents and voltage) in $A C$ circuits can be treated as vectors rotating with an angular frequency equal to the angular frequency of the rotor of the generator. If the phase difference between two phasors A_{1} and A_{2} is ϕ the resultant phasor is :
$A=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \phi}$
and the phase of \vec{A} with respects to A_{1} is
$\beta=\tan ^{-1} \frac{A_{2} \sin \phi}{A_{1}+A_{2} \cos \phi}$
RHS value

The rms value of $y=f(t)$ is
$y_{\text {rms }}=\left\{\frac{\int_{0}^{T}[f(t)]^{2} d t}{T}\right\}^{\frac{1}{2}}$
Average value
The average value of $y=f(t)$ is $y_{a v}=\frac{\int_{0}^{T} y d t}{T}$
Using the above concept, answer the following questions.

The rms value of i_{3} is
A. $2 \sqrt{6}$
B. $\sqrt{6}$
C. $3 \sqrt{2}$
D. $2 \sqrt{2}$

Answer: D

- Watch Video Solution

81. The maximum values of the phasors
(currents and voltage) in $A C$ circuits can be
treated as vectors rotating with an angular
frequency equal to the angular frequency of the rotor of the generator. If the phase difference between two phasors A_{1} and A_{2} is ϕ the resultant phasor is :

$$
A=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \phi}
$$

and the phase of \vec{A} with respects to A_{1} is
$\beta=\tan ^{-1} \frac{A_{2} \sin \phi}{A_{1}+A_{2} \cos \phi}$
RHS value

The rms value of $y=f(t)$ is
$y_{\mathrm{rms}}=\left\{\frac{\int_{0}^{T}[f(t)]^{2} d t}{T}\right\}^{\frac{1}{2}}$
Average value
$\int_{0}^{T} y d t$
The average value of $y=f(t)$ is $y_{a v}=\frac{}{T}$
Using the above concept, answer the following questions.

The average value of i in $i-t$ graph (Semi
circular) is

A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{\sqrt{2}}$

Answer: B

- Watch Video Solution

82. A series $R-L-C$ circuit has $R=100$ ohm.
$L=0.2 \mathrm{mH}$ and $C=\frac{1}{2} \mu F$. The applied voltage
$V=20 \sin \omega t$. Then

$$
\frac{\left(V_{R}\right)_{\max }}{\left(V_{L}\right)_{\max }}
$$

A. 2
B. 5
C. 3
D. 4

Answer: B

- Watch Video Solution

83. A series $R-L-C$ circuit has $R=100$ ohm.
$L=0.2 m H$ and $C=\frac{1}{2} \mu F$. The applied voltage
$V=20 \sin \omega t$. Then

When the currentsd lags the applied voltage by
45°, the value of ω is approximately
A. $5 \times 10^{5} \mathrm{rad} / \mathrm{s}$
B. $3 \times 10^{5} \mathrm{rad} / \mathrm{s}$
C. $4 \times 10^{5} \mathrm{rad} / \mathrm{s}$

$$
\text { D. } 4 \times 10^{10} \mathrm{rad} / \mathrm{s}
$$

Answer: A

D Watch Video Solution

84. A series $R-L-C$ circuit has
$R=100 \mathrm{Ohm} . L=0.2 \mathrm{mH} \quad$ and $\quad C=\frac{1}{2} \mu F . \quad$ The applied voltage $V=20 \sin \omega t$.

When the current lags the applied voltage by 45°, the equation of the current is
A. $0.2 \sin \left(\omega t+\tan ^{-1} 0.3\right)$
B. $0.2 \sin \left(\omega t-\tan ^{-1} 0.3\right)$
C. $0.3 \sin \left(\omega t+\tan ^{-1} 0.3\right)$
D. $0.3 \sin \left(\omega t-\tan ^{-1} 0.3\right)$

Answer: B
85. The potential difference across a $2 H$ inductor as a function of time is shown in figure. At time $t=0$, current is zero

Current $t=2$ second is

A. $1 A$
B. $3 A$
C. $4 A$
D. $5 A$

Answer: D

- Watch Video Solution

86. The potential difference a $2 H$ inductor as a
function of time is shown in figure. At time
$t=0$, current is zero

Current versus time graph across the inductor will be

B.

Answer: B

- Watch Video Solution

87. In the given arrangement the square loop of area $10 \mathrm{~cm}^{2}$ rotates with an angular velocitys ω about its diagonal. The loop is connected to a inductance of $L=100 \mathrm{mH}$ and a capacitance of 10 mF in series. The lead wires have a net resistance of 10Ω. Given that $B=0.1 T$ and $\omega=63 \mathrm{rad} / \mathrm{s}$

Find the rms current

A. $6 \times 10^{5} \mathrm{~A}$

B. $5 \times 10^{-5} \mathrm{~A}$
C. $4 \times 10^{-5} \mathrm{~A}$
D. $7 \times 10^{-5} \mathrm{~A}$

Answer: C

(Watch Video Solution

88. In the given arrangement the square loop of area $10 \mathrm{~cm}^{2}$ rotates with an angular velocitys
ω about its diagonal. The loop is connected to
a inductance of $L=100 \mathrm{mH}$ and a capacitance of 10 mF in series. The lead wires have a net resistance of 10Ω. Given that $B=0.1 T$ and $\omega=63 \mathrm{rad} / \mathrm{s}$

Find the rms current

$$
\begin{aligned}
& \text { A. } 6.12 \times 10^{-6} J \\
& \text { B. } 8.12 \times 10^{-5} J \\
& \text { C. } 5.12 \times 10^{-5} J
\end{aligned}
$$

D. $8.12 \times 10^{6} \mathrm{~J}$

Answer: B

- Watch Video Solution

89. In the given arrangement the square loop
of area $10 \mathrm{~cm}^{2}$ rotates with an angular velocitys
ω about its diagonal. The loop is connected to
a inductance of $L=100 \mathrm{mH}$ and a capacitance of 10 mF in series. The lead wires have a net resistance of 10Ω. Given that $B=0.1 T$ and $\omega=63 \mathrm{rad} / \mathrm{s}$

If the current is in phase with voltage, what should be the frequency of rotation of the coil.
A. 31.6rad/s
B. $29.5 \mathrm{rad} / \mathrm{s}$
C. $25.6 \mathrm{rad} / \mathrm{s}$
D. $20.5 \mathrm{rad} / \mathrm{s}$

- Watch Video Solution

90. A 20 V 5 watt lamp is used in ac main 220 V and frequency 50 c.p.s.

Capacitance of capacitor, to be put in series to run the lamp
A. $2 \cdot F$
B. $4 \cdot F$
C. $6 \cdot F$
D. $8 \cdot F$

Answer: B

D Watch Video Solution

91. A 20 V 5 watt lamp is used in ac main 220 V
and frequency 50 c.p.s.
Inductance of inductor,to be put in series to
run tha lamp.
A. $2.53 H$
B. 5 H
C. 7.5 H

D. $9 H$

Answer: A

D Watch Video Solution

92. A 20 V 5 watt lamp is used in ac main 220 V
and frequency 50 c.p.s.

What pure resistance should be included in place of the above passive elements so that the lamp can run on its rated voltage?
A. 120Ω
B. 240Ω
C. 800Ω
D. 720Ω

Answer: C

- Watch Video Solution

93. In the circuit shown in the figure $R=50 \Omega, E_{1}=25 \sqrt{3}$ volt and $E_{2}=25 \sqrt{6} \sin \omega t$ volt where $\omega=100 \pi s^{-1}$. The switch is closed at time $t=0$ and remains closed for 14 minutes,
then it is opened.

Find the amount of heat produced in the resistor

A. 64000 J
B. 56000 J
C. 63000 J
D. 75000 J

Answer: C

D Watch Video Solution

94. In the circuit shown in the figure
$R=50 \Omega, E_{1}=25 \sqrt{3}$ volt and $E_{2}=25 \sqrt{6} \sin \omega t$
volt where $\omega=100 \pi s^{-1}$. The switch is closed at
time $t=0$ and remains closed for 14 minutes,
then it is opened.

If total heat produced is usedd to raise the
temperature of 3 kg of water at $20^{\circ} \mathrm{C}$, what would be the final temperature of water ?
A. $15^{\circ} \mathrm{C}$
B. $25^{\circ} \mathrm{C}$
C. $45^{\circ} \mathrm{C}$
D. $75^{\circ} \mathrm{C}$

Answer: B

D View Text Solution

95. In the circuit shown in the figure $R=50 \Omega, E_{1}=25 \sqrt{3}$ volt and $E_{2}=25 \sqrt{6} \sin \omega t$ volt where $\omega=100 \pi s^{-1}$. The switch is closed at
time $t=0$ and remains closed for 14 minutes,
then it is opened.

Find the value of the direct currentds that will produce same amount of heat in the resistor in
same time as combination of $D C$ source and
$A C$ source produce. Specific heat of water
$=4200 \mathrm{~J} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$.
A. $1.23 A$
B. $1.22 A$
C. $2.24 A$
D. $3.25 A$

Answer: C

D View Text Solution

96. A physics lab is designed to study the transfer of electrial energy from one circuit to another by means of a magnetic field using simple transformers. Each transformer has two coils of wire electrically insulated from each other but wound a round a common core of
ferromagnetic material. The two wires are close together but do not touch each other

The primary $\left(1^{\circ}\right)$ coil is connected to a source of alternating ($A C$) current. The secondary
$\left(2^{\circ}\right)$ coil is connected to resistor such as a light bulb. The $A C$ source produces on oscillating voltage and current in the primary coil that produces an oscillating megnetic field
in the core. material. This in turn induces an oscillating voltage and $A C$ curent in the secondary coil

Students collected the following data comparing the number of turns per coil (N), the voltage (V) and the current (I) in the coils of three transformers.
$\left|\begin{array}{lll}\text { Transformer } & \text { primary coil } & \text { secondary coil } \\ 1 & 100.10 V .10 A & 200.20 V .5 A \\ 2 & 100.10 V .10 A & 50.5 V .5 A \\ 3 & 100.10 V .10 A & 100.5 V .20 A\end{array}\right|$

The primary coil of a transformer has 100 tunrs and is connected to a 120VAC source. How many turns are in the secondary coil if there is 2400 V across it
A. 5
B. 50
C. 200

D. 2000

Answer: D

D Watch Video Solution

97. A physics lab is designed to study the transfer of electrial energy from one circuit to another by means of a magnetic field using
simple transformers. Each transformer has two
coils of wire electrically insulated from each
other but wound a round a common core of
ferromagnetic material. The two wires are close
together but do not touch each other
The primary $\left(1^{\circ}\right)$ coil is connected to a source of alternating ($A C$) current. The secondary
$\left(2^{\circ}\right)$ coil is connected to resistor such as a light bulb. The $A C$ source produces on oscillating voltage and current in the primary
coil that produces an oscillating megnetic field
in the core. material. This in turn induces an
oscillating voltage and $A C$ curent in the secondary coil

Students collected the following data comparing the number of turns per coil (N), the voltage (V) and the current (I) in the coils of three transformers.
$\left|\begin{array}{lll}\text { Transformer } & \text { primary coil } & \text { secondary coil } \\ 1 & 100.10 V .10 A & 200.20 V .5 A \\ 2 & 100.10 V .10 A & 50.5 V .5 A \\ 3 & 100.10 V .10 A & 100.5 V .20 A\end{array}\right|$

A trasnsformer with 40 turns in its primary coil
is connected to a 120 VAC source. If 20 W of power if supplied to the primary coil, how much power is developed in the secondary coil ?
A. 10 W
B. 20 W
C. 80 W
D. 160 W

Answer: B
98. A physics lab is designed to study the transfer of electrial energy from one circuit to another by means of a magnetic field using simple transformers. Each transformer has two coils of wire electrically insulated from each other but wound a round a common core of ferromagnetic material. The two wires are close together but do not touch each other

The primary $\left(1^{\circ}\right)$ coil is connected to a source of alternating ($A C$) current. The secondary
$\left(2^{\circ}\right)$ coil is connected to resistor such as a
light bulb. The $A C$ source produces on oscillating voltage and current in the primary
coil that produces an oscillating megnetic field in the core. material. This in turn induces an oscillating voltage and $A C$ curent in the secondary coil

Students collected the following data comparing the number of turns per coil (N), the voltage (V) and the current (I) in the coils of three transformers.
$\left|\begin{array}{lll}\text { Transformer } & \text { primary coil } & \text { secondary coil } \\ 1 & 100.10 V .10 A & 200.20 V .5 A \\ 2 & 100.10 V .10 A & 50.5 V .5 A \\ 3 & 100.10 V .10 A & 100.5 V .20 A\end{array}\right|$

Which of the following is a correct expression
for R, the resistance of the load connected to the secondary coil
A. $\left(\frac{V_{1}{ }^{\circ}}{I_{1}{ }^{\circ}}\right)\left(\frac{N_{2^{\circ}}}{N_{1}{ }^{\circ}}\right)$
B. $\left(\frac{V_{1}{ }^{\circ}}{I_{1}{ }^{\circ}}\right)\left(\frac{N_{2}{ }^{\circ}}{N_{1}{ }^{\circ}}\right)^{2}$
c. $\left(\frac{V_{1^{\circ}}}{I_{1}{ }^{\circ}}\right)\left(\frac{N_{1^{\circ}}}{N_{2^{\circ}}}\right)$

$$
\text { D. }\left(\frac{V_{1} \circ}{I_{1} \circ}\right)\left(\frac{N_{1} \circ}{N_{2} \circ}\right)^{2}
$$

Answer: D

- Watch Video Solution

99. A physics lab is designed to study the transfer of electrial energy from one circuit to another by means of a magnetic field using simple transformers. Each transformer has two coils of wire electrically insulated from each other but wound a round a common core of
ferromagnetic material. The two wires are close together but do not touch each other

The primary $\left(1^{\circ}\right)$ coil is connected to a source of alternating ($A C$) current. The secondary
$\left(2^{\circ}\right)$ coil is connected to resistor such as a light bulb. The $A C$ source produces on oscillating voltage and current in the primary
coil that produces an oscillating megnetic field
in the core. material. This in turn induces an oscillating voltage and $A C$ curent in the secondary coil

Students collected the following data comparing the number of turns per coil (N),
the voltage (V) and the current (I) in the coils of three transformers.
$\left|\begin{array}{lll}\text { Transformer } & \text { primary coil } & \text { secondary coil } \\ 1 & 100.10 V .10 A & 200.20 V .5 A \\ 2 & 100.10 V .10 A & 50.5 V .5 A \\ 3 & 100.10 V .10 A & 100.5 V .20 A\end{array}\right|$

A 12 V battery is used to supply 2.0 mA of current to the 300 turns in the primary coil of a given transformer. What is the current in the secondary coil if $N_{2}=150$ turns.
A. zero
B. 1.0 mA
C. 2.0 mA
D. 4.0 mA

Answer: A

D Watch Video Solution

100. In the circuit shown in figure :
$R=10 \Omega, L=\frac{\sqrt{3}}{10} H, R_{2}=20 \Omega$ and $C=\frac{\sqrt{3}}{2} m F$.

Current in $L-R_{1}$ circuit is I_{1} in $C-R_{1}$ circuit is
I_{2} and the main current is I

Phase difference between I_{1} and I_{2} is
A. 0°
B. 90°
C. 180°

D. 60°

Answer: B

D Watch Video Solution

101. In the circuit shown in figure :
$R=10 \Omega, L=\frac{\sqrt{3}}{10} H, R_{2}=20 \Omega$ and $C=\frac{\sqrt{3}}{2} m F$.
Current in $L-R_{1}$ circuit is I_{1} in $C-R_{1}$ circuit is
I_{2} and the main current is I

At some instant current in $L-R_{1}$ circuit is $10 A$.
At the same instant current in C- R_{2} branch
will be
A. $5 A$
B. $5 \sqrt{2} A$
C. $5 \sqrt{6} A$

D. $5 \sqrt{3} A$

Answer: D

(Watch Video Solution

102. In the circuit shown in figure :
$R=10 \Omega, L=\frac{\sqrt{3}}{10} H, R_{2}=20 \Omega$ and $C=\frac{\sqrt{3}}{2} m F$.
Current in $L-R_{1}$ circuit is I_{1} in $C-R_{1}$ circuit is
I_{2} and the main current is I

At some instant I_{1} in the circuit is $10 \sqrt{2} A$, then
at this instant current I will be
A. 20 A
B. $10 \sqrt{2} A$
C. $20 \sqrt{2} A$
D. 25 A

Answer: B

- Watch Video Solution

103. A solenoid with inductance $L=7 \mathrm{mH}$ and active resistance $R=44 \Omega$ is first connected to
a source of direct voltage V_{0} and then to a source of sinusoidal voltage with effective
value $V=V_{0}$. At what frequency of the oscillator will be power consumed by the solenoid be $\eta=5.0$ times less than in the former case ?

- Watch Video Solution

104. An LCR circuit has $\mathrm{L}=10 \mathrm{mH}, R=3 \Omega$ and
$C=1 \mu F$ connected in series to a source of $15 \cos \omega t$.volt. Calculate the current ampliuted and the average power dissipated per cycle at a frequency 10% lower than the resonance frequency.

- Watch Video Solution

105. A series $L C R$ circuit with $R=20 \Omega, L=1.5 H$
and $C=35 \mu F$ is connected to a variable frequency 200 V ac supply. When the frequency
of the supply equals the natural frequency of
the circuit, what is the average power in $K w$ transferred to the circuit in one complete cycle?

D Watch Video Solution

106. A sinusoidal voltage of peak value 283 V and frequency 50 Hz is applied to a series $L C R$
circuit in which $R=3 \Omega, L=25.48 \mathrm{mH}$, and
$C=796 \mu F$. Find the impdedance of the circuit.

- Watch Video Solution

107. Two resistors are connected in series across 5 V rms source of alternating potentail.

The potential difference across 6Ω resistor is
$3 V_{m}$. If R is replaced by a pure inductor L of such magnitude that current remains same,
then the potential difference across L is

D Watch Video Solution

108. In LCR circuit current resonant frequency
is 600 Hz and half power points are at 650 and

550 Hz . The quality factor is
109. An ac ammeter is used to measure currnet in a circuit. When a given direct current passes
through the circuit. The ac ammeter reads 3 A .
When another alternating current passes
through the circuit, the ac ammeter reads 4 A .
Then find the reading of this ammeter (inA), if dc and ac flow through the circuit simultaneously.
110. In a series $L C R$ circuit the voltage across
the resistance, capacitance and inductance is

10 V each. If the capacitance is short circuited,
the voltage across the inductance will be $\frac{10^{x}}{\sqrt{2}}$
what is value of x

- Watch Video Solution

111. An ideal choke takes a current fo $10 A$ when
connected to an ac supply of 125 V and 50 Hz . A pure resistor under the same conditions take a current of 12.5 A . If the two are connected to an
ac supply of 100 V and 40 Hz , then the current in
series combination of above resistor and inductor is $\frac{10^{x}}{\sqrt{2}}$ what is the value of x

D Watch Video Solution

112. In a region of uniform magnetic induction
$B=10^{2}$ tesla, a circular coil of radius 30 cm and
resistance π^{2} ohm is rotated about an axis
which is perpendicular to the directon of B and
which form a diameter of the coil. If the coil
rotates at 200 rpm the amplitude of the alternating current induced in the coil is

D Watch Video Solution

113. An inductor of inductance 2.0 mH s
connected across a charged capacitor of capacitance $5.0 \mu F$ and the resulting $L C$ circuit is set oscillating at its natural frequency. Let Q denote the instantaneous charge on the capacitor and I the current in the circuit. It is found that the maximum value of charge Q is $200 \mu C$.
a. When $Q=100 \mu C$, what is the value of $\left|\frac{d I}{d t}\right|$?
b. When $Q=200 \mu C$, what is the value of I ?
c. Find the maximum value of I.
d. When I is equal to one-half its maximum
value, what is the value of $|Q|$?
A. When $Q=100 \mu C$, what is the value of
$|d I / d t| ?$
B. when $Q=200 \mu C$ what is the value of I ?
C. Find the maximum value of I ?
D. When I is equal to one-half its maximum
value, what is the value of $|Q|$?

Answer: A::B::C::D

D Watch Video Solution

114. When an ac source of emfe $=E_{0} \sin (100 t)$ is
connected across a circuit, the phase difference between emf e and currnet I in the circuit is observed to be $(\pi) /(4)$ as shown in fig. If the circuit consists possibly only of R-C or R-C of L-R series, find the relationship find the
relationship between the two elements.

A. $R=1 \mathrm{k} \Omega, C=10 \mu F$
B. $R=1 k \Omega, C=1 \mu F$
C. $R=1 \mathrm{k} \Omega, L=10 H$
D. $R=1 k \Omega, L=1 H$

Answer: A
115. In a series L-R circuit
($L=35 \mathrm{mH}$ and $R=11 \Omega$), a variable emf source
$\left(V=V_{0} \sin \omega t\right)$ of $V_{r m s}=220 \mathrm{~V}$ and frequency 50
Hz is applied. Find the current amplitude in the circuit and phase of current with respect to voltage. Draw current-time graph on given
$\operatorname{graph}\left(\pi=\frac{22}{7}\right)$.

- Watch Video Solution

116. An AC voltage source of variable angular frequency (ω) and fixed amplitude V_{0} is connected in series with a capacitance C and an
electric bulb of resistance R (inductance zero).

When (ω) is increased
A. The bulb glows dimmer
B. the bulb glows brighter
C. total impedance of the circuit is
unchanged
D. total impedence of the circuit increases

Answer: A::B::D
117. At time $t=0$, terminal A in the circuit shown in the figure is connected to B by a key and an alternating current $I(t)=I_{0} \cos (\omega t)$, with $I_{0}=1 A$ and $(\omega)=500$ rads $^{-1}$ starts flowing in it with the initial direction shown in the figure. At
$t=(7 \pi / 6 \omega)$, the key is switched from B to D.

Now onwards only A and D are connected. A total charge Q flows from the battery to charge the capacitor fully. If ${ }^{`} \mathrm{C}=20(\mathrm{mu}) \mathrm{F}, \mathrm{R}=10$ (Omega) and the battery is ideal with emf of 50 V ,
identify the correct statement(s).

A. Magnitude of the maximum charge on the capacitor before $t=\frac{7 \pi}{6 \omega}$ is $1 \times 10^{-3} \mathrm{C}$
B. The current in the left part of the circuit
just before $t=\frac{7 \pi}{6 \omega}$ is clockwise
C. Immediately after A is connected to D,

$$
\text { D. } Q=2 \times 10^{-3} C
$$

Answer: B

D Watch Video Solution

118. In the given circuit, the $A C$ source has
$(\omega)=100 \mathrm{rad} / \mathrm{s}$. Considering the inductor and capacitor to be ideal, the correct choice(s) is
(are)

A. the current through the circuit, I is $0.3 A$
B. the current through the circuit, I is
$0.3 \sqrt{2} A$
C. the voltage across 1000Ω resistor

$$
=10 \sqrt{2} V
$$

D. the voltage across 50Ω resistor $=10 \mathrm{~V}$

Answer: C::D

- Watch Video Solution

119. A sereis R-C circuit is connected to AC voltage source. Consider two cases, (A) when C is without a dielectric medium and (B) when C
is filled with dielectric of constant 4. The
current I_{R} through the resistor and voltage V_{C} across the capacitor are compared in the two cases. Which of the following is/ are true?

$$
\text { A. } I_{R}^{A}>I_{R}^{B}
$$

B. $I_{R}^{A}<I_{R}^{B}$
C. $V_{C}^{A}>V_{C}^{B}$
D. $V_{C}^{A}<V_{C}^{B}$

Answer: A::C

D Watch Video Solution

120. A series R-C combination is connected to an $A C$ voltage of angular frequency $\omega=500 \mathrm{radian} / \mathrm{s}$. If the impendance of the R-C
circuit is $R \sqrt{1.25}$, the time constant (in millisecond) of the circuit is

D Watch Video Solution

LEVEL - I (H.W)

1. For a given $A C$ source the average emf during the positive half cycle
A. depends on E_{0}
B. depends on shape of wave

C. both 1 and 2

D. depends only on peak value of E_{0}

Answer: 4

D Watch Video Solution

2. The peak value of an alternating emf E given by
$E=\left(E_{0}\right) \cos \omega t$
is 10 V and frequency is 50 Hz . At time
$t=(1 / 600) s$ the instantaneous value of emf is
A. 10 V
B. $5 \sqrt{3} V$
C. 5 V
D. 1 V

Answer: 3

D Watch Video Solution

3. The equation of A. C of frequency 75 Hz , if it's

A. $I=20 \sin (150 \pi t)$
B. $I=20 \sqrt{2} \sin (150 \pi t)$
C. $I=\frac{20}{\sqrt{2}} \sin (150 \pi t)$
D. $I=20 \sqrt{2} \sin (75 \pi t)$

Answer: 2

D Watch Video Solution

4. The voltage of an A. C source varies with
time according to the equation
$V=50 \sin 100 \pi t \cos 100 \pi t$.

Where ' t ' is in and ' V ' is in volt. Then
A. The peak voltage of the source is 100 V
B. The peak voltage of the source is
$100 / \sqrt{2} V$
C. The peak voltage of the source is 25 V
D. The frequency of the source is 50 Hz

Answer: 3
5. The form factor for a sinusoidal A. C is
A. $2 \sqrt{2}$
B. $\pi: 2 \sqrt{2}$
C. $\sqrt{2}: 1$
D. $1: \sqrt{2}$

Answer: 2

D Watch Video Solution
6. At resonance the peak value of current in $L-C-R$ series circuit is
A. E_{0} / R

E_{0}

B.

$$
\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}
$$

E_{0}
C. $\bar{\longrightarrow}$
$\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega^{2} C^{\circ}}\right)^{2}}$
D. $\frac{E_{0}}{\sqrt{2} R}$

Answer: 1
7. In an $A C$ circuit, the mass value of the current $I_{\text {rms }}$ is related to the peak current I_{0} as

$$
\begin{aligned}
& \text { A. } I_{\mathrm{rms}}=\frac{1}{\pi} I_{0} \\
& \text { B. } I_{\mathrm{rms}}=\frac{1}{\sqrt{2}} I_{0} \\
& \text { C. } I_{\mathrm{rms}}=\sqrt{2} I_{0} \\
& \text { D. } I_{\mathrm{rms}}=\pi I_{0}
\end{aligned}
$$

Answer: 2
8. A voltmeter connected in an A. C circuit reads 220 V . It represents,
A. peak voltage

B. $R M S$ voltage

C. Average voltage

D. Mean square voltage

Answer: 2

(B)
9. If the instantaneous current in a circuit is
given by $I=20 \cos (\omega t+\phi) A$, the rms value of
the current is
A. $2 A$
B. $\sqrt{2} A$
C. $2 \sqrt{2} A$
D. zero

Answer: 2
10. The time taken by an $A C$ of 50 Hz in reaching
from zero to its maximum value will be
A. 0.5 s
B. 0.005 s
C. 0.05 s
D. 5 s

Answer: 2
11. A generator produces a time varying voltage given by $V=240 \sin 120 t$, where t is in second.

The rms voltage and frequency are
A. 60 Hz and 240 V
B. 19 Hz and 120 V
C. 19 Hz and 170 V
D. 754 Hz and 170 V

Answer: 3
12. A $220 \mathrm{~V}, 50 \mathrm{HzAC}$ supply is connected across
a resistor of $50 \mathrm{k} \omega$. The current at time t second.

Assuming that it is zero at $t=0$, is
A. $4.4 \sin (314 t) m A$
B. $6.2 \sin (314 t) m A$
C. $4.4 \sin (157 t) m A$
D. $6.2 \sin (157 t) m A$

Answer: 2
13. A resistance of 20Ω is connected to a source of alternating current rated $110 \mathrm{~V}, 50 \mathrm{~Hz}$. Find
(a) the rms current, (b) the maxium
instantaneous current in the resistor and the
time taken by the current to change from its maximum value to the rms value.

$$
\text { A. } 2.5 \times 10^{-3} \mathrm{sec}
$$

B. $2.5 \times 10^{-2} \mathrm{sec}$
C. $5 \times 10^{-3} \mathrm{sec}$
D. $25 \times 10^{-3} \mathrm{sec}$

D Watch Video Solution

14. A conductor of capacity 1 pF is connected to an A. C source of 220 V and 50 Hz frequency. The current flowing in the circuit will be
A. $6.9 \times 10^{-8} A$
B. 6.9 A
C. $6.9 \times 10^{-6} A$
D. zero

D Watch Video Solution

15. In a circuit, the frequency is $f=\frac{1000}{2 \pi} \mathrm{~Hz}$ and the inductance is 2 henry, then the reactance will be
A. 200Ω
B. $200 \mu \Omega$
C. 2000Ω
D. $2000 \mu \Omega$

Answer: 3

D Watch Video Solution

16. The transformer ratio of transformer is $10: 1$
. The current in the primary circuit if the secondary current required is 100 A assuming the transformer be ideal, is
A. 500 A
B. 200 A
C. 1000 A

D. $2000 A$

Answer: 3

Watch Video Solution

17. The transformer ratio of transformer is $10: 1$
. If the primary voltage is 440 V , secondary emf is
A. 44 V
B. 440 V

C. 4400 V

D. 44000 V

Answer: 3

- Watch Video Solution

18. The frequency at which the inductive reactance of $2 H$ inductance will be equal to the capactive reactance of $2 \mu F$ capactiance (nearly)
A. 80 Hz
B. 40 Hz
C. 60 Hz
D. 20 Hz

Answer: 1

- Watch Video Solution

19. In a series $L C R$ circuit, resistance $R=10 \Omega$
and the impedence $Z=20 \Omega$ the phase difference between the current and the voltage is
A. 60°
B. 20°
C. 45°
D. 90°

Answer: 1

D Watch Video Solution

20. In an $L-C-R$ series circuit,
$R=\sqrt{5} \Omega,=9 \Omega, X_{C}=7 \Omega$. If applied voltage in
the circuit is 50 V then impedance of the circuit in ohm will be
A. 2
B. 3
C. $2 \sqrt{5}$
D. $3 \sqrt{5}$

Answer: 2
(Watch Video Solution
21. In an ac circuit the potential differences across an inductance and resistance joined in series are, respectively, 16 V and 20 V . The total potential difference across the circuit is
A. 20 V
B. 25.6 V
C. 31.0 V
D. 53.5 V

Answer: 2
22. Current in an ac circuit is given by $I=3 \sin \omega t+4 \cos \omega t$, then
A. rms volue fo current is $5 A$
B. mean value of this current in one half
period will be $6 / \pi$
C. if voltage applied is $V=V_{m} \sin \omega t$ then the
circuit must be containing resistance and
capacitance
D. ir voltage applied is $V=V_{m} \sin \omega t$, the circuit may contains resistance and inductance

Answer: 3

- Watch Video Solution

23. A fully charged capacitor C with initial charge q_{0} is connected to a coil of self inductance L at $t=0$. The time at which the
energy is stored equally between the electric and the magnetic fields is

A. $\frac{\pi}{4} \sqrt{L C}$
B. $2 \pi \sqrt{L C}$
C. $\sqrt{L C}$
D. $\pi \sqrt{L C}$

Answer: 1

D Watch Video Solution

1. An alternating current ' I ' is given by
$I=i_{0} \sin 2 \pi(t / T+1 / 4)$. Then the average current in the first one quarter time period to

$$
\begin{aligned}
& \text { A. } \frac{2 i_{0}}{\pi} \\
& \text { B. } \frac{i_{0}}{\pi} \\
& \text { C. } \frac{i_{0}}{2 \pi} \\
& \text { D. } \frac{3 i_{0}}{\pi}
\end{aligned}
$$

Answer: 1
2. In an $L R$ circuit, $R=100 \Omega$ and $L=2 H$. If an alternating voltage of 120 V and 60 Hz is connected in this circuit, then the value of current flowing in it will be _____ A nearly
A. 0.32
B. 0.16
C. 0.48
D. 0.8

Answer: 2
3. The equation of an alternating current is $I=50 \sqrt{2} \sin 400 \pi t A$, then the frequency and the root mean square value of current are respectively.
A. $200 \mathrm{~Hz}, 50 \mathrm{~A}$
B. $400 \mathrm{~Hz}, 50 \sqrt{2} A$
C. $200 \mathrm{~Hz}, 50 \sqrt{2} A$
D. $500 \mathrm{~Hz}, 200 \mathrm{~A}$

Answer: 1

D Watch Video Solution

360
4. A circuit operating at $\frac{3}{2 \pi} H z$ contains a $1 \mu F$ capacitor and a 20Ω. resistor. How large an inductor must be added in series to make the phase angle for the circuit zero? Calculate the current in the circuit if the applied voltage is 120 V.
A. 7.7 H
B. 10 H
C. $3.5 H$
D. $15 H$

Answer: 1

- Watch Video Solution

5. A resistor R and the capacitor C are connected in series across an ac source of rms voltage $5 V$ if the rms voltage across C is $3 V$ then that across R is .
A. $1 V 1$
B. 2 V
C. 3 V
D. 4 V

Answer: 4

D Watch Video Solution

6. An $L C R$ series circuit containing a resistance
of 12Ω has angular resonance frequency
$4 \times 10^{5} \mathrm{radS}^{-1}$. At resonance the voltage across
resistance and inductance are 60 V and 40 V respectively. Then the values of L and C are respectively.
A. $0.2 m H, 1 / 32 \mu F$
B. $0.4 m H, 1 / 16 \mu F$
C. $0.2 \mu, 1 / 16 \mu F$
D. $0.4 m H, 1 / 32 \mu F$

Answer: 1
7. The natural frequency of an LC- circuit is 1,25,000 cycles per second. Then the capacitor
C is replaced by another capacitor with a dielectric medium of dielectric contant k. In this case, the frequency decreases by 25 kHz . The value of k is
A. 3.0
B. 2.1
C. 1.56
D. 1.7

- Watch Video Solution

8. In the given figure, the instantaneous value of alternating e.m.f. is $e=14.14 \sin \omega t$. The reading of voltmeter in volt will be

A. 141.0
B. 10
C. 200

D. 70.7

Answer: 2

D Watch Video Solution

9. A coil of inductance 0.1 H is connected to
$50 \mathrm{~V}, 100 \mathrm{~Hz}$ generator and current is found to be $0.5 A$. The potential difference across resistance of coil is:
A. 15 V
B. 20 V

C. 25 V

D. 39 V

Answer: 4

D Watch Video Solution

10. The voltage of A. C source varies with tiem according equation. $V=120 \sin 100 \pi t \cos 100 \pi t$
.Then the frequency of source is
A. 50 Hz

B. 100 Hz

C. 150 Hz

D. 200 Hz

Answer: 2

- Watch Video Solution

11. The current in a coil of self inductance 5
henry in increasing according to $I=2 \sin ^{2} t$. The amount of energy spen during the period when
current changes from 0 to 2 amperes is
A. 10 J
B. 5 J
C. 100 J
D. 2 J

Answer: 4

D Watch Video Solution
12. In an $A C$ circuit the voltage applied is
$E=E_{0} \sin \omega t$. The resulting current in the circuit
is $I=I_{0} \sin \left(\omega t-\frac{\pi}{2}\right)$. The power consumption in
the circuit is given by

$$
\begin{aligned}
& \text { A. } P=\frac{E_{0} I_{0}}{\sqrt{2}} \\
& \text { B. } P=\text { zero } \\
& \text { C. } P=\frac{E_{0} I_{0}}{2} \\
& \text { D. } P=\sqrt{2} E_{0} I_{0}
\end{aligned}
$$

Answer: 2
13. The efficiency of a transformer is 98%. The
primary voltage and current are 200 V and 6 A . If
the secondary voltage is 100 V , the secondary
current
A. 11.76 A
B. 12.25 A
C. $3.06 A$
D. $2.94 A$

Answer: 3

ILLUSTRATION

1. The peak value of alternating current is 5 A and its frequency is 60 Hz . Find its rms value. How long will the current take to reach the peak starting from zero?
2. The electric current in a circuit is given by $I=i_{0}\binom{t}{\tau}$ for some time. Calculate the rms current for the period $t=0$ to $t=(\tau)$.

D Watch Video Solution

3. An alternating emf is represented by
$E=100 \sin (120 \pi t+\pi / 4)$ volt. Calculate
(i) Average or mean value of emf
(ii) RMS value of emf
(iii) Frequency of alternating emf
(iv) the shortest time interval after start at which emf is zero.

- Watch Video Solution

4. A pure inductor of 25.0 mH is connected to a source of 220 V . Find the inductive reactance and rms current in the circuit if the frequency of the source is 50 Hz .

D Watch Video Solution

5. If an input of 50 mV is applied as $V_{\text {in }}$ then $V_{\text {out }}$ at 100 kHz will be $1 \mathrm{k} \Omega$

- Watch Video Solution

6. A $15.0 \mu \mathrm{~F}$ capacitor is connected to a 220 V ,

50 Hz source. Find the capacitive reactance and
the current (rms and peak) in the circuit. If the
frequency is doubled, what happens to the capacitive reactance and the current ?

- Watch Video Solution

7. When an AC source of emfe $=E_{0} \sin (100 t)$ is
connected across a circuit i in the circuit, the phase difference between the emf e and the current i in the circuit is observed to be ($\pi / 4$), as shown in the diagram. If the circuit consists possibly only of R-C or R-L or L-C in series, find
the relationship between the two elements

D Watch Video Solution

8. An LCR circuit contains resistance of 100Ω and a supply of 200 V at $300 \mathrm{rads}^{-1}$ angular frequency. If only capacitance is taken out from the circuit and the rest of the circuit is joined,
current lags behind the voltage by 60°. If, on
the other hand, only inductor is taken out,the current leads the voltage by 60°. The current flowing in the circuit is

D Watch Video Solution

9. In a series resonant circuit, the ac voltage across resistance R, inductance L and capacitance C are $V_{R}=4 V, V_{L}=10 \mathrm{~V}$ and $V_{C}=7 \mathrm{~V}$ respectively. Find the voltage applied to the circuit.
10. Find the power factor of the circuit shown in figure.

$400 \mathrm{~V} \quad 400 \mathrm{~V}$

$100 \mathrm{~V}, 500 \mathrm{~Hz}$

D Watch Video Solution
11. A $750 \mathrm{~Hz}, 20 \mathrm{~V}$ source is connected to as resistance of 100Ω an inductance of $0.1803 H$ and a capacitance of $10 \mu F$ all in sereis.Calculate the time in which the resistance (thermalcapacity $2 \mathrm{~J} / .^{\circ} \mathrm{C}$) wil get heated by $10{ }^{\circ} \mathrm{C}$.

D Watch Video Solution
12. In the LCR series circuit find the volmeter and ammeter reading in the figure shown
below. Also find the quality factor of circuit.

$400 \mathrm{~V} \quad 400 \mathrm{~V}$

D Watch Video Solution

13. An inductance of 2.0 H , a capacitance of
$18 \mu F$ and a resistance of $10 k \Omega$ are connected to
an AC source of 20 V with adjustable frequency.
(a) What frequency should be chosen to maximise the current in the circuit? (b) What is the value of this maximum current?

D Watch Video Solution

14. A 50Ω electric iron is connected to an ac supply of $200 \mathrm{~V}, 50 \mathrm{~Hz}$. Calculate (i) average power delivered to iron (ii) peak power and (iii) energy spent in one minute.
15. The LCR series circuit is connected to an external emf $e=200 \sin 100 \pi t$. The values of the capacitance and resistance in the circuit are $1 \mu F$ and 100Ω respectively. The amplitude of the current in the circuit will be maximum when the inductance is

D Watch Video Solution

16. The potential difference V across and the current I flowing through an instrument in an
$A C$ circuit are given by:
$V=5 \cos \omega t$ volt
$I=2 \sin \omega t$ Amp.

D Watch Video Solution

17. A capacitor, an inductor and an electric bulb are connected in series to an AC supply of variable frequency. If the frequency of the supply is increased gradually, what will happen to brightness of bulb.
18. A power transformer is used to step up an
alternating emf of 200 V to 4 KV and to transmits 5 KW power. If the primary is of 1000 turns, calculate, assuming the transformer to be ideal.
(i) The number of turns in the secondary
(ii) The current rating of the secondary

- Watch Video Solution

19. A $1 \mu F$ condenser is charged to 50 V . The charging battery is then disconnected and a

10 mH coil is connected across capacitor so that
the LC oscillations occur. Find the maximum current in the coil?

D Watch Video Solution

20. An inductance of $2 H$ carries a current of $2 A$.

To prevent sparking when the circuit is broken
a capacitor of $4 \mu F$ is connected across the inductance. The voltage rating of the capacitor is of the order of
21. The peak value of an alternating current is 5 A and its frequency is 60 Hz . Find its rms value.

How long will the cukrgrenQt current IS 5 A and its frequency is 60 Hz . Find its runs value.

D Watch Video Solution

22. The electric current in a circuit is given by
$I=i_{0}\binom{t}{\tau}$ for some time. Calculate the rms
current for the period $t=0$ to $t=(\tau)$.
23. An alternating emf is represented by
$E=100 \sin (120 \pi t+\pi / 4)$ volt. Calculate
(i) Average or mean value of emf
(ii) RMS value of emf
(iii) Frequency of alternating emf
(iv) the shortest time interval after start at which emf is zero.

D Watch Video Solution
24. A pure inductor of 25.0 mH is connected to a source of 220 V . Find the inductive reactance and rms current in the circuit if the frequency of the source is 50 Hz .

D Watch Video Solution

25. If an input of 50 mV is applied as $V_{\text {in }}$ then
$V_{\text {out }}$ at 100 kHz will be

$10 \mathrm{nF} \underset{T}{ } \mathrm{~V}_{\text {out }}$

- Watch Video Solution

26. A $30 \mu F$ capacitor is conneted to a $220 \mathrm{~V}, 50$

Hz . Source. Find its capactive reactance, rms
current, peak current and impendance of the circuit.

- Watch Video Solution

27. When an AC source of emfe $=E_{0} \sin (100 t)$ is
connected across a circuit i in the circuit, the phase difference between the emf e and the current i in the circuit is observed to be ($\pi / 4$), as shown in the diagram. If the circuit consists possibly only of R-C or R-L or L-C in series, find the relationship between the two elements

- Watch Video Solution

28. An LCR circuit contains resistance of 100Ω
and a supply of 200 V at $300 \mathrm{rads}^{-1}$ angular
frequency. If only capacitance is taken out from the circuit and the rest of the circuit is joined, current lags behind the voltage by 60°. If, on the other hand, only inductor is taken out,the current leads the voltage by 60°. The current flowing in the circuit is

Watch Video Solution

29. In a series resonant circuit, the ac voltage across resistance R, inductance L and capacitance C are $V_{R}=4 V, V_{L}=10 \mathrm{~V}$ and
$V_{C}=7 \mathrm{~V}$ respectively. Find the voltage applied to the circuit.

D Watch Video Solution

30. Find the power factor of the circuit shown in figure.

$100 \mathrm{~V}, 500 \mathrm{~Hz}$

D Watch Video Solution

31. A $750 \mathrm{~Hz}, 20 \mathrm{~V}$ source is connected to as resistance of 100Ω an inductance of $0.1803 H$ and a capacitance of $10 \mu \mathrm{~F}$ all in sereis.Calculate the time in which the resistance
(thermalcapacity $2 \mathrm{~J} / .{ }^{\circ} \mathrm{C}$) wil get heated by $10^{\circ} \mathrm{C}$.

D Watch Video Solution

32. In the LCR series circuit find the volmeter and ammeter reading in the figure shown
below. Also find the quality factor of circuit.

$400 \mathrm{~V} \quad 400 \mathrm{~V}$

D Watch Video Solution

33. An inductance of 2.0 H , a capacitance of
$18 \mu F$ and a resistance of $10 \mathrm{k} \Omega$ are connected to
an AC source of 20 V with adjustable frequency.
(a) What frequency should be chosen to maximise the current in the circuit? (b) What is the value of this maximum current?

D Watch Video Solution

34. A 50Ω electric iron is connected to an ac supply of 200 V , 50 Hz . Calculate (i) average power delivered to iron (ii) peak power and (iii) energy spent in one minute.
35. The LCR series circuit is connected to an external emf $e=200 \sin 100 \pi t$. The values of the capacitance and resistance in the circuit are $1 \mu F$ and 100Ω respectively. The amplitude of the current in the circuit will be maximum when the inductance is

D Watch Video Solution

36. The potential difference V across and the current I flowing through an instrument in an
$A C$ circuit are given by:
$V=5 \cos \omega t$ volt
$I=2 \sin \omega t$ Amp.

D Watch Video Solution

37. A capacitor, an inductor and an electric bulb are connected in series to an AC supply of variable frequency. If the frequency of the supply is increased gradually, what will happen to brightness of bulb.
38. A $1 \mu F$ condenser is charged to 50 V . The charging battery is then disconnected and a 10 mH coil is connected across capacitor so that the LC oscillations occur. Find the maximum current in the coil?

D Watch Video Solution

39. An inductance of $2 H$ carries a current of $2 A$.

To prevent sparking when the circuit is broken
a capacitor of $4 \mu F$ is connected across the
inductance. The voltage rating of the capacitor
is of the order of

D Watch Video Solution

EVALUATE YOURSELF-1

1. If E_{0} represents the peak value of the voltage
in an ac circuit, the r.m.s. value of the voltage will be
2. The electric current in a circuit is given by
$I=2 i_{0} / \tau$ for some time. What is the rms current for the period $t=0$ to $t=\tau$?

D Watch Video Solution

3. The frequency of A.C. is 50 Hz . How many
times the current becomes zero in one second?

D Watch Video Solution

4. If the instantaneous current in a circuit is given by $I=2 \cos (\omega t+\phi)$ amperes, the rms value of the current is

- Watch Video Solution

5. The equation of alternating current is given
by $E=158 \sin 200 \pi t$. The value of voltage at time $t=1 / 400 \mathrm{sec}$ is

- Watch Video Solution

6. A generator produces a time varying voltage given by $V=240 \sin 120 t$, where t is in second. The rms voltage and frequency are

(Watch Video Solution

7. If E_{0} represents the peak value of the voltage
in an ac circuit, the r.m.s. value of the voltage will be
8. The electric current in a circuit is given by $I=2 i_{0} / \tau$ for some time. What is the rms current for the period $t=0$ to $t=\tau$?

- Watch Video Solution

9. The frequency of A.C. is 50 Hz . How many
times the current becomes zero in one second?

- Watch Video Solution

10. If the instantaneous current in a circuit is given by $I=2 \cos (\omega t+\phi)$ amperes, the rms value of the current is

D Watch Video Solution

11. The equation of alternating current is given
by $E=158 \sin 200 \pi t$. The value of voltage at time $t=1 / 400 \mathrm{sec}$ is

- Watch Video Solution

12. A generator produces a voltage that is given
by $V=240 \sin 120 \mathrm{t}$ volt, where t is in second.

The frequency and r.m.s. voltage are

D Watch Video Solution

EVALUATE YOURSELF-2

1. Assertion (A) : An electric lamp is connected
in series with a long solenoid of copper with air
core and then connected to $A C$ source. If an
iron rod is inserted in solenoid the lamp will
become dim.

Reason (R) : If iron rod is inserted in solenoid, the induction of solenoid increases.

D Watch Video Solution

2. A resistor, an inductance and a capacitance are connected in series toan a.c. supply. When measured with the help of an a.c. voltmeter, the
p.d. across the resistor is found to be 40 V , across the inductance 30 V , and across the capacitance 60 V . What is the supply voltage?
3. A 60 volt- 10 watt bulb is operated at 100 volt60 Hz ac . The inductance required is

D Watch Video Solution

4. In L-R circit, the A.C. source has voltage 220 V .

If potential difference across inductor is 176 V ,
the potential difference across the resistor (in

Volts) is $K \times 33$. Find the value of K

- Watch Video Solution

5. A coil having an inductance of $1 / \pi$ henry is connected in series with a resistance of 300Ω. If 20 volt from a 200 cycle source are impressed across the combination, the value of the phase angle between the voltage and the current is :

- Watch Video Solution

6. A 20volts $A C$ is applied to a circuit consisting of a resistance and a coil with negligible
resistance. If the voltage across the resistance
is 12 V , the voltage across the coil is

D Watch Video Solution

7. Alternating voltage $\mathrm{V}=400 \sin (500 \pi t)$ is applied across a resistance of $0.2 k \Omega$. The r.m.s.
value of current will be equal to
8. A series L-C-R circuit is given in figure. The current through the circuit is

(D) Watch Video Solution
9. In serial L-C-R circuit as shown in figure. The potential difference across $A \& B$ is

$$
\mathrm{R}=3 \Omega \quad \mathrm{X}_{\mathrm{c}}=3 \Omega
$$

$$
{ }^{\mathrm{A}^{\mathrm{A}}}{ }_{\mathrm{L}}=3 \Omega
$$

B

$220 \mathrm{~V}, 50 \mathrm{~Hz}$

D Watch Video Solution
10. If resistance of 100Ω, inductance of 0.5
henry and capacitor of $10 \times 10^{-6} F$ are connected in series through 50 Hz AC supply, then impedence is
11. The values of current and voltage in an AC circuits are respectively $\mathrm{I}=4 \sin \omega t$ and $e=100 \cos [\omega t+(\pi / 3)]$. The phase difference between voltage and current is

- Watch Video Solution

12. Assertion (A) : An electric lamp is connected
in series with a long solenoid of copper with air core and then connected to $A C$ source. If an
iron rod is inserted in solenoid the lamp will become dim.

Reason (R) : If iron rod is inserted in solenoid, the induction of solenoid increases.

D Watch Video Solution

13. A resistor, an inductance and a capacitance are connected in series toan a.c. supply. When measured with the help of an a.c. voltmeter, the
p.d. across the resistor is found to be 40 V , across the inductance 30 V , and across the capacitance 60 V . What is the supply voltage?

- Watch Video Solution

14. A 60 volt-10 watt bulb is operated at 100 volt-60 Hz ac. The inductance required is

- Watch Video Solution

15. In L-R circuit, the a.c. source has voltage 220
volt. If the potential difference across the inductance is 176 volt, the p.d. across the resistance will be
16. Alternating voltage $\mathrm{V}=400 \sin (500 \pi t)$ is applied across a resistance of $0.2 \mathrm{k} \Omega$. The r.m.s.
value of current will be equal to

D Watch Video Solution

17. If resistance of 100Ω, inductance of 0.5
henry and capacitor of $10 \times 10^{-6} F$ are connected in series through 50 Hz AC supply, then impedence is

- Watch Video Solution

18. The instantaneous values of current and voltage in an A.C. circuit are respectively $I=4 \sin \omega t$ and $E=100 \cos (\Omega t+\pi / 3)$. The phase difference between voltage and current is

D Watch Video Solution

1. The graph between current and frequency for

LCR series circuit is drawn for three different resistor $R_{1}, R_{2} \& R_{3}$. Which one is correct regarding resistance.

D Watch Video Solution

2. In the given A.C. circuit the average power consumed in the circuit is

D Watch Video Solution

3. The circuit shown in the diagram is in resonance. Power factor of the circuit is

D Watch Video Solution

4. Power factor of the A.C. circuit given in figure
is 0.6 . The value of R is

D Watch Video Solution

5. A 30 mH pure inductor is connected to 220 V , 50 Hz A.C. supply .Net power absorbed by the circuit over a complete cycle is
6. A resistor, a capacitor of $100 \mu F$ capacitance and an inductor are in series with on AC source of frequency 50 Hz . If the current in the circuit is in phase with the applied voltage. The inductance of the inductor is

(Watch Video Solution

7. In series L-C-R circuit as shown in figure the voltage of the source is

- Watch Video Solution

8. In series L-C-R circuit the quality factor is

- Watch Video Solution

9. The average power delivered to a series AC circuit is given by (symbols have their usual meaning):

- Watch Video Solution

10. In the given A.C. circuit the average power consumed in the circuit is

D Watch Video Solution

11. The circuit shown in the diagram is in resonance. Power factor of the circuit is

D Watch Video Solution

12. Power factor of the A.C. circuit given in figure is 0.6 . The value of R is

D Watch Video Solution

13. A 30 mH pure inductor is connected to 220 V , $50 \mathrm{HzA} . C$. supply . Net power absorbed by the circuit over a complete cycle is
14. A resistor 10Ω, a capacitor of $100 \mu F$ capacitance and an inductor are in series with on $A C$ source of frequency 50 Hz . If the current in the circuit is in phase with the applied voltage. The inductance of the inductor is

D Watch Video Solution

15. In series L-C-R circuit as shown in figure the voltage of the source is

- Watch Video Solution

16. In series L-C-R circuit the quality factor is

D Watch Video Solution
17. The average power in LCR series circuit is

(D) Watch Video Solution

EVALUATE YOURSELF-4

1. A transformer is used to illuminate a bulb of (

36 W and 12 V) with the help of 220 volt mains.
If the efficiency of the transformer is 75%, then
current in primary coil is

Watch Video Solution
2. The primary winding of a transformer has 100 turns and its secondary winding has 200 turns. The primary is connected to an ac supply of 120 V and the current flowing in it is 10 A . The voltage and the current in the secondary are

Datch Video Solution

3. A transformer has an efficiency of 80% and
works at 100 volt and 4 kw . If the secondary voltage is 240 V . The current in secondary is
4. A small town with a demand of 800 kW of electric power at 220 V is situated 15 km away
from an electric plant generating power at 440
V. The resistance of the two line wires carrying
power is 0.5Ω per km. The town gets power from the lines through a 4000-220 V step down
transformer at a substation in the town.

Estimate the line power loss in the form of heat.
(b) How much power must the plant supply. assuming there is negligible power loss due to
leakage?
(c) Characterize the step up transformer at the plant.

D Watch Video Solution
5. The core of a transformer is laminated to reduce
6. In step down transformer 220 / 110 V the primary is connected to 10 V battery. The out put voltage is

- Watch Video Solution

7. In an LCR series circuit the capacitance is
changed from C to $4 C$ For the same resonant fequency the inductance should be changed from L to .
8. A transformer is used to illuminate a bulb of
(36 W and 12 V) with the help of 220 volt mains. If the efficiency of the transformer is 75%, then current in primary coil is

- Watch Video Solution

9. The primary winding of a transformer has

100 turns and its secondary winding has 200 turns. The primary is connected to an ac supply of 120 V and the current flowing in it is 10 A . The voltage and the current in the secondary are

- Watch Video Solution

10. A transformer with efficiency 80% works at $4 k W$ and 100 V . If the secondary voltage is 200 V , then the primary and secondary currents are respectively

Watch Video Solution

11. A small town with a demand of 800 kW of electric power at 220 V is situated 15 km away from an electric plant generating power at 440

V . The resistance of the two line wires carrying power is 0.5Ω per km. The town gets power from the lines through a 4000-220 V step down transformer at a substation in the town.

Estimate the line power loss in the form of heat.
(b) How much power must the plant supply. assuming there is negligible power loss due to leakage?
(c) Characterize the step up transformer at the plant.
12. The core of any transformer is laminated so as to

D Watch Video Solution

13. In step down transformer 220 / 110 V the primary is connected to 10 V battery. The out put voltage is
14. In an LCR series circuit the capacitance is
changed from C to 4C For the same resonant fequency the inductance should be changed from L to .

EXERCISE-1(C.W)

1. The r.m.s. value of $I=I_{1} \sin \omega t+I_{2} \cos \omega t$ is
2. The frequency of A.C. is 50 Hz . How many times the current becomes zero in one second?

D Watch Video Solution

3. The values of current and voltage in an AC
circuits are respectively $\mathrm{I}=4 \quad \sin \omega t$ and $e=100 \cos [\omega t+(\pi / 3)]$. The phase difference between voltage and current is

4. An a.c. source is of 120 volts, 60 Hz . The value

 of the voltage after $1 / 360 \mathrm{sec}$. from the start will be
D Watch Video Solution

5. In general in an alternating current circuit
6. The voltage of an AC supply varies with time
(t) as $\mathrm{V}=120 \sin 100 \pi t \cos 100 \pi t$. The maximum
voltage and frequency respectively are

- Watch Video Solution

7. An inductance of negligible resistance, whose
reactance is 22 ohm at 200 Hz is connected to a

220 V V, 50 Hz power line. What is the value of inductance and reactance?
8. In L-R circit, the A.C. source has voltage 220 V .

If potential difference across inductor is 176 V , the potential difference across the resistor (in

Volts) is $K \times 33$. Find the value of K

- Watch Video Solution

9. A pure resistance and a pure inductance are connected in series across a 100 volt. A.C. line. A
voltmeter gives same reading whether connected across resistance or inductance.

What does it read ?

- Watch Video Solution

10. A direct current of 10A is superimposed on an alternating current $\mathrm{I}=40$ coswt. Amperes flowing through a wire. The effective value of the resulting current will be

- Watch Video Solution

11. In an AC circuit resistance, inductance and capacitance are connected in series. The values of potential differences across the three are 70
$\mathrm{V}, 90 \mathrm{~V}$ and 65 V respectively. The value of the potential difference of the AC source is

D Watch Video Solution

12. A $10 \mu \mathrm{~F}$ capacitor is connected across a 200 V , 50 Hz A.C. supply. The peak current through the circuit is
13. In a $L C R$ circuit having $L=8.0$ henry, $C=0.5 \mu F$ and $R=100$ ohm in series. The resonance frequency in per second is

- Watch Video Solution

14. An $L-C-R$ series circuit has a maximum
current of $5 A$. If $L=0.5 H$ and $C=8 \mu F$, then the angular frequency of $A C$ voltage is

- Watch Video Solution

15. The current in series $L C R$ circuit will be the maximum when ω is

D Watch Video Solution

16. The resonant frequency of a circuit of negligible resistance containing an inductance of 50 mH and a capacitance of 500 pf is
17. A series LCR circuit is tuned to resonance.

The impedance of the circuit now is

- Watch Video Solution

18. In a resonant LCR circuit,

(Watch Video Solution

19. Energy required to establish a current of 4 A
in a coil of self-inductance $\mathrm{L}=200 \mathrm{mH}$ is
20. If a power of 100 W is being supplied across
a potential difference of 200 V , current flowing is

D Watch Video Solution

21. In an AC circuit voltage applied is $e=220$ sin

100 t . if the impedance is 110Ω and phase difference between the current and voltage is
60° the power consumption is equal to

- Watch Video Solution

22. An alternating voltage is applied across the R-L combination $\mathrm{V}=220 \sin 120 \mathrm{t}$ and the current $\mathrm{I}=4 \sin \left(120 \mathrm{t}-60^{\circ}\right)$ develops. The power consumption is

- Watch Video Solution

23. In an A.C. circuit, e and I are given by,
$e=100 \sin (100 t)$ volt, $I=100 \sin \left(100 t+\frac{\pi}{3}\right) m A$.

The power dissipated in circuit is

D Watch Video Solution

24. In an $A C$ circuit with voltage V and current I
, the power dissipated is

D Watch Video Solution

25. An rms voltage of 110 V is applied across a series circuit having a resistance 11Ω and an impedance 22Ω. The power consumed is

- Watch Video Solution

26. Power factor is one for

D Watch Video Solution

27. A coil of inductive reactance 31Ω has a resistance of $80 h m$. It is placed in series with a condenser of capacitive reactance 25Ω. The combination is connected to an ac source of 110 V . The power factor of the circuit is
28. An ac ammeter is used to measure currnet in a circuit. When a given direct current passes
through the circuit. The ac ammeter reads 3 A .

When another alternating current passes
through the circuit, the ac ammeter reads 4 A .

Then find the reading of this ammeter (inA), if dc and ac flow through the circuit simultaneously.
29. A transformer steps an A. C voltage from

230 V ot 2300 V . If the number of turns in the secondary coil is 1000 , the number of turns in the primary coil will be

D Watch Video Solution

30. The transformer ratio of a transformer is 5 .

If the primary voltage of the transformer is $400 \mathrm{~V}, 50 \mathrm{~Hz}$ the secondary voltage will be
31. A step-up transformer works on 220 V and gives $2 A$ to an external resistor. The turn ratio between the primary and secondary coils is 2 :
25. Assuming 100% efficiency, find the secondary voltage, primary current and power delivered respectively

D Watch Video Solution

32. The transformer ratio of transformer is
$10: 1$. The current in the primary circuit if the
secondary current required is 100 A assuming the transformer be ideal, is

D Watch Video Solution

33. The transformer ratio of transformer is
$10: 1$. If the primary voltage is 440 V , secondary emf is
34. A fully charged capacitor C with initial charge q_{0} is connected to a coil of self inductance L at $t=0$. The time at which the energy is stored equally between the electric and the magnetic fields is

D Watch Video Solution

35. The r.m.s. value of $I=I_{1} \sin \omega t+I_{2} \cos \omega t$ is

- Watch Video Solution

36. The frequency of A.C. is 50 Hz . How many times the current becomes zero in one second?

D Watch Video Solution

37. The instantaneous values of current and voltage in an A.C. circuit are respectively $I=4 \sin \omega t$ and $E=100 \cos (\omega t+\pi / 6)$. The phase difference voltage and current is
38. An a.c. source is of 120 volts, 60 Hz . The
value of the voltage after $1 / 360 \mathrm{sec}$. from the start will be

- Watch Video Solution

39. In general in an alternating current circuit

D Watch Video Solution
40. The voltage of an AC supply varies with time
(t) as $\mathrm{V}=120 \sin 100 \pi t \cos 100 \pi t$. The maximum
voltage and frequency respectively are

D Watch Video Solution

41. An inductance of negligible resistance, whose reactance is 22 ohm at 200 Hz is connected to a $220 \mathrm{VV}, 50 \mathrm{~Hz}$ power line. What is the value of inductance and reactance?
42. In L-R circit, the A.C. source has voltage 220 V
. If potential difference across inductor is 176 V , the potential difference across the resistor (in

Volts) is $K \times 33$. Find the value of K

- Watch Video Solution

43. A pure resistance and a pure inductance are connected in series across a 100 volt. A.C. line. A
voltmeter gives same reading whether connected across resistance or inductance.

What does it read ?

- Watch Video Solution

44. In an oscillating system, a restoring force is
a must. In a L-C circuit, restoring force is provided by a/ An
A. Inductor
B. Resistor
C. Both 1 and 2
D. Capacitor
45. A direct current of $5 A$ is superimposed on an alternating current $\mathrm{I}=10 \sin \omega t$ flowing through a wire. The effective value of the resulting current will be

D Watch Video Solution

46. In an AC circuit resistance, inductance and capacitance are connected in series. The values of potential differences across the three are 70
$\mathrm{V}, 90 \mathrm{~V}$ and 65 V respectively. The value of the potential difference of the AC source is

D Watch Video Solution

47. A $10 \mu \mathrm{~F}$ capacitor is connected across a 200 V
, 50 Hz A.C. supply. The peak current through the circuit is
48. In a $L C R$ circuit having $L=8.0$ henry,
$C=0.5 \mu F$ and $R=100$ ohm in series. The resonance frequency in per second is

D Watch Video Solution

49. An $L-C-R$ series circuit has a maximum
current of $5 A$. If $L=0.5 H$ and $C=8 \mu F$, then the angular frequency of $A C$ voltage is
50. The current in series $L C R$ circuit will be the maximum when ω is

D Watch Video Solution
51. The resonant frequency of a circuit of negligible resistance containing an inductance of 50 mH and a capacitance of 500 pf is
52. A series LCR circuit is tuned to resonance.

The impedance of the circuit now is

D Watch Video Solution

53. Energy needed to establish an alternating current I in a coil of self inductance L is

- Watch Video Solution

54. If a power of 100 W is being supplied across
a potential difference of 200 V , current flowing is

- Watch Video Solution

55. In an AC circuit voltage applied is $\mathrm{e}=220$ sin

100 t . if the impedance is 110Ω and phase difference between the current and voltage is 60° the power consumption is equal to
56. An alternating voltage is applied across the

R-L combination $\mathrm{V}=220 \sin 120 \mathrm{t}$ and the current $\mathrm{I}=4 \sin \left(120 \mathrm{t}-60^{\circ}\right)$ developes. The power consumption is

- Watch Video Solution

57. In an A.C. circuit, V and I are given by $\mathrm{V}=100$
$\sin (100 t)$ volt.
$\mathrm{I}=100 \sin (100 \mathrm{t}+\pi / 4) \mathrm{mA}$
The power dissipated in the circuit is
58. An rms voltage of 110 V is applied across a series circuit having a resistance 11Ω and an impedance 22Ω. The power consumed is

- Watch Video Solution

59. Power factor is one for
60. A coil of inductive reactance 31Ω has a resistance of 8Ω. It is placed in series with a condenser of capacitative reactance 25Ω. The combination is connected to an a.c. source of

110 volt. The power factor of the circuit is

D Watch Video Solution

61. An ac ammeter is used to measure currnet
in a circuit. When a given direct current passes
through the circuit. The ac ammeter reads 3 A .

When another alternating current passes
through the circuit, the ac ammeter reads 4 A .

Then find the reading of this ammeter (inA), if dc and ac flow through the circuit simultaneously.

D Watch Video Solution

62. A transformer steps up an A.C. voltage from

230 V to 2300 V . If the number of tunrs in the
secondary coil is 1000 , the number of turns in
the primary coil will be
63. The transformer ratio of a transformer is 5 .

If the primary voltage of the transformer is $400 \mathrm{~V}, 50 \mathrm{~Hz}$ the secondary voltage will be

- Watch Video Solution

64. A step-up transformer works on 220 V and gives $2 A$ to an external resistor. The turn ratio
between the primary and secondary coils is 2 :
65. Assuming 100% efficiency, find the
secondary voltage, primary current and power delivered respectively

(Watch Video Solution

65. The transformer ratio of transformer is
$10: 1$. The current in the primary circuit if the secondary current required is $100 A$ assuming the transformer be ideal, is

- Watch Video Solution

66. The transformer ratio of transformer is $10: 1$. If the primary voltage is 440 V , secondary emf is

D Watch Video Solution

67. A fully charged capacitor C with initial charge q_{0} is connected to a coil of self inductance L at $t=0$. The time at which the energy is stored equally between the electric and the magnetic fields is

EXERCISE-1(H.W)

1. An inductor has a resistance R inductance L.

It is connected to an A. C source of e.m.f. E_{V} and angular frequency ω then the current I_{v} in the circuit is
2. The rms value of an ac of 50 Hz is 10 A . The time taken by an alternating current in reaching from zero to maximum value and the peak value will be

- Watch Video Solution

3. The peak value A. C is $2 \sqrt{2} A$. It's apparent value will be

- Watch Video Solution

4. Alternating current in circuit is given by $I=I_{0} \sin 2 \pi n t$. Then the time by the current to rise from zero to r.m.s value is equal to

D Watch Video Solution

5. The form factor for a sinusoidal A. C is

- Watch Video Solution

6. The voltage of an A.C source varies with
time according to the equation
$V=50 \sin 100 \pi t \cos 100 \pi t$.

Where ' t ' is in second and ' V ' is in volt. Then

D Watch Video Solution

7. A coil of self-inductance $\left(\frac{1}{\pi}\right) H$ is connected
is series with a 300Ω resistance. A voltage of

200 V at frequency 200 Hz is applied to this combination. The phase difference between the voltage and the current will be
8. In an $L C R$ series circuit the rms voltages across R, L and C are foundd to be $10 \mathrm{~V}, 10 \mathrm{~V}$ and 20 V respectively. The rms voltage across the entire combination is

- Watch Video Solution

9. An alternating voltage of $e=100 \sqrt{2} \sin (100 t)$
volt is connected to a condenser of $0.5 \mu F$ through an A.C. ammeter. The reading of the ammeter will be
10. In a circuit, the frequency is $f=\frac{1000}{2 \pi} \mathrm{~Hz}$ and the inductance is 2 henry, then the reactance will be

- Watch Video Solution

11. A conductor of capacity $1 p F$ is connected to an A. C source of 220 V and 50 Hz frequency. The current flowing in the circuit will be
12. The frequency at which the inductive reactance of $2 H$ inductance will be equal to the capactive reactance of $2 \mu F$ capactiance (nearly)

(D) Watch Video Solution

13. If the instantaneous current in a circuit is given by $I=2 \cos (\omega t+\phi)$ amperes, the rms value of the current is
14. A 100 km telegraph wire hasd capacity of
$0.02 \mu \mathrm{~F} / \mathrm{km}$, if it carries an alternating current of frequency $5 k H Z$. The value of an inductrance required to be connected in series so that the impedance is minimum.

D Watch Video Solution

15. In a series $L C R$ circuit, resistance $R=10 \Omega$
and the impedence $Z=20 \Omega$ the phase difference between the current and the voltage

(D) Watch Video Solution

16. In an $L-C-R$ series circuit,
$R=\sqrt{5} \Omega, X_{L}=9 \Omega, X_{C}=7 \Omega$. If applied voltage in the circuit is 50 V then impedance of the circuit in ohm will be

D Watch Video Solution

17. In the following circuit, the values of current
flowing in the circuit at $f=0$ and $f=\infty$ will
respectively be

$0.01 \mathrm{H} \quad 10^{-5} \mathrm{~F} \quad 25 \Omega$

200 V

D Watch Video Solution

18. Radio receiver receives a message at 300 m band, If the available inductance is $I \mathrm{mH}$, then calculate required capacitance.
19. In oscillating Lc circuit, the total stored energy is U and maximum charge upon capacitor is $\frac{Q}{2}$, the energy stored in the inductor is

- Watch Video Solution

20. A voltage 10 V and frequency $10^{3} \mathrm{HZ}$ is applied to $\frac{1}{\pi} \mu F$ capacitor is series with a resistor of 500Ω. Find the power factor of the circuit and the power dissipated

- Watch Video Solution

21. If power factor of a R-L series circuit is $\frac{1}{2}$

 when applied voltage is $V=100 \sin 100 \pi t$ volt and resistance of circuit is 200Ω then the inductance of the circuit is
- Watch Video Solution

22. A circuit consisting of an inductance and a resistance joined to a 200 volt supply (A.C.) It
draws a current of 10 ampere. If the power used in the circuit is 1500 watt, then the watt less current component is

D Watch Video Solution

23. The power factor for the circuit shown below is

$$
X_{L}=100 \Omega \quad \mathrm{R}=60 \Omega \quad \mathrm{X}_{\mathrm{C}}=20 \Omega
$$

$220 \mathrm{~V}, 50 \mathrm{~Hz}$

- Watch Video Solution

24. A series L-C-R circuit is connected across an

AC source $E=10 \sin \left[100 \pi t-\frac{\pi}{6}\right]$. Current from
the supply is $\mathrm{I}=2 \sin \left[100 \pi t+\frac{\pi}{12}\right]$, What is the average power dissipated?

- Watch Video Solution

25. If power factor is $1 / 2$ in a series $R L$, circuit $R=100 \Omega$. AC mains is used then L is

- Watch Video Solution

26. An LC circuit contains a 20 mH inductor and a $50 \mu \mathrm{~F}$ capacitor with an initial charge of 10 mC . The resistance of the circuit is negligible.

Let the instant the circuit is closed be $\mathrm{t}=0$.
(a) What is the total energy stored initially ? Is
it conserved during the oscillalions?
(b) What is the natural frequency of the circuit?
(c) At what time is the energy stored?
Completely electrical ? (ii) Completely magnetic
(d) At what time is the total energy shared equally between the inductor and the capacitor ?
(e) If a resistor is inserted in the circuit, how much energy is eventually dissipated as heat ?

- Watch Video Solution

27. In a step up transformer, if ratio of turns of primary to secondary is $1: 10$ and primary voltage si 230 V . If the load current is 2 A . Then
the current in primary is
28. In a transformer, number of turns in the primary coil are 140 and that in the secondry coil are 280 . If current i primary ciol is 4 A , then that in the secondary coil is

D Watch Video Solution

29. The number of turns in the primary and secondary coils of a transformer are 200 and

800 respectively. If the voltage developed
across the secondary is 240 V , then the potential difference across each turn of the primary will be

D Watch Video Solution

30. The number of turns in primary and secondary coils of a transformer is 50 and 200, respectively. If the current in the primary coil is

4 A , then current in the secondary coil is
31. A transformer has 1500 turns in the primary
coil and 1125 turns in the secondary coil. If a voltage of 200 V is applied across the primary coil , then the voltage in the secondary coil is :

- Watch Video Solution

32. In a primary coil $5 A$ current is flowing on

220 volts. In the secondary coil 2200 V voltage produces. Then ratio of number of turns in secondary coil and primary coil will be
33. The turn ratio of a transformers is given as
$2: 3$. If the current through the primary coil is
$3 A$, thus calculate the current through load resistance

D Watch Video Solution

34. In a electrical circuit consisting of an inductance 'L' and a capacitance 'C' at resonance. The time period of oscillations of charge is

- Watch Video Solution

35. An A. C circuit contains a resistor ' R ' an
inductor ' L ' and a capacitor ' C ' connected in
series. When it is connected to an A.C generator of fixed output voltage and varialbe frequency, the current in the circuit is found to be leading the applied voltage $\frac{\pi}{4}$ read, when the frequency is f_{1}. when the frequency of the generator increased to f_{2} the current is found to be lagging behind the applied voltage by $\frac{\pi}{4}$ rad. The resonant frequency of the circuit is

- Watch Video Solution

36. An inductor has a resistance R inductance L.

It is connected to an A. C source of e.m.f. E_{V} and angular frequency ω then the current I_{V} in the circuit is

- Watch Video Solution

37. The r.m.s value of an a.c of 59 Hz is 10 A . The
time taken by the alternating current in
reaching from zero to maximum value and the peak value of current will be

- Watch Video Solution

38. The peak value A. C is $2 \sqrt{2} A$. It's apparent value will be

D Watch Video Solution

39. The electric current in an $A C$ circuit is given
by $I=I_{0} \sin \omega t$.What is the time taken by the
current to change from its maximum value to the rms value?

D Watch Video Solution

40. The form factor for a sinusoidal $A . C$ is

D Watch Video Solution

41. The voltage of an A. C source varies with
time according to the equation
$V=50 \sin 100 \pi t \cos 100 \pi t$.

Where ' t ' is in second and ' V ' is in volt. Then

D Watch Video Solution

42. A coil of self-inductance $\left(\frac{1}{\pi}\right) H$ is connected
is series with a 300Ω resistance. A voltage of

200 V at frequency 200 Hz is applied to this combination. The phase difference between the voltage and the current will be
43. In an $L C R$ series circuit the rms voltages
across R, L and C are foundd to be $10 \mathrm{~V}, 10 \mathrm{~V}$ and 20 V respectively. The rms voltage across the entire combination is

D Watch Video Solution

44. An alternating voltage $E=200 \sqrt{2} \sin (100 t) V$ is applied to a $2 \mu F$ capacitor through an A.C. ammeter. The reading of the ammeter is
45. In a circuit, the frequency is $f=\frac{1000}{2 \pi} \mathrm{~Hz}$ and the inductance is 2 henry, then the reactance will be

D Watch Video Solution

46. A conductor of capacity $1 p F$ is connected to
an A. C source of 220 V and 50 Hz frequency. The
current flowing in the circuit will be
47. The frequency at which the inductive reactance of $2 H$ inductance will be equal to the capactive reactance of $2 \mu F$ capactiance (nearly)

- Watch Video Solution

48. If the instantaneous current in a circuit is given by $I=2 \cos (\omega t+\phi) A$, the rms value of the current is
49. A 100 km telegraph wire hasd capacity of
$0.02 \mu \mathrm{~F} / \mathrm{km}$, if it carries an alternating current of frequency $5 k H Z$. The value of an inductrance required to be connected in series so that the impedance is minimum.

D Watch Video Solution

50. In a series $L C R$ circuit, resistance $R=10 \Omega$
and the impedence $Z=20 \Omega$ the phase difference between the current and the voltage

(D) Watch Video Solution

51. In an $L-C-R$ series circuit,
$R=\sqrt{5} \Omega, X_{L}=9 \Omega, X_{C}=7 \Omega$. If applied voltage in the circuit is 50 V then impedance of the circuit in ohm will be

- Watch Video Solution

52. In the following circuit, the values of current
flowing in the circuit at $f=0$ and $f=\infty$ will
respectively be

$0.01 \mathrm{H} \quad 10^{-5} \mathrm{~F} \quad 25 \Omega$

200 V

- Watch Video Solution

53. Radio receiver receives a message at 300m band, If the available inductance is $I \mathrm{mH}$, then calculate required capacitance.
54. In oscillating Lc circuit, the total stored energy is U and maximum charge upon capacitor is $\frac{Q}{2}$, the energy stored in the inductor is

- Watch Video Solution

55. A voltage 10 V and frequency $10^{3} \mathrm{HZ}$ is applied to $\frac{1}{\pi} \mu F$ capacitor is series with a resistor of 500Ω. Find the power factor of the circuit and the power dissipated

- Watch Video Solution

56. If power factor of a R-L series circuit is $\frac{1}{2}$ when applied voltage is $V=100 \sin 100 \pi t$ volt and resistance of circuit is 200Ω then the inductance of the circuit is

- Watch Video Solution

57. A circuit consisting of an inductance and a resistance joined to a 200 volt supply (A.C.) It
draws a current of 10 ampere. If the power used in the circuit is 1500 watt, then the wattless current component is

D Watch Video Solution

58. The power factor for the circuit shown below is

$$
X_{L}=100 \Omega \quad \mathrm{R}=60 \Omega \quad \mathrm{X}_{\mathrm{C}}=20 \Omega
$$

$220 \mathrm{~V}, 50 \mathrm{~Hz}$

- Watch Video Solution

59. A series L-C-R circuit is connected across an

AC source $E=10 \sin \left[100 \pi t-\frac{\pi}{6}\right]$. Current from
the supply is $\mathrm{I}=2 \sin \left[100 \pi t+\frac{\pi}{12}\right]$, What is the average power dissipated?

- Watch Video Solution

60. If power factor is $1 / 2$ in a series $R L$, circuit $R=100 \Omega$. AC mains is used then L is

(D) Watch Video Solution

61. An LC circuit contains a 20 mH inductor and $25 \mu \mathrm{~F}$ capacitor with an initial charge of 5 mC .

The total energy stored in the circuit initially is

- Watch Video Solution

62. In a step up transformer, if ratio of turns of primary to secondary is $1: 10$ and primary voltage si 230 V . If the load current is 2 A . Then the current in primary is

(-) Watch Video Solution

63. In a transformer, number of turns in the primary coil are 140 and that in the secondry coil are 280 . If current i primary ciol is 4 A , then that in the secondary coil is

- Watch Video Solution

64. The number of turns in the primary and secondary coils of a transformer are 200 and 800 respectively. If the voltage developed
across the secondary is 240 V , then the potential difference across each turn of the primary will be

- Watch Video Solution

65. The number of turns in primary and secondary coils of a transformer is 50 and 200, respectively. If the current in the primary coil is

4 A , then current in the secondary coil is
66. A transformer has 1500 turns in the primary
coil and 1125 turns in the secondary coil. If a voltage of 200 V is applied across the primary coil , then the voltage in the secondary coil is :

- Watch Video Solution

67. In a primary coil $5 A$ current is flowing on 220
volts. In the secondary coil 2200 V voltage produces. Then ratio of number of turns in secondary coil and primary coil will be
68. The turn ratio of a transformers is given as
$2: 3$. If the current through the primary coil is
$3 A$, thus calculate the current through load resistance

- Watch Video Solution

69. In a electrical circuit consisting of an inductance 'L' and a capacitance 'C' at resonance. The time period of oscillations of charge is

- Watch Video Solution

70. An A. C circuit contains a resistor ' R ' an inductor ' L ' and a capacitor ' C ' connected in series. When it is connected to an A.C generator of fixed output voltage and varialbe frequency, the current in the circuit is found to be leading the applied voltage $\frac{\pi}{4}$ read, when the frequency is f_{1}. when the frequency of the generator increased to f_{2} the current is found to be lagging behind the applied voltage by $\frac{\pi}{4}$ rad. The resonant frequency of the circuit is

(D) Watch Video Solution

EXERCISE-2(C.W)

1. The rms value of an ac of 50 Hz is 10 A . The
time taken by an alternating current in reaching from zero to maximum value and the peak value will be

- Watch Video Solution

2. Two alternating voltage generators produce emfs of the same amplitude $\left(E_{0}\right)$ but with a phase difference of $(\pi) / 3$. The resultant emf is

- Watch Video Solution

3. A resistance of 20Ω is connected to a source of an alternating potential $V=220 \sin (100 \pi t)$.

The time taken by the current to change from the peak value to rms value is
4. An inductor, a capacitor and a resistor are
connected in series to an a.c. supply. When
measured with an a.c. voltmeter, the potential
difference across the inductor, capacitor and resistor are respectively 90 volt, 60 volt and 40 volt. Then the supply voltage is

- Watch Video Solution

5. The magnetic field energy in an inductor changes from maximum value to minimum
value in 5.0 ms when connected to an AC source.

The frequency of the source is

- Watch Video Solution

6. In an L-R circuit, an inductance of 0.1 H and a resistance of 1Ω are connected in series with an ac source of voltage $V=5 \sin 10 t$. The phase difference between the current and applied voltage will be

7. The coil of choke in a circuit

D Watch Video Solution

8. In a circuit, the current lags behind the voltage by a phase difference of $\pi / 2$, the circuit will contain which of the following ?

- Watch Video Solution

9. The reactance of a capacitor of capacitance C
is X . If both th frequency and capacitance be
doubled, then new reactance will be

D Watch Video Solution

10. A pure inductor and a pure resistor are connected in series and an ac supply is connected across this combination. Ideal ac volt meters v_{1} and v_{2} show 120 volt and 160 volt respectively. What is the phase difference
between V_{1} and V_{2}.

- Watch Video Solution

11. In L-R circit, the A.C. source has voltage 220 V .

If potential difference across inductor is 176 V , the potential difference across the resistor (in

Volts) is $K \times 33$. Find the value of K
12. In an LCR circuit, the capacitance is made one-fourth, when in resonance. Then what should be the change in inductance, so that the circuit remains in resonance?

- Watch Video Solution

13. A coil of inductance 5.0 mH and negligible resistance is connected to an alternating
voltage $V=10 \sin (100 t)$. The peak current in the circuit will be:

(D) Watch Video Solution

14. An alternating e.m.f. $100 \cos 100 \mathrm{t}$ volt is connected in series to a resistance of 10 ohm and inductance 100 mH . The phase difference between the current in the circuit and the e.m.f. is

- Watch Video Solution

15. Which increase in frequency of an AC supply , the impedance of an L-C-R series circuit

(D) Watch Video Solution

16. An e.m.f. $E=4 \cos (1000 t)$ volt is applied to an
$L R$ circuit of inductance $3 m H$ and resistance
4ohm. The amplitude of current in the circuit is

(D) Watch Video Solution

17. The figure shows variation of R, X_{L} and X_{C} with frequency f in a series L, C, R circuit. Then for what frequency point, the circuit is
inductive?

D Watch Video Solution

18. In a circuit L, C and R are connected in series with an alternating voltage source of frequency f. The current lead the voltages by 45°. The value of C is :
19. In an LCR circuit, the capacitance is made one-fourth, when in resonance. Then what should be the change in inductance, so that the circuit remains in resonance?

D Watch Video Solution

20. A lamp consumes only 50% of peak power
in an $a . c$. circuit. What is the phase difference
between the applied voltage and the circuit

current

- Watch Video Solution

21. For a series L C R circuit, the power loss at resonance is

D Watch Video Solution

22. Radiowaves of wavelength 360 m are
transmitted from a transmitter. The inductance
of the coil which must be connected with capacitor of capacity $3.6 \mu \mathrm{~F}$ in a resonant citcuit to receive these waves will be appoximately

D Watch Video Solution

23. The potential difference V across and the
current I flowing through an instrument in an
$A C$ circuit are given by:
$V=5 \cos \omega t$ volt
$I=2 \sin \omega t \mathrm{Amp}$.
24. Power loss in $A C$ circuit will be minimum when

D Watch Video Solution

25. A direct current of 5 amp is superimposed
on an alternating current $I=10 \sin \omega t$ flowing
through a wire. The effective value of the resulting current will be:

D Watch Video Solution
26. An $L C R$ circuit has $L=10 m L, R=3 \Omega$, and
$C=1 \mu F$ connected in series to a source of
$15 \cos \omega t$ volt. The current amplitude at a frequency that is 10% lower then the resonant frequency is

D Watch Video Solution

27. An $A C$ source of angular frequency ω is fed across a resistor R and a capacitor C in series.

The current registered is I. If now the frequency of source is changed to $\omega / 3$ (but maintaining
the same voltage), the current in the circuit is
found to be halved. The ratio of reactance to resistance at the original frequency ω will be.

D Watch Video Solution

28. in a step-up transformer, the turn ratio is

1:2 leclanche cell (e.m.f. 1.5V) is connected across the primary. The voltage devloped in the secondary would be
29. The efficiency of a transformer is 98%. The primary voltage and current are200V and 6 A . If the secondary voltage is 100 V , the secondary current

- Watch Video Solution

30. The rms value of an $A C$ of 50 Hz is 20 amp .

The time taken by an alternating current in
reaching from zero to maximum value and the pack value of current will be
31. Two alternating voltage generators produce emfs of the same amplitude $\left(E_{0}\right)$ but with a phase difference of $(\pi) / 3$. The resultant emf is

- Watch Video Solution

32. A resistance of 20Ω is connected to a source
of an alternating potential $V=220 \sin (100 \pi t)$.
The time taken by the current to change from the peak value to rms value is
33. An inductor, a capacitor and a resistor are connected in series to an a.c. supply. When measured with an a.c. voltmeter, the potential difference across the inductor, capacitor and resistor are resspectively 90 volt, 60 volt and 40 volt. Then the supply voltage is

- Watch Video Solution

34. The magnetic field energy in an inductor changes from maximum value to minimum value in 5.0 ms when connected to an AC source.

The frequency of the source is

- Watch Video Solution

35. In an L-R circuit, an inductance of 0.1 H and a resistance of 1Ω are connected in series with an ac source of voltage $\mathrm{V}=5 \sin 10 \mathrm{t}$. The phase difference between the current and applied voltage will be

- Watch Video Solution

36. In a circuit, the current lags behind the voltage by a phase difference of $\pi / 2$, the circuit will contain which of the following ?

- Watch Video Solution

37. The reactance of a capacitor of capacitance

C is X . If both th frequency and capacitance be doubled, then new reactance will be
38. A pure inductor and a pure resistor are connected in series and an ac supply is connected across this combination. Ideal ac volt meters v_{1} and v_{2} show 120 volt and 160 volt respectively. What is the phase difference between V_{1} and V_{2}.

39. In L-R circit, the A.C. source has voltage 220 V
. If potential difference across inductor is 176 V , the potential difference across the resistor (in

Volts) is $K \times 33$. Find the value of K

D Watch Video Solution

40. In an LCR circuit, the capacitance is made one-fourth, when in resonance. Then what
should be the change in inductance, so that the circuit remains in resonance?

(D) Watch Video Solution

41. A coil of inductance 5.0 mH and negligible resistance is connected to an alternating voltage $V=10 \sin (100 t)$. The peak current in the circuit will be:

- Watch Video Solution

42. An alternating e.m.f. $100 \cos 100 \mathrm{t}$ volt is
connected in series to a resistance of 10 ohm
and inductance 100 mH . The phase difference
between the current in the circuit and the e.m.f. is

- Watch Video Solution

43. Which increase in frequency of an AC supply , the impedance of an L-C-R series circuit

D Watch Video Solution

44. An e.m.f. $E=4 \cos (1000 t)$ volt is applied to an
$L R$ circuit of inductance $3 m H$ and resistance

4ohm. The amplitude of current in the circuit is

D Watch Video Solution

45. The figure shows variation of R, X_{L} and X_{C} with frequency f in a series L, C, R circuit. Then for what frequency point, the circuit is inductive?

46. In a circuit L, C and R are connected in
series with an alternating voltage source of frequency f. The current lead the voltages by 45°. The value of C is :

- Watch Video Solution

47. In an LCR circuit, the capacitance is made one-third, then what should be change in
inductance, so that the circuit remains in resonance?

D Watch Video Solution

48. A lamp consumes only 50% of peak power in an $a . c$. circuit. What is the phase difference between the applied voltage and the circuit current

D Watch Video Solution

49. For a series L C R circuit, the power loss at resonance is

- Watch Video Solution

50. Radiowaves of wavelength 360 m are transmitted from a transmitter. The inductance of the coil which must be connected with capacitor of capacity $3.6 \mu F$ in a resonant citcuit to receive these waves will be appoximately
51. The potential difference V across and the
current I flowing through an instrument in an
$A C$ circuit are given by:
$V=5 \cos \omega t$ volt
$I=2 \sin \omega t$ Amp.

D Watch Video Solution

52. Power loss in $A C$ circuit will be minimum
when

- Watch Video Solution

53. A direct current of $5 \sqrt{2} \mathrm{amp}$, is
superimposed on an alternating current
$I=10 \sin \omega t$ flowing through a wire. The effective value of the resulting current will be

- Watch Video Solution

54. An $L C R$ circuit has $L=10 m L, R=3 \Omega$, and
$C=1 \mu F$ connected in series to a source of
$15 \cos \omega t$ volt. The current amplitude at a frequency that is 10% lower then the resonant frequency is

(D) Watch Video Solution

55. An AC source of angular frequency ω is fed across a resistor R and a capacitor C in series.

The current registered is I. If now the frequency of source is changed to $\omega / 3$ (but maintaining the same voltage), the current in the circuit is found to be halved. The ratio of reactance to resistance at the original frequency ω will be.
56. in a step-up transformer, the turn ratio is 1:2 leclanche cell (e.m.f. 1.5V) is connected across the primary. The voltage devloped in the secondary would be

D Watch Video Solution

57. The efficiency of a transformer is 98%. The primary voltage and current are 200 V and 6 A . If the secondary voltage is 100 V , the secondary current

EXERCISE-2(H.W)

1. The voltage over a cycle varies as
$V=V_{0} \sin \omega t$ for $0 \leq t \leq \frac{\pi}{\omega}$
$=-V_{0} \sin \omega t$ for $\frac{\pi}{\omega} \leq t \leq \frac{2 \pi}{\omega}$
The average value of the voltage one cycle is

D Watch Video Solution

2. A pure inductor of 25.0 mH is connected to a
source of 220 V . Find the inductive reactance
and rms current in the circuit if the frequency of the source is 50 Hz .

- Watch Video Solution

3. For the sereis LCR circuit shown in figure, the resonating frequency and current amplitude at resonance respectivley are

4. In the circuit shown in figure, what will be the reading of the voltmeter?

D Watch Video Solution
5. In a series $L C R$ circuit the voltage across the resistance, capacitance and inductance is 10 V each. If the capacitance is short circuited, the voltage across the inductance will be $\frac{10^{x}}{\sqrt{2}}$ what is value of x

- Watch Video Solution

6. If a circuit made up of a resistance 1Ω and inductance 0.01 H , an alternating emf of 200 voit at 50 Hz is connected, then find the phase
difference between the current and the emf in the circuit.

- Watch Video Solution

7. An e.m.f. $E=4 \cos (1000 t)$ volt is applied to an
$L R$ circuit of inductance $3 m H$ and resistance

4ohm. The amplitude of current in the circuit is
8. In a $L C R$ circuit the $P . D$ between the terminals of the inductance is 60 V , between the terminals of the capacitor is 30 V and that between the terminals of resistance is 40 V . The supply voltage will be equal to.

D Watch Video Solution

9. A series LCR circuit has $R=5 \Omega, L=40 \mathrm{mH}$ and $C=1 \mu F$, the bandwidth of the circuit is
10. A pure resistive circuit element X when
connected to an ac supply of peak voltage 400

V gives a peak current of 5 A which is in phase
with the voltage. A second circuit element Y ,
when connected to the same ac supply also
gives the same value of peak current but the
current lags behind by 90°. If the series
combination of X and Y is connected to the
same suply, what will be the rms value of current?

- Watch Video Solution

11. In a series resonant LCR circuit the voltage across R is 100 volts and $\mathrm{R}=1 k(\Omega)$ with $C=2(\mu) F$
. The resonant frequency (ω) is 200rad/s. At resonance the voltage across L is

D Watch Video Solution

12. A charged capacitor discharges through a resistance R with time constant τ. The two are now placed in series across an $A C$ source of angular frequency $\omega=\frac{1}{\tau}$. The impedance of the circuit will be

(D) Watch Video Solution

13. An inductor of inductance 2 H and a resistance of 10Ω are connected in series to an ac source of $1109 \mathrm{~V}, 60 \mathrm{~Hz}$. The current in the circuit will be

- Watch Video Solution

14. An ideal resistance R, ideal inductance L, ideal capacitance C and $A C$ voltmeters V_{1}, V_{2}, V_{3} and V_{4} are connected to an AC source as

shown. At resonance

D Watch Video Solution

15. In the series LCR circuit as shown in the
figure, the voltmeter V and ammeter A reading
are

(Watch Video Solution

16. When an ac source of emfe $=E_{0} \sin (100 t)$ is connected across a circuit, the phase difference
between emf e and currnet I in the circuit is observed to be $(\pi) /(4)$ as shown in fig. If the circuit consists possibly only of R-C or R-C of L-R series, find the relationship find the relationship between the two elements.

17. An inductance of $\frac{200}{\pi} m H$ a capacitance of π
10^{-3} and a resistance of 10Ω are connected in π
series with an $A C$ source of $220 \mathrm{~V}, 50 \mathrm{~Hz}$. The phase angle of the circuit is

- Watch Video Solution

18. An LCR series ac circuit is at resonance with

10 V each across L.C and R . If the resistance is halved, the respective voltages across L, C and R
are

D Watch Video Solution
19. In the series LCR circuit shown, the impedance is

$50 \mathrm{~V}, 50 \mathrm{~Hz}$

D Watch Video Solution

20. In a series resonant LCR circuit, the voltage across R is 100 V and the value of $R=1000 \Omega$.

The capacitance of the capacitor is $5 \times 10^{-6} F$, angular frequency of ac is $200 \mathrm{rads}^{-1}$. Then the
potential difference across the inductance coil is

D Watch Video Solution

21. The figure shows a LCR netework connected to 300 V ac supply. The circuit elements are such that $R=X_{L}=X_{C}=10 \Omega V_{1}, V_{2}$ and V_{3} are three ac voltmeters connected as shown in the figure. Which of the following represents the
correct set of readings of the voltmeters ?

D Watch Video Solution
22. A series circuit connected across a $200 \mathrm{~V}, 60 \mathrm{~Hz}$ line consists of a capacitive reactance 30Ω non inductive resistor of 44Ω
and a coil of inductive reactance 90Ω and resistance 36Ω as shown in the diagram

The power dissipated in the inductance coil is

- Watch Video Solution

23. In an $A C$ circuit, the reactannce is equal to
the resistance. The power factor of the circuit
will be

- Watch Video Solution

24. An inductance L, a cpacitance C and a resistance R may be connected to an $A C$ souorce of angular frequency ω in three different combinations of $R C, R L$ and $L C$ in
series. Assume that $\omega L=\frac{1}{\omega C}$. The power drawn by the three combinatios are P_{1}, P_{2}, P_{3} respectively. THen
25. An Lc circuit contains a 40 mH inductor and a $25 \mu \mathrm{~F}$ capacitor. The resistance of the circuit is negligible.The time is measured from the instant the circuit is closed. The energy stored in the circuit is completely magnetic at time (in milliseconds)

D Watch Video Solution

26. An alternating supply of 220 V is applied across a circuit with resistance 22Ω and
impedance 44Ω. The power dissipated in the circuit is

D Watch Video Solution

27. In an $A C$ circuit, the current is given by
$i=5 \sin \left(100 t-\frac{\pi}{2}\right)$ and the $A C$ potential is
$V=200 \sin (100 t)$ volt. Then the power consumption is
28. A capacitor of capacitance $1 \mu \mathrm{~F}$ is charged to
a potential of $1 V$, it is connected in parallel to
an inductor of inductance $10^{-3} \mathrm{H}$. The maximum
current that will flow in the circuit has the value

D Watch Video Solution

29. A coil of inductance 0.1 H is connected to
$50 \mathrm{~V}, 100 \mathrm{~Hz}$ generator and current is found to be $0.5 A$. The potential difference across resistance of coil is:

- Watch Video Solution

30. An alternating voltage (in volts) given by $V=200 \sqrt{2} \sin (100 t)$ is connected to $1 \mu F$ capacitor through an ideal ac ammeter in series. The reading of the ammeter and the average power consumed in the circuit shall be
31. In an circuit, V and I are given by
$V=150 \sin (150 t) V$ and $I=150 \sin \left(150 t+\frac{\pi}{3}\right) A$.
The power dissipated in the circuit is

D Watch Video Solution

32. A series resonant LCR circuit has a quality
factor (Q-factor) $=0.4$. If $R=2 k \Omega, C=0.1 \mu F$ then
the value of inductance is

- Watch Video Solution

33. A resistor of 500Ω and an inductance of 0.5

H are in series with an ac source which is given by $V=100 \sqrt{2} \sin (1000 t)$. The power factor of the combination is

D Watch Video Solution

34. A transformer is used to light a $140 \mathrm{~W}, 24 \mathrm{~V}$
lamp from 240 V AC mains. The current in mains cable is 0.7 A , find the efficiency of transformer.
35. A transformer has 100 turns in the primary coil and carries $8 A$ current. If input power is one kilowatt, the number of turns required in the secondary coil to have 500 V output will be

- Watch Video Solution

36. A transmitting station transmits radiowave of wavelength 360 m . What is the inductance of a coil required with a condenser of capacity
$1.20 \mu \mathrm{~F}$ in the resonant circuit to receive the radiowaves ? (Use $\pi^{2}=10$)

D Watch Video Solution

37. A step-down transformer is used on a 1000 V
line to deliver 20 A at 120 V at the secondary coil. If the efficiency of the transformer is 80% the current drawn from the line is.

D Watch Video Solution

38. A power transmission line feeds input power at 2300 V to a step down trnasformer with it primary windings having 4000 turns.

What should be the number of turns in the seconday windings in order to get output power at 230 V ?

- Watch Video Solution

39. If $i_{1}=3 \sin \omega t$ and $\left(i_{2}\right)=4 \cos \omega t$, then $\left(i_{3}\right)$ is

D Watch Video Solution

40. The voltage over a cycle varies as
$V=V_{0} \sin \omega t$ for $0 \leq t \leq \frac{\pi}{\omega}$
$=-V_{0} \sin \omega t$ for $\frac{\pi}{\omega} \leq t \leq \frac{2 \pi}{\omega}$
The average value of the voltage one cycle is
41. A pure inductor of 25.0 mH is connected to a source of 220 V . Find the inductive reactance and rms current in the circuit if the frequency of the source is 50 Hz .

D Watch Video Solution

42. For the sereis LCR circuit shown in figure,
the resonating frequency and current
amplitude at resonance respectivley are

D Watch Video Solution

43. In the circuit shown in figure, what will be the reading of the voltmeter?

$200 \mathrm{~V}, 100 \mathrm{~Hz}$

- Watch Video Solution

44. In a series $L C R$ circuit the voltage across
the resistance, capacitance and inductance is

10 V each. If the capacitance is short circuited,
the voltage across the inductance will be $\frac{1}{\sqrt{2}}$ what is value of x

- Watch Video Solution

45. If a circuit made up of a resistance 1Ω and inductance 0.01 H , an alternating emf of 200 voit at 50 Hz is connected, then find the phase difference between the current and the emf in the circuit.
46. An e.m.f. $E=4 \cos (1000 t)$ volt is applied to an
$L R$ circuit of inductance $3 m H$ and resistance

4ohm. The amplitude of current in the circuit is

D Watch Video Solution

47. In a $L C R$ circuit the $P . D$ between the terminals of the inductance is 60 V , between the
terminals of the capacitor is 30 V and that between the terminals of resistance is 40 V . The supply voltage will be equal to......
48. A series LCR circuit has $R=5 \Omega, L=40 \mathrm{mH}$
and $C=1 \mu F$, the bandwidth of the circuit is

D Watch Video Solution

49. A pure resistive circuit element X when connected to an ac supply of peak voltage 400

V gives a peak current of 5 A which is in phase with the voltage. A second circuit element Y , when connected to the same ac supply also
gives the same value of peak current but the current lags behind by 90°. If the series combination of X and Y is connected to the same suply, what will be the rms value of current?

D Watch Video Solution

50. In a series resonant LCR circuit the voltage across R is 100 volts and $\mathrm{R}=1 k(\Omega)$ with $C=2(\mu) F$
. The resonant frequency (ω) is $200 \mathrm{rad} / \mathrm{s}$. At resonance the voltage across L is
51. A charged capacitor discharges through a resistance R with time constant τ. The two are now placed in series across an $A C$ source of angular frequency $\omega=\frac{1}{\tau}$. The impedance of the circuit will be

D Watch Video Solution

52. An inductor of inductance 2 H and a resistance of 10Ω are connected in sereis to an
ac source of $1109 \mathrm{~V}, 60 \mathrm{~Hz}$. The current in the circuit will be

D Watch Video Solution

53. An ideal resistance R, ideal inductance L, ideal capacitance C and AC voltmeters V1, V2,
$V 3$ and $V 4$ are connected to an $A C$ source as
shown. At resonance

D Watch Video Solution

54. A series LCR circuit is connected to an ac source of variable frequency. When the frequency is increased continuously, starting from a small value, the power factor
55. In the series LCR circuit as shown in the
figure, the voltmeter V and ammeter A reading are (A)
56. When an ac source of emfe $=E_{0} \sin (100 t)$ is connected across a circuit, the phase difference between emf e and currnet I in the circuit is observed to be $(\pi) /(4)$ as shown in fig. If the circuit consists possibly only of R-C or R-C of L-R series, find the relationship find the relationship between the two elements.

(D) Watch Video Solution

57. An inductance of $\frac{200}{\pi} \mathrm{mH}$ a capacitance of 10^{-3} and a resistance of 10Ω are connected in π
series with an $A C$ source of $220 \mathrm{~V}, 50 \mathrm{~Hz}$. The phase angle of the circuit is

(Watch Video Solution

58. An LCR series ac circuit is at resonance with

10 V each across L.C and R . If the resistance is
halved, the respective voltages across L,C and R are

D Watch Video Solution
59. In the series LCR circuit shown, the impedance is

$50 \mathrm{~V}, 50 \mathrm{~Hz}$

- Watch Video Solution

60. In a series resonant LCR circuit, the voltage across R is 100 V and the value of $R=1000 \Omega$.

The capacitance of the capacitor is $5 \times 10^{-6} F$, angular frequency of ac is $200 \mathrm{rads}^{-1}$. Then the
potential difference across the inductance coil is

- Watch Video Solution

61. The figure shows a LCR netework connected to 300 V ac supply. The circuit elements are such that $R=X_{L}=X_{C}=10 \Omega V_{1}, V_{2}$ and V_{3} are three ac voltmeters connected as shown in the figure. Which of the following represents the
correct set of readings of the voltmeters ?

- Watch Video Solution

62. A series circuit connected across a $200 \mathrm{~V}, 60 \mathrm{~Hz}$ line consists of a capacitive reactance 30Ω non inductive resistor of 44Ω
and a coil of inductive reactance 90Ω and resistance 36Ω as shown in the diagram

The power dissipated in the inductance coil is

- Watch Video Solution

63. In an $A C$ circuit, the reactannce is equal to
the resistance. The power factor of the circuit
will be

D Watch Video Solution

64. An inductance L, a cpacitance C and a resistance R may be connected to an $A C$ souorce of angular frequency ω in three different combinations of $R C, R L$ and $L C$ in
series. Assume that $\omega L=\frac{1}{\omega C}$. The power drawn by the three combinatios are P_{1}, P_{2}, P_{3} respectively. THen
65. An Lc circuit contains a 40 mH inductor and a $25 \mu \mathrm{~F}$ capacitor. The resistance of the circuit is negligible.The time is measured from the instant the circuit is closed. The energy stored in the circuit is completely magnetic at time (in milliseconds)

D Watch Video Solution

66. An alternating supply of 220 V is applied across a circuit with resistance 22Ω and
impedance 44Ω. The power dissipated in the circuit is

D Watch Video Solution

67. In an A.C. circuit, the current flowing in inductance is $I=5 \sin (100 t-\pi / 2)$ amperes and
the potential difference is $V=200 \sin (100 t)$
volts. The power consumption is equal to

D Watch Video Solution

68. A capacitor of capacitance $1 \mu F$ is charged to
a potential of $1 V$, it is connected in parallel to
an inductor of inductance $10^{-3} \mathrm{H}$. The maximum
current that will flow in the circuit has the value

D Watch Video Solution

69. A coil of inductance 0.1 H is connected to
$50 \mathrm{~V}, 100 \mathrm{~Hz}$ generator and current is found to be $0.5 A$. The potential difference across resistance of coil is:

- Watch Video Solution

70. An alternating voltage (in volts) given by $V=200 \sqrt{2} \sin (100 t)$ is connected to $1 \mu F$ capacitor through an ideal ac ammeter in series. The reading of the ammeter and the average power consumed in the circuit shall be
71. In an A.C. circuit, e and I are given by, $e=100 \sin (100 t)$ volt, $I=100 \sin \left(100 t+\frac{\pi}{3}\right) m A$.

The power dissipated in circuit is

D Watch Video Solution

72. A series resonant LCR circuit has a quality
factor $(Q$-factor) $=0.4$. If $R=2 k \Omega, C=0.1 \mu F$ then
the value of inductance is

- Watch Video Solution

73. A resistor of 500Ω and an inductance of 0.5

H are in series with an ac source which is given by $V=100 \sqrt{2} \sin (1000 t)$. The power factor of the combination is

- Watch Video Solution

74. A transformer is used to light a $140 \mathrm{~W}, 24 \mathrm{~V}$
lamp from 240 V AC mains. The current in mains cable is 0.7 A , find the efficiency of transformer.
75. A transformer has 100 turns in the primary coil and carries $8 A$ current. If input power is one kilowatt, the number of turns required in the secondary coil to have 500 V output will be

- Watch Video Solution

76. A transmitting station transmits radiowave of wavelength 360 m . What is the inductance of
a coil required with a condenser of capacity
$1.20 \mu \mathrm{~F}$ in the resonant circuit to receive the radiowaves ? (Use $\left.\pi^{2}=10\right)$

D Watch Video Solution

77. A step-down transformer is used on a 1000 V
line to deliver 20 A at 120 V at the secondary coil. If the efficiency of the transformer is 80% the current drawn from the line is.

D Watch Video Solution

78. A power transmission line feeds input power at 2300 V to a step down trnasformer with it primary windings having 4000 turns.

What should be the number of turns in the seconday windings in order to get output power at 230 V ?

79. If $i_{1}=3 \sin \omega t$ and $i_{2}=6 \cos \omega t$, then i_{3} is

D Watch Video Solution

EXERCISE-3

1. What is the value of inductance L for which
the current is a maximum in series $L C R$ circuit
with $C=10 \mu F$ and $\omega=1000 \frac{\mathrm{rad}}{\mathrm{s}}$?

D Watch Video Solution

2. In any $A C$ circuit the emf (e) and the current
(i) at any instant are given respectively by
$e=E_{0} \sin \omega t$
$i=I_{0} \sin (\omega t-\phi)$

The average power in the circuit over one cycle of $A C$ is

D Watch Video Solution
3. A wire of reistance R is connected in series
with an inductor of reactance $\omega \mathrm{L}$. Then quality
factor of $R L$ circuit is

D Watch Video Solution

4. An LCR series circuit having 220 V ac source,
inductance $L=25 \mathrm{mH}$ and resistance $\mathrm{R}=100 \Omega$.

If voltage across inductor is just double of voltage across resistor then find out frequency of source.
5. A periodic voltage V varies with time t as
shown in figure. T is the time period. Find the runs value of the voltage.

6. An a.c. voltage is applied to a pure inductor L, drives a current in the inductor. The current in the inductor would be

D Watch Video Solution

7. Power dissipated in an $L-C-R$ series circuit
connected to an $A C$ source of emf ε is
8. In the circuit shown below what will be the reading of the voltmeters and ammeter?

- Watch Video Solution

9. In an AC circuit, an alternating voltage $\mathrm{e}=$ 200sin 100t V is connected to a capacitor of
capacity $1 \mu F$. The rms value of the current in the circuit is

- Watch Video Solution

10. An $A C$ voltage is applied to a resistance R and an inductance L in series. If R and the inductive reactance are both equal to 3Ω, the phase difference between the applied voltage and the current in the circuit is
11. The rms value of potential difference V shown in the Fig. is

- Watch Video Solution

12. In an electrical circuit R, L, C and an $A C$ voltage source are all connected in series.

When L is removed from the circuit, the phase difference between the voltage and the current
in the circuit is $\pi / 3$. If instead, C is removed from the circuit, difference the phase difference is again $\pi / 3$. The power factor of the circuit is

D Watch Video Solution

13. A coil of self-inductance L is connected in series with a bulb B and an $A C$ source. Brightness of the bulb decreases when

D Watch Video Solution

14. A series $R-C$ circuit is connected to an alternating voltage source. Consider two situations
(a) When capacitor is air filled.
(b) When capacitor is mica filled.
current through resistor is i and voltage across
capacitor is V then

D Watch Video Solution

15. A resistance R draws power P when connected to an $A C$ source. If an inductance is
now placed in series with the resistance, such
that the impedence of the circuit becomes Z, the power drawn will be

- Watch Video Solution

16. An inductor 20 mH , a capacitor $50 \mu \mathrm{~F}$ and a resistor 40Ω are connected in series across a source of emf $V=10 \sin 340 t$. The power loss in A.C. circuit is :
17. A small signal voltage $V(t)=V_{0} \sin \omega t$ is applied across an ideal capacitor C :

D Watch Video Solution

18. The potential differences across the resistance, capacitance and inductance are 80 V , 40 V and 100 V respectively in an L-C-R circuit.

The power factor of this circuit is

- Watch Video Solution

19. A 100Ω resistance and a capacitor of 100Ω
reactance are connected in series across a 220

V source. When the capacitor is 50% charged,
the peak value of the displacement current is

- Watch Video Solution

20. What is the value of inductance L for which
the current is a maximum in series $L C R$ circuit
with $C=10 \mu F$ and $\omega=1000 \frac{\mathrm{rad}}{\mathrm{s}}$?
21. In any $A C$ circuit the emf (e) and the current
(i) at any instant are given respectively by
$e=E_{0} \sin \omega t$
$i=I_{0} \sin (\omega t-\phi)$
The average power in the circuit over one cycle of $A C$ is

- Watch Video Solution

22. A wire of reistance R is connected in series
with an inductor of reactance $\omega \mathrm{L}$. Then quality

factor of $R L$ circuit is

D Watch Video Solution

23. An LCR series circuit having 220 V ac source, inductance $L=25 \mathrm{mH}$ and resistance $\mathrm{R}=100 \Omega$.

If voltage across inductor is just double of
voltage across resistor then find out frequency of source.

D Watch Video Solution

24. A periodic voltage V varies with time t as
shown in figure. T is the time period. Find the rms value of the voltage.

D Watch Video Solution

25. An a.c. voltage is applied to a pure inductor L, drives a current in the inductor. The current
in the inductor would be
A. ahead voltage by $\pi / 2$
B. lagging voltage by $\pi / 2$
C. ahead voltage by $3 \pi / 2$
D. lagging voltage by $3 \pi / 2$

Answer: B

D Watch Video Solution
26. Power dissipated in an $L-C-R$ series circuit connected to an $A C$ source of emf ε is

- Watch Video Solution

27. In the circuit shown below what will be the
reading of the voltmeters and ammeter?

28. In an AC circuit, an alternating voltage $\mathrm{e}=$ 200sin 100t V is connected to a capacitor of capacity $1 \mu F$. The rms value of the current in the circuit is

(Watch Video Solution

29. An $A C$ voltage is applied to a resistance R and an inductance L in series. If R and the inductive reactance are both equal to 3Ω, the
phase difference between the applied voltage and the current in the circuit is

D Watch Video Solution

30. The rms value of potential difference V shown in the Fig. is

31. In an electrical circuit R, L, C and an $A C$
voltage source are all connected in series.

When L is removed from the circuit, the phase
difference between the voltage and the current
in the circuit is $\pi / 3$. If instead, C is removed
from the circuit, difference the phase difference is again $\pi / 3$. The power factor of the circuit is

D Watch Video Solution

32. A coil of self-inductance L is connected in
series with a bulb B and an $A C$ source.

Brightness of the bulb decreases when

- Watch Video Solution

33. A series $R-C$ circuit is connected to an
alternating voltage source. Consider two situations
(a) When capacitor is air filled.
(b) When capacitor is mica filled.
current through resistor is i and voltage across
capacitor is V then
34. A resistance R draws power P when connected to an $A C$ source. If an inductance is now placed in series with the resistance, such that the impedence of the circuit becomes Z, the power drawn will be

- Watch Video Solution

35. An inductor 20 mH , a capacitor $50 \mu \mathrm{~F}$ and a resistor 40Ω are connected in series across a
source of emf $V=10 \sin 340 t$. The power loss in
A.C. circuit is :

- Watch Video Solution

36. A small signal voltage $V(t)=V_{0} \sin \omega t$ is applied across an ideal capacitor C :

D Watch Video Solution

37. The potential differences across the resistance, capacitance and inductance are 80 V ,

40 V and 100 V respectively in an L-C-R circuit.

The power factor of this circuit is

D Watch Video Solution

38. A 100Ω resistance and a capacitor of 100Ω
reactance are connected in series across a 220

V source. When the capacitor is 50% charged, the peak value of the displacement current is

D Watch Video Solution

1. If the rms current in a 50 Hz ac circuit is 5 A , the value of the current $1 / 300$ second after its value becomes zero is

- Watch Video Solution

2. An alternating current generator has an internal resistance R_{g} and an internal reactance X_{g}. It is used to supply power to a passive load consisting of a resistance R_{g} and a rectance X_{L}. For maximum power to be
delivered from the generator to the load, the value of X_{L} is equal to

- Watch Video Solution

3. When a voltage measuring device is connected to a.c. mains the meter shows the steady input voltage of 220 V . This means
4. To reduce the resonant frequency in an $L C R$ series circuit with a generator

D Watch Video Solution

5. Which of the following combinations should be selected for better turning of an LCR circuit used for communication?

- Watch Video Solution

6. A inductor of reactance 1Ω and a resistor of
2Ω are connected in series to the terminals of a

6 V (rms) a.c. source. The power dissipated in the circuit is

- Watch Video Solution

7. The output of a step-down transformer is measured to be 24 V when connected to a 12 watt light bulb. The value of the peak current is

8. The potential difference across a $2 H$ inductor

 as a function of time is shown in figure. At time $t=0$, current is zeroCurrent $t=2$ second is

9. For the circuit shown in the figure the rms
value of voltage across R and coil are E_{1} and E_{2}
respectively.

The power (thermal) developed across the coil is

$$
\begin{aligned}
& \text { Resistor } \\
& \mathrm{e}=\mathrm{E}_{0} \sin \omega \mathrm{t} \\
& \mathrm{e}_{\mathrm{mm}}=\mathrm{E}
\end{aligned}
$$

10. A bulb is rated at $100 \mathrm{~V}, 100 \mathrm{~W}$. It can be treated as a resistor. Find out the inductance of an inductor (called choke coil) that should be connected in series with the bulb at its rated power with the help of an ac source of 200 V and 50 Hz .

D Watch Video Solution

11. In $L C R$ circuit current resonant frequency is

600 Hz and half power points are at 650 and 550 Hz . The quality factor is

Watch Video Solution

12. A group of electric lamps having a total power rating of 1000 watt is supplied by an $A C$ voltage $E=200 \sin \left(310 t+60^{\circ}\right)$. Then the r.m.s value of the circuit current is

- Watch Video Solution

13. In a $L-R$ circuit, the value of L is $\left(\frac{0.4}{\pi}\right)$ henry and the value of R is 30 ohm. If in the
circuit, an alternating e.m.f of 200 vol at 50
cycles per sec is connected, the impendence of the circuit will be

- Watch Video Solution

14. In a transformer the output current and
voltage are respectively $4 A$ and 20 V . If the ratio of number of turns in the primary to secondary is $2: 1$ what is the input current and voltage?
15. The self inductance of the motor of an electric fan is 10 H . In order to impart maximum power at 50 Hz , it should be connected to a capacitance of

- Watch Video Solution

16. A current of 5 A is flowing at 220 V in the primary coil of a transformer. If the voltage produced in the secondary coil is 2200 V and 50% of power is lost, then the current in the secondary coil will be -

Watch Video Solution

17. The value of L, C and R for a circuit are $1 H, 9 F$ and 3Ω. What is the quality factor for the circuit at resonance?

- Watch Video Solution

18. Determine the rms value of a semi-circular current wave which has a maximum value of a.

D Watch Video Solution

19. The voltage time (V-t) graoh for triangular wave having peak value $\left(V_{0}\right)$ is as shown in fig.

- Watch Video Solution

20. Two series resonant circuits with
component values $L_{1} C_{1}$ and $L_{2} C_{2}$, respectively have the same resonant frequency, They are then connected in series, so that the combination has the same resonant frequency

- Watch Video Solution

21. A circuit contanining resistance R_{1}, Inductance L_{1} and capacitance C_{1} connected in series resonates at the same frequency' n ' as a second combination of R_{2}, L_{2} and C_{2}. If the two are connected in series. Then the circuit will resonates at

- Watch Video Solution

22. An $A C$ source of variable frequency is applied across a series $L-C-R$ circuit. At a frequency double the resonace frequency. The impedance is $\sqrt{10}$ times the minimum impedance. . The inductive reactance is

D Watch Video Solution

23. An $L C R$ circuit has $L=10 m L, R=3 \Omega$, and
$C=1 \mu F$ connected in series to a source of
$15 \cos \omega t$ volt. The current amplitude at a
frequency that is 10% lower then the resonant frequency is

- Watch Video Solution

24. A 100 V a.c. source of frequency 500 Hz is
connected to a $L C R$ circuit with $L=8.1$ millihenry, $C=12.5 \mu F$ and $R=10$ ohm, all connected in series. What is the potential difference across the resistance?
25. If the rms current in a 50 Hz ac circuit is 5 A , the value of the current $1 / 300$ second after its value becomes zero is

- Watch Video Solution

26. An alternating current generator has an internal resistance R_{g} and an internal reactance X_{g}. It is used to supply power to a passive load consisting of a resistance R_{g} and a rectance X_{L}. For maximum power to be
delivered from the generator to the load, the value of X_{L} is equal to

- Watch Video Solution

27. When a voltage measuring device is
connected to a.c. mains the meter shows the
steady input voltage of 220 V . This means
28. To reduce the resonant frequency in an $L C R$ series circuit with a generator

- Watch Video Solution

29. Which of the following combinations should be selected for better turning of an LCR circuit used for communication?

D Watch Video Solution
30. A inductor of reactance 1Ω and a resistor of
2Ω are connected in series to the terminals of a

6 V (rms) a.c. source. The power dissipated in the circuit is

D Watch Video Solution

31. The output of a step-down transformer is measured to be 24 V when connected to a 12
watt light bulb. The value of the peak current is
32. The potential difference across a $2 H$ inductor as a function of time is shown in figure. At time $t=0$, current is zero

Current $t=2$ second is

D Watch Video Solution

33. For the circuit shown in the figure the rms
value of voltage across R and coil are E_{1} and E_{2}
respectively.

The power (thermal) developed across the coil is

$$
\begin{aligned}
& \text { Resistor } \\
& e=E_{0} \sin \omega t \\
& \mathrm{e}_{\mathrm{mm}}=\mathrm{E}
\end{aligned}
$$

34. A bulb is rated at $100 \mathrm{~V}, 100 \mathrm{~W}$. It can be treated as a resistor. Find out the inductance of an inductor (called choke coil) that should be connected in series with the bulb at its rated power with the help of an ac source of 200 V and 50 Hz .

D Watch Video Solution

35. In $L C R$ circuit current resonant frequency is

600 Hz and half power points are at 650 and 550 Hz . The quality factor is
36. A group of electric lamps having a total power rating of 1000 watt is supplied by an AC voltage $E=200 \sin \left(310 t+60^{\circ}\right)$. Then the r.m.s value of the circuit current is

- Watch Video Solution

37. In a $L-R$ circuit, the value of L is $\left(\frac{0.4}{\pi}\right)$ henry and the value of R is 30 ohm. If in the
circuit, an alternating e.m.f of 200 vol at 50
cycles per sec is connected, the impendence of the circuit will be

D Watch Video Solution

38. In a transformer the output current and
voltage are respectively $4 A$ and 20 V . If the ratio of number of turns in the primary to secondary is $2: 1$ what is the input current and voltage?

- Watch Video Solution

39. The self inductance of the motor of an
electric fan is 10 H , in order to impart maximum power at 10 Hz , it should be connected to a capacitance of

D Watch Video Solution

40. A current of 5 A is flowing at 220 V in the primary coil of a transformer. If the voltage produced in the secondary coil is 2200 V and 50% of power is lost, then the current in the secondary coil will be -

- Watch Video Solution

41. The value of L, C and R for a circuit are $1 H, 9 F$ and 3Ω. What is the quality factor for the circuit at resonance?

- Watch Video Solution

42. Determine the rms value of a semi-circular
current wave which has a maximum value of a.

D Watch Video Solution

43. The voltage time (V-t) graoh for triangular wave having peak value $\left(V_{0}\right)$ is as shown in fig.

D Watch Video Solution

44. A circuit containing resistance R_{1}
inductance L_{1} and capacitance C_{1} connected in series gives resonance at the same frequency v
as a second similar combination of R_{2}, L_{2} and
C_{2}. If the two circuits are connected in series,
shown that the whole circuit will resonate with the same frequency.

D Watch Video Solution

45. A circuit contanining resistance R_{1},

Inductance L_{1} and capacitance C_{1} connected in
series resonates at the same frequency' n^{\prime} as a
second combination of R_{2}, L_{2} and C_{2}. If the
two are connected in series. Then the circuit will resonates at
46. An $A C$ source of variable frequency is applied across a series $L-C-R$ circuit. At a frequency double the resonace frequency. The impedance is $\sqrt{10}$ times the minimum impedance. . The inductive reactance is

D Watch Video Solution

47. An $L C R$ circuit has $L=10 m L, R=3 \Omega$, and
$C=1 \mu F$ connected in series to a source of
$15 \cos \omega t$ volt. The current amplitude at a
frequency that is 10% lower then the resonant frequency is

- Watch Video Solution

48. A 100 V a.c. source of frequency 500 Hz is
connected to a $L C R$ circuit with $L=8.1$ millihenry, $C=12.5 \mu F$ and $R=10$ ohm, all connected in series. What is the potential difference across the resistance?
