© 'doubtnut

India's Number 1 Education App

PHYSICS

FOR IIT JEE ASPIRANTS OF CLASS 12 FOR PHYSICS

RAY OPTICS AND OPTICAL INSTRAUMENTS

1. Demostrate that a light beam reflected from
three mutually perpendicular plane mirrors in
succession reverses its direction.

D Watch Video Solution

2. Two plane mirrors are inclined at an angle of
70° to each other. Find the number of images
formed when object is placed as shown in
figure.

- View Text Solution

3. Find the number f images formed by three mirrors $A B, B C$ and $A C$ in situation as shown in
figure. The object is at the centre of tringle
4. Figure shows a point O i.e. the object placed between two parallel mirrors. Its distance from
is 2 cm and that from is 8 cm . find the distance of images from the two mirrors considering reflection reflection on mirror first.

- View Text Solution

5. An object moves with $5 \mathrm{~ms}^{-1}$ toward right while the mirror moves with $1 m s^{-1}$ toward the left as shown in Figure. Find the velocity of image.

6. Figure shows a torch producing a straight light beam falling on a plane mirror at an angle 60° The reflected beam makes a spot P on the screen along y -axis. If at $\mathrm{t}=0$, mirror starts ratating about the hinge A with an angular velocity $(\omega)=1^{\circ}$ per second clockwise. Find the speed of the spot on
screen after time $t=15 \mathrm{~s}$.

- Watch Video Solution

7. Find the minimum size of mirror required to
see the full image of a wall behind a man
standing at the centre of room, where H is the height of wall

D View Text Solution

8. A ray of light travelling in the direction $\frac{1}{2}(\hat{i}+\sqrt{3} \hat{j})$ is incident on a plane mirror.

After reflection, it travels along the direction
$\frac{1}{2}(\hat{i}-\sqrt{3} \hat{j})$. The angle of incidence is

D Watch Video Solution

9. A plane mirror is placed at origin parallel of y-axis, facing the positive x-axis. An object starts from ($2 \mathrm{~m}, \mathrm{O}, 0$) with a velocity of $(2 \hat{i}+2 \hat{j}) \mathrm{m} / \mathrm{s}$. The relative velocity of image with respect to object is along

- Watch Video Solution

10. A reflecting surface is represented by the equation
$y=\frac{2 L}{\pi} \sin \left(\frac{\pi x}{L}\right)$, where $0 \leq x \leq L$. A ray of
light travelling horizontally becomes vertical after reflection with the surface. The coordinates of the point where this ray is incident is.

11. The focal length of a concave mirror is 30 cm .Find the position of the object in front of the mirror,so that the image is there times the size of the objects.

D Watch Video Solution

12. A reflecting surface is represented by the equation $x^{2}+y^{2}=a^{2}$. A ray travellingin $\begin{array}{lll}\text { negative } \quad x \text {-direction } & \text { is } & \text { directed } \\ \text { towardspositive } y \text {-direction after reflection }\end{array}$
from thesurface at point P. Then co-ordinates of point P are

D View Text Solution

13. A point light source lies on the principal axis of concave spherical mirror with radius of curvature 160 cm . Its image appears to be back of the mirror at a distance of 70 cm from mirror. Determine the location of the light source.
14. A point source of light is located 20 cm in front of a convex mirror with $\mathrm{f}=15 \mathrm{~cm}$.

Determine the position and nature of the image point.

- Watch Video Solution

15. An object is 30.0 cm from a spherical mirror along the central axis. The absolute value of lateral magnification is $\frac{1}{2}$. The image
produced is inverted. What is the focal length of the mirror?

D Watch Video Solution

16. An object of length 10 cm is placed at right angles to the principal axis of a mirror of radius of curvature 60 cm such that its image
is virtual, erect and has a length 6 cm . What kind of mirror is it and also determine the position of the object?
17. An object is placed in front of a convex mirror at a distance of 50 cm . A plane mirror is introduced covering the lower half of the convex mirror. If the distance between the object and the plane mirror is 30 cm , it is found that there is no parallax between the images formed by the two mirrors. What is the radius of curvature of the convex mirror?

- Watch Video Solution

18. A concave mirror of focal length 10 cm and a convex mirror of focal length 15 cm are placed
facing each other 40 cm apart. A point object is
placed between the mirrors, on their common
axis and 15 cm from the concave mirror. Find
the position and nature of the image produced by successive reflections, first at the concave mirror and then at the convex mirror.

D Watch Video Solution

19. Find the velocity of image w.r.t. ground.

D View Text Solution
20. Find the velocity of image w.r.t grounds

- View Text Solution

21. The image of a real object in a convex mirror is 4 cm from the mirror. If the mirror has a radius of curvature of 24 cm , Find the position of object and magnification

- Watch Video Solution

22. Find the velocity of image in a situation as
shown in the figure
23. A point object located at a distance of 20 cm from the pole of a concave mirror of focal length 30 cm with height 2 cm is moving with a velocity $\left(\overline{V_{O G}}=4 \hat{i}-5 \hat{j}\right) \mathrm{m} / \mathrm{s}$ and velocity of the mirror is $\left(\overline{V_{m g}}=-6 \hat{i}+10 \hat{j}\right) \mathrm{mIs}$ as shown. Find the velocity of image w.r.t ground.

- View Text Solution

24. Two concave mirrors, each having radius of curvature 40 cm are placed such that their
principle axes are parallel to each other and at
a distance of 1 cm to each other. Both the mirrors are at a distance of 100 cm from each other. Considering first reflection at M_{1} and then at M_{2}, find the coordinates of the image thus formed object as the origin.

D View Text Solution

25. The refractive index of glass with respect to water is $\frac{9}{8}$. If the velocity of wavelength of
light in glass are $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and $4000 \AA$ respectively, find the velocity and wavelength of light in water.

D Watch Video Solution

26. The wavelength of light in vacuum is λ_{0}.

When it travels normally through glass of thickness 't'. Then find the number of waves of light in ' t ' thickness of glass (Refractive index of glass is μ)
27. When light of wavelength λ_{0} in vacuum travels through same thickness ' t ' in glass and water, the difference in the number of waves
is. (Refractive indices ofglass and water are μ_{g} and μ_{w} respectively.)

D Watch Video Solution

28. The optical path of a monochromatic light is the same if it travels through 4 cm of glass or 4.5 cm of water. If the refractive index of
galss is 1.5 , then the refractive index of water is

D Watch Video Solution

29. Find the thickness of a plate which will produce a change in optical path equal to half the wavelength λ of the light passing through
it normally. The refractive index of the plate is μ.

D Watch Video Solution
30. Consider slabs of three media A, B and C arranged as shown in figure R.I. of A is 1.5 and that of C is 1.4 . If the number of waves in A is equal to the number of waves in the combination of B and C then refractive index of B is:

D View Text Solution

31. Two parallel rays are travelling in a medium of refractive index $\mu_{1}=\frac{4}{3}$. One of the rays
passes through a parallel glass slab of thickness t and refractive index $\mu_{2}=\frac{3}{2}$ The path difference between the two rays due to the glass slab will be

- Watch Video Solution

32. A ray of light passes through a glass slab of thickness t and refractive index μ. If the speed of light in air be 'c', the time taken by the ray to cross through the plate is
33. A light ray is incident on a plane glass slab of thickness ' t ' at an angle of incidence ' i ' as shown in the figure. If μ is the refractive index of glass. Then find time taken by the light ray to travel through the slab.

D Watch Video Solution

34. Light of wavelength 4500° in air is incident
on a plane boundary between air and another medium at an angle 30° with the plane
boundary. As it enters from air into the other medium, it deviates by $15^{\circ} \mathrm{s}$ towards the normal Find refractive index of the medium and also the wavelength of given light in the medium.

- Watch Video Solution

35. Monochromatic light falls at an angle of incidence i on a slab of a transparent material
(refractive index μ). If reflected and refracted
rays are mutually perpendicular, find the relation between μ and i.

D Watch Video Solution

36. A ray of light is incident at the glass-water interface at an angle i as shown in figure, it emerges finally parallel to the surface of water, then the value of μ_{g} would
37. A light beam is travelling from region I to region IV- (Refer figure). The refractive index in regions I, II,III and IV are $n_{0}, \frac{n_{0}}{2}, \frac{n_{0}}{6}$ and $\frac{n_{0}}{8}$ respectively. The angle of incidence θ for which the beam just misses entering region TV is

- View Text Solution

38. A ray of light passes through four transparent media with refractive indices
$\mu_{1}, \mu_{2}, \mu_{3}$ and μ_{4} as shown in the figure. The
surfaces of all media are parallel. If the emergent ray $C D$ is parallel to the incident ray $A B$, we must have

D View Text Solution

39. The $x-z$ plane separates two media A and B of refractive indices $\mu_{1}=1.5$ and $\mu_{2}=2$. A ray of light travels from A to B . Its directions in the two media are given by unit vectors $u_{1}=a \hat{i}+b \hat{j}$ and $u_{2}=c \hat{i}+a \hat{j}$. Then

Watch Video Solution

40. A ray of light falls on the surface of a spherical glass paper weight making an angle α with the normal and is refracted in the medium at an angle β. The angle of deviation of the emergent ray from the direction of the incident ray is :

D Watch Video Solution
41. A ray of light falls on a transparent sphere with centre at C as shown in figure. The ray emerges from the sphere parallel to line $A B$. The refractive index of the sphere is

D View Text Solution

42. In a tank, a 4 cm thick layer of water $\left(\mu=\frac{4}{3}\right)$ floats on a 6 cm thick layer of an organic liquid ($\mu=1.5$). Viewing at normal
incidence, how far below the water surface does the bottom of tank appear to be?

D Watch Video Solution

43. An object is placed in front of a slab ($\mu=$
1.5) pfthickness 6 cm at a distance 28 cm from
it Other face of the slab is silvered. Find the position of final image.

D View Text Solution

44. An observer can see through a pinhole the top end of a thin rod of height h, placed as shown in figure. The beaker height 3 h and its radius h. When the beaker is filled with a liquid upto a height 2 h , he can see the lower end of the rod. Find the refractiveindex of the liquid.

D View Text Solution

45. A person looking through a telescope focuses the lens at a point on the edge of the
bottom of an empty cylindrical vessel Next he
fills the entire vessel with a liquid of refractive index μ, without disturbing the telescope.

Now, he observes the midpoint of the bottom of the vessel Determine the radius to depth ratio of the vessel

D Watch Video Solution

46. A diverging beam of light from a point source S having divergence angle α falls symmetrically on a glass slab as shown. The
angles of incidence of the two extreme rays are equal If the thickness of the glass slab is t and its refractive index is n, then the divergence angle of the emergent beam is

D View Text Solution

47. An observer looks at an object kept at a distance 30 cm in air. If a rectangular glass plate ($\mu=1.5$) is placed between the observer and the object with its thick-ness along the
line of observation, the object appears to the observer to be at a distance 25 cm . Find the thickness of glass plate. Position of the glass plate is now shifted (i) from object towards observers (ii) from observer towards the object How does it change the apparent position of the object as seen by the observer?

- Watch Video Solution

48. An air bubble is trapped inside a glass
cube of edge 30 cm . Looking through the
faceABEH, the bubble appears to be at normal
distance 12 cm from this face and when seen
from the opposite face CDGF, it appaears to be at normal distance 8 cm from CDGF. Find refractive index of glass and also the actual position of the bubble

D View Text Solution

49. A parallel sides glass slab of thickness 4 cm
is made of a material of refractive index $\sqrt{3}$.

When light is incident on one of the parallelfaces at an angle of 60°, it emerges from the other parallel face. Find the lateral displacement of the emergent beam.

D Watch Video Solution

50. A ray of light travelling in a rarer medium
strikes a plane bouhdary between the rarer medium and a denser medium at an angle of
incidence ' i ' such that the reflected and the refracted rays are mutually perpendicular.

Another ray of light of same frequency is incident on the same boundary from the side of denser medium. Find the minimum angle of incidence at the denser-rarer boundary so that the second ray is totally reflected.

D View Text Solution
51. A ray of light travelling in a transparent medium falls on a surface separating the medium from air at an angle of incidence of
45°. The ray undergoes total internal reflection. If n is the refractive index of the medium with respect to air, select the possible value of n from the following.

- Watch Video Solution

52. A liquid of refractive index 1.5 is poured into a cyclindrical jar of radius 20 cm upto a height of 20 cm . A small bulb at the centre of bottom glowing. Find area of the liquid
surface through which the light of the bulb passes into air.

- Watch Video Solution

53. (a) Fig. shows a cross-section of a 'light pipe' made of a glass fibre of refractive index 1.68. The outer covering of the pipe is made of
a material of refractive index 1.44 . What is the axis of the pipe for which total reflection inside the pipe take place as shwon.
(b) What is the answer if there is no outer
covering if the pipe ?

- Watch Video Solution

54. Light is incident at an angle α on one planar end of a transparent cylindrical rod of refractive index μ. Determine the least value of μ so that the light entering the rod does not emerge from the curved surface of rod
irrespective of the value of $\alpha^{`}$

D Watch Video Solution

55. A rectangular glass slab $A B C D$ of refractive index n_{1} is immersed in water of refractive index $n_{2}\left(n_{1}>n_{2}\right)$. A ray of light is incident at the surface $A B$ of the slab as shown. The
maximum value of the angle of incidence $a_{\text {max }}$
.such that the ray comes out only from the other surface CD, is given by

D View Text Solution

56. What will be the minimum angle of incidence such that the total internal reflection occurs on both the surfaces?

- View Text Solution

57. A ray of light incident on the horizontal
surface of a glass slab at an angle of incidence
'i'just grazes the adjacent vertical surface after reflection. Compute the critical angle and refractive index of glass

D Watch Video Solution

58. Light is incident normally on face $A B$ of a prism as shown in figure. A liquid of refractive index p is placed on face $A C$ of the prism. The
prism is made of glass of refractive index $3 / 2$.

The limits of p for which total internal reflection takes place on face AC is

D View Text Solution

59. What is the value of the refractive index for
a $90^{\circ}-45^{\circ} 45^{\circ}$ prism which is used to deviate a beam through 90° by total internal

D View Text Solution

60. A beam of light consisting of red, green and blue colours is incident on a right angle prism. The refractive indices of the material of the prism for the red, green and blue wavelengths are 1.39, 1.44 and 1.47 respectively.

The colour of light that comes out of the prism is

- View Text Solution

61. White light is incident on the interface of glass and air as shown in the figure. If green light is just totally internally reflected then the emerging ray in air contains:

D View Text Solution

62. A rectangular block of glass is placed on a printed page lying on a horizontal surface.

Find the minimum value of the refractive index
of glass for which the letters on the page are not visible from any of the vertical faces of the block.

D View Text Solution

63. A plane mirror is placed at the bottom of a
tank containing a liquid of refractive index μ. P is a small object at a heigth h above the mirror. An observer O , vertically above P , outside the liquid, observes P and its image in
the mirror. The apparent

D View Text Solution

64. A cubic container is filled with a liquid whose refractive index increases linearly from
top to bottom. Which of the following represents the path of a ray of light inside the liquid?

D View Text Solution
65. A light ray travelling in a glass medium is incident on glass - air interface at an angle of incidence Q. The reflected (R) and transmitted
(T) intensities, both as function of 0 , are plotted. The correct sketch is

D View Text Solution

66. Find the variation of Refractive index assuming it to be a function of y such that a
ray entering origin at grazing incident follows
a parabolic path $y=x^{2}$ as shown in

D View Text Solution

67. A ray of light is incident on a glass slab at grazing incidence. The refractive index of the material of the slab is given by $\mu=\sqrt{1+\sqrt{y}}$. If the thickness of the slab is d , determine the equation ofthe trajectory of the ray inside the
slab and the coordinates of the point where
the ray exits from the slab. Take the origin to be at the point of entry of the ray.

D Watch Video Solution

68. Due to a vertical temperature gradient in the atmosphere, the index of refraction varies.

Suppose index of refraction varies as
$\mathrm{n}=n_{0} \sqrt{1+a y}$, where n_{0} is the index of refraction at the surface and ' a '=
$2.0 \times l 0^{-6}$ " m^{-1}. A person of height $\mathrm{h}=2.0 \mathrm{~m}$
stands on a level surface. Beyond what
distacne will he not see the run way?

D View Text Solution

69. The refraction index of an anisotropic medium varies as $\mathrm{p}=\mu=\mu_{0} \sqrt{(x+1)}$, where
$0 \leq x<=\mathrm{a}$. A ray of light is incident at the origin just along y -axis (shown in figure).

Find the equation of ray in the medium.

- View Text Solution

70. A vessel of depth 2 dcm is half filled with a
liquid of refractive index μ_{1} and the upper half with a liquid of refractive index μ_{2}. The apparent depth of the vessel seen perpendicularly is

- Watch Video Solution

71. A ray of ligth enters into a glass slab from air as shown in fig.2.65. If refractive index of glass slab is given by $\mu=\mathrm{A}-\mathrm{Bt}$ where A and B
are constants and ' t ' is the thickness of slab measured from the top surface. Find the maximum depth travelled by ray in the slab. Assume thickness of slab to be sufficiently large R

D View Text Solution

72. A ray of light travelling in air is incident at a grazing angle on a large transparent slab of thickness $t=2.0 \mathrm{~m}$. The point of incidence is
the origin.

The medium has a variable refractive index(y)
given by $\mu(y)=\sqrt{k y+1}$
Where y is in m and $\mathrm{k}=0.25 m^{-1}$

Express a relation between the angle of incidence and the slope of the trajectory m, in terms of the refractive index at that point $\mu(\mathrm{y})$

D View Text Solution

73. A small object stuck on the surface of a glass sphere $(n=1.5)$ is viewed from the diametrically opposite position. Find transverse magnification.

D Watch Video Solution

74. A solid glass sphere with radius R and an index of refraction 1.5 is silvered over one hemisphere. A small object is located on the axis of the sphere at a distance $2 R$ to the left
of the vertex of the unsilvered hemisphere.

Find the position of final image after all refractions and reflection have taken place.

D Watch Video Solution

75. A point object is placed at the centre of a glass sphere of radius 6 cm and refractive index 1.5. The distance of virtual image from the surface is

D Watch Video Solution

76. An air bubble in glass $(\mu=1.5)$ is situated at
a distance 3 cm from a convex surface of diameter 10 cm as shown in figure. At what distance from the surface will the bubble appear?

- View Text Solution

77. One end of a cylindrical glass ($\mu=1.5$) is given the shape of a concave refracting surface of radius 10 cm . An air bubble is
situated in the glass rod at a point on its axis
such that it appears to be at distance 10 cm
from the surface and inside glass when seen
from the other medium. Find the actual location of air bubble.

D Watch Video Solution

78. A transparent thin film of uniform thickness and refractive index $n_{1}=1.4$ is coated on the convex spherical surface of radius R at one end of a long solid glass cylinder of
refractive index $n_{2}=1.5$, as shown in figure.
Rays of light parallel to the axis of the cylinder traversing through the film from air to glass get focused at distance ff from the film, while rays of light traversing from glass to air getfocused at distacnce f 2 from the film. Then, the magnitudes of f_{1}, f_{2} are

D View Text Solution

79. A spherical solid glass paper weight of diameter 6 cm has a small air bubble at a distance of 1.5 cm from the centre. If the air bubble be viewed from the side to which it is nearest along the line joining the bubble and the centre, find where will it appear.

D Watch Video Solution

80. A biconvex lens of focal length 15 cm is in
front of a plane mirror. The distance between
the lens and the mirror is 10 cm . A small object is kept at a distance of 30 cm from the lens.

The final image is

D Watch Video Solution

81. A bi-convex lens is formed with two thin
plano-convex lenses as shown in the figure.
Refractive index ' n ' of the first lens is 1.5 and
that of the second lens is 1.2 . Both the curved
surface are of the same radius of curvature
$\mathrm{R}=14 \mathrm{~cm}$. For this bi-convex lens, for an object
distance of 40 cm , the image distance will be

D View Text Solution

82. An object is $5.0 m$ to the left of a flat screen. A converging lens for which the focal length is $f=0.8 m$ is placed between object and screen.
(a) Show that two lens positions exist that
form images on the screen and deremine how
far these positions are from the object?
(b) How do the two images differ from each other?

D Watch Video Solution

83. A point object is placed at a distance of

12 cm from a convex lens of focal length

10 cm . On the other side of the lens, a convex mirror is placed at a distance of 10 cm from
the lens such that the image formed by the combination coincides with the object itself.

The focal length of the convex mirror is

Watch Video Solution

84. A pin is placed 10 cm in front of a convex
lens of focal length 20 cm , made of a material
having refractive index 1.5. The surface of lens
farther away from the pin is silvered and has a radius of curvature 22 cm . Determine the position of the final image. Is the image real or
virtual?

- Watch Video Solution

85. A biconvex thin lens is prepared from glass
of refractive index $3 / 2$. The two bounding
surfaces have equal radii of 25 cm each. One of
the surfaces is silvered from outside to make it reflecting. Where should an object be placed before this lens so that the image coincides with the object.

D Watch Video Solution

86. What is the refractive index of material of a
plano-convex lens, if the radius of curvature of
the convex surface is 10 cm and focal length of
the lens is 30 cm ?

D Watch Video Solution
87. A concave lens of glass, refractive index 1.5
has both surfaces of same radius of curvature
R. On immersion in a medium of refractive index 1.75 , it will behave as a

D Watch Video Solution

88. A hollow convex lens of glass will behave
like a
89. The diagram shows a concavo - convex lens.

What is the condition on the refractive indices
so that the lens is diverging?
The refractive index of the lens is μ_{2}

- View Text Solution

90. The magnification of an object placed it
front of a convex lens of focal length 20 cm is
+2 . To obtain a magnification of -2 , the
object will has to be moved a distance equal to

D Watch Video Solution

91. Two point sources S_{1} and S_{2} are 24 cm apart. What should a convex lens of focal length 9 cm be placed between them so that the images of both sources formed at the same place?
92. An object is placed at $A(O A>f)$. Here, f
is the focal length of the lens. The image is
formed at B. A perpendicular is erected at O
and C is chosen such that $\angle B C A=90^{\circ}$. Let
$O A=a, O B=b$ and $O C=c$. Then the value of f is

- Watch Video Solution

93. A magnifying lens has a focal length of 10
cm. (a) Where should the object be placed if
the image is to be 30 cm from the lens ?
What will be the magnification?

- Watch Video Solution

94. In the figure, light is incident on the thin
lens as shown. The radius of curvature for both the surface is R. Determine the focal length of this system.

- View Text Solution

95. The linear magnification of an object placed on the principal axis of a convex lens offocal length 30 cm is found to be +2 . In order to obtain a magnification of -2 , by how much distance should the object be moved?

D Watch Video Solution

96. The distance between the object and the real image formed by a convex lens is d. If the
linear magnification is m, find the focal length of the lens in terms of d and m.

D Watch Video Solution

97. A concave lens of focal length forms an image which is n times the size of the object

What is the distance of the object from the lens in terms of f and n ?
98. A glass convex lens of refractive index $\frac{3}{2}$
has got a focal length equal to 0.3 m . Find the
focal length of the lens if it is immersed in water of refractive index $4 / 3$.

- Watch Video Solution

99. As shown in figure a spherical air lens of
radii $R_{1}=R_{2}=10 \mathrm{~cm}$ is cut in a glass ($\mu=1.5$)
cylinder. Determine the focal length and nature of air lens. If a liquid of refractive index

2 is filled in the lens, what will happen to its

focal length and nature?

- View Text Solution

100. A point object O is placed at a . distance of 30 cm from a convex lens of focal length

20 cm cut into two halves each of which is displaced by 0.05 cm as shown in figure. Find
the position of the image? If more than one image is formed, find their number and

distance between them?

D View Text Solution

101. Two this lenses, when in contact, produce
a combination of power +10 diopters. When
they are 0.25 m apart, the power reduces to
+6 diopters. The focal length of the lenses are.... m and ...m.
102. Two plano-concave lenses of glass of refractive index 1.5 have radii of curvature of

20 and 30 cm . They are placed in contact with curved surface towards each other and the space between them is filled with a liquid of refractive index $\frac{4}{3}$, find the focal length of the system.

D Watch Video Solution

103. Two thin sysmmetrical lenses of different nature and of different material have equal
raii of curvature $R=15 \mathrm{~cm}$. The lenses are put close together and immersed in water $\left(\mu_{w}=4 / 3\right)$. The focal length of the system ini water is 30 cm . The difference between refractive indices of the two lenses is

D Watch Video Solution

104. A converging lens of focal length 5.0 cm is
placed in contact
with a diverging lens of focal length 10.0 cm .

Find the combined focal length of the system.

D Watch Video Solution

105. Two thin converging lenses are placed on
a common axis, so that the centre of one of
them coincides with the focus of the other. An
object is placed at a distance twice the focal
length from the left hand lens. Where will its
image be? What is the lateral magnification?

The focal of each lens is f.

Watch Video Solution

106. An equilateral glass prism is made of a material of refractive index 1.500. Find its angle of minimum deviation.

D Watch Video Solution

107. A prism of refracting angle 4° is made of a material of refractive index 1.652 . Find its angle of minimum deviation.
108. A ray of light is incident normally on one of the faces of a prism of apex angle 30 degree and refractive index sqrt2. The angle of deviation of the ray is...degrees.

D Watch Video Solution

109. A ray of light is incident normally on one of the refracting surfaces of a prism of refracting angle A,. The emergent ray grazes
the other refracting surface. Find the refractive index of the material ofprism.

D Watch Video Solution

110. A ray of light passing through a prism having refractive index $\sqrt{2}$ suffers minimum deviation. It is found that the angle of incidence is double the angle of refraction within the prism. What is the angle of prism?
111. A ray of light is incident at an angle of 60° on the face of a prism having refracting angle 30°. The ray emerging out of the prism makes an angle 30° with the incident ray.

Show that the emergent ray is perpendicular to the face through which it emerges and calculate the refractive index of the material of prism.

- Watch Video Solution

112. A ray of light undergoes a deviation of 30° when incident on an equilateral prism of refractive index $\sqrt{2}$.

What is the angle subtended by the ray inside the prism with the base of the prism?

113. A 60° prism has a refractive index of 1.5 .

Calculate (a) the angle of incidence for minimum deviation (b) angle of minimum deviation (c) the angle of emergence of light at maximum deviation (d) angle of maximum deviation.

D Watch Video Solution
114. Monochromatic light falls on a right angled prism at an angle of incidence 450 .

The emergent light is found to slide along the face AC. Find the refractive index ofmaterial of prism.

D View Text Solution
115. The refractive index of a prism is 2 . this prism can have a maximum refracting angle of
116. For an equilateral prism, it is observed that when a ray strikes grazingly at one face it emerges grazingly at the other. Its refractive index will be

D Watch Video Solution

117. Two identical prisms of refractive index $\sqrt{3}$ are kept as shown in figure. A light ray strikes the first prism at face $A B$. Find,
i) The angle of incidence, so that the emergent
ray from the first prism has minimum deviation
ii) Through what angle of prism DCE should be rotated about C so that the final emergent ray also has minimum deviation.

- View Text Solution

118. A beam of white light passing through a hollow prism give no spectrum.
119. White light is passed through a prism of angle 5°. If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, calculate the angle of dispersion between them.

- Watch Video Solution

120. The refractive indices of flint glass prism for violet, Yellow and Red colours are 1.790,
1.795 and 1.805 respectively, find dispersive power of the flint glass.

D Watch Video Solution

121. A thin prism P_{1} with angle 4 degree and made from glass of refractive index 1.54 is combined with another thin prism P_{2} made
from glass of refractive index 1.72 to produce dispersion without deviation. The angle of the prism P_{2} is
122. A crown glass prism of refracting angle 8° is combined with a flint glass prism to obtain deviation without dispersion. If the refractive indicates for red and violet rays for the crown glass are 1.514 and 1.524 and for the fint glass are 1.645 and 1.665 respectivey, find the angle of flint glass prism and net deviation.

D Watch Video Solution

123. A given ray of light suffers minimum deviation in an equilateral prism P. Addtional prism Q and R of identical shape and of the same material as P are now added as shown in
figure. The ray will suffer
1) The greater deviation
2) no deviation
3) same deviation as before
4) total internal reflection
124. Calculate (a) the refracting angle of a fint glass prism which should be combined with a crown glass prism of refracting angle 6° so that the combination may not have deviation
for D line and (b) the angular seperation between C and F lines, given that the refractive indices of the materials are as follows:

D View Text Solution

125. A person cannot see distinctly any object
placed beyond 40 cm from his eye. Find the power of lens whicTFwill enable him to see distant stars clearly is?.

- Watch Video Solution

126. A far sighted person cannot focus distinctly on objects closer than "1m" What is the power of lens that will permit him to read from a distance of " 40 cm "
127. A graph sheet divided into squares each of
size $\backslash \mathrm{mm} 2$ is kept at a distance of 7 cm from a magnifying glass of focal length of 8 cm . The graph sheet is viewed through the magnifying lens keeping the eye close to the lens. Find (i) the magnification produced by the lens, (ii) the
'(irea of each square in the image formed (iii) the magnifying power of the magnifying lens. Why is the magnification found in (i) different from the magnifying power?

Watch Video Solution

128. If the focal length of a magnifler is 5 cm calculate
a) the power of the lens
b) the magnifying power of the lens for relaxed and strained eye.

- Watch Video Solution

129. A man with normal near- point (25 c m)
reads a book with small print using a
magnifying glass L a thin convex lens of focal length 5 cm .
(i) What is the closest and the farthest distance at which he can read the book when viewing thorugh the magnifying glass ?
(ii) What is the maximum and the minimum angular magnification (magnifying power) possible using the above simple microscope?

Watch Video Solution

130. A microscope consisting of two convex lenses of focal lengths 2 cm and 5 cm placed 20 cm apart. Where must the object be placed so that the final image (virtual) is at a distance of 25 cm from eye?

D Watch Video Solution

131. Find the magnifying power of a compound microscope whose objective has a focal power of 100D and eye piece has a focal power of 16D
when the object is placed at a distance of
1.1 cm from the objective. Assume that the final image is formed at the least distance of distinct vision (25 cm)

- Watch Video Solution

132. In a compound microscope, the objects is

1 cm from the objective lens. The lenses are 30 cm apart and the intermediate image is

5 cm from the eye-piece. What magnification is produced?

Watch Video Solution

133. A compound microscope has a magnifying power 30 . The focal length of its eye-piece is 5 cm . Assuming the final to be at the least distance of distinct vision (25 cm), calculate the magnification produced by objective.

- Watch Video Solution

134. A compound microscope is used to enlarge an object kept at a distance 0.03m
from its objective which consists of several convex lenses in contact and has focal length
0.02m. If a lens offocal length 0.1 m is removed
from the objective, find out the distance by
which the eyepiece of the microscope must be moved to refocus the image?

D Watch Video Solution

135. The focal length of the objective and the eye piece of a compound microscope are 2.0 cm and 3.0 cm , respectively. The distance
between the objective and the eye piece is 15.0
cm . The final image formed by the eye piece is
at infinity. The two lenses are thin. The distance in cm of the object and the image produced by the objective, measured from the objective lens, are respectively

- Watch Video Solution

136. The focal length of the objective and the eye piece of a compound microscope are 2.0 cm and 3.0 cm , respectively. The distance
between the objective and the eye piece is 15.0
cm . The final image formed by the eye piece is
at infinity. The two lenses are thin. The distance in cm of the object and the image produced by the objective, measured from the objective lens, are respectively

- Watch Video Solution

137. An astronomical telescope has an angular magnification of magnitude 5 for distant object. The separation between the objective
and eyepiece is 36 cm and the final image is
formed at infinity. Determine the focal length of objective and eyepiece.

D Watch Video Solution

138. A telescope has an objective of focal
length 50 cm and an eyepiece of focal length

5 cm . The least distance of distinct vision is

25 cm . The telescope is focused for distinct vision on a scale $2 m$ away from the objective.

Calculate (a) magnification produced and
separation between objective and eyepiece.

D Watch Video Solution

139. A telescope objective of focal length 1 m
forms a real image of the moon 0.92 cm in
diameter. Calculate the diameter of the moon
taking its mean distance from the earth to be $38 \times 10^{4} \mathrm{~km}$ If the telescope uses an eyepiece of 5 cm focal length, what would be the distance between the two lenses for (i) the
final image to be formed at infinity (ii) the final image(virtual) at 25 cm form eye.

D Watch Video Solution

140. In an astronomical telescope, the focal lengths of the objective and the eye piece are 100 cm and 5 cm respectively. If the telescope is
focussed on a scale 2 m from the objective, the final image is formed at 25 cm from the eye.

Calculate (i) the magnification and (ii) the
distance between the objective and the eyepiece

D Watch Video Solution

141. A tower 100 m tall at a distance of 3 km is seen through a telescope having objective of focal length 140 cm and eyepiece of focal length 5 cm . What is the size of final image if it is at 25 cm from the eye?
142. The diameter of the moon is $3.5 \times 10^{3} \mathrm{~km}$ and its distance from the earth is
$3.8 \times 10^{5} \mathrm{~km}$. It is seen through a telescope having focal lengths of objective and eye-piece as $4 m$ and 10 cm respectively. Calculate (a) magnifying power of telescope (b) length of telescope tube and (c) anngular size of image of moon.

- Watch Video Solution

143. An astronomical telescope consisting of an objective of focal length 60 cm and eyepiece of focal length 3 cm is focused on the moon so that the final image is formed at least distance vision, i.e. 25 cm from the eyepiece piece. Assuming the angular diameter of moon as $1 / 2^{\circ}$ at the objective, calculate (a) angular size and (b) linear size of image seen through the telescope.

CUQ (REFLECTION)

1. A bird flying high up in air does not cast shadow in the ground because
A. the size of the bird is smaller than sun
B. the size of the bird is smaller than earth
C. light rays fall almost normally on the bird

D. none of the above

2. A plane mirror reflects a beam of light to form a real image, The incident beam should be
A. parallel
B. Convergent
C. divergent
D. any one of the above
3. When an object is placed between two parallel mirrors, then number of images
formed are
A. 2
B. 4
C. 8
D. Infinite
4. If a number of images of a candle flame are seen in a thick mirror, then
A. The first image is the brightest
B. The second image is the brightest
C. The last image is the brightest
D. The image are equally bright

Answer: B
5. If two plane mirrors are inclined at angle 0 to each other as shown, than angle of deviation of incident ray is

A. $360-2 \theta$
B. $360-2 \theta$
C. $180-2 \theta$

D. $180+2 \theta$

Answer: A

D Watch Video Solution

6. A real, inverted and equal in size image is
formed by
A. a concave mirror
B. a convex mirror
C. a plane mirror

D. none of these

Answer: A

D Watch Video Solution

7. The rear - view mirror of a car is

A. Plane
B. Convex
C. Concave
D. None

Answer: B

- Watch Video Solution

8. v31
A. increase
B. decrease
C. remain unchanged
D. depend on the nature of liquid

Answer: C
9. A train is approaching towards a stationary person with a velocity v . The train emits a light signal. The signal will reach the stationary person with a velocity
A. C
B. $\mathrm{C}+\mathrm{v}$
C. $\mathrm{c}-\mathrm{V}$
D. $\sqrt{c^{2}+v^{2}}$

Answer: A

D Watch Video Solution

CUQ (REFRECTION)

1. Light of frequency n, wave length x travelling
with a velocity v enters into a glass slab of R.I
n then frequency, wave length and velocity of
the wave in glass slab respectively are

$$
\text { A. } \frac{n}{\mu}, \lambda, \frac{v}{u}
$$

B. $n, \frac{\lambda}{\mu}, \frac{v}{\mu}$
C. $n, \lambda, \frac{v}{\mu}$
μ
D. $\frac{n}{\mu}, \frac{\lambda}{\mu}, v$

Answer: B

D Watch Video Solution

2. Absolute refractive index of a material depends upon
A. nature of material
B. nature, wavelength and size of material
C. density, temperature, wavelength of material
D. fiature, temperature, wavelength of
material

Answer: D

- Watch Video Solution

3. If a ray of light takes t_{1} and t_{2} times in two

 media of absolute refractive indices μ_{1} and μ_{2} respectively to travel same distance, then$$
\begin{aligned}
& \text { A. } \mu_{1} t_{1}=\mu_{2} t_{2} \\
& \text { B. } \mu_{1} t_{2}=\mu_{2} t_{1} \\
& \text { C. } t_{1} \sqrt{\mu_{1}}=t_{2} \sqrt{\mu_{2}} \\
& \text { D. } t_{1} \sqrt{\mu_{2}}=t_{2} \sqrt{\mu_{1}}
\end{aligned}
$$

Answer: B
4. In cold countries, the phenomenon of looming takes place, because refractive index of air decreases with height
A. decreases with height
B. increases with height
C. does not change with height
D. become infinity at the surface

Answer: A

- Watch Video Solution

5. A ray of light passes through four transpar ent media with refractive indices $\mu_{1}, \mu_{2}, \mu_{3}$ and μ_{4} as shown in figure. The surfaces of all media are parallel. If the emergent ray is
parallel to the incident ray, we must hav

A. $\mu_{1}=\mu_{2}$
B. $\mu_{2}=\mu_{3}$

$$
\begin{aligned}
& \text { C. } \mu_{3}=\mu_{4} \\
& \text { D. } \mu_{4}=\mu_{1}
\end{aligned}
$$

Answer: D

D Watch Video Solution

6. Rays of light fall on a glass slab ($\mu \mathrm{gtl}$)as
shown in the figure. If μ at A is maximum and
at b it is minimum, then what will happen to
these rays?

A. they will tilt towards A
B. they will tilt towards B
C. they will not deviate

D. there will be total internal reflection

Answer: C
7. A hunter desires to shoot a fish whose image could be seen through clear water. His aim should be
A. Above the apparent image of fish
B. Below the apparent image of fish
C. In the line of sight offish
D. Parallel to the surface of water

Answer: B

D Watch Video Solution

8. A rectangular solid piece is placed in a liquid whose refractive index is the same as that of the solid
A. The sides of the sohd will appear to be
bent inward
B. The sides of the sohd will appear to be
bent outward
C. The solid will not be seen at all
D. The solid will appear as in air

Answer: C

- Watch Video Solution

9. A plane glass slab is placed over various
coloured letters. The letter which appears to
be raised the least is
A. violet
B. yellow
C. red
D. green

Answer: C

D Watch Video Solution

10. As temperature of medium increases the critical angle
A. Increases
B. Decreases
C. Remains same
D. first increases then decreases

D Watch Video Solution

11. A ball coated with 'lamp black' put in a glass
tank containing water appears silvery white due to
A. Refraction
B. Diffraction
C. Interference
D. Total internal reflection

Answer: D

- Watch Video Solution

12. In an optical fibre
A. Core region is transparent, cladding is
opaque
B. Core region is opaque, cladding is
transparent
C. Both core and cladding regions are transperent
D. Both core and cladding regions are opaque

Answer: C

- Watch Video Solution

13. In an optical fiber during transmission of
light
A. Energy increases
B. Energy decreases
C. No loss of propagation of energy takes
place
D. Light partially reflects and refracts

Answer: C

- Watch Video Solution

14. The focal length of a lens depends on
A. colour of light
B. radius of curvature of the lens
C. material of the lens
D. all the above

Answer: D

D Watch Video Solution

15. f_{B} and f_{R} are focal lengths of a convex lens for blue and red light respectively and
${ }^{`} F_{-}\left(B_{-}\right.$and $F r$ are the focal lengths of the
concave lens for blue and red light respectively. We must then have
A. $f_{B}>f_{R}$ and $f_{B}<f_{R}$
B. $f_{B}<f_{R}$ and $f_{B}>f_{R}$
C. $f_{B}>f_{R}$ and $f_{B}>f_{R}$
D. $f_{B}<f_{R}$ and $f_{B} f_{R}$

Answer: D

D View Text Solution
16. The graph between the object distance along the X -axis and image distance along Y axis for a convex lens is
A. Straight line
B. Parabola
C. Circle
D. A hyperbola

Answer: D

D Watch Video Solution

17.

A convex lens is used to form a real image of the object shown in the figure. The real inverted image shown in the following figures is
A.

C.

D.

Answer: D

D Watch Video Solution
18. The relation between refractive indices
u, μ_{1}, μ_{2}. if the behaviour of light ray is as
shown in figure

A. $\mu>\mu_{1}>\mu_{2}$
B. $\mu<\mu_{2}<\mu_{1}$
C. $\mu<\mu_{2}, \mu=\mu_{1}$
D. $\mu_{2}<\mu_{1}, \mu=\mu_{2}$

Answer: C

- Watch Video Solution

19. If parallel beam of light falls on a convex
lens. The path of the rays is shown in fig. It
follows that

A. $\mu_{1}>\mu>\mu_{2}$
B. $\mu_{1}<\mu<\mu_{2}$
C. $\mu_{1}=\mu<\mu_{2}$
D. $\mu_{1}=\mu>\mu_{2}$

Answer: C

D Watch Video Solution

20. A converging lens is used to form an image on a screen. When the upper half of the lens is
covered by an opaque screen.
a) half of the image will disappear
b) no part of image will disappear .
c) Intensity of the image will increased
d. Intensity of the image will decrease
A. a,c are true
B. a,d are true
C. b,c are true
D. b,d are true

Answer: D

D View Text Solution

21. A convex lens is placed in contact with a mirrorr as shown. If he space between them is
filed with water, its power will

A. decreases
B. increase
C. remain unchanged

D. can increase or decrease depending on

the focal length

Answer: B
22. A real image is formed by a convex lens.

Then it is put in contact with a concave lens
and again a real image is formed. This image will
A. shifts towards the lens system
B. shifts away from the lens sytem
C.) remain in its original position
D. shifts to infinity

Answer: B
23. A beam of parallel rays is brought to focus by a planoconvex lens. A thin Concave lens of the same focal length is joined to the first lens. The effect of this is
A. the focal point shifts away from the lens
by a small distance
B. the focal point shifts towards the lens by
a small distance

C. the focal point of lens does not shift at

 allD. the focal point shifts to infinity

Answer: D

D Watch Video Solution

24. v33
A. $\mathrm{f} / 2$
B. f

C. 2 f

D. 4 f

Answer: C

D Watch Video Solution

25. If a lens of focal length f is divided into two
equal parts and both pieces are put in contact
as shown in fig. The resultant focal length of

combination is

A. f
B. $2 f$
C. $3 f$
D. 4 f

Answer: A

- Watch Video Solution

26. If a lens of focal length f is divided into two
equal parts and both pieces are put in con-
tact as shown in fig. The resultant focal length
of combination are

A. $0, f, \infty$
B. f,f,0
C. $2 \mathrm{f}, \mathrm{f}, 0$
D. $f, f / 2, \infty$

Answer: D

D View Text Solution

27. If we added half part of each convex and concave lens of a focal length f as shown the resolution of focal length will be
A. 0
B. ∞
C. f
D. $2 f$

Answer: B

- Watch Video Solution

28. In the figure given below there are two

convex lenses L1 and L2 having focal lengths F1

and F2 respectively. The distance between L1
and L2 will be

A. F_{1}
B. F_{2}
C. $F_{1}+F_{2}$
D. $F_{1}-F_{2}$

Answer: C

- Watch Video Solution

CUQ (LENS MAKER'S FORMULA)

1. Lens maker's formula is applicable to
A. Thin lenses and paraxial rays which
subtend very small angles with the principal axis
B. Thick lenses and paraxial rays which
subtend very small angels with the
principles axis
C. Thin lenses and for marginal rays
D. Thick lenses and for marginal rays

- Watch Video Solution

2. A spherical air bubble in water will act as

A. a convex lens
B. a concave lens
C. Plane glass plate
D. Plano-concave lens

Answer: B

- Watch Video Solution

3. A liquid of refractive index 1.6 is introduced between two identical plano-convex lenses in two ways P and Q as shown. If the lens ma terial has refractive index 1.5 , the combina tion is

A. convergent in both
B. divergent in both

C. convergent in Q only

D. convergent in P only

Answer: C

D Watch Video Solution

4. If a convex lens is dipped in a liquid whose refractive index is equal to the refractive index of the lens, then lens acts like a
A. concave lens
B. plane parallel glass plate
C. piano convex lens
D. piano concave lens

Answer: B

D Watch Video Solution

CUQ (PRISM)

1. Recognize the prism (s) among the given
figures
c)

A. bandc
B. c, aandb
C. only b
D. a, b, c, and d

Answer: D

D Watch Video Solution
2. The refractive index of a material of a prism of angles $45^{\circ}-45^{\circ}-90^{\circ}$ is 1.5 . The path of
the ray of light incident normally on the hypotenuse side is shown in
A.

B.

c.

D.

Answer: A

D Watch Video Solution
3. In the given figure,the angle between reflected ray is equal to :

A. A
B. 2A
C. 3 A
D. 4 A

Answer: B
(D) Watch Video Solution
4. An equilateral prism is placed on a horizontal surface. A ray PQ is incident onto it.

For minimum deviation `
A. $P Q$ is horizontal
B. QR is horizontal
C. RS is horizontal
D. Any one will be horizontal

Answer: B

- Watch Video Solution

5. A prism produces a minimum deviation \S in
a light beam. If three such prisms are combined, the minimum deviation produced will be
A. 45
B. 25
C. 5
D. 0

Answer: C

D Watch Video Solution

6. When a ray of light is refracted by a prism
such that the angle of deviation is minimum, then
A. the angle of emergence is equal to the angle of incidence
B. the angle of emergence is greater than
the angle of incidence
C. the angle of emergence is smaller than the angle of incidence
D. the sum of the angle of incidence and
the angle of emergence is equal to 90°

Answer: A

D Watch Video Solution

7. If a small angled prism, made of glass is immersed in a liquid of refractive index 1 and a ray of light is made incident on it, then
A. its deviation will be zero
B. it will suffer total reflection
C. the emergent ray is bent towards the edge of the prism
D. the emergent ray is bent towards the base of prism

Answer: D

D Watch Video Solution

8. Three prisms 1,2 and 3 have $A=6^{\circ}$, but refractive indices are $1.4,1.5,1.6$ and their angles of deviation are $\delta_{1}, \delta_{2} \delta_{3}$ respectively. Then
A. $\delta_{3}>\delta_{2}>\delta_{1}$
B. $\delta_{1}>\delta_{2}>\delta_{3}$
C. $\delta_{2}>\delta_{1}>\delta_{3}$
D. $\delta_{1}=\delta_{2}=\delta_{3}$

Answer: A

CUQ (DISPERSION)

1. When white light enters a prism, it gets split into its constituent colours. This is due to
A. high densityofprism material
B. bccause is different for different
wavelength
C. diffraction of light
D. interference of light

Answer: B

D Watch Video Solution

2. When a white light passes through a hollow prism, then there is
A. There is no dispersion and no deviation
B. Dispersion but no deviation.
C. Deviation but no dispersion
D. There is dispersion and deviation both

Answer: A

D Watch Video Solution

3. Which one of the following does not exhibit
dispersion

Answer: C

D Watch Video Solution

4. In dispersion without deviation
A. The emergent rays of all the colours are
parallel to the incident ray.
B. Yellow coloured ray is parallel to the
incident ray
C. Only red coloured ray is parallel to the incident ray
D. All the rays are parallel, but not parallel
to the incident ray

Answer: B

D Watch Video Solution

5. In the visible region the dispersive powers
and the mean angular deviations for crown
and flint glass prisms are $\omega^{\prime}, \omega^{\prime}$ and d, d
respectively. The condition for getting deviation without dispersion when the two prisms are combined is
A. $\sqrt{\omega d}+\sqrt{\omega^{\prime} d^{\prime}}=0$
B. `omega' d + omegad'=0
C. $\omega d+\omega^{\prime} d^{\prime}=0$
D. $\omega d^{2}+\left(\omega^{\prime} d^{\prime}\right)^{2}=0$

Answer: C

D Watch Video Solution
6. In the achromatic prism, we have
A. deviation without dispersion
B. dispersion without deviation
C. refraction without deviation
D. deviation and dispersion

Answer: A

- Watch Video Solution

7. The angular dispersion will be maximum in
the following pairs of colours is :-
A. Yellow and green
B. Red and blue
C. Green and red
D. Blue and orange

Answer: B

D Watch Video Solution

CUQ (DEFECTS OF EYE)

1. When objects at different distances are seen
by the eye, which of the following remai constant?
A. The focal length of the eye lens
B. The object distance from the eye lens
C. The radii of curvature of the eye lens
D. The image distance from the eye lens

2. Near and far points of a human eye are

A. 0 and 25 cm
B. 0 and infinity
C. 25 cm and 100 cm
D. 25 cm and infinity

Answer: D

3. The ability of eye to focus on both near and far objects is called
A. Presbyopia
B. Myopia
C. Hypermetropia

D. Power of accommodation

Answer: D
(D) Watch Video Solution
4. The loss of ability of an eye to focus near and far objects, with the advancing age is called
A. Astigmatism
B. Presbyopia
C. Myopia
D. Hypermetropia

Answer: B

5. The image formed on the eye retina is

A. virtual and inverted
B. virtual and erect
C. real and erect
D. real and inverted

Answer: D

D Watch Video Solution

6. Myopia occurs due to
A. Increase in the focal length of eye lens
B. Decrease in the distance between retina
and lens
C. Decrease in focal length of eye lens
D. Increase in the distance between retina
and lens

Answer: C

D Watch Video Solution

7. For a myopic (short-sighted) eye, rays from
far distant objects are brought to focus at a point
A. on the retina
B. Behind the retina
C. In between eye lens and retina
D. At any position

Answer: C

D Watch Video Solution
8. In the case of hyper metropia
A. image of a near object is formed behind
the retina
B. the image of a distant object is formed inffont of the retina
C. a concave lens should be used for correction
D. a bifocal lens should be used for

Answer: A

D Watch Video Solution

9. Long -sighted people who have lost their spectacles can still read a book by looking through a small (3-4mm) hole in a sheet of paper
A. Because the fine hole produces an image of the letters at a longer distance
B. Because in doing so, the distance of the
object is increased
C. Because in doing so, the focal length of
the eye lens is effectively decreased
D. Because in doing so, the focal length of
the eye lens is effectively increased

Answer: C

D Watch Video Solution

CUQ (OPTICAL INSTRUMENTS MICROSCOPES)

1. For which of the following colour, the magnifying power of a microscope will be maximum
A. White colour
B. Red colour
C. Violet colour
D. Yellow colour

- Watch Video Solution

2. The magnifying power of a simple microscope can be increased, if we use eyepiece of
A. Higher focal length
B. Smaller focal length
C. Higher diameter
D. Smallcr diameter

- Watch Video Solution

3. The angular magnification of a simple microscope can be increased by increasing :- 1 focal length of lens 2 size of object 3 aperture of lens 4 power of lens
A. Focal length of lens
B. Size of object
C. Aperture of lens
D. Power of lens

Answer: D

- Watch Video Solution

4. When the length of a microscope tube
increases, its magnifying power
A. decreases
B. increases
C. does not change
D. can't say

Answer: B

- Watch Video Solution

5. In a compound microscope the image produced by the objective is
A. real enlarged and errect
B. real enlarged and inverted
C. Virtual enlarged and erect
D. Virtual, enlarged and inverted

- Watch Video Solution

6. The magnifing power of a compoundmicroscope increases when
A. the focal length o fobjective lens is increased and that of eye lens is decreased
B. the focal length of eye lens is increased and that of objective lens in decreased
C. focal lengths of both objective and eye-
piece are increased
D. focal lengths of both objective and eye-
piece are decreased

Answer: D

D Watch Video Solution

CUQ (OPTICAL INSTRUMENTS : TELESCOPES)

1. The optical instrument with zero power is
A. microscope
B. telescope
C. eyepiece
D. all the above

Answer: B
2. The image formed by the telescope in normal adjustment position is at
A. D
B. 2D
C. F
D. infinity

Answer: D

D Watch Video Solution
3. If the telescope is reversed i.e., seen seen
from the objective side, then
A. Object will appear very small
B. Object will appear very large
C. There will be no effect on the image
formed by the telescope
D. Image will be slightly greater than the earlier one

Answer: A
4. In an astronomical telescope the focal
lengths of objective and eyepiece should respectively be
A. large and small
B. small and large
C. equal
D. too small are too large

Answer: A
5. The magnifying power of an astronomical telescope can be increased, if we-
A. increase the focal length of the objective
B. increase the focal length of the eye-piece
C. decrease the focal length of the objective
D. decrease the focal length of the
objective and at the same time increase

the focal length of the eye piece

Answer: A

D Watch Video Solution

6. The final image is an astronomical telescope
isandwith respect to the object [fill in
the blank] .
A. real and errect
B. virtual and inverted

C. real and inverted

D. virtual and ertfect

Answer: B

- Watch Video Solution

7. A photograph of the moon was taken with telescope. Later on, it was found that a housefly was sitting on the objective, lens of the telescope. In photograph A'
A. The image of housefly will be reduced
B. There is a reduction in the intensity of
the image.
C. There is an increase in the intensity of
the image
D. The image ofthe housefly will be
enlarged

Answer: B

8. In Gallilean telescope, the final image formed is
A. Real, erect and enlarged
B. Virtual, erect and enlarged
C. Real, inverted and enlarged
D. Virtual, inverted and enlarged

Answer: B

- Watch Video Solution

CUQ (ASSERTION \& REASON)

1. Assertion : Radius of curvature of a convex mirror is 20 cm . If a real object is placed at 10 cm from pole of the mirror, image is formed at infinity.

Reason : When object is placed at focus, its image is formed at infinity
A. If both assertion and reason are true
and \backslash reason is a correct explanation of
B. If both assertion and reason are true but
the reason is not a correct explanation
of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true

Answer: D

D Watch Video Solution

2. The angle of a prism is 60° and its refractive index is $\sqrt{2}$. The angle of minimum deviation suffered by a ray of light in passing through it is
A. If both assertion and reason are true
and \backslash reason is a correct explanation of
the assertion
B. If both assertion and reason are true but
the reason is not a correct explanation
of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true

Answer: B

D Watch Video Solution

3. Assertion:Image formed by concave lens is not always virtual.

Reason:Image formed by a lens is real if the image is formed in the direction of ray of light with respect to the lens.
A. If both assertion and reason are true
and \backslash reason is a correct explanation of
the assertion
B. If both assertion and reason are true but
the reason is not a correct explanation
of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true

Answer: B

4. Assertion : Minimum deviation for a given prism does not depend on the refractive index μ, of the prism.

Reason : Deviation by a prism is given by
$\delta=\left(i_{1}+i_{2}+A\right)$ and does not have the term μ.
A. If both assertion and reason are true
and \backslash reason is a correct explanation of the assertion
B. If both assertion and reason are true but
the reason is not a correct explanation
of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true

Answer: C

- Watch Video Solution

5. Assertion : Critical angle of light while passing from glass to air is minimum for violet colour.

Reason : The wavelength of violet li^ht is greater than that of other colours
A. If both assertion and reason are true and \backslash reason is a correct explanation of
the assertion

B. If both assertion and reason are true but

the reason is not a correct explanation
of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true

Answer: B

D Watch Video Solution

6. Assertion: Different colours of light have same velocity in vacuum, but they have different t velocities in in any other transparent medium.

Reason : $\mathrm{v}=\mathrm{c} / \mu$, where symbols have standard meanings. For different colours, refractive index, oftransparent medium has different values. Therefore, v is different
A. If both assertion and reason are true
and \backslash reason is a correct explanation of
the assertion
B. If both assertion and reason are true but
the reason is not a correct explanation of assertion.
C. If assertion is true but reason is false.

D. If assertion is false but reason is true

Answer: D

- Watch Video Solution

7. Assertion : The minimum distance between
an object and its real image formed by a convex lens is 2 f .

Reason : The distance between an object and its real image is minimum when its magnification is -1 .
A. If both assertion and reason are true
and \backslash reason is a correct explanation of
the assertion
B. If both assertion and reason are true but
the reason is not a correct explanation
of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true

Answer: D

8. Assertion : A lens has tow principal focal lengths which may differ.

Reason : Light can fall on either surface of the lens. The two principal focal lengths differ when medium on the two sides have different refractive indices
A. If both assertion and reason are true
and \backslash reason is a correct explanation of the assertion
B. If both assertion and reason are true but
the reason is not a correct explanation
of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true

Answer: A

- Watch Video Solution

9. Assertion : The twinkling of star is due to rcfiectiop of light

Reason : The velocity of light changes while going from one medium to the other.
A. If both assertion and reason are true
and \backslash reason is a correct explanation of
the assertion
B. If both assertion and reason are true but
the reason is not a correct explanation
of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true

Answer: D

D Watch Video Solution

10. Assertion : In an electromagnetic wave, the
elecric field E is much larger than magnetic
field B.

Reason : The electromagnetic waves get
deflected in perpendicular electric field but not in a perpendicular magenetic field
A. If both assertion and reason are true and \backslash reason is a correct explanation of
the assertion
B. If both assertion and reason are true but
the reason is not a correct explanation
of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true

Answer: C

D Watch Video Solution

11. Assertion : If a convex lens of glass is
immersed in water its power decreases.

Reason : In water it behaves as a concave lens.
A. If both assertion and reason are true
and \backslash reason is a correct explanation of
the assertion
B. If both assertion and reason are true but
the reason is not a correct explanation
of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true

Answer: C

- Watch Video Solution

12. STATEMENT-1 For observing traffic at our back, we prefers to use a convex mirror
$S T A T E M E N T 2$ A convex mirror has a more
larger field of view than a plane mirror or concave mirror.
A. If both assertion and reason are true and \backslash reason is a correct explanation of
the assertion
B. If both assertion and reason are true but
the reason is not a correct explanation
of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true

Answer: A

D Watch Video Solution

13. Assertion : A concave mirror of focal length
f in air is used in a medium of refractive index
14. Then the focal length of mirror in medium becomes double.

Reason: The radius of curvature of a mirror is double of the focal length.
A. If both assertion and reason are true and \backslash reason is a correct explanation of
the assertion
B. If both assertion and reason are true but
the reason is not a correct explanation
of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true

Answer: D

D Watch Video Solution

14. Assertion : When monochromatic light is
incident on a surface separting two media, the
reflected and refracted light both have the same frequency as the incident frequency.

Reason: The frequency of monochromatic light depends on media.
A. If both assertion and reason are true
and \backslash reason is a correct explanation of
the assertion
B. If both assertion and reason are true but
the reason is not a correct explanation
of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true

Answer: C

15. Assertion : The images formed by total internal reflections are much brighter than those formed by mirrorrs or lenses.

Reason : There is no loss of intensity in total internal reflection.
A. If both assertion and reason are true
and \backslash reason is a correct explanation of
the assertion
B. If both assertion and reason are true but
the reason is not a correct explanation
of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true

Answer: A

D Watch Video Solution

16. Assertion : The blue colour of sky is on account of scattering of sun light.

Reason : The intensity of scattered light varies
inversely as the \& fourth power of wavelength of the light.
A. If both assertion and reason are true and \backslash reason is a correct explanation of
the assertion

B. If both assertion and reason are true but

the reason is not a correct explanation
of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true

Answer: A

D Watch Video Solution

EXERCISE - 1 (C.W)(REFLECTION)

1. Two plane mirrors are at 45° to each other.

If an object is placed between them, then the
A. 5
B. 9
C. 7
D. 8

Answer: C
2. Figures shows a plane mirror on which a light ray is incident, if the incident light ray is turned by 10° and the mirror by 20° as shown , find the angle turned by the reflected ray.

A. 30° clockwise
B. 30° anticlockwise

C. 50° clockwise

D. 50° anticlock wise

Answer: A

D Watch Video Solution

3. A small object is placed 10 cm in front of a plane mirrorr. If you stand behind the object 30 cm from the mirrorr and look at its image, the distance focused for your eye will be
A. 60 cm
B. 20 cm
C. 40 cm
D. 80 cm

Answer: C

D Watch Video Solution

4. A concave mirror gives an image three times
as large as the object placed at a distance of

20 cm from it. For the image to be real , the focal length should be-
A. 10 cm
B. 15 cm
C. 20 cm
D. 30 cm

Answer: B
(Watch Video Solution

5. An object is placed at 20 cm from a convex

mirror of focal length 10 cm . The image formed by the mirror is
A. Real and at 20 cm from the mirror
B. Virtual and at 20 cm from the mirror
C. Virtual and at $\frac{20}{3} \mathrm{~cm}$ from the mirror
D. Real and at $\frac{20}{3} \mathrm{~cm}$ from the mirror

Answer: C

- Watch Video Solution

6. An object is placed at 10 cm infront of a concave mirror of radius of curvature 15 cm .

The position of image(v) and its magnification (m) are
A. $v=30 \mathrm{~cm}, \mathrm{~m}=3$ (real, inverted)
B. $v=20 \mathrm{~cm}, \mathrm{~m}=3$ (virtual, erect)
C. $v=10 \mathrm{~cm}$, same size (real, inverted)
D. $v=10 \mathrm{~cm}$, same size (virtual, erect)

Answer: A

7. A 4.5 cm needle is placed 12 cm away from a

 convex mirror of focal length 15 cm . The position of image and the magnification respectively areA. $3.33, \frac{5}{7}$
B. $6.7 \mathrm{~cm}, 1.8$
C. $0.15 \mathrm{~cm}, 1.8$
D. $6.7 \mathrm{~cm}, \frac{5}{9}$

Answer: D

D Watch Video Solution

8. A candle is placed 20 cm from the surface of
a convex mirror and a plane mirror is also
placed so that the virtual images in the two mirrors coincide. If the plane mirror is 12 cm
away from the object, what is the focal length
of the convex mirror?
A. 5 cm

B. 10 cm

C. 20 cm

D. 40 cm

Answer: A

D Watch Video Solution

9. The distance of real object when a concave
mirror produces a real image of magnification
' m ' is (f is focal length)
A. $\left(\frac{m-1}{m}\right) f$
B. $\left(\frac{m+1}{m}\right) f$
C. $(m-1) f$
D. $(m+1) f$

Answer: B

D Watch Video Solution

EXERCISE - 1 (C.W)(REFRACTION)

1. If ${ }_{i} \mu_{j}$ represents refractive index when a
light ray goes from mefium i to medium j,
then the product ${ }_{\cdot 2} \mu_{1} \times{ }_{\cdot 3} \mu_{2} \times{ }_{.4} \mu_{3}$ is equal to
A. $3 \mu_{1}$
B. ${ }_{3} \mu_{2}$
C. $\frac{1}{{ }_{1} \mu_{4}}$
D. ${ }_{4} \mu_{2}$

Answer: C

2. The refractive index of glass with respect to water is $\frac{9}{8}$. If the velocity and wavelength of
light in water are $2.25 \times 10^{8} \mathrm{~ms}^{-1}$ and 5400
$\stackrel{o}{A}$, then the velcoity and wavelength of light in
glass are
A. $2 \times 10^{8} \mathrm{~ms}^{-1}, 4800 \stackrel{o}{\mathrm{~A}}$
B. $1 \times 10^{8} \mathrm{~ms}^{-1}, 6075 \stackrel{o}{A}$
C. $2 \times 10^{8} \mathrm{~ms}^{-1}, 6075 \stackrel{o}{A}$
D. $1 \times 10^{8} \mathrm{~ms}^{-1}, 4800 \stackrel{o}{A}$

Answer: A

- Watch Video Solution

3. A ray of light passes normally through a slab
$\mu=1.5$ of thickness t. If the speed of light in
vaccum be c, then time taken by the ray to go across the slab will be
A. $\frac{t}{c}$
B. $\frac{3 t}{2 c}$
C. $\frac{2 t}{3 c}$
D. $\frac{4 t}{9 c}$

Answer: B

D Watch Video Solution

4. The angle of incidence on the surface of a
diamond of refractive index 2.4, if the angle
between the reflected and refracted rays is 90° is

$$
\text { A. } \tan ^{-1}(2.4)
$$

B. $2 \sin ^{-1}\left(\frac{1}{2.4}\right)$
C. $\tan ^{-1}\left(\frac{1}{2.4}\right)$
D. $\cos ^{-1}\left(\frac{1}{2.4}\right)$

Answer: A

D Watch Video Solution

5. A bird in air is at a height ' y ' from the surface of water. A fish is at a depth ' x ' below the surface of water. The apparent distance of
fish from the bird is (The refractive index of water is n)

$$
\begin{aligned}
& \text { A. } x+\frac{y}{\mu} \\
& \text { B. } \mu x+y \\
& \text { C. } \frac{x}{\mu}+y \\
& \text { D. } \frac{x}{\mu}-y
\end{aligned}
$$

Answer: C

D Watch Video Solution

6. A ray of light incident on a transparent block at an angle of incident 60°. If the refractive index of the block is 1.732 , the angle of deviation of the refracted ray is
A. 15°
B. 25°
C. 30°
D. 45°

Answer: C

7. A fish looking up through the water sees the

 outside world contained in a circular horizon. If the refractive index of water is $\frac{4}{3}$ and the fish is 12 cm below the surface, the radius of this circle is cm is$$
\begin{aligned}
& \text { A. } \frac{36}{\sqrt{5}} \\
& \text { B. } 4 \sqrt{5} \\
& \text { C. } \frac{36}{\sqrt{7}} \\
& \text { D. } 37 \sqrt{7}
\end{aligned}
$$

- Watch Video Solution

8. When a light ray is refracted from one medium into another, the wavelength changes from $4500 \stackrel{\circ}{A}$ to $3600 \stackrel{\circ}{A}$. The critial angle for a ray from second medium to first medium is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{2}{13}\right) \\
& \text { B. } \cos ^{-1}\left(\frac{2}{3}\right) \\
& \text { C. } \tan ^{-1}\left(\frac{3}{2}\right)
\end{aligned}
$$

D. $\tan ^{-1}\left(\frac{2}{\sqrt{5}}\right)$

Answer: D

D Watch Video Solution

9. Figure shows a mixture of blue, green and red coloured rays incident normally on a right angled prism. The critical angles of the material of the prism for red, green and blue are $46^{\circ}, 44^{\circ}$ and 43° respectively. The
arrangement will separate

A. Red from Green and Blue
B. Blue from Green and Red
C. Green from Red and Blue
D. All the colours

Answer: A

- Watch Video Solution

10. A ray of light is incident at an angle of 60

- \circ on a $\sqrt{3} \mathrm{~cm}$ thick plate $(\mu=\sqrt{3})$ The shift
in the path of the ray as it emerges out from the plate is (in cm)
A. 1
B. 1.2
C. 0.5
D. 1.8

Answer: A

- Watch Video Solution

EXERCISE - 1 (C.W)(REFRACTION THROUGH

 SPHERICAL SURFACES)1. An air bubble in glass ($\mu=1.5$) is situated at
a distance 3 cm from a convex surface of diameter 10 cm as shown. The distance from surface at which the image of bubble appears

A. 2.5 cm
B. 5 cm
C. 4 cm
D. 1.5 cm

Answer: A

D View Text Solution

EXERCISE-1 (C.W)(LENSES)

1. Two thin lenses of powers $2 D$ and $3 D$ are placed in contact. An object is placed at a distance of 30 cm from the combination The distance in cm of the image from the combination is
A. 30
B. 40

C. 50

D. 60

Answer: D

D Watch Video Solution

2. A symmetric doule convex lens is cut in two equal parts by a plane containing the pricipal axis. If the power of the original lens was 4D, the power of a cut lens will be
A. 2D
B. 3D
C. 4D
D. 5 D

Answer: A

- Watch Video Solution

3. A parallel beam of monochromatic light falls on a combination of a convex lens and a concave lens of focal lengths 15 cm and 5 cm
respectively. What is the distance between the
two lenses to obtain a parallel beam of light
from the concave lens ?
A. 20 cm
B. 3 cm
C. 10 cm
D. 45 cm

Answer: C

D Watch Video Solution
4. Two thin lenses, when in contact, produce a combination of power +10 dioptres. When they are 0.25 m apart, the power is reduced to +6 dioptres. The power of the lenses in dioptres, are
A. 1 and 9
B. 2 and 8
C. 4 and 6
D. 5,5

D Watch Video Solution

5. A beam of light converges at a point P. Now a convex lens of focal length 30 cm placed in the path of the convergent beam 12 cm from P . The point at which the beam converges now is

- Watch Video Solution

6. a convex lens of power +6 dioptre is placed
in contact with a concave lens of power-4
dioptre. What will be the nature and focal length of this combination?
A. Concave, 25 cm
B. Convex, 50 cm
C. Concave, 20 cm
D. Convex, 100 cm

Answer: B
(Watch Video Solution
7. The radius of curvature of the convex
surface of a thin plano-convex lens is 15 cm
and the refractive index of its material is 1.6.

The power of the lens is
A. $+1 D$
B. -2 D
C. $+3 D$
D. $+4 D$

Answer: D
-
8. v31
A. 9 cm
B. 18 cm
C. 20 cm
D. 22 cm

Answer: D

- Watch Video Solution

9. The refractive index of the material ofa double convex lens is 1.5 and its focal length is

5 cm . If the radii of curvature are equal, the value of the radius of curvature (in cm) is
A. 5
B. 6.5
C. 8
D. 9.5

Answer: A
10. A diverging meniscus lens of 1.5 refractive index has concave surfaces of radii 3 and 4 cm .

The position of image if an object is placed 12 cm infront of the lens is
A. -24 cm
B. -8 cm
C. 8 cm
D. 24 cm

- Watch Video Solution

EXERCISE-1 (C.W)(REFRACTION THROUGH PRISM)

1. A prism has a refracting angle of 60°. When
placed in the position of minimumm deviation,
it produces a deviation of 30°. The angle of
incidence is,
A. 30°
B. 45°
C. 15°
D. 60°

Answer: B

D Watch Video Solution

2. Light falls at normal incidence on one face
of a glass prism of refractive index $\sqrt{2}$. Then
the angle of emergence when the angle of the prism is 45°
A. 45°
B. 60°
C. 15°
D. 90°

Answer: D

D Watch Video Solution

3. If a light ray incidents normally on one of
the faces of the prism of refractive index 2 and
the emergent ray just grazes the second face of the prism, then the angle of deviation is
A. 0°
B. 30°
C. 60°
D. 90°

Answer: C
(Watch Video Solution
4. A ray of light passes through an equilateral prism (refractive index 1.5) such that angle of incidence is equal to angle of emergence and the latter is equal to $3 / 4 t h$ of the angle of prism. Calculate the angle of deviation.
A. 0°
B. 30°
C. 60°
D. 45°
5. A ray of light incident on face $A B$ of an equilateral glass prism, shows minimum deviation of $30 \circ$.Calculate the speed of light through the prism.
A. $2.121 \times 10^{8} \mathrm{~ms}^{-1}$
B. $1.50 \times 10^{8} \mathrm{~ms}^{-1}$
C. $1.25 \times 10^{8} \mathrm{~ms}^{-1}$
D. $1.75 \times 10^{8} \mathrm{~ms}^{-1}$

D Watch Video Solution

6. A prism of angle 4° gives a deviation of 2.4°.

The refractive index of the material of the prism is
A. 1.6
B. 1.7
C. 1.8
D. 1.9

Answer: A

- Watch Video Solution

EXERCISE - 1 (C.W)(DISPERSION BY A PRISM)

1. A thin prism P_{1} of angle 4^{0} and refractive
index 1.54 is combined with another thin prism
P_{2} of refractive index 1.72 to produce dispersion without deviation. The angle of prism P_{2} is
A. 4°
B. 5.33
C. 2.6°
D. 3°

Answer: D

D Watch Video Solution

2. A crown glass prism with refracting angle 5° is to be achromatised for red and blue light with flint glass prism. Angle of the flint glass
prism should be (Given for grown glass μ_{r}
-1.513, $\mu_{b}=1.523$, for flint glass

$$
\left.\mu_{r}=1.645, \mu_{b}=1.665\right)
$$

A. 1.5°
B. 3°
C. 2.4°
D. 4.5°

Answer: B

D View Text Solution
3. If the ratio of dispersive powers of the materials of two prism is $2: 3$ and ratio of angular dispersions produced by them is 1:2
then the ratio of mean deviation produced by them is
A. $4: 3$
B. $3: 4$
C. $1: 3$
D. $3: 1$

D Watch Video Solution

4. Dispersive power of the material of prism is
0.0221 . If the deviation produced by it for yellow colour is $38^{\wedge} \circ$ then the angular dispersion between red and violet colours is
A. 0.65°
B. 0.84°
C. 0.48°
D. 1.26°

Answer: B

- Watch Video Solution

EXERCISE - 1 (C.W)(DEFECTS OF THE EYE)

1. A person can see clearly upto 1 m . The nature and power of the lens which will enable him to see things at a distance of 3 m is
A. concave, - -0.66 D
B. convex, -0.66 D

C. concave, -0.33D

D. convex, -0.33D

Answer: A

- Watch Video Solution

2. The far point of a myopic eye is 10 cm from
the eye. The focal length of a lens for reading at normal distance $(25 \mathrm{~cm})$ is

$$
\text { A. }-8.55 \mathrm{~cm}
$$

B. -16.7 cm
C. -35.4 cm
D. -32.7 cm

Answer: B

D Watch Video Solution

3. A person can see clearly objects between 15
and 100 cm from his eye. The range of his
vision if he wears close fitting spetancles
having a power of -0.8 diopter is
A. 5 to 500 cm
B. 12 to 250 cm
C. 17 to 500 cm
D. 17 to 250 cm

Answer: C
(D) Watch Video Solution

EXERCISE - 1 (C.W)[OPTICAL INSTRUMENTS MICROSCOPES)]

1. Which of the following quantities can be measured using only a trayelling microscope
A. Refractive index of a glass slab
B. Refractive index of a prism
C. Refracting angle of a prism
D. Refractive index a small drop of water

Answer: A
(Watch Video Solution
2. The focal length of a convex lens is
" 10 cm .Find its magnifying power when it is used as a magnifying glass to form the image at (i) near point and (ii) far point
A. 3.5, 2.5
B. 2.5,3.5
C. 2.5,1.5
D. 1.5,2.5

Answer: A
3. A magnifying glass is made of a combination
of a convergent lens of power 20D and divergent lens of power 4D. If the least distance of distinct vision is 25 cm . The magnifying power is
A. 7
B. 5
C. 3
D. 4

Answer: B

D Watch Video Solution

4. Four lenses A, B, C and D power +100D, -50 D,

20 D and 5 D. Which lenses will you use to design a compound microscopefbr best v?' magnification ?
A. A and C
B. B and D
C. C and D
D. Aand B

Answer: A

D View Text Solution

5. The objective lens of a compound microscope produces magnification of 10. In order to get an overall magnification of 100 when image is formed at 25 cm from the eye,
the focal length of the eye lens should be
A. 4
B. 10
C. $\frac{25}{9}$
D. 9

Answer: C

- Watch Video Solution

6. A compound microscope has a magnifying power of 100 when the image is formed at infinity. The objective has focal length 0.5 cm
and the tube length is 6.5 cm . Find the focal length of the eye-piece.
A.) 2 cm
B. 2.5 cm
C. 3.25 cm
D. 4 cm

Answer: C

D Watch Video Solution

1. The focal lengths of the eyepiece and the objective of an astronimical telescope are 2 cm
and 100 cm respectively. The magnifying power of the telescope for normal adjustment and the length of the telescope is
A. $50,102 \mathrm{~cm}$
B. $100,204 \mathrm{~cm}$
C. $25,62 \mathrm{~cm}$
D. $75,125 \mathrm{~cm}$

Answer: A

D Watch Video Solution

2. The magnifying power of an astronomical telescope is 5 , the focal power of its eye piece
is 10 diopters. The focal power of its objective
(in diopters) is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

3. The magnifying power of terrestrial telescope is 25 when it is in normal adjustment and the length of the telescope is

124 cm . If the focal length of the erecting lens
is 5 cm , the focal lengths of the objective and
the eye-piece are respectively.
A.) $50 \mathrm{~cm}, 2 \mathrm{~cm}$
B. $50 \mathrm{~cm}, 2.5 \mathrm{~cm}$
C. $100 \mathrm{~cm}, 4 \mathrm{~cm}$
D. $100 \mathrm{~cm}, 5 \mathrm{~cm}$

Answer: C
(D) Watch Video Solution

1. A ray reflected successively from two plane mirrors inclined at a certain angle $\left(<90^{\circ}\right)$ undergoes a deviation of 300°. The number of images observable are:
A. 60
B. 12
C. 11
D. 5

- Watch Video Solution

2. If a plane mirror is rotated in its ownplane through an angle of 20° keeping the incident ray direction fixed, then the angle through which the reflected ray turns is
A. 40°
B. 0°
C. 20°
D. 10°

Answer: B

- Watch Video Solution

3. A man runs towards a mirror at a rate of 6 m
s^{-1}. If the mirror is at rest, his image will
have a velocity (with respect to man)
A. $+12 m s^{-1}$
B. $-6 m s^{-1}$
C. $6 m s^{-1}$
D. $-12 m s^{-1}$

Answer: D

D Watch Video Solution

4. A real image formed by a concave mirror is
4.5 times the size of the object. If the mirror is

20 cm from the object, its focallength is

> A. $\frac{90}{11} \mathrm{~cm}$
> B. $\frac{120}{11} \mathrm{~cm}$
> C. $\frac{150}{11} \mathrm{~cm}$
> D. $\frac{180}{11} \mathrm{~cm}$

Answer: D

- Watch Video Solution

5. A point object is placed at a distance of 30
cm from a convex mirror of focal length 30 cm .

The image will form at
A. Infinty
B. Focus
C. Pole
D. 15 cm behind the mirror

Answer: D

- Watch Video Solution

6. An obj ect is placed at 5 cm infront of a concave mirror of radius of curvature 15 cm .

The position of image (v) and its magnification (m) are
A. $v=15 \mathrm{~cm}, \mathrm{~m}=3$ (virtual, erect)
B.) $v=5 \mathrm{~cm}$, same size (virtual, erect)
C. $v=5 \mathrm{~cm}$, same size (real, inverted)

D. $v=15 \mathrm{~cm}, \mathrm{~m}=3$ (real, inverted)

Answer: A

D Watch Video Solution

7. An obejct is placed at a distance $2 f$ from the

pole of a convex mirror of focal length f. The linear magnification is

> A. $\frac{1}{3}$
> B. $\frac{2}{3}$
C. $\frac{3}{4}$
D. 1

Answer: A
(Watch Video Solution

An object O is placed in front of a small plane
mirror M_{1} and a large convex mirror M_{2} of focal length f. The distance between O and
M_{1} is x , and the distance between M_{1} and M_{2}
is y . The images of O forned by M_{1} and M_{2}
coincide. The magnitude of f is
A. $x-y$
B. $\frac{x^{2}-y^{2}}{2 y}$
C. $x^{2}+y^{2} \frac{)}{2 y}$
D. $\frac{x^{2}+y^{2}}{x+y}$

Answer: B

EXERCISE-1 (H.W)(REFRACTION)

1. The refractive indices of glass and water are $\frac{3}{2}$ and $\frac{4}{3}$ respectively. The refractive index of glass with respect to water is
A. 2
B. $\frac{8}{9}$

9
C. $\frac{}{8}$

5
D. $\frac{-}{3}$

Answer: C

D Watch Video Solution

2. Velocity of light in glass whose refractive index with respect to air is 1.5 is $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and in certain liquid the velocity of light found to be $2.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The refractive index of the liquid with respect to air is
A. 0.64
B. 0.8
C. 1.2
D. 1.44

Answer: C

D Watch Video Solution

3. The optical path of monochromatic light is
the same if it goes through 2 cm of glass or x cm of ruby. If the refractiveTndex of glass is 1.510 and that of ruby is 1.760 , then x is
A. 1.716 cm
B. 1.525 cm
C. 2.716 cm
D. 2.525 cm

Answer: A

D Watch Video Solution
4. The reflected and refracted rays are observed to be perpendicular to each other, when ray of light is incident at an angle of 60。
on a transparent block. The refractive index of
the block is

> A. $\frac{3}{2}$
> B. $\frac{1}{2}$
> C. $\frac{2}{\sqrt{3}}$
> D. $\sqrt{3}$

Answer: D

(Watch Video Solution
5. A fish rising up vertically toward the surface of water with speed $3 m s^{-1}$ observes a bird diving down vertically towards it with speed $9 \mathrm{~ms}^{-1}$. The actual velocity of bird is

A. $9.2 m s^{-1}$

$$
\text { B. } 4.5 m s^{-1}
$$

C. $9 m s^{-1}$

$$
\text { D. } 3.2 m s^{-1}
$$

Answer: B

- Watch Video Solution

6. If angle of incidence is twice the angle of refraction in a medium of refractive index μ, then angle of incidence is

$$
\text { A. } \cos ^{-1}\left(\frac{\mu}{2}\right)
$$

B. $\sin ^{-1}\left(\frac{\mu}{2}\right)$
C. $2 \sin ^{-1}\left(\frac{\mu}{2}\right)$
D. $2 \cos ^{-1}\left(\frac{\mu}{2}\right)$

Answer: D

D Watch Video Solution

7. A glass cube of edge 1 cm and $\mu=1.5$ has a sopt at the centre. The area of the cube face
that must be covered to prevent the spot from
being seen is (in cm^{2})
A. $\sqrt{5} \pi$
B. 5π
C. $\frac{\pi}{\sqrt{5}}$
D. $\frac{\pi}{5}$

Answer: D

D Watch Video Solution

8. The velocities of light in two different media are $2^{*} 10^{8} \mathrm{~m} / \mathrm{s}$ and $2.5{ }^{*} 10^{8} \mathrm{~m} / \mathrm{s}$ respectively.The
critical angle for these media is $\sin ^{\wedge}(-1)((1) /(5))$
$\sin ^{\wedge}(-1)((4) /(5))$

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{1}{5}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{4}{5}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{1}{2}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{1}{4}\right)
\end{aligned}
$$

Answer: B

D Watch Video Solution

9. White light is incident on the interface of glass and air as shown in figure. If green ligth is just totally internally reflected then the emerging ray in air contains

A. Yellow, orange, red
B. Violet, indigo, blue
C. All colours
D. All colours except green

Answer: A

D Watch Video Solution

10. A ray of light is incident on a glass plate.

The light ray travels distance of 5 cm inside the glass plate before emerging out of the glass plate. If the incident ray suffers a
deviation of 30°, the perpendicular distance between incident and the emergent ray is
A. 5 cm
B. 2.5 cm
C. 7.5 cm
D. 10 cm

Answer: B
(Watch Video Solution

1. Light from a point source in air falls on a spherical glass surface. If $\mu=1.5$, and radius of curvature $=20 \mathrm{~cm}$, the distance of light source from the glass surface is 100 cm , at what position will the image be formed ?
(NCERT Solved Example)
A. 50 cm

B. 100 cm

C. 125 cm

D. 25 cm

Answer: B

D Watch Video Solution

EXERCISE-1 (H.W)(LENSES)

1. A divergent lens produces an image of magnification 0.5 when the object distance is

10 cm . The focal power of the lens (in diopters)
A. +4
B. -4
C. +10
D. -10

Answer: D

D Watch Video Solution

2. A symmetrical biconvex lens of focal length f
is cut into four identical pieces along its
principal axis and to the perpendicular to
principal axis. The focal length of one of four pieces is

> A. $\frac{f}{4}$
> B. $\frac{f}{2}$
> C. $2 f$
D. $4 f$

Answer: C
(Watch Video Solution
3. A convex lens of focal length 20 cm and a concave lens of focal length f are mounted coaxially 5 cm apart. Parallel beam of light incident on the convex lens emerges from the concave lens as a parallel beam. Then, f in cm is
A. 30 cm
B. 25 cm
C. 15 cm
D. 50 cm

Answer: C

- Watch Video Solution

4. Two lenses of power $-15 D$ and $+5 D$ are in
contact with each other. The focal length of
the combination is
A. +10 cm
B. -20 cm
C. -10 cm
D. +20 cm

Answer: C

- Watch Video Solution

5. A beam of light converges at a point P. Now a concave lens of focal length -16 cm is placed in the path of the convergent beam 12 cm from P The point at which the beam converges now is
A. 6.86 cm right side of the lens
B. 6.86 cm left side of the lens

C. 48 cm right side of the lens

D. 48 cm left side of the lens

Answer: C

D Watch Video Solution

6. If in a plano-convex lens, the radius of curvature of the convex surface is 10 cm and
the focal length of the lens is 30 cm , then the refractive index of the material of lens will be
A. 3
B. 1.5
C. 1.66
D. 1.33

Answer: D

D Watch Video Solution

7. Focal length of a lens is 0.12 m and refractive

 index is 1.5 . Focal length of the same lens forblue colour is 0.1 m . Theh refractive index of the lens for blue colour is
A. 1.51
B. 1.25
C. 1.49
D. 1.6

Answer: D
(Watch Video Solution
8. The focal length of a biconvex lens is 20 cm
and its refractive index is 1.5 . If the radii of
curvatures of two surfaces of lens are in the ratio $1: 2$, then the larger radius of curvature is
(in cm)
A. 10
B. 15
C. 20
D. 30

- Watch Video Solution

9. The radii of curvature of the two surfaces of
a lens are 20 cm and 30 cm and the refractive index of the material of the lens is 1.5 . If the lens is concave -convex, then the focal length of the lens is
A. 24 cm
B. 10 cm
C. 20 cm

D. 24 cm

Answer: C

- Watch Video Solution

EXERCISE-1 (H.W)(REFRACTION THROUGH PRISM)

1. The angle of a prism is 30°. The rays
incident at 60° on one refracting face suffer a deviation of 30°. Then the angle of emergence is :
A. 0°
B. 30°
C. 60°
D. 90°

Answer: A

D Watch Video Solution
2. Light falls on a prism grazing along first surface of a prism and the emergent ray is normal to the 2 nd face of the prism. If D is
angle of deviation then the refracting angle of
the prism i
A. $90-2 \mathrm{D}$
B. 90-D
C. $90-\frac{D}{2}$
D. $180-2 D$

Answer: B

D View Text Solution
3. A ray of light is incident normally on one of
the refracting surfaces of a prism of refracting
angle A,. The emergent ray grazes the other refracting surface. Find the refractive index of the material ofprism.
A. 1.155
B. 1.75
C. 1.33
D. 1.66
4. A ray of light is incident at 60° on one face of a prism of angle 30° and the emergent ray makes 30° with the incident ray. The refractive index of the prism is
A. $\frac{\sqrt{3}}{4}$
B. $\frac{\sqrt{3}}{2}$
C. $\sqrt{3}$
D. $2 \sqrt{3}$

Answer: C

- Watch Video Solution

5. When light rays are incident on a prism at an angle of 45°, the minimum deviation is obtained. If refractive index of the material of prism is $\sqrt{2}$, then the angle of prism will be
A. 30°
B. 45°
C. 60°
D. 90°

Answer: C

D Watch Video Solution

6. A thin prism deviates an incident ray by 3.2°
. If the refractive index of the prism is 2.6 then
the angle of prism is
A. 1°
B. 2°
C. 3°
D. 4°

Answer: B

(Watch Video Solution

EXERCISE-1 (H.W)(DISPERSION BY A PRISM)

1. A crown glass prism and a flint glass prism are combined to produce dispersion without deviation. Mean refractive indices of crown,
and flint glass are respectively 1.5 and 1.6. Ratio
of angle of crown glass prism to that of flint prism is
A. 1.06
B. 0.9375
C. 1.2
D. 1.5

Answer: C

D Watch Video Solution
2. A crown glass prism of angle 50 is to be combined with a fint glass prism in a such a way that the dispersion is zero.The refractive indices for violet and red lights are 1.523 and 1.514 respectively for crown glass and for flint glass are 1.632 and 1.614 , then the angle of the flint glass prism is
A. 10°
B. 2.5°
C. 2°
D. 5.45°

Answer: B

D Watch Video Solution

3. In an achromatic combination of two prisms,
the ratio of the mean deviations produced by
V the two prisms is $2: 3$, the ratio of their dispersive power is
A. $3: 2$
B. $3: 2$
C. 1:1

D. $4: 9$

Answer: B

- Watch Video Solution

4. The angles of minimum deviations are 530 and 51° for blue and red colours respectively produced in an equilateral glass prism. The dispersive power is
A. $\frac{51}{26}$
B. $\frac{1}{26}$
C. $\frac{1}{52}$
D. $\frac{1}{51}$

Answer: B

D Watch Video Solution

EXERCISE-1 (H.W)(DEFECTS OF THE EYE)

1. The near point of a hypermetropic person is

50 cm from the eye. What is the power of the
lens required to enable him to read clearly a book held at 25 cm from the eye ?
A. 2D
B. 4 D
C. 8 D
D. 1D

Answer: A
(Watch Video Solution
2. A person wears glasses of power $-2.5 D$. Is
the person short sighted or long sighted ?

What is the far point of the person without glasses ?
A. long-sighted, -40 cm
B. near-sightcd, -40 cm
C. near-sighted, -20 cm
D. long-sighted, -20 cm

Answer: B
3. A long sighted person has a least distance of distinct vision of 50 cm . He wants to reduce to 25 cm . He should use a
A. concave lens of focal length 50 cm
B. convex of focal length 25 cm
C. convex lens of focal length 50 cm
D. concave lens of focal length 25 cm

Answer: C

EXERCISE-1 (H.W)(
 OPTICAL
 INSTRUMENTS(

 MICROSCOPES))1. The maximum magnification that can be obtained with a convex lens of focal length 2.5 cm is (the least distance of distinct vision is 25
cm)
A. 10
B. 0.1
C. 62.5
D. 11

Answer: D

D Watch Video Solution

2. A convergent lens of power 16D is used as a simple microscope. The magnification produced by the lens, when the final image is formed at least distance of distinct vision is
A. 6
B. 4
C. 7
D. 5

Answer: D

D Watch Video Solution

3. The compound microscope is of magnifying power is 100.The magnifying power of its
eyepiece " is 4.Then magnifying power of objective is
A. 25
B. 20
C. 15
D. 30

Answer: A
(Watch Video Solution
4. The magnification produced by the objective
lens of a compound microscope is 25 . The
focal length of eye piece is 5 cm and it forms
find image at least distance of distinct vision.

The magnifying power of the compound microscope is
A. 19
B. 31
C. 150
D. $\sqrt{150}$

Answer: C

D Watch Video Solution

5. The length of the tube of a compound microscope 15 cm . The focal length of objective and eye lenses are 1 cm and 5 cm respectively. The magnifying power of microscope for relaxed vision is
A. 50
B. 75
C. 25
D. 100

Answer: B

(D)
 Watch Video Solution

EXERCISE-1 (TELESCOPES))

OPTICAL
INSTRUMENTS(

1. The magnifying power of an astronomical
telescope for relaxed vision is 16 . On adjusting,
the distance between the objective and eye
lens is 34 cm . Then the focal length of objective and eye lens will be respectively
A. $17 \mathrm{~cm}, 17 \mathrm{~cm}$
B. $20 \mathrm{~cm}, 14 \mathrm{~cm}$
C. $32 \mathrm{~cm}, 2 \mathrm{~cm}$
D. $30 \mathrm{~cm}, 4 \mathrm{~cm}$

Answer: C

D Watch Video Solution
2. Astronomial telescope has two lenses of focal power 0.5D and 20D. Then its magnifying power is:
A. 40
B. 30
C. 20
D. 8

Answer: A

- Watch Video Solution

3. The objective of a small telescope has focal
length 120 cm and diameter 5 cm . The focal length of the eye piece is 2 cm . The magnifying power of the telescope for distant object is -
A. 12
B. 24
C. 60
D. 300

Answer: C

- Watch Video Solution

EXERCISE-2 (C.W)(REFLECTION)

1. Two plane mirrors are arranged at right angles to each other as shown in figure.A ray of light is incident on the horizontal mirror at an angle θ. For what value of θ the ray emerges parallel to the incoming ray after reflection

from the vertical mirror?

A. 60°
B. 30°
C. 45°
D. all of these

Answer: D

- Watch Video Solution

2. An object moves with $5 m s^{-1}$ toward right while the mirror moves with $1 \mathrm{~ms}^{-1}$ toward the left as shown in Figure. Find the velocity of
image.

A. $7 \mathrm{~m} / \mathrm{s}$ towards left
B. $7 \mathrm{~m} / \mathrm{s}$ towards right
C. $5 \mathrm{~m} / \mathrm{s}$ towards right

D. $5 \mathrm{~m} / \mathrm{s}$ towards left

Answer: A

D Watch Video Solution

3. Two mirror labelled L_{1} for left mirror and L_{2}
for right mirror $\left(L_{2}\right)$ looks into this mirror and
sees a series of images. The second nearest image seen in the right mirror is situated at a
distance:

A. 2.0 m from the person
B. 4.0 m from the person
C. 6.0 m from the person

D. 8.0 m from the person

Answer: C

- Watch Video Solution

4. A ray of light is incident at 50° on the middle of one of the two mirrorrs arranged at an angle of 60° between them. The ray then touches the second mirrorr, get reflected back to the first mirrorr, making an angle of incidence of
A. 50°
B. 60°
C. 70°
D. 80°

Answer: C

D Watch Video Solution
5. Two plane mirrors A and B are aligned parallel to each other, as shown in the figure. A light ray is incident at an angle 30degree at a
point just inside one end of A. The plane of incidence coincides with the plane of the figure. The maximum number of times the ray undergoes reflections (including the first one) before it emerges out is

A. 28
B. 30
C. 32
D. 34

Answer: B

D Watch Video Solution

6. With a concave mirror, an object is placed at
a distance x_{1} from the princiipal focus, on the
principal axis. The image is formed at a distance x_{2} from the principal focus. The focal length of the mirror is
A. $x_{1} x_{2}$
B. $\frac{x_{1}+x_{2}}{2}$
C. $\sqrt{\frac{x_{1}}{x_{2}}}$
D. $\sqrt{x_{1} x_{2}}$

Answer: D

D Watch Video Solution

7. A short linear object of length b lies along
the axis of a concave mirror or focal length f at
a distance u from the pole of the mirror. The size of the image is approximately equal to

$$
\begin{aligned}
& \text { A. } b\left(\frac{u-f}{f}\right)^{\frac{1}{2}} \\
& \text { B. } b\left(\frac{f}{u-f}\right)^{1 / 2} \\
& \text { C. }\left(\frac{u-f}{f}\right) \\
& \text { D. } b\left(\frac{f}{u-f}\right)^{2}
\end{aligned}
$$

Answer: D

D Watch Video Solution

8. A rod of length 10 cm lies along the principal axis of a concave mirror of focal length 10 cm in such a way that the end closer to the pole is 20 cm away from it. Find the length of the image.
A. 5 cm
B. 10 cm
C. 15 cm
D. 20 cm

- Watch Video Solution

9. A car is fitted with a convex side-view mirror of focal length 20 cm . A second car 2.8 m behind the first car is overtaking the first car at a relative speed of $15 \frac{m}{s}$. The speed of the image of the second car as seen in the mrror of the first one is:
A. $\frac{1}{15} m / s$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $15 \mathrm{~m} / \mathrm{s}$
D. $\frac{1}{10} \frac{m}{s}$

Answer: A

D Watch Video Solution

10. The velocity of image w.r.t ground in the below figure is

$$
f=30 \mathrm{~cm} \text { (Mirror is at rest }
$$

A. $45 \mathrm{~m} / \mathrm{s}$ and approaches the mirror
B. $45 \mathrm{~m} / \mathrm{s}$ and moves away from the mirror
C. $60 \mathrm{~m} / \mathrm{s}$ and approaches the mirror
D. $60 \mathrm{~m} / \mathrm{s}$ and moves away from the mirror

Answer: A

D Watch Video Solution

11. A square wire of side 3.0 cm is placed 25 cm
away from a concave mirror of focal length

10 cm . What is the area enclosed by the image of the wire ? The centre of the wire is on the
axis of the mirror, with its two sides normal to
the axis.
A. $7.5 \mathrm{~cm}^{2}$
B. $6.0 \mathrm{~cm}^{2}$
C. $4.0 \mathrm{~cm}^{2}$
D. $3.0 \mathrm{~cm}^{2}$

Answer: C
(Watch Video Solution
12. An object is moving towards a concave mirror of focal length 24 cm . When it is at a distance of 60 cm from the mirror, its speed is $9 \mathrm{~cm} / \mathrm{s}$. The speed of its image at that instant , is
A. $4 \mathrm{~cm} / \mathrm{s}$ towards the mirror
B. $9 \mathrm{~cm} / \mathrm{s}$ towards the mirror
C. $4 \mathrm{~cm} / \mathrm{s}$ away from the mirror
D. $9 \mathrm{~cm} / \mathrm{s}$ away from the mirror

Answer: C
13. The distance between an object and its
doubly magnified image by a concave mirror is: [Assume $f=$ focal length]
A. $3 \mathrm{f} / 2$
B. $2 \mathrm{f} / 3$
C. 3 f
D. depends on whether the image is real or

Answer: A

D Watch Video Solution

14. In the figureshownm the image of a real object is formed at point I. $A B$ is the principal axis of the mirror. The mirror must be

A. concave and placed towards right of I
B. concave and placed towards left of O

C. convex and placed towards right of 1

D. convex and placed towards left of I

Answer: B

D Watch Video Solution

15. A ray of light is incident on a plane mirror along a vector $\hat{i}+\hat{j}-\hat{k}$.

The normal on incidence point is along $\hat{i}+\hat{j}$
.Find a unit vector along the

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k}) \\
& \text { B. }-\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k}) \\
& \text { C. } \frac{1}{\sqrt{3}}(-\hat{i}-\hat{j}+\hat{k}) \\
& \text { D. } \frac{1}{\sqrt{3}}(-\hat{i}+\hat{j}+\hat{k})
\end{aligned}
$$

Answer: B

- Watch Video Solution

16. A plot of modulus of image distance versus object distance for a spherical mirror is a:
A. Straight Line
B. Circle
C. Parabola
D. Hyperbola

Answer: D

D Watch Video Solution

17. A small plane mirror kept at the centre of a sphere of diameter 3 m , makes 12 revolution per second. A thin light beam is made incident
on the mirror. The linear speed of the light spot on the sphere, formed after reflection-
from the mirror is:
A. $18 \pi \mathrm{~m} / \mathrm{s}$
B. $36 \pi \mathrm{~m} / \mathrm{s}$
C. $72 \pi \mathrm{~m} / \mathrm{s}$
D. $144 \pi \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution
18. A man ' A ' stands at the position shown in
the figure and a second man ' B ' approaches
the mirror along the line perpendicular to it which passes through its centre. At the moment when ' A ' and ' B ' first see each other in
the mirror, the distance of B from the mirror is:
A. 0.25 m
B. 0.5 m
C. 0.75 m
D. Im

Answer: B

D View Text Solution

EXERCISE-2 (C.W)(REFRACTION)

1. A monochromatic light passes through a
glass slab $\left(\mu=\frac{3}{2}\right)$ of thickness 90 cm in
time t_{1}. If it takes a time t_{2} to travel the same
distance through water $\left(\mu=\frac{4}{3}\right)$. The value of $\left(t_{1}-t_{2}\right)$ is
A. $5 \times 10^{-11} \mathrm{sec}$
B. 5×10^{-8} sec
C. $2.5 \times 110^{-10} \mathrm{sec}$
D. $5 \times 10^{-10} \mathrm{sec}$

Answer: A

- Watch Video Solution

2. A glass slab of thickness 4 cm contains the same number of waves as 5 cm of water when both are traversed by the same monochromatic light. If the refractive index of water is $\frac{4}{3}$, then hat of glass is

$$
\begin{aligned}
& \text { A. } \frac{5}{3} \\
& \text { B. } \frac{5}{4} \\
& \text { C. } \frac{16}{15} \\
& \text { D. } \frac{3}{2}
\end{aligned}
$$

3. When light of wavelength $4000 \stackrel{o}{A}$ in vacuum travels through the same thickness in air and vacuum the difference in the number of waves is one. Find the thickness ($\mu_{\text {air }}=1.0008$).
A. 0.5 mm
B. 1 mm
C. 18 cm
D. 24 cm

Answer: A

D Watch Video Solution

4. The refractive index denser medium with
respect to rarer medium is 1.125 The difference
between the velocities of light in the two media is $0.25 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$. Find the velocities of
light in the two media and their refractive
indices $c=3 \times 10^{8} \frac{m}{s}$
A. $2.0 \times 10^{0} 8 \mathrm{~m} / \mathrm{s}, 2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$
,1.500,1.333

B. $2.5 \times 10^{0} 8 \mathrm{~m} / \mathrm{s}, 2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$

,1.500,1.333

$$
\text { C. } 2.0 \times 10^{0} 8 \mathrm{~m} / \mathrm{s}, 2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

,1.333,1.500

D. $2.5 \times 10^{0} 8 \mathrm{~m} / \mathrm{s}, 2.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$

,1.500,1.333

Answer: A
5. A ray of light is travelling from medium ' A ' into a rarer medium B. The angle of incidence
^siS 45° and the angle of deviation is 15°. The refractive index of medium A w.r.to B is
A. $\sqrt{\frac{3}{2}}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1}{\sqrt{2}}$
D. $\sqrt{\frac{2}{3}}$

- Watch Video Solution

6. The $x-z$ plane separates two media A and B of refractive indices $\mu_{1}=1.5$ and $\mu_{2}=2$. A ray of light travels from A to B . Its directions in the two media are given by unit vectors $u_{1}=a \hat{i}+b \hat{j}$ and $u_{2}=c \hat{i}+a \hat{j}$. Then

$$
\begin{aligned}
& \text { A. } \frac{a}{c}=\frac{4}{3} \\
& \text { B. } \frac{a}{c}=\frac{3}{4} \\
& \text { C. } \frac{b}{d}=\frac{4}{3}
\end{aligned}
$$

D. $\frac{b}{d}=\frac{3}{4}$

Answer: A

D Watch Video Solution

7. A cube of side 15 cm is having an air bubble.

The bubble appears at 6 cm from one face and
at 4 cm from opposite face. The refractive index of cube is
A. $\frac{5}{2}$
B. $\frac{3}{2}$
C. $\frac{2}{3}$
D. $\frac{2}{5}$

Answer: B

D Watch Video Solution

8. Refractive index of a rectangular glass slab
is $\mu=\sqrt{3}$. Alight ray incident at an angle 60° is displaced laterally through 2.5 cm . Distance travelled by light in the slab is
A. $4 \mathrm{~cm} / \mathrm{s}$ towards the mirror
B. 5 cm
C. $2.5 \sqrt{3} \mathrm{~cm}$
D. 3 cm

Answer: B

D Watch Video Solution

9. A beaker contains water up to a height h_{1} and kerosene of height h_{2} above water so that
the total height of (water + kerosene) is
$\left(h_{1}+h_{2}\right)$. Refractive index of water is μ_{1} and that of kerosene is μ_{2}. The apparent shift in the position of the bottom of the beaker when viewed from above is :-

$$
\begin{aligned}
& \text { A. }\left(1-\frac{1}{\mu_{1}}\right) h_{1}+\left(1-\frac{1}{\mu_{2}}\right) h_{2} \\
& \text { B. }\left(1+\frac{1}{\mu_{1}}\right) h_{2}-\left(1+\frac{1}{\mu_{2}}\right) h_{1} \\
& \text { C. }\left(1-1 \mu_{1}\right) h_{2}+\left(1-\frac{1}{\mu_{2}}\right) h_{1} \\
& \text { D. }\left(1+\frac{1}{\mu_{1}}\right) h_{1}-\left(1+\frac{1}{\mu_{2}}\right) h_{2}
\end{aligned}
$$

Answer: A

10. Light ray is travelling from a denser medium into a rarer medium. The velocity of light in the denser and rarer medium is $2 \times 10^{8} \mathrm{~m} / \mathrm{sec}$ and $2.5 \times 10^{8} \mathrm{~m} / \mathrm{sec}$. The critical angle of the two media is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{5}{4}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{4}{5}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{1}{2}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{3}{5}\right)
\end{aligned}
$$

Answer: B

D Watch Video Solution

11. Light takes t_{1} second to travel a distance x
cm in vacuum and the same light takes t_{2}
second to travel $10 x \mathrm{~cm}$ in medium. The critical
angle for the corresponding medium is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{x_{2} t_{2}}{x_{1} t_{1}}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{x_{1} t_{2}}{x_{2} t_{1}}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{x_{1} t_{1}}{x_{2} t_{2}}\right)
\end{aligned}
$$

D. $\sin ^{-1}\left(\frac{x_{2} t_{1}}{x_{1} t_{2}}\right)$

Answer: D

D Watch Video Solution

12. An under water swimmer looks upward at an unobstructed overcast sky. The vertex angle does the sky appear to subtend at the eye of swimmer is (critical angle for water air interface is C)
A. C
B. $\mathrm{C} / 2$
C. 2C
D. 3C

Answer: C

D Watch Video Solution

13. A point source of light is placed at the
bottom of a water lake. If the area of the
illuminated circle on the surface is equal to 3
times the square of depth of the lake, the refractive index of water.
A. $\sqrt{\pi+1}$
B. $\sqrt{\frac{\pi}{3}+1}$
C. $\frac{\pi}{3}+1$
D. $\frac{\pi}{4}+1$

Answer: B
(Watch Video Solution
14. A ray of light from a denser medium strikes
a rarer medium at an angle of incidence i. if the reflected and the refracted rays are mutually perpendicular to each other, what is the value of the critical angle ?

A. $\sin ^{-1}(\tan i)$
B. $\cos ^{-1}(\tan i)$
C. $\cot ^{-1}(\tan i)$
D. $\cos e c^{-1}(\tan i)$

Answer: A

- Watch Video Solution

15. A prism of $\mathrm{RI}=1.5$ is immersed in water of
R.I $=\frac{4}{3}$ as shown in the figure. For the total internal reflection the correct choice is
A. $\sin \theta<\frac{8}{9}$
B. $\sin \theta>\frac{8}{9}$
C. $\sin \theta=\frac{8}{9}$
D. $\sin \theta \leq \frac{8}{9}$

Answer: B

D View Text Solution

16. A light ray is incident at an angle $45 \circ$ on parallel sided glass slab and emerges out
grazing the vertical surface. The refractive index of the slab is
A. $\sqrt{\frac{3}{2}}$
B. $\sqrt{\frac{5}{2}}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{\sqrt{5}}{2}$

Answer: A

D Watch Video Solution
17. The critical angle for refraction from medium -1 to air is θ_{1} and that from medium
_ 2 to air is θ_{2}. If medium _2 is denser than medium _1. The critical angle for refraction from medium _ 2 to medium _ 1 is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{\sin \theta_{2}}{\sin \theta_{1}}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{\sin \theta_{1}}{\sin \theta_{2}}\right) \\
& \text { C. } \sin ^{-1}\left(\sin \theta_{2}\right) \\
& \text { D. } \sin ^{-1}\left(\sin \theta_{1}\right)
\end{aligned}
$$

- Watch Video Solution

18. A transparent solid cylindrical rod has a refractive index of $\frac{2}{\sqrt{3}}$.lt is surrounded by air.
A light ray is incident at the midpoint of one end of the rod as shown in the figure. The incident angle θ for which the light ray grazes along the wall of the rod is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{2}{\sqrt{3}}\right)
\end{aligned}
$$

> C. $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
> D. $\sin ^{-1}\left(\frac{1}{2}\right)$

Answer: C

D View Text Solution

19. A ray of light refracts from medium 1 into a
thin layer of medium 2, crosses the layer and is incident at the critical angle on the interface between the medium 2 and 3 shown in the figure. If the angle of incidence of ray is θ, the
value of θ is

> A. $\sin ^{-1}\left(\frac{8}{9}\right)$
> B. $\sin ^{-1}\left(\frac{13}{18}\right)$
> C. $\sin ^{-1}\left(\frac{13}{16}\right)$
> D. $\sin ^{-1}\left(\frac{8}{13}\right)$

Answer: C

D View Text Solution
20. A ray of light enters a rectangular glass
slab of refractive index $\sqrt{3}$ at an angle of incidence 60°. It travels a distance of 5 cm inside the slab and emerges out of the slab.

The perpendicular distance between the incident and the emergent rays is
A. $5 \sqrt{3} \mathrm{~cm}$
B. $\frac{5}{2} \mathrm{~cm}$
C. $5 \sqrt{3 / 2} \mathrm{~cm}$
D. 5 cm

Answer: B

- Watch Video Solution

EXERCISE-2
 (C.W)(REFRACTION
 THROUGH

SPHERICAL SURFACES)

1. A spherical surface of radius of curvature R
separates air (refractive index 1.0) from glass
(refractive index 1.5). The centre of curvature is
in the glass. A point object P placed in air is
found to have a real image Q in the glass. The
line $P Q$ cuts the surface at a point O, and $P O=O Q$. The distance $P O$
A. $5 R$
B. 3 R
C. 2 R
D. 1.5 R

Answer: A
(Watch Video Solution
2. A denser medium of refractive index 1.5 has
a concave surface of radius of curvature 12 cm .

An object is situated in the denser medium at
a distance of 9 cm from the pole. Locate the image due to refraction in air.
A. A real image at 8 cm
B. a virtual image at 8 cm
C. A real image at 4.8 cm
D. A virtual image at 4.8 cm

Answer: D
3. The human eye can be regarded as a single spherical refractive surface of curvature of cornea 7.8 mm . If a parallel beam of light comes to focus at 3.075 cm behind the refractive surface, the refractive index of the eye is
A. 1.34
B. 1.72
C. 1.5

Answer: A

D Watch Video Solution

4. A glass sphere ($\mu=1.5$) of radius 20 cm has
small air bubble 4 cm below its centre. The
sphere is viewed from outside and along vertical line through the bubble. The apparent depth of the bubble below the surface of sphere is (in cm)
A. 13.33
B. 26.67
C. 15
D. 30

Answer: B

D Watch Video Solution

5. A spherical surface of radius R separates
two media of refractive indices μ_{1} and μ_{2}
respectively. When a parallel beam is incident
from medium A along the axis, the focal length
is f . When a parallel beam is incident from medium B along the axis, the focal length is f_{2}

Then $\frac{f_{1}}{f_{2}}$ is

> A. $\frac{\mu_{1}}{\mu_{2}}$ B. $\frac{\mu_{2}}{\mu_{!}}$
C. $\frac{\mu_{1} \mu_{2}}{\left(\mu_{1}-\mu_{2}\right)^{2}}$
D. $\frac{\left(\mu_{1}-\mu_{2}\right)^{2}}{\mu_{1} \mu_{2}}$
$\mu_{1} \mu_{2}$

Answer: B
6. The sun subtends an angle of $(1 / 2)^{\circ}$ on earth. The image of sun is obtained on the screen with the help of a convex lens of focal length 100 cm the diameter of the image obtained on the screen will be
A. 18 cm
B. 1 mm
C. 50 cm
D. 73 mm

Answer: D

D Watch Video Solution

7. An object is placed first at infinity and then
at 20 cm from the object side focal plane of a
convex lens. The two images thus formed are 5
cm apart the focal length of the lens is
A. 5 cm
B. 10 cm
C. 15 cm

D. 20 cm

Answer: B

D Watch Video Solution

8. The image of a square hole in a screen
illuminated by light is obtained on another screen with the help of converging lens. The distance of the hole from the lens is 40 cm . If the area of the image is nine times that of the hole, the focal length of the lens is
A. 30 cm
B. 50 cm
C. 60 cm
D. 75 cm

Answer: A

D Watch Video Solution

9. A plano-convex lens of focal length 30 cm has its plane surface silvered. An object is
placed 40 cm from the lens on the convex side.

The distance of the image from the lens is
A. 18 cm
B. 24 cm
C. 30 cm
D. 40 cm

Answer: B
(Watch Video Solution
10. The graph shows the variation of magnifictaion y^{\prime}-. m produced by convex lens with image distance v. The focal length of the lens is used is:
A. $\frac{b}{c}$
B. $\frac{b}{c a}$
C. $\frac{b c}{a}$
D. $\frac{c}{b}$
11. A convex lens of focal length f is placed somewhere in between an object and a screen.

The distance between the object and the screen is x. If the numerical value of the magnification produced by the lens is m, then the focal Inegth oof the lens is .

$$
\begin{aligned}
& \text { A. } \frac{m x}{(m+1)^{2}} \\
& \text { B. } \frac{m x}{(m-1)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. }(m+1)^{2 / m x} \\
& \text { D. } \frac{(m-1)^{2}}{m} x
\end{aligned}
$$

Answer: A

D Watch Video Solution

12. The distance between an object and the
screen is 100 cm . A lens produces an image on
the screen when the lens is placed at either of
the positions 40 cm apart. The power of the lens is nearly
A. $\approx 3 D$
B. $\approx 5 D$
C. $\approx 7 D$
D. $\approx 9 D$

Answer: B

D Watch Video Solution
13. Three lenses in contact have a combined focal length of 12 cm . When the third lens is
removed, the combined focal length is $\frac{60}{7} \mathrm{~cm}$.
The third lens is
A. Aconverging lens of focal length 30 cm
B. Aconverging lens offocalelngth 60 cm
C. A diverging lens of focal length 30 cm

D. A diverging lens of focal length 60 cm

Answer: C

D Watch Video Solution

14. Arrange the following combinations in the increasing order of focal length
a) Two piano convex lenses of focal lengths 20
cm and 30 cm in contact
b) Two convex lens of focal lengths 20 cm and

10 cm in contact
Two convex lenses of focal length 25 cm separated by 5 cm .
A. a, b, c
B. b, a, c
C. a, c, b

D. c, b, a

Answer: B

D Watch Video Solution

15. A thin converging lens forms the real image of certain real object magnified m times.The magnification of real image become n when lens is moved nearer to object by distance x. find focal length of the lens

$$
\text { A. } \frac{x m}{m-n}
$$

$$
\begin{aligned}
& \text { B. } \frac{x m n}{m-n} \\
& \text { C. } \frac{x m n}{n-m} \\
& \text { D. } \frac{n-m}{x n}
\end{aligned}
$$

Answer: C

D Watch Video Solution

16. When an object is at distances x and y from
a lens, a real image and a virtual image is formed respectively having sam
magnification. The focal length of the lens is
A. $\mu_{1}+\frac{\mu_{2}}{2}$
B. $\frac{\mu_{1}-\mu_{2}}{2}$
C. $\frac{\mu_{1}+\mu_{2}}{2}$
D. $\mu_{1}+\mu_{2}$

Answer: C

D Watch Video Solution

17. Two thin convex lenses of focal lengths f_{1} and f_{2} are arranged coaxially with ' d ' as the reparation between them. The equivalent lens
of the combination with focal length ' F ' to be replaced for the combination is to be placed
A. midway between the lenses
B. between the lenses positions at stance
$\frac{d F_{1}}{f_{1}}$ from position of first lens
C. between the lenses positions at distance
$\frac{d F_{1}}{f_{1}}$ from position of second lens
D. Between the lenses positions at distance
$\frac{d F_{1}}{f_{1}+f_{2}}$ from position of first lens
18. A plano-convex lens, when silvered at its
plane surface is equivalent to a concave mirror of focal length 28 cm . When its curved surface is silvered and the plane surface not silvered, it is equivalent to a concave mirror of focal length 10 cm then the refractive index of the mateiral of the lens is:
A. 1.5
B. 55
C. 1.6
D. 1.65

Answer: B

D Watch Video Solution

19. A thin equiconvex lens has focal length 10
cm and refractive index 1.5 . One of its faces is
now silvered and for an object placed at a distance u in front of it, the image coincides with the object. The value of u is
A. 10 cm
B. 5 cm
C. 20 cm
D. 15 cm

Answer: B

D Watch Video Solution
20. Four lenses are made from the same type of glass, the radius of curvature of each face is
given below. Which will have the greatest positive power
A. 10 cm convex and 15 cm convex
B. 5 cm convex and 10 cm concave
C.) 15 cm convex and plane
D. 20 cm convex and plane

Answer: A

D Watch Video Solution
21. 4 A thin liquid convex lens is formed in
glass. Refractive index of liquid $4 / 3$ is and that of glass is $3 / 2$ If ' f ' is the focal length of the
liquid lens in air its focal length and nature in the glass is
A. f, convex
B. f, concave
C. 2 f , concave
D. 3f, concave
22. A thin converging lens of refractive index
1.5 has a focal power of 5 D . When this lens is immersed in a liquid, it acts as a diverging lens of focal length 100 cm . The refractive index of the liquid is
A. $\frac{11}{6}$
B. $\frac{9}{5}$
C. 5/3
D. 2

Answer: C

D Watch Video Solution

23. The focal lengths of a lens are in the ratio

8:3 when it is immersed in two different
liquids refractive indices 1.6 and 1.2 respectively. The refractive index of the material of the lens i
A. 1.25
B. 1.5
C. 1.8
D. 2

Answer: D

- Watch Video Solution

24.v22

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{3}{4}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{4}{5}\right)
\end{aligned}
$$

> C. $\sin ^{-1}\left(\frac{7}{13}\right)$
> D. $\sin ^{-1}\left(\frac{7}{8}\right)$

Answer: D

D Watch Video Solution

25. A plano convex lens has a thickness of 6 cm .

Its radius of curvature is 25 cm . When its
curved surface is kept on a horizontal surface
and viewed from the top, its bottom appears to be raised by 2 cm . The focal power of lens is
A. 1D
B. 4 D
C. 2D
D. 3D

Answer: C

D Watch Video Solution

26. Two plano-concave lenses of glass of refractive index 1.5 have radii of curvature of 20 and 30 cm . They are placed in contact with
curved surface towards each other and the space between them is filled with a liquid of refractive index $\frac{4}{3}$, find the focal length of the system.
A. 48 cm
B. 72 cm
C. 12 cm
D. 24 cm

Answer: B
27. The power of a double convex lens of radius of curvature R each is Y . The power of a plano convex lens of same material and of radius of curvature $2 R$ is
A. $\frac{Y}{4}$
B. $\frac{Y}{2}$
C. $2 Y$
D. 4 Y

28. A thin glass (refractive index 1.5) lens has

optical power of $-8 D$ in air, its optical power in a liquid medium with refractive index 1.6 will be
A. 25D
B. 1D
C. $-25 D$
D. $-1 D$

Answer: B

D Watch Video Solution

29. v34
A. 0.04
B. 0.02
C. 0.06
D. 0.08

Answer: C

(D) Watch Video Solution

EXERCISE-2 (C.W)(REFRACTION THROUGH A PRISM

)

1. The refractive index of a prism for a monochromatic wave is $\sqrt{2}$ and its refracting angle is 60° for minimum deviation, the angle of indidence will be
A. 30°
B. 45°
C. 60°
D. 75°

Answer: B

D Watch Video Solution

2. The minimum deviation produced by a
hollow prism filled with a certain liquid is
found to be 30°. The light ray is also found to be refracted at angle of 30°. The refractive index of the liquid is
A. $\sqrt{2}$
B. $\sqrt{3}$
C. $\sqrt{\frac{3}{2}}$
D. $\frac{3}{2}$

Answer: A

- Watch Video Solution

3. Under minimum deviation condition in a prism, if a ray is incident at an angle 30°, the
angle between the emergent ray and the second refracting surface of the prism is
A. 0°
B. 30°
C. 45°
D. 60°

Answer: D
(Watch Video Solution
4. The angle of minimum deviation by prism is
(180^(0)-2A).Its critival angle will be
A. $\sin ^{-1}\left(\tan \left(\frac{A}{2}\right)\right)$
B. $\sin ^{-1}\left(\cot \left(\frac{A}{2}\right)\right)$
C. $\cos ^{-1}\left(\cot \left(\frac{A}{2}\right)\right)$
D. $\cos ^{-1}\left(\tan \left(\frac{A}{2}\right)\right)$

Answer: A

D Watch Video Solution

5. ACB is right-angled glass prism of refractive index 1.5. $\angle A \angle B$ and $\angle C$ are $60^{\circ} 30^{\circ}$ and 90° respectively.A thin layer of liquid is on the

AB. For a ray of light which is incident normally on $A C$ to be totally reflected at $A B$ the refractive index of the liquid on $A B$ should be
A. 1.5
B. 1.4
C. 1.3
D. 1.2

Answer: D

D Watch Video Solution

6. A parallel beam of monochromatic light is
incident on one surface of an equilateral prism. Angle of incidence is 55° and angle of emergence is 46°. The angle of minimum deviation will be
A. 41°
B. It 41°
C. $>41^{\circ}$
D. $\geq 41^{\circ}$

Answer: B

D Watch Video Solution

7. The maximum refractive index of a prism which permits passage of the light, through it when the refract iii»auglc of the prism is 90°, is
A. $\sqrt{3}$
B. $\sqrt{2}$
C. $\sqrt{\frac{3}{2}}$
D. $\frac{3}{2}$

Answer: B

D View Text Solution

8. The refractive index of the material of prism is 72 and Its refracting angle is 30°. One of the refracting surfaces of the prism is made a
mirror in wards. A beam of monochromatic
light enters the prism from the other surface
and the ray retraces from the mirrored surface. The angle of incidence is
A. 30°
B. 45°
C. 60°
D. 0°

Answer: B

EXERCISE-2 (C.W)(DISPERSION BY A PRISM)

1. A glass prism A deviates the red and blue rays through 10° and 12° respectively. A second prism (B) deviates them through 8° and 10° respectively. What is the ratio of their dispersive powers?
A. $11: 9$
B. 9:11
C. 3:2

D. 1:1

Answer: B

- Watch Video Solution

2. A parallel beam of white light falls on a convex lens. Images of blue, yellow and red
light are formed on other side of the lens at a distance of $0.20 \mathrm{~m}, 0.205 \mathrm{~m}$ and $0.214 m$ respectively. The dispersive power of the material of the lens will be
A. $\frac{629}{1000}$
B. $\frac{9}{200}$
C. $\frac{14}{208}$
D. $\frac{5}{214}$

Answer: C

D Watch Video Solution
3. The refractive indices of crown glass prism for C, D and F lines are 1.527, 1.530 and 1.535
respectively. The dispersive power of the crown glass prism is
A. 0.01509
B. 0.05109
C. 0.02108
D. 0.03402

Answer: A

D View Text Solution
4. White light is passed through a prism of angle 5°. If the refractive indices for red and blue colours are 1.641 and 1.659 respectively, calculate the angle of dispersion between them.
A. 0.08°
B. 0.06°
C. 0.09°
D. 0.1°

- Watch Video Solution

EXERCISE-2 (C.W)(DEFECTS OF THE EYE)

1. A person cannot see an object lying beyond

80 cm , where as a normal person can easily
see the object distant 160 cm . The focal length
and nature of the lens used to rectify this
defect will be
A. 160 cm , cancave
B. 160 cm , convex

C. 60 cm , concave

D. 60 cm , convex

Answer: A

D View Text Solution

2. The near point of a person is 50 cm and the
far point is 1.5 m . The spectacles required for reading purpose and for seeing distant objects are respectively.

$$
\begin{aligned}
& \text { A. }+2 D,-\left(\frac{2}{3}\right) D \\
& \text { B. }+\left(\frac{2}{3}\right) D,-2 D \\
& \text { C. }-2 D,+\left(\frac{2}{3}\right) D \\
& \text { D. }-\left(\frac{2}{3}\right) D, 2 D
\end{aligned}
$$

Answer: A

- View Text Solution

EXERCISE-2 (C.W)(OPTICAL INSTRUMENTS (MICROSCOPES))

1. The two lenses of a compound microscope are of focal lengths 2 cm and 5 cm . If an object is placed at a distance of 2.1 cm from (he objective of focal length 2 cm the final image forms at the least distance of distinct vision of
a normal eye. Find the distance between the objective and eyepiece
A. 46.17 cm
B. 42 cm
C. 4.17 cm

D. 40 cm

Answer: A

D Watch Video Solution

2. The separation L between the objective (f_{0}
$=0.5 \mathrm{~cm})$ and the eye piece $\left(f_{e}=5 \mathrm{~cm}\right)$ of a
compound microscope is 7.0 cm . Where should
a small object be placed so that the eye is
least strained?
A. 0.5 cm
B. $\frac{3}{2} \mathrm{~cm}$
C. $\frac{2}{3} \mathrm{~cm}$
D. $\frac{1}{3} \mathrm{~cm}$

Answer: C

D View Text Solution

3. The focal lengths of obj ective and eyepiece of a compound microscope are $5 \mathrm{~cm}, 6.25 \mathrm{~cm}$ respectively. When an object is placed infyrnt of the objective at a distance of 6.25 cm , the
final image is formed at least distance of distinct vision. The length of microscope is

A. 22.5 cm

B. 25 cm
C. 30 cm
D. 31.25 cm

Answer: C
(Watch Video Solution
4. The magnifying powerof a compound microscope is 20 and the distance between its
two lenses is 30 cm when the final image is at
the near point of the eye If the focal length of
eye-pfece is 6.25 cm , the focal length of objective is
A. 2.5 cm
B. 3.5 cm
C. 4.5 cm
D. 5.0 cm

Answer: D

D Watch Video Solution

5. The focal length of objective and eye-piece of a compound microscope are 1 cm and 5 cm
respectively. The microscope magnification is equal to 50. If the distance between two
lenses is increased by 2 cm then the magnification is
A. 31
B. 60
C. 16
D. 83

Answer: B

D Watch Video Solution

EXERCISE-2 (C.W)(OPTICAL INSTRUMENTS
 (TELESCOPES))

1. The focal length of objective and eyelens of a astonomical telescope are respectively 20 cm and 5 cm . Final image is formed at least distance of distinct vision. The magnifying power will be
A. -4.8
B. -4
C. 4.8
D. 4

- Watch Video Solution

2. A simple telescope, consisting of an objective of focal length 60 cm and a single eye lens of focal length 5 cm is focused on a distant object in such a way that parallel rays emerge form the eye lens. If the object makes an angle of 2° at the objective, the angular width if the image is
A. 10°
B. 24°
C. 50°
D. 60°

Answer: B

D Watch Video Solution

3. Four convergent lenses have focal lengths
$100 \mathrm{~cm}, 10 \mathrm{~cm}, 4 \mathrm{~cm}$ and 0.3 cm . For a telescope with maximum possible magnification, we choose the lenses of focal lengths
A. $10 \mathrm{~cm}, 0.3 \mathrm{~cm}$
B. $10 \mathrm{~cm}, 4 \mathrm{~cm}$
C. $100 \mathrm{~cm}, 4 \mathrm{~cm}$
D. $100 \mathrm{~cm}, 0.3 \mathrm{~cm}$

Answer: D

D Watch Video Solution
4. Opera glass have a minimum length of 20
cm and a magnifying power of 5 when viewing
distant objects. The focal lengths of lenses

used are

A. $25 \mathrm{~cm}, 5 \mathrm{~cm}$
B. $25 \mathrm{~cm},-5 \mathrm{~cm}$
C. $\left(\frac{10}{5}\right) c m,\left(\frac{50}{3}\right) c m$
D. $15 \mathrm{~cm},-10 \mathrm{~cm}$

Answer: B
(Watch Video Solution
5. A telescope has an objective lens of focal length 200 cm and an eye piece with focal length 2 cm . If this telescope is used to see a 50 meter tall building at a distance of $2 k m$, what is the height of the image of the building formed by the objective lens?
A. 5 mm
B. 10 mm
C. 1 mm
D. 2 mm

Answer: A

D Watch Video Solution

6. The focal length of the objective of an astronomical telescope is 1 m and it is in normal adjustment. Initially the telescope is focussed to a heavenly body. If the same telescope is to be focussed to an object at a distance of 21 m from the objective, then identify the correct choice
A. eye piece should be displaced by 2 cm
away from the objective
B. eye piece should be displaced by 2 cm
towards the objective
C. eye piece should be displaced by 5 cm towards from the objective
D. eye piece should be displaced by 5 cm away from the objective

Answer: D

EXERCISE-2 (H.W)(REFLECTION)

1. Two plane mirrors are inclined at angle
'theta' as shown in figure. If a ray parallel to $O B$
strikes the other mirror at P and finally emerges parallel to OA after two reflections
then θ is equal to
A. 90°
B. 60°
C. 45°
D. 30°

Answer: B

D View Text Solution

2. A plane mirrorr is approaching you at a speed of $10 \mathrm{~cm} / \mathrm{sec}$.You can see your image in
it. At what speed will your image approach you
A. $5 \mathrm{~cm} / \mathrm{s}$

B. $10 \mathrm{~cm} / \mathrm{s}$

C. $15 \mathrm{~cm} / \mathrm{s}$
D. $20 \mathrm{~cm} / \mathrm{s}$

Answer: D

D Watch Video Solution

3. Two plane mirrors parallel to each other and an object O parallel between them. Then the distance of the first three images from the
mirror M_{2} willbe(in cm)
A. 5,10,15
B. 5,15,30
C. $5,25,35$
D. $5,15,25$

Answer: C

- View Text Solution

4. Two vertical plane mirrors are inclined at an angle of 60° with each other. A ray of light travelling horizontally is reflected first from one mirror and then from the other. The resultant deviation is
A. 60°
B. 120°
C. 180°
D. 240°
5. If an object is placed between two plane mirrors a distance 2 b , apart, the object is situated at mid point between mirrors, the position of nth image formed by the one of the mirrors with respect to the object is
A. nb
B. 2 nb
C. 3 nb
D. 4 nb

Answer: B

D Watch Video Solution

6. With a concave mirror, an object is placed at
a distance 9 cm from the principal focus, on
the principal axis. The image is formed at a distance 16 cm from the principal focus. The
focal length of the mirror is
A. 12 cm

B. 11 cm

C. 40 cm

D. 30 cm

Answer: A

D Watch Video Solution

7. An infinitely long rod lies along the axis of a concave mirror of focal length f. The near end of the rod is distance $u>f$ from the mirror. Its image will have length
A. $\frac{u f}{u-f}$
B. $\frac{u f}{u+f}$
C. $\frac{f^{2}}{u+f}$
D. $\frac{f^{2}}{u-f}$

Answer: D

D Watch Video Solution

8. A 2.0 cm high object is placed on the principal axis of a concave mirror at a distance of 12 cm from the pole. Ilf the image is
inverted, real and 5.0 cm high, find the
location of the image the focal length of the mirror.
A. $30 \mathrm{~cm}, 8.6 \mathrm{~cm}$
B. 8.6 cm 30 cm
C. $30 \mathrm{~cm}, 10 \mathrm{~cm}$
D. $10 \mathrm{~cm}, 30 \mathrm{~cm}$

Answer: A

D Watch Video Solution
9. At what distance from a convex mirror of focal length 2.5 m should a body stand so that his image has a height equal to half the original height ? The principal exis is perpendicular to the height.
A. 2.5 m from the mirror
B. 5 m from the mirror
C. 7.5 m from the mirror
D. 10 m from the mirror
10. The velocity of image w.r.t tround in the below figure is
A. $10 \mathrm{~m} / \mathrm{s}$ moving downwards
B. $10 \mathrm{~m} / \mathrm{s}$ moving upwards
C. $20 \mathrm{~m} / \mathrm{s}$ moving downwarda
D. $20 \mathrm{~m} / \mathrm{s}$ moving upwards
11. A rectangular wire of length 2.0 cm , breadth
1.5 cm is placed 25 cm in front of a concave mirror of focal length 10 cm with its centre on the axis of the mirror and its plane normal to the axis. The area enclosed by the image of the wire is
A. $7.5 \mathrm{~cm}^{2}$
B. $6 \mathrm{~cm}^{2}$
C. $4 \mathrm{~cm}^{2}$

D. $1.33 \mathrm{~cm}^{2}$

Answer: D

D Watch Video Solution

12. An image of a candle on a screen is found
to be double its size. When the candle is
shifted by a distance of 5 cm , then the image becomes triple its size. Find the nature and radius of curvature of the mirror.
A. concave, 60 cm

B. convex, 60 cm

C. concave, 30 cm
D. convex 30 cm

Answer: A

D Watch Video Solution

13. A point source of light is placed in front of
a plane mirror as shown in figure. Determine
the length of reflected part of light on the

screen

A. L
B. 2 L
C. 3L
D. L/2

Answer: C

D View Text Solution

14. Two points P and Q lie on either side of an
axis XY as shown. It is desired to produce an
image of a real object placed at P at Q using a spherical mirror, with XY as the optic axis. The mirror must be
A. Converging
B. Diverging
C. Plane mirror
D. positioned to the right of Q

Answer: A

D View Text Solution

15. Magnification produced by astronominal telescope for normal adjustment is 10 and
length of telescope is 1.1 m . The magnification when the image is formed at least distance of distinct vision $(D=25 \mathrm{~cm})$ is-
A. 6
B. 14
C. 18
D. 16

Answer: C

- Watch Video Solution

EXERCISE-2 (H.W)(REFRACTION)

1. The same colour of light takes $t_{1} \mathrm{sec}$ and t_{2}
sec to travel the same distance ' x ' in two
media ' A ' and ' B ' respectively. Refractive index of medium ' A ' w.r.t to ' B ' is

$$
\begin{aligned}
& \text { A. } \frac{x T_{1}}{t_{2}} \\
& \text { B. } \frac{t_{2}}{x t_{1}} \\
& \text { C. } \frac{t_{2}}{t_{1}} \\
& \text { D. } \frac{t_{1}}{t_{2}}
\end{aligned}
$$

Answer: D

2. The refractive index of glass plate is $\frac{3}{2}$. Then
the correct thickness of glass plate that will permit the same number of wavelengths as that by an 18 cm long column of water is
$\left(\mu_{w}=\frac{4}{3}\right)$
A. 12 cm
B. 16 cm
C. 18 cm
D. 24 cm

- Watch Video Solution

3. The wavelength of light in vacuum is $5000 \stackrel{\circ}{A}$
. When it travels normally through diamond of
thickness 1.0 mm find the number of waves of
light in 1.0 mm of diamond. (Refractive index of diamond $=2.417$
A. 4834 waves
B. 5834 waves
C. 4384 waves

D. 6834 waves

Answer: A

D Watch Video Solution

4. If the refractive index of diamond is 2.4 find
the velocity of light in diamond. ($\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
A. $1.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$
B. $2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$
C. $1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$

D. $4.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

5. Refractive index of water with respect to air is $\sqrt{2}$. Alight ray is incident on the surface at an angle 30° travelling through water. The deviation of light ray is
A. 30°
B. 120°
C. 15°
D. 60°

Answer: D

D Watch Video Solution

6. If \hat{i} denotes a unit vector along incident
light ray, \hat{r} a unit vector along refracted ray into a medium of refractive index μ and \widehat{n} unit vector normal to boundary of medium
directed towards incident medium, then law of

refraction is

A. $\hat{i} \times \widehat{n}=\mu(\widehat{n} \times \hat{r})$
B. $\hat{i} \times \widehat{n}=\mu(\widehat{n} \times \hat{r})$
C. $\hat{i} \times \widehat{n}=\mu(\hat{r} \times \widehat{n})$
D. $\mu(\hat{i} \times \widehat{n})=\hat{r} \times \widehat{n}$

Answer: C

- Watch Video Solution

7. A small air bubble is inside a transparent
cube of side length 24 cm and of refractive index $\frac{4}{3}$ If the apparent distance air bubble from a face is 9 cm then its apparent distance from opposite face is
A. 6 cm
B. 8 cm
C. 9 cm
D. 12 cm

Answer: C
8. A ray of light is incident upon a parallel sided transparent slab of thickness 9 cm at an angle of incidence 60° - If the angle of refraction is 30°, the lateral displacement of the light ray is
A. $\sqrt{3} \mathrm{~cm}$
B. $3 \sqrt{3} \mathrm{~cm}$
C. 3 cm

$$
\text { D. } \frac{2}{\sqrt{3}} \mathrm{~cm}
$$

Answer: B

D Watch Video Solution

9. A vessel of depth d is half filled with a liquid of refractive index μ_{1} and the other half is
filled with a liquid of refractive index μ_{2}. The apparent depth of the vessel, when looked at normally, is

$$
\text { A. } d\left(\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}\right)
$$

B. $d\left(\mu_{1}+\mu_{2}\right)$
C. $\frac{d}{2}\left(\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}\right)$
D. $\frac{d}{2}\left(\mu_{1}+\mu_{2}\right)$

Answer: C

D Watch Video Solution

10. The critical angle for light going from medium X into medium Y is θ. The speed of light in medium X is v. The speed of light in medium Y is
A. $\frac{v}{\sin \theta}$
B. $v \sin \theta$
C. $\frac{v}{\tan \theta}$
D. $v \tan \theta$

Answer: A

D Watch Video Solution
11. Light takes t_{1} second to travel a distance x
cm in vacuum and the same light takes t_{2}
angle for the corresponding medium is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{10 t_{1}}{t_{2}}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{t_{2}}{10 t_{1}}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{10 t_{2}}{t_{1}}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{t_{1}}{10 t_{2}}\right)
\end{aligned}
$$

Answer: A

D Watch Video Solution

12. A fish looks upward at an unobstructed overcast sky. What total angle does the sky appear to subten?(Take refractive index of water as $\sqrt{2}$.)
A. 180°
B. 90°
C. 75°
D. 60°

Answer: B
13. In a swimming pool, a person is viewing outside objects by keeping an eye at a depth h inside water. If the critical angle for water is '
$\theta_{c}{ }^{\prime}$, then the value of the diameter of the circle of view for outside objects will be
A. $2 h \sin \theta_{c}$
B. $2 h \cos \theta_{c}$
C. $2 h \tan \theta_{c}$
D. $2 h \cot \theta_{c}$

Answer: C

D Watch Video Solution

14. A ray of light from a rarer medium strikes a denser medium at angle of incidence 60°. The reflected and refracted rays are perpendicular to each other. The refractive index of denser medium and angle of deviation respectively are

$$
\text { A. } \sqrt{3}, 30^{\circ}
$$

B. $\sqrt{2}, 45^{\circ}$
C. $\sqrt{3}, 60^{\circ}$
D. $\sqrt{2}, 30^{\circ}$

Answer: A

D Watch Video Solution

15. A light ray is incident perpendicularly to one face of a 90° prism and is totally internally reflected at the glass air interface. If the angle of reflection is 45°, we conclude that the

refractive index n

$$
\begin{aligned}
& \text { A. } n>\frac{1}{\sqrt{2}} \\
& \text { B. } n>\sqrt{2} \\
& \text { C. } n<\frac{1}{\sqrt{2}} \\
& \text { D. } n<\sqrt{2}
\end{aligned}
$$

Answer: B

D View Text Solution

16. Word 'Newton's printed on a paper and is
placed on a horizontal surface below a cubical
glass. The minimum value of refractive index of
a cubical glass for which letters are not visible
from any vertical faces, of the glass, is (Critical
angle $=45^{\circ}$)
A. $\sqrt{3}$
B. 0.5
C. 1
D. $\sqrt{2}$

Answer: D

D Watch Video Solution

17. The critical angle for refraction from glass to air is 30° and that from water to air is 37°.

Find the critical angle for refraction from glass to water
A. $\sin ^{-1}\left(\frac{5}{6}\right)$
B. $51^{\circ} 3$,
C. $61^{\circ} 2^{\prime}$

D. $63^{\circ} 3^{\prime}$

Answer: A

- Watch Video Solution

18. The refractive index of the core of an optical fibre is μ_{2} and that of the cladding is
μ_{1}. The angle of incidence on the face of the core so that the light ray just under goes total internal reflection at the cladding is

$$
\text { A. } \sin ^{-1}\left(\frac{\mu_{1}}{\mu_{2}}\right)
$$

B. $\sin ^{-1} \sqrt{\mu_{2}^{2}-\mu_{1}^{2}}$
C. $\sin ^{-1} \sqrt{\mu_{2}-\mu_{1}}$
D. $\sin ^{-1} \sqrt{\mu_{1}^{2}+\mu_{2}^{2}}$

Answer: B

D Watch Video Solution

19. When a ray of light enters from one medium to another then its velocity in second medium becomes doubled. The maximum
value of angle of incidence so that total internal reflection may not take place will be
A. 60°
B. 90°
C. 30°
D. 180°

Answer: C
(Watch Video Solution
20. A ray of light passes through four transparent media with refractive indices
$\mu_{1}, \mu_{2}, \mu_{3}$ and μ_{4} as shown in the figure, the surfaces of all media are parallel. If the emergent ray $C D$ is parallel to the incident ray
$A B$, we must have
A. $\mu_{1}=\mu_{2}$
B. $\mu_{2}=\mu_{3}$
C. $\mu_{3}=\mu_{4}$

$$
\text { D. } \mu_{4}=\mu_{1}
$$

Answer: D

D View Text Solution

21. How much water should be filled in a container of height 21 cm , so that it appears
half filled to the observer when viewed from
the top of the container $(\mu=4 / 3)$.
A. 8 cm

B. 10.5 cm

C. 12 cm
D. 14 cm

Answer: D

D Watch Video Solution

EXERCISE-2 (H.W)(REFRACTION THROUGH
 SPHERICAL SURFACES)

1. A ray of light travelling in a transparent medium falls on a surface separating the medium from air at an angle of incidence of
45°. The ray undergoes total internal reflection. If n is the refractive index of the medium with respect to air, select the possible value of n from the following.
A. 1.3
B. 1.4
C. 1.5

D. 1.9

Answer: C

D Watch Video Solution

2. A mark is made on the surface of a glass
sphere of diameter 10 cm and refractive index
1.5. It is viewed through the glass from a portion directly opposite. The distance of the image of the mark from the centre of the sphere will be
A. 15 cm
B. 17.5 cm
C. 20 cm
D. 22.5 cm

Answer: A

- Watch Video Solution

3. In a medium of refractive index 1.6 and
having a convex surface has a point object in it
at a distance of 12 cm from the pole. The
radius of curvature is 6 cm . Locate the image as seen from air
A. Areal image at 30 cm
B. A virtual image at 30 cm
C. Areal image at 4.28 cm

D. A virtual image at 4.28 cm

Answer: B

D Watch Video Solution

4. Parallel rays are incident on a transparent sphere along its one diameter. After refraction, these rays converge at the other end of this diameter. The refractive index for the material of sphere is
A. 1
B. 1.5
C. 1.6
D. 2
5. A mark of the surface of sphere $\left(\mu=\frac{3}{2}\right)$ is viewed from a diametrically opposite position. It appears to be at a distance 15 cm from its actual position.Find the radius of sphere.
A. 5 cm
B. 10 cm
C. 15 cm
D. 25 cm

Answer: A

D Watch Video Solution

EXERCISE-2 (H.W)(LENSES
 \&
 THERR
 COMBINATIONS)

1. A ray incident at a point at an angle of incidence of 60° enters a glass sphere with refractive index $\sqrt{3}$ and it is reflected and
refracted at the farther surface of the sphere.

The angle between the reflected and refracted
rays at this surface is:
A. 90°
B. 60°
C. 70°
D. 40°

Answer: A

D Watch Video Solution
2. The sun subtends an angle of $(1 / 2)^{\circ}$ on earth. The image of sun is obtained on the screen with the help of a convex lens of focal length 100 cm the diameter of the image obtained on the screen will be
A. 0.13 mm
B. 0.9 mm
C. 1.8 mm
D. 0.6 mm

Watch Video Solution

3. A convex lens forms an image of a distant object at distance of 20 cm from it. On keeping another lens in contact with the first, if the image is formed at a distance of $\frac{40}{3} \mathrm{~cm}$ from the combination, then the focal length of the second lens is
A. -20 cm
B. -40 cm
C. 40 cm

D. 13.33 cm

Answer: C

D Watch Video Solution

4. A slide projector gives magnification of 10 . If
it projects a slide of $3 \mathrm{~cm} \times 2 \mathrm{~cm}$ on a screen, the area of image on screen is :
A. $6000 \mathrm{~cm}^{2}$
B. $600 \mathrm{~cm}^{2}$

C. $3600 m^{2}$

D. $2000 m^{2}$

Answer: B

D Watch Video Solution

5. The radius of curvature of a thin planoconvex lens is 10 cm and the refractive index of its glass is 1.5 . If the plane surface is silvered, then it will behave like a
A. concave mirror of focal length 10 cm
B. concave mirror of focal length 20 cm
C. convex mirror of focal length 10 cm
D. convex mirror offocal length 20 cm

Answer: A

D Watch Video Solution
6. The graph between object distance u and image distance v for a lens given below. The

focal length of the lens

A. 5 ± 0.1
B. 5 ± 0.05
C. 0.5 ± 0.1
D. 0.5 ± 0.05

Answer: B

D View Text Solution

7. In the displacement method a conves lens is

placed in between an object and a screen. If
the magnificaiton in the two position are m_{1} and $m_{-}(2)\left(m_{-}(1)>m_{2}\right)$, and the distance between the two positions of the lens is x , the focal length of the lens is
A. $\frac{x}{m_{1}+m_{2}}$
B. $\frac{x}{m_{1}-m_{2}}$
C. $\frac{x}{\left(m_{1}-m_{2}\right)^{2}}$
D. $\frac{x}{\left(m_{1}+m_{2}\right)^{2}}$

Answer: B

- Watch Video Solution

8. A convex lens makes a real image 4 cm long on a screen. When the lens is shifted to a new position without disturbing the object, we again get a real image on the screen which is

16 cm tall. The length of the object must be
A. 8 cm
B. 10 cm

C. 12 cm

D. 6 cm

Answer: A

D Watch Video Solution

9. A convex lens of focal length $50 \mathrm{~cm}, a$ concave lens of focal length 50 cm and a concave lens focal lens 20 cm are placed in contact. The power of this combination in diopters will be
A. $-4.67 D$
B. $-5 D$
C. $-3.21 D$
D. $-3 D$

Answer: B

D Watch Video Solution

10. Arrange the following combinations in the increasing order of focal length

Two piano convex lenses of focal lengths 15 cm
and 30 cm in contact

Two convex lens of focal lengths 40 cm and 50
cm in contact

Two convex lenses of focal length 20 cm separated by 5 cm
A. a, b, c
B. b, a, c
C. a, c, b
D. c, a, b

Answer: C
11. The image of an object, formed by a planoconvex lens at a distance of 8 m behind the lens, is real is one-third the size of the object.

The wavelength of light inside the lens is $2 / 3$ times the wavelength in free space. The radius of the curved surface of the lens is
A. 1 m
B. 2 m
C. 3m

D. 43

Answer: C

D Watch Video Solution

12. The radius of curvature of the convex surface of a planoconvex lens is 12 cm and its refractive index 1.5 . If the plane face of the lens is silvered, then the distance from the lens at which parallel rays incident on its convex surface converge is
A. 12 cm
B. 18 cm
C. 24 cm
D. 30 cm

Answer: A

D Watch Video Solution

13. An equiconcave lens having radius of curvature of each surface 20 cm has one surface silvered. If the refractive index of the
lens is 1.5 , then the magnitude of the focal length is
A. 2.5 cm
B. 0.4 cm
C. 0
D. 5 cm

Answer: D
(Watch Video Solution
14. If R_{1} and R_{2} are the radii of curvature of double convex lens made of same material, the lens with more focal length is
A. $R_{1}=20 \mathrm{~cm}, R_{2}=10 \mathrm{~cm}$
B. $R_{1}=R_{2}=20 \mathrm{~cm}$
C. $R_{1}=R_{2}=10 \mathrm{~cm}$
D. $R_{1}=R_{2}=5 \mathrm{~cm}$

Answer: B

- Watch Video Solution

15. A concave lens of glass, refractive index 1.5
has both surfaces of same radius of curvature
R. On immersion in a medium of refractive index 1.75 , it will behave as a
A. Convergent lens of focal length 3.5 R
B. Convergent lens of focal length 3.0 R
C. Divergent lens of focal length 3.5 R
D. Divergent lens of focal length 3.0 R

Answer: A

16. A thin equi-convex lens is made of glass of
refractive index 1.5 and its length is 0.2 m . If it
acts as a concave lens of 0.5 m focal length
when dipped in a liquid, the refractive index of
the liquid is
A. $\frac{17}{8}$
B. $\frac{15}{8}$
C. $\frac{13}{8}$
D. $\frac{9}{8}$

Answer: B

D Watch Video Solution

17. A convex Lens of focal Length " 0.15 m " is made of refractive "(3)/(2)" .When it is placed in liquid,its focal Length increases by " 0.225 m "

Find the refractive index of the liquid.
A. $\frac{7}{4}$
B. $\frac{5}{4}$
C. $\frac{9}{4}$
D. $\frac{3}{2}$

Answer: B

D Watch Video Solution

18. A diverging lens of focal length 10 cm
having refractive index 1.5 is immersed in a
liquid of refractive index 3 . The focal length and nature of the lens in liquid is
A.) 10 cm , convergent

B. 10 cm divergent

C. 18 cm , convergent
D. 72 cm , divergent

Answer: A

D Watch Video Solution

19. A plano convex lens a thickness of 4 cm . Its
radius of curvature is 20 cm , When its curved
surface is kept on a horizontal surface and
viewed from the top, its bottom appears to be
raised by 1 cm . The focal length of the lens is
A. 40 cm
B. 50 cm
C. 60 cm
D. 70 cm

Answer: C

D Watch Video Solution
20. Two equi convex lenses each of focal lengths 20 cm and refractive index 1.5 are placed in \& contact and space between them is filled with water of refractive index $\frac{4}{3}$. The combination works as
A. converging lens of focal length 30 cm
B. diverging lens of focal length 15 cm
C. converging lens of focal length 15 cm
D. diverging lens of focal length 40 cm

Answer: C
21. If R1 and R2 are the radii of curvature of a double convex lens. The largest power will be for
A. $R_{1}=\infty, R_{2}=10 \mathrm{~cm}$
B. $R_{1}=10 \mathrm{~cm}, R_{2}=\infty$
C. $R_{1}=10 \mathrm{~cm}, R_{2}=10 \mathrm{~cm}$
D. $R_{1}=5 \mathrm{~cm}, R_{2}=5 \mathrm{~cm}$
22. A thin convergent glass lens ($\mu_{g}=1.5$) has a power of +5.0 D . When this lens is immersed in a liquid of refractive index μ_{1}, it acts as a divergent lens of focal length 100 cm . The value of μ_{1} is
A. $\frac{5}{3}$
B. $\frac{4}{3}$
C. $\frac{5}{4}$
D. $\frac{6}{5}$

Answer: A

D Watch Video Solution

23. The refractive index of a material of a plano
concave lens is $\frac{5}{3}$. Its radius of curvature is 0.3 m . Focal length of the lens in air is
A. 0.45 m
B. -0.6 m
C. $0.7 m$
D. $1 m$

Answer: A

D Watch Video Solution

EXERCISE-2 (H.W)(REFRACTION THROUGH A PRISM)

1. The angle of minimum deviation measured
with a prism is 30° and the angle of prism is
60°. The refractive index of prism material is
A. $\sqrt{2}$
B. 2
C. $\frac{3}{2}$
D. $\frac{4}{3}$

Answer: A
2. When light of wavelength λ on an equilateral prism, kept on its minimum deviation position, it is found that the angle of deviation equals the angle the angle of the prism itself. The refractive index of the material of the prism for the wavelength λ is
A. $\frac{\sqrt{3}}{2}$
B. $\sqrt{3}$
C. 2
D. $\sqrt{2}$

Answer: B

D Watch Video Solution

3. A ray incident a 15° on one refracting
surface of a prism of angle 60°, suffers a deviation of 55°. What is the angle of emergence
A. 95°
B. 45°
C. 30°

D. 100°

Answer: D

D Watch Video Solution

4. A prism of critical angle $45 \circ$ is immersed
water of critical angle 50°. The critical angle of
prism inside water will be $\left(\sin 70^{\circ}=0.94\right)$
A. 70°
B. 90°
C. 130°
D. 100°

Answer: A

D Watch Video Solution

5. A glass prism of refractive index 1.5 is placed
in water of refractive index 1.33 . The minimum
value of the angle of the prism so that it will
not be possible to have any emergent ray is
A. 150°
B. 125°
C. 165°
D. 180°

Answer: B

D Watch Video Solution

6. A certain prism is that to produce minimum deviation of 38°. It produces a deviation of
44° when the angle ofincidence is either 42° or
62°. The refractive index of material of prism is
A. 1.51
B. 1.33
C. 1.62
D. 1.732

Answer: A
(Watch Video Solution
7. The maximum value of index of refraction of a material of a prism which allows the passage of light through it when the refracting angle of prism is A is
A. $\sqrt{1+\sin ^{2}\left(\frac{A}{2}\right)}$
B. $\sqrt{1+\cos ^{2}\left(\frac{A}{2}\right)}$
C. $\sqrt{1+\tan ^{2}\left(\frac{A}{2}\right)}$
D. $\sqrt{1+\cot ^{2}\left(\frac{A}{2}\right)}$

Answer: D
8. The prism shown silvered. The angle of the prism is 30° and $\mu=\sqrt{2}$. If the incident ray retraces its initial path the angle of incidence is
A. 50°
B. 45°
C. 60°
D. 75°

Answer: B

D View Text Solution

9. A ray of light is incident on an equilateral glass prism placed on a horizontal table. For minimum deviation which of the following is true?
A. PQ is horizontal
B. QR is horizontal
C. RS is horizontal
D. Either PQ or RS is horizontal

Answer: B

- View Text Solution

EXERCISE-2 (H.W)(DISPERSION BY A PRISM)

1. Two small angled prisms A and B deviate the blue rays by 70 and 90 and the red rays by 5

0 and 70 respectively. Which prism has a greater. p dispersive power?
A. Prism A
B. Prism B
C. same for both Prism A \& B

D. none of these

Answer: A

- Watch Video Solution

2. The refractive index of the material of the prism for violet colour is 1.69 and that for red
is 1.65 . If the refractive index for mean colour is
1.66, the dispersive power of the material of the prism
A. 0.66
B. 0.06
C. 0.65
D. 0.69

Answer: B

- Watch Video Solution

3. The refractive indices of fint glass prism for violet, Yellow and Red colours are 1.790, 1.795 and 1.805 respectively, find dispersive power of the flint glass.
A. 0.01587
B. 0.01887
C. 0.01187
D. 0.01387

Answer: B

D Watch Video Solution

4. Refracting angle of a prism is 2 radians.

Refractive indices of its material for violet and red are respectively 1.62 and 1.5 Dispersion produced by it is
A. 0.24
B. 0.06
C. 1.66
D. 1.12

Answer: A

- Watch Video Solution

EXERCISE-2 (H.W)(DEFECTS OF THE EYE)

1. A man cannot see clearly the objects beyond
a distance of 20 cm from his eyes. To see distant objects clearly he must use which kind of lenses and of what focal length
A. 100 cm , convex
B. 100 cm concave
C. 20 cm convex
D. 20 cm concave

Answer: D

- Watch Video Solution

2. A short sighted person can see objects most distinctly at a distance of 16 cm . If he wears spectacles at a distance of 1 cm from the eye,
then their focal length to see distinctly at a distance of 26 cm
A. 25 cm , convex
B. 25 cm , concave
C. 37.5 cm , convex
D. 37.5 cm , concave

Answer: D
(Watch Video Solution
3. An eye specialist prescribes spectacles
having combination of convex lens of focal
length 40 cm in contact with a concave lens of
focal length 25 cm . The power of this lens
combination in diopters is
A. +1.5
B. -1.5
C. +6.67
D. -6.67

Answer: B

(D) Watch Video Solution

EXERCISE-2 (H.W)(OPTICAL INSTRUMENTS MICROSCOPES))

1. The two lenses of a compound microscope
are of focal lengths 2 cm and 5 cm . If an object
is placed at a distance of 2.1 cm from the
objetive of focal length 2 cm the final image
forms at the least distance of distinct vision of
a normal eye. Find the frnagnifying powerjof the microscope
A. 20
B. 6
C. 120
D. 60

Answer: C

D Watch Video Solution

2. If the focal length of objective and eye lens are 1.2 cm and 3 cm respectively and the object
is put 1.25 cm away from the objective lens
and the final image is formed at infinity. The magnifying power of the microscope is
A. 150
B. 200
C. 250
D. 400

Answer: B

D Watch Video Solution
3. The focal lengths of the objective and the eyepiece of a compound microscope are 1.0 cm and 5.0 cm respectively. An object, placed at a distance of 1.1 cm from the objective, has its final image formed at a distance of 25 cm from the eye. Find the magnifying power of the microscope.
A. 20
B. 30
C. 50

D. 60

Answer: D

D Watch Video Solution

4. A compound microscope has an objective of
focal length 2.0 cm and an eye-piece of focal
length 6.25 cm and distance between the objective and eye-piece is 15 cm . If the final image is formed at the least distance vision
$(25 \mathrm{~cm})$, the distance of the object form the objective is
A. 1.5 cm
B. 2.5 cm
C. 3.0 cm
D. 4.0 cm

Answer: B
(Watch Video Solution
5. The focal length of the objective and the eye
piece of a compound microscope are 2.0 cm
and 3.0 cm , respectively. The distance between
the objective and the eye piece is 15.0 cm . The
final image formed by the eye piece is at infinity. The two lenses are thin. The distance in cm of the object and the image produced by
the objective, measured from the objective lens, are respectively
A. 2.4 and 12
B. 2.4 and 15
C. 2.4 and 3.0
D. 2.3 and 12

Answer: A

D Watch Video Solution

EXERCISE-2 (H.W)(OPTICAL INSTRUMENTS TELESCOPES))

1. The magnifying power of an astronomical
telescope for normal adjustment is 10 and the
length of the telescope is 110 cm . Find the magnifying power of the telescope when the image is formed at the least distance of distinct vision for normal eye
A. 14
B. 48
C. 28
D. 52

Answer: A
2. The eyepiece of a refracting telescope has f
$=9 \mathrm{~cm}$. In the normal setting, separation
betweeen objective and eyepiece is 1.8 m . Find
the magnification
A. 20
B. 19
C. 18
D. 21

Watch Video Solution

3. Four lenses of focal length
$+15 \mathrm{~cm},+20 \mathrm{~cm},+150 \mathrm{~cm}$ and +250 cm are available for making an astronomical telescope. To produce the largest magnification, the focal length of the eye-piece should be
A. +15 cm
B. +20 cm
C. +150 cm

D. +250 cm

Answer: A

D Watch Video Solution

4. An opera glass (Galilean telescope)
measures 9 cm from the objective to the eyepiece. The focal length of the objective is

15 cm . Its magnifying power is
A. 2.5
B. 43953
C. 43895
D. 0.4

Answer: A

D Watch Video Solution

5. A small telescope has an objective lens of focal length 140 cm and eye piece of focal
length 5.0 cm . The telescope is used to view a 100 m tall tower 3 km away. The height of the
image ' of the tower formed by objective lens
is

> A. $\frac{14}{3} \mathrm{~cm}$
> B. $\frac{11}{3} \mathrm{~cm}$
> C. $\frac{17}{3} \mathrm{~cm}$
> D. $\frac{8}{3} \mathrm{~cm}$

Answer: A

D View Text Solution

1. Air bubble in water behaves as
A. sometimes concave, somethimes convex
lens
B. concavc lens
C. convex lens
D. always refraction surface

Answer: 2

- Watch Video Solution

2. The position of final images formed by the given lens combination from the third lens will be at a distance of
$f_{1}=+10 \mathrm{~cm} f_{2}=-10 \mathrm{~cm} f=+30 \mathrm{~cm}$
A. 15 cm
B. infinity
C. 45 cm
D. 30 cm

Answer: 4
3. The focal length of the objective and eye lenses of a microscope are 1.6 cm and 2.5 cm respectively. The distance between the two lenses is 21.7 cm . If the final image is formed at infinity. What is the linear magnification?
A. 11
B. 110
C. 1.1
D. 44

Answer: 2

D Watch Video Solution

4. The frequency of a light wave in a material is
$2 \times 10^{14} H z$ and wavelength is $5000 \AA$. The refractive index of material will be
A. 1.5
B. 3
C. 1.33
D. 1.4

Answer: 2

D Watch Video Solution

5. A small coin is resting on the bottom of a beaker filled with liquid. A ray of light from the coin travels up to the surface of the liquid and moves along surface. How fast is the light
travelling in the liquid?

A. $2.4 \times 10^{5} \mathrm{~m} / \mathrm{s}$
B. $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
C. $1.2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
D. $1.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Answer: 4

D View Text Solution
6. Two thin lenses of focal length f_{1} and f_{2} are
in contact and coaxial. The power of the combination is

$$
\begin{aligned}
& \text { A. } \frac{f_{1}+f_{2}}{f_{1} f_{2}} \\
& \text { B. } \sqrt{\frac{f_{1}}{f_{2}}} \\
& \text { C. } \sqrt{\frac{f_{2}}{f_{1}}} \\
& \text { D. } \frac{f_{1}+f_{2}}{2}
\end{aligned}
$$

Answer: 1

7. A boy is trying to start a fire by focusing sunlight on a piece of paper using an equiconvex lens of focal length 10 cm . The diameter of the sun is $1.39 \times 10^{9} \mathrm{~m}$ and its mean distance from the earth is $1.5 \times 10^{11} \mathrm{~m}$.

What is the diameter of the sun's image on the paper ?

$$
\begin{aligned}
& \text { A. } 12.4 x 10^{-4} \mathrm{~m} \\
& \text { B. } 9.2 \times 10^{-4} \mathrm{~m} \\
& \text { C. } 6.5 \times 10^{-4} \mathrm{~m}
\end{aligned}
$$

D. $6.5 \times 1 O^{-5} \mathrm{~m}$

Answer: 2

D Watch Video Solution

8. A converging lens forms a real image I on
its optic axis. A rectangular galss slab of refractive index μ and thickness t is introduced between the lens and $I . I$ will move
A. towards the lens $(\mu-I) \mathrm{x}$
B. towards the lens by $\left(1-\frac{1}{\mu}\right) \mathrm{x}$
C. away from the lens by ($\mu-1$) x
D. away from the lens by $\left(1-\frac{1}{\mu}\right) \mathrm{x}$

Answer: 4

- Watch Video Solution

9. When white light passes through a prism, the devination is maximum for

A. violet light

B. green light
C. red light
D. yellow light

Answer: 1

D Watch Video Solution

10. An object 5 cm tall is placed 1 m from a concave spherical mirror which has a radius of curvature of 20 cm . The size of the image is
A. 0.11 cm
B. 0.50 cm
C. 0.55 cm
D. 0.60 cm

Answer: 3

D Watch Video Solution
11. Two point white dots are 1 mm apart on a black paper. They are viewed by eye of pupil diameter 3mm. Approximately, what is the
maximum distance at which these dits can be
resolved by the eye? [Take wavelelngth of light
$=500 \mathrm{~nm}$]
A. 5 m
B. 1 m
C. 6 m
D. 3 m

Answer: 1

D Watch Video Solution
12. The refractive index of a glass is 1.520 for red light and 1.525 for blue light. Let D_{1} and
D_{2} be angles of minimum deviation for red and blue light respectively in a prism of this glass. Then,
A. $D_{1}<D_{2}$
B. $D_{1}=D_{2}$
C. D_{1} can be less than or greater than D_{2}
depending upon the angle of prism
D. $D_{1}>D_{2}$

Answer: 1

D Watch Video Solution

13. In a laboratory four convex lenses
L_{1}, L_{2}, L_{3} and L_{4} of focal lengths $2,4,6$ and

8 cm respectively are available. Two of these lenses form a telescope of length 10 cm and magnifying power 4 . The objective and eye lenses are
A. L_{2}, L_{3}
B. L_{1}, L_{4}
C. L_{1}, L_{2}
D. L_{4}, L_{1}

Answer: 4

D Watch Video Solution
14. The velocities of light in two different mediums are $2 \times 10^{8} \mathrm{~ms}^{-1} \quad$ and
$2.5 \times 10^{8} \mathrm{~ms}^{-1}$ respectively. The critical angle
for there mediums is
A. $\sin ^{-1}\left(\frac{1}{5}\right)$
B. $\sin ^{-1}\left(\frac{4}{5}\right)$
C. $\sin ^{-1}\left(\frac{1}{2}\right)$
D. $\sin ^{-1}\left(\frac{1}{4}\right)$

Answer: 2

D Watch Video Solution

15. The critical angle for total internal reflection in diamond is 24.5° The refractive index of the diamond is
A. 2.41
B. 1.41
C. 2.59
D. 1.59

Answer: 1

D Watch Video Solution
16. When a glass lens with $\mu=1.47$ is immersed in a trough of liquid, it looks to be disappeared. The liquid in the trough could be
A. Water
B. Kerosene
C. Glycerin
D. Alcohol

Answer: 3

D Watch Video Solution

17. A convex lens of refractive index $3 / 2$ has a power of 2.5°. If it is placed in a liqud of refractive index 2,the new power of the lens is
A. -1.25 D
B. -1.5 D
C. 1.25 D
D. 1.5D

Answer: 1

D Watch Video Solution
18. The position of an object placed 5 cm in front of concave mirror of radius of curvature 15 cm is
A. 7.5 cm
B. 15 cm
C. 20 cm
D. 27.5 cm

Answer: 2

D Watch Video Solution
19. The speed of light in media M_{1} and M_{2} are
$1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and $2.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
respectively. A ray of light enters from medium
M_{1} to M_{2} at an incidence angle i. If the ray suffers total internal reflection, the value of i is.
A. Equal to $\sin ^{-1}\left(\frac{2}{3}\right)$
B. Equal to or less than $\sin ^{-1}\left(\frac{3}{5}\right)$
C. Equal to or greater than $\sin ^{-1}\left(\frac{3}{4}\right)$
D. Less than $\sin ^{-1}\left(\frac{2}{3}\right)$

Answer: 3

- Watch Video Solution

20. A ray of light is incident on a 60° prism at
the minimum deviation position. The angle of
refraction at the first face (i.e. incident face) of
the prism is-
A. zero
B. 30°
C. 45°
D. 60°

Answer: 2

- Watch Video Solution

21. A lens haivng focal length and aperture of diameter d forms an image of intensity I. Aperture of diameter $\frac{d}{2}$ in central region of lens is covered by a black paper. Focal length of lens and intensity of image now will be respectively.
A. f and $\frac{1}{4}$
B. $\frac{3 f}{4}$ and $\frac{I}{2}$
C. f and $\frac{3 I}{4}$
D. $\frac{f}{2}$ and $\frac{I}{2}$

Answer: 3

- Watch Video Solution

22. A Galilean telescope has objective and eye

- piece of focal lengths 200 cm and 2 cm respectively. The magnifying power of the telescope for normal vision is
A. 92
B. 100
C. 108

D. 198

Answer: 2

D Watch Video Solution

23. A far sighted person has his near point 50
cm . Find the power of lens he should use to
see at 25 cm , clearly.
A. +1 D
B. +2 D

C. -2 D

D. -1 D

Answer: 2

D Watch Video Solution

24. A plano-convex lens fits exactly into a plano-concave lens. Their plane surfaces are parallel to each other. If the lenses are made of different material of refractive indices μ_{1} and μ_{2} and R is the radius of curvature of the
curved surface of the lenses, then focal length of the combination is
A. $\frac{R}{2\left(\mu_{1}-\mu_{2}\right)}$
B. $\quad R$

$$
\mu_{1}-\mu_{2}
$$

C. $\frac{2 R}{\mu_{2}-\mu_{1}}$
D. $\frac{R}{2\left(\mu_{1}+\mu_{2}\right)}$

Answer: 2

D Watch Video Solution

25. For a normal eye, the cornea of eye provides a converging power of 40 D and the least converging power of the eye lens behind the cornea is $20 D$. Using this information, the distance between the retina and the cornea eye lens can be estimated to be
A. 2.5 cm
B. 1.67 cm
C. 1.5 cm
D. 5 cm

Answer: 2

- Watch Video Solution

26. If the focal length of the objective lens is
increased then
A. microscope will decrease but that of
telescope will increase
B. microscope will increase but that of
telescope decrease
C. microscope and telescope both will increase
D. microscope and telescope both will decrease

Answer: 1

D Watch Video Solution

27. The angle of a prism is A. One of its refracting surfaces is silvered. Lihgt rays falling at an angle of incidence 2A on the first surface
returns back through the same path after suffering reflection at the silvered surface. The refractive index. μ, of the prism is
A. $\tan A$
B. $2 \sin A$
C. $\cos A$
D. $\frac{1}{2} \cos \mathrm{~A}$

Answer: 3

D Watch Video Solution
28. In an astronomical telescope in normal adjustment a straight black line of length L is drawn on inside part of objective lens. The eye piece forms a real image of this line. The length of this image is I. The magnification of the telescope is

> A. $\frac{L}{I}$
> B. $\frac{L}{I}+I$
> C. $\frac{L}{I}-I$
> D. $\frac{L+I}{I-I}$

Answer: 1

- Watch Video Solution

29. A beam of light consisting of red, green and blue colours is incident on a right angled prism. The refractive index of the material of the prism for the above red green and blue wavelength are 1.39, 1.44 and 1.47 respectively, the prism will:
A. separate the red colour part from the green and blue colours.
B. Separate the blue colour part from the red and green colours.
C. Separate all three colours from one another
D. Not separate the three colours al all.

Answer: 1

D View Text Solution
30. Two identical thin planoconvex glass lenses
(refractive index 1.5) each having radius of
curvature of 20 cm are placed with their convex surfaces in contact at the centre. The intervening space is filled with oil of refractive index 1.7. The focal length of the combination is
A. -50 cm
B. 50 cm
C. -20 cm
D. -25 cm

Answer: 1

D Watch Video Solution

31. The refracting angle of a prism is A and refractive index of the material of the prism is $\cos (A / 2)$. The angle of minimum deviation is
A. $90^{\circ}-A$
B. $180^{\circ}+2 A$
C. $180^{\circ}-3 A$
D. $180^{\circ}-2 A$

Answer: 4

D Watch Video Solution

32. The angle of incidence for a ray of light at a refracting surface of a prism is 45°. The angle of prism is 60°. If the ray suffers minimum deviation through the prism, the angle of minimum deviation and refractive index of the material of the prism respectively, are :
A. $45^{\circ}, \frac{1}{2}$
B. $30^{\circ}, \sqrt{2}$
C. $45^{\circ}, \sqrt{2}$
D. $30^{\circ}, \frac{1}{\sqrt{2}}$

Answer: 2

D Watch Video Solution

33. An astronomical telesope has objective and eyepiece of focal lengths 40 cm and 4 cm respectively. To view an object 200 cm away
from the objective, the lenses must be separated by a distance :
A. 37.3 cm
B. 46.0 cm
C. 50.0 cm
D. 54.0 cm

Answer: 4

D Watch Video Solution

1. A ray of light incident at an angle θ on a refracting face of a prism emerges from the other face normally. If the angle of the prism is
5° and the prism is made of a material of refractive index 1.5 , the angle of incidence is.
A. 7.5°
B. 5°
C. 15°
D. 2.5°

Answer: 1

D Watch Video Solution

2. A short pulse of white light is incident from
air to a glass slab at normal incidence. After
travelling through the slab, the first colour to emerge is.
A. blue
B. green
C. violet

D. red

Answer: 4

D Watch Video Solution

3. An object appraches a convergent lens from
the left of the lens with a uniform speed
$5 \mathrm{~m} / \mathrm{s}$ and stops at the focus. The image
A. moves away from the lens with an
uniform speed $5 \mathrm{~m} / \mathrm{s}$
B. moves away from the lens with an uniform acceleration
C. moves away from the lens with a nonuniform acceleration
D. moves towards the lens with a nonuniform accelration

Answer: 3

4. A passenger in an Aeroplan shall
A. never see a rainbow
B. may see a primary and a secondary
rainbow as concentric circles
C. may see a primary and a secondary
rainbow as concentric arcs
D. shall never see a secondary rainbow

Answer: 2

D Watch Video Solution
5. You are given four sources of light each one providing a light of a single colour-red, blue,green and yellow. Suppose the angle of refraction for a beam of yellow light corresponding to a particular angle of incidence at the interface of two media is 90°.

Which of the folowing statements is correct it the source of yellow light is replaced with that of other lights without changing the angle of incidence?
A. The beam ofered light would undergo total internal reflection
B. The beam of red light would bend towards the niormal while it gets refracted through the second medium
C. The beam of blue light would undergo
total internal reflection
D. The beam of green light would bend
away from the normal as it gets

Answer: 3

- Watch Video Solution

6. The radius of curvature of the curved
surface of a plano-convex lens is 20 cm . If the refractive index of the material of the lens be 1.5 , it will
A. act as a convex lens only for the objects
that lie on its curved side
B. act as a concave lens for the objects that lie on its curved side
C. act as a convex lens irrespective of the side on which the object lies
D. act as a concave lens irrespective of side on which the object lies

Answer: 3
(Watch Video Solution
7. The phenomena involved in the reflected of radiowaves by ionosphere is similar to.
A. reflection of light by a plane mirror
B. total internal reflection of light in air during a mirage
C. dispersion of light by water molecules
during the formation of a rainbow
D. scattering of light by the particles of air

Answer: 2
8. The direction of ray of light incidnet on concave mirror is shown by PQ while direction in which the ray would travel after reflection is shown by four rays marked 1,2,3 and 4 (figure).

Which of the four rays correctly shows the direction of reflected ray?
A. 1
B. 2
C. 3

$$
\text { D. } 4
$$

Answer: 2

D View Text Solution

9. The optical density of turpentine is higher
than that of water while its mass density is
lower. Figure shows a layer of turpentine floating over water in a container. For which one of the four rays incident on turpentine in
figure, the path shown is correct?
A. 1
B. 2
C. 3
D. 4

Answer: 2

D View Text Solution
10. A car is moving with a constant speed of
$60 \mathrm{kmh}^{-1}$ on a straight road. Looking at the
rear view mirror, the driver finds that the car
following him is at a distance of 100 m and is approaching with a speed of $5 k m h^{-1}$. In order to keep track of the car in the rear, the driver begins to glane alternatively at the rear and side mirror of his car after every $2 s$ till the other car overtakes. If the two cars were maintaining their speeds, which of the following statement (s) is/are correct ?
A. The speed of the car in the rear is 65 kmh
B. In the side mirror, the car in the rear
would appear to approach with a speed
of 5 km hr * to the driver of the leading
car
C. In the rear view mirror, the speed of the
approaching car would appear to
decrease as the distance between the
cars decreases
D. In the side mirror, the speed of the approaching car would appear to increase as the distance between the cars decreases

Answer: 4

D Watch Video Solution

11. There are certain materials developed in
laboratories which have a negative refractive index, Fig. A ray incident from air (medium 1)
into such a medium (medium 2) shall follow a

path given by

A.
B.
C.
D.

Answer: 1
12. The near vision of an average person is

25 cm . To view an object with an angular magnification of 10 , what should be the power of the microscope?
A. 30D
B. 40 D
C. 20D
D. 50D

Answer: 2

- Watch Video Solution

13. Three immiscible liquids of densities
$d_{1}>d_{2}>d_{3} \quad$ and \quad refractive indices
$\mu_{1}>\mu_{2}>\mu_{3}$ are put in a beaker. The height of each liquid column is $\frac{h}{3}$. A dot is made at
the bottom of the beaker. For near normal
vision, find the apparent depth of the dot.

$$
\text { A. } \frac{h}{3}\left(\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}+\frac{1}{\mu_{3}}\right)
$$

B. $\frac{3}{h}\left(\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}+\frac{1}{\mu_{3}}\right)$
C. $\frac{1}{h}\left(\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}+\frac{1}{\mu_{3}}\right)$
D. $h\left(\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}+\frac{1}{\mu_{3}}\right)$

Answer: 1

D Watch Video Solution

14. For a prism of refractive index 1.732 , the angle of minimum deviation is equal to the angle of the prism. The angle of the prism is
A. 45°
B. 30°
C. 60°
D. 90°

Answer: 3

D Watch Video Solution
15. A thin convex lens of focal length 25 cm is
cut into two pieces 0.5 cm above the principal
axis. The top part is placed at $(0,0)$ and an
object placed at $(-50 \mathrm{~cm}, 0)$. Find the coordinates of the image.
A. ($0 \mathrm{~cm}, 50 \mathrm{~cm}$)
B. $(50 \mathrm{~cm},-1 \mathrm{~cm})$
C. $(50 \mathrm{~cm}, 1 \mathrm{~cm})$
D. $(50 \mathrm{~cm}, 0)$

Answer: 2
(Watch Video Solution
16. A myopic adult has a far point at 0.1 m . His power of accomodation is 4 diopters.
(i) What power lenses are required to see distant objects ?
(ii) What is his near point without glasses ?
(iii) What is his near point with glasses ? (Take the image distance from the lens of the eye to the retina to be 2 cm).
A. -20D
B. -10D
C. -30D

D. $-40 D$

Answer: 2

D Watch Video Solution

17. AinyopicadulthasafarpointatO.I m. His power of accomodation is 4D. What is his near point with out glasses? (Take the image distance from the lens of the eye to the retina to be 2 cm)
A. 0.07 m
B. 0.7 m

C. 7 m

D. 0.007 m

Answer: 1

D View Text Solution

18. A myopic adult has a far point at 0.1 m . His
power of accomodation is 4 diopters.
(i) What power lenses are required to see distant objects ?
(ii) What is his near point without glasses ?
(iii) What is his near point with glasses ? (Take the image distance from the lens of the eye to the retina to be 2 cm).
A. 25 m
B. 0.25 m
C. 2.5 m
D. 20 m

Answer: 2

- Watch Video Solution

EXERCISE- 4 One or more than one correct

 answer type1. Consider an extended object immersed in
water contained in a plane through. When seen from close to the edge of the through, the object looks distorted because.
A. the apparent depth of the points close to the edge are nearer the surface of the
water compared to the points away from
the edge
B. the angle subtended by the image of the
object at the eye is smaller than the
actual angle subtended by the object in
air
C. some of the points of the object far
away from the edge may not be visible
becuse of total internal reflection

D. water in a trough acts as a lens and

magnifies the object

Answer: 1,2,3

D Watch Video Solution

2. A rectangular block of glass $A B C D$ has a refractive index 1.6. A pin is placed midway on the face $A B$ of figure. When observed from the face AD, the pin shall
A. appear to be near A
B. appear to be near D
C. appear to be at the centre of $A Z$)
D. not be seen at all

Answer: 1,4

D View Text Solution

3. Between the primary and secondary rainbows, there is a dark band known as Alexander's dark band. This is because
A. light scattered into this region interfere destructively
B.there is no light scattered into this
region
C. light is absorbed in this region
D. angle made at the eye by the scattered
rays with respect to the incident light of
the sun lies between approximately 42°
and 50°

- Watch Video Solution

4. A magnifying glass is used, as the object to be viewed can be brought closer to the eye than the normal near point. This results in.
A. a larger angle to be subtended by the
object at the eye and hence, viewed in
greater detail
B. the formation of a virtual erect image
C. increase in the field of view

D. infinite magnification at the near point

Answer: 1,2

D Watch Video Solution

5. An astronomical refractive telescope has an
objective of focal length 20 m and an eyepiece of focal length 2 cm .
A. The length ofthe telescope tube is 20.02
B. The magnification is 1000
C. The image formed is inverted
D. An objective of a larger aperture will increase the brightness and reduce chromatic aberration of the image

Answer: 1,2,3

D Watch Video Solution

6. The box of a pin hole camera, of length L,
has a hole of radius a . It is assumed that when
the hole is illuminated by a parallel beam of light of wavelength λ the spread of the spot (obtained on the opposite wall of the camera)
is the sum of its geometrical spread and the spread due to diffraction. The spot would then have its minimum size (say b_(min)) when:

$$
\begin{aligned}
& \text { A. } a=\frac{\lambda^{2}}{L} \text { and } b_{-}(\min)=\left(\frac{2 \lambda^{2}}{L}\right) \\
& \text { B. } a=\sqrt{\lambda L} \text { and } b_{-}(\min)=\left(\frac{2 \lambda^{2}}{L}\right) \\
& \text { C. } a=\sqrt{\lambda L} \text { and } b_{-}(\min)=\sqrt{4 \lambda L}
\end{aligned}
$$

D. $\mathrm{a}=\frac{\lambda^{2}}{L}$ and $\mathrm{b}_{-}(\min)=\sqrt{4 \lambda L}$

Answer: 3

D Watch Video Solution

7. In an experiment for determination of refractive index of glass of a prism by i $-\delta$,plot, it was found that a ray incident at angle 35°, suffers a deviation of 40° and that it emerges
an angle 79°. In that case which of the
following is closest to the maximum possible value of the refractive index?
A. 1.5
B. 1.6
C. 1.7
D. 1.8

Answer: 1

D View Text Solution
8. An object 2.4 m in front of a lens forms a sharp image on a film 12 cm behind the lens. A glass plate 1 cm thick, of refractive index 1.50 is interposed between lens and film with its plane faces parallel to film. At what distance (from lens) should object shifted to be in sharp focus of film?
A. 7.2 m
B. 2.4 m
C. 3.2 m
D. 5.6 m

Answer: 4

D Watch Video Solution

9. The graph between angle of deviation (δ)
and angle of incidence (i) for a triangular
prism is represented by
A.
B.
c.

D.

Answer: 2

D View Text Solution

10. The diameter of a plano convex lens is 6 cm
and thickness at the centre is 3 mm . If the speed of light in the material of the lens is $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$, what is the focal length of the lens?
A. 20 cm
B. 30 cm
C. 10 cm
D. 15 cm

Answer: 2

D Watch Video Solution
11. A thin convex lens made from crown glass
$(\mu=3 / 2)$ has focal length f. When it is
measured in two different liquids having
refractive indiced $4 / 3$ and $5 / 3$, it has the focal
length f_{1} and f_{2} respectively. The correct ralation between the focal lengths is
A. $f_{2}>f$ and f_{1} becomes negative
B. f_{1} and f_{2} both become negative
C. $f_{1}=f_{2}<f$
D. $f_{1}>f$ and f_{2} becomes negative

Answer: 4

- Watch Video Solution

12. A green light is incident from the water to
the air-water interface at the critical angle (θ).
Select the correct statement
A. The spectrum of visible light whose
frequency is more than that of green
light will come out to the air medium
B. The entire spectrum of visible fight will
come out ofthe water at various angles
to the normal
C. The entire spectrum of visible fight will
come out of the water at an angle of
90° to the normal
D. The spectrum of visible light whose
frequency is less than that of green light
will come out to the air medium

Answer: 4

D Watch Video Solution

13. Monochromatic light is incident on a glass
prism $A B C$ of angle A. If the refractive index of
the material of the prism is μ, a ray, incident at angle θ, on the face $A B$ would get transmitted through the face AC of the pristn provided.

$$
\begin{aligned}
& \text { A. } \theta>\sin ^{-1}\left[\mu \sin \left(A-\sin ^{-1}\left(\frac{1}{\mu}\right)\right)\right] \\
& \text { B. } \theta<\sin ^{-1}\left[\mu \sin \left(A-\sin ^{-1}\left(\frac{1}{\mu}\right)\right)\right] \\
& \text { C. } \theta>\sin ^{-1}\left[\mu \sin \left(A+\sin ^{-1}\left(\frac{1}{\mu}\right)\right)\right] \\
& \text { D. } \theta>\cos ^{-1}\left[\mu \sin \left(A-\sin ^{-1}\left(\frac{1}{\mu}\right)\right)\right]
\end{aligned}
$$

Answer: 1
(D) View Text Solution

