

PHYSICS

FOR IIT JEE ASPIRANTS OF CLASS 12 FOR PHYSICS

SEMI CONDUCTOR DEVICES

Solved Example

1. The number of silicon atoms per $m^3is5 imes 10^{28}$. This is doped simultaneously with $5 imes 10^{22}$ atoms per m^3 of Arsenic and $5 imes 10^{20} perm^3$ atoms of indium. Calculate the number of electrons and holes. Given that $n_i = 1.5 imes 10^{16} m^{-3}$. Is the material n-type or p-type?

Watch Video Solution

2. A semiconductor has an electron concentration of $0.45 \times 10^{12} m^{-3}$ and a hole concentration of $5.0 \times 10^{20} m^{-3}$. Calculate its conductivity. Given electron mobility $=0.135 m^2 V^{-1} s^{-1}$, hole mobility $=0.048 m^2 V^{-1} s^{-1}$,

3. A N-type silicon sample of width $4\times 10^{-3}m$, thickness and length $6\times 10^{-2}m$ carriers a current of 4.8mA, when the voltage is applied across the length of the sample. The free electron density is $10^{22}m^{-3}$

4. The energy gap of pure Si is 1.1eV The mobilities of electrons and holes are respectively $0.135m^2V^{-1}s^{-1}$ and $0.048m^2V^{-1}s^{-1}$ and can be taken as independent of temperature. The intrinsic carrier concentration is given by $n_i = n_0 e^{-Eg/2kT}$.

Where n_0 is a constant, E_g The gap width and k The Boltmann's constant whose vaue is $1.38 \times 10^{-23} JK^{-1}$ The ratio of the electrical conductivities of Si at 600K and 300K is.

5. In a p-n junction diode, the currect I can expressed as $I=I_0\exp\left(\frac{eV}{2k_BT}-1\right)$ where I_0 is called the reverse saturation current, V is the voltage across the diode and is positive for forward bias and negative for reverse bias, and I is

the current through the diode, K_B is the Boltzmann constant $\left(8.6\times10^{-5}eV/K\right)$ and T is the absolute temperature. If for a given diode $I_o=5\times10^{-12}A$ and T=300K, then (a) What will be the forward current at a formward voltage of 0.6V?

(b) What will be the increase in the current if the voltage across the diode is increased to 0.7V ?

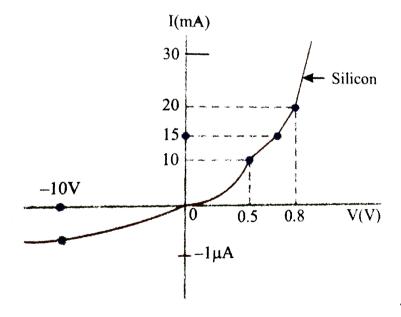
(c) What is the dynamic resistance?

(d) What will be current if reverse bias voltage changes from $1V\ {\rm to}\ 2V$?

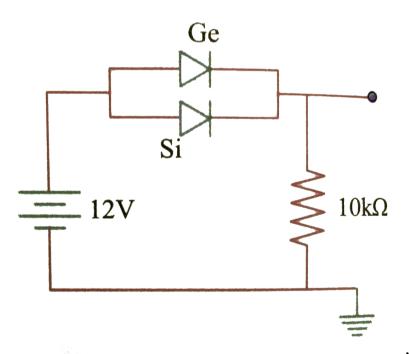
6. The energy of a photon of sodium light $(\lambda=589nm)$ equal the band gap of a semiconducting material.(a)Find the

minimum energy E requried to create a hole-electron pair.

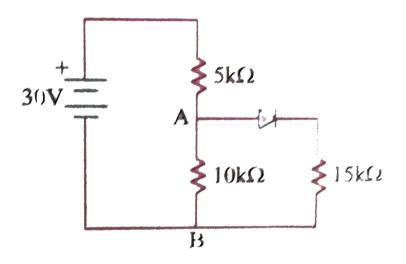
(b) Find the value of E/kT at a temperature of 300K.


Watch Video Solution

7. The V-I characteristic of a silicon diode is shown in the

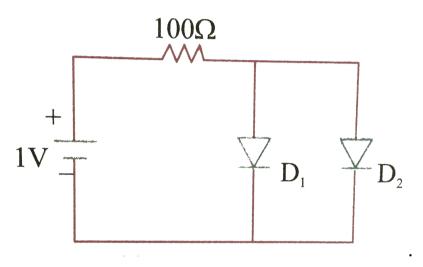

Fig. Calculate the resistance of the diode at

(a)
$$I_D=15mA$$
 and

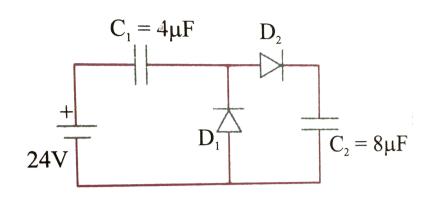

(b)
$$V_D = -10V$$
.

8. Two junction diodes, one of germanium (Ge) and other of silicon (Si) are connected as shown in fig to a battery of 12V and a load resistance $10k\Omega$. The germanium diode conducts at 0.3V and silicon diode at 0.7V. When current flows in the circuit, the potential of terminal Y will be

9. Find the maximum voltage across AB in the circuit shown in Fig. Assume that diode is ideal.



10. Find the voltage V_A in the curcuit shown in figure. The potential barrier for Ge is 0.3V and for Si is 0.7V



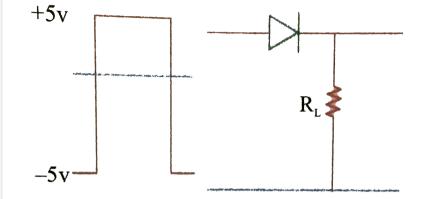
11. Considering the circuit and data given in the diagram, calculate the currents flowing in the diodes D_1 and D_2 Forward resistance of D_1 and D_2 is 20Ω .

12. In the circuit shown. The potential drop across each capacitor is (assuming the two diodes are ideal).

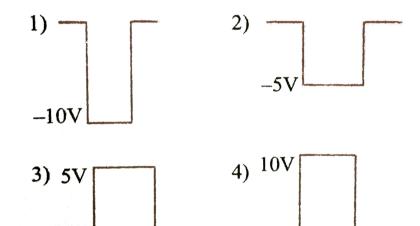
13. A potential barrier of 0.50V exists across a p-n junction.(a) If the depletion region is $5.0\times 10^{-7} \mathrm{m}$ wide,what is the intensity of the electric field in this region?(b) An electron with speed $5.0\times 10^5 ms^{-1}$ approaches the p-n junction form the n-side.With what speed will it enter the p-side?

Watch Video Solution

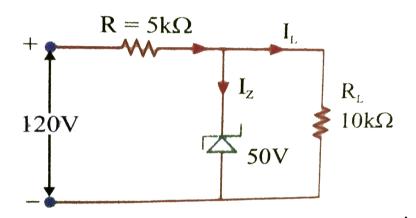
14. A p-n diode is used in a half wave rectifier with a load resistance of 1000Ω . If the forward resistance $\left(r_f\right)$ of diode is 10Ω , calculate the efficiency of this half wave rectifier.



Watch Video Solution


15. A full wave rectifier uses two diodes with a load resistance of 100Ω . Each diode is having negligible forward resistance. Find the efficiency of this wave rectifier.

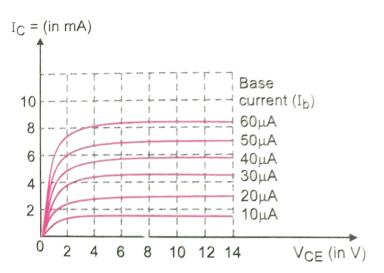
16. If a p-n junction diode, a square input signal of 10V is applied as shown.



Then the out put signal across R_L will be

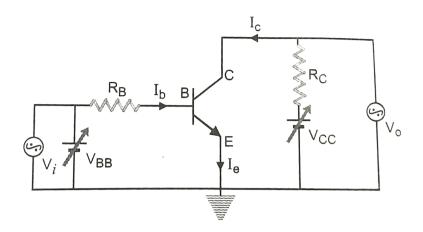
- 17. For the circuit shown in figure, Find
- (1) the output voltage,
- (2) the voltage drop across series resistance,
- (3) the current through Zener diode.

18. Current amplification factor of a common base configuration is 0.88. Find the value of base current when the emitter current is 1mA.


19. In a transistor, the emitter circuit resistance is 100Ω and the collector resistance is 100Ω . The power gain. If the emitter and collector currents are as sumed ton be equal, will be.

Watch Video Solution

20. From the output characteristics of common emitter circuit shown in Fig., calculate the value of eta_{ac} and eta_{dc} of the


transistor when V_{cE} is 10V and $I_c=4.0mA.$

21. In common emitter transistor as shown in Fig., the V_{BB} supply can be varied from 0 V to 5.0V. The Si. Transistor has $\beta_{ac}=250$ and $R_B=100k\Omega,\,R_c=1k\Omega,\,V_{CC}=5.0V.$ Assume that when the transistor is saturated, $V_{CE}=0V$ and $V_{BE}=0.8V.$ Calculate the minimum base current, for which the transistor will reach saturation. Hence, determine V_i when

the transistor is 'switched on' find ranges of V_i for which the transistor is switched off and switched on.

22. Two amplifiers are connected one after the other in series (cascaded). The first amplifier has a voltage gain of 10 and the second has a voltage gain of 20. If the input signal is 0.01 V, calcualte the output AC signal.

23. In a single state transistor amplifier, when the signal changes by 0.02V the base current by $10\mu A$ and collector current by 1mA. If collector load $R_C=2k\Omega$ and $R_L=10k\Omega$, Calculate :

- (i) Current Gain
- (ii) Input Impedance,
- (iii) Effective AC load,
- (iv) Voltage gain and
- (v) Power gain.

24. An n-p-n transistor in a common - emitter mode is used as a simple voltage amplifier with a collector current of 4 mA. The positive terminal of a 8 V battery is connected to the collector through a load resistance R_L and to the base through a

resistance R_B . The collector - emitter voltage $V_{CE}=4V$, the - emitter voltage $V_{BE}=0.6V$ and the current amplification factor eta=100 . Calculate the values of R_L and R_B .

Watch Video Solution

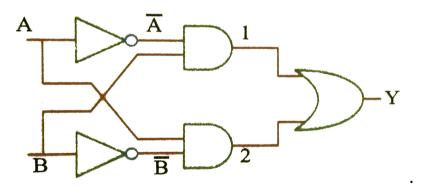
25. In a negative feedback amplifier, the gain without feedback in 100, feed back ratio is 1/25 and input voltage is 50mV.

(i) gain with feedback

Calculate

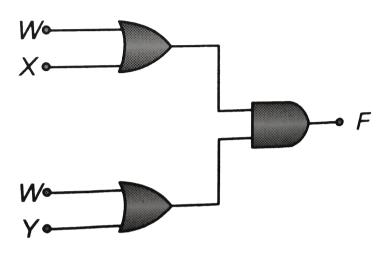
(iii) output voltage

(ii) feedback factor

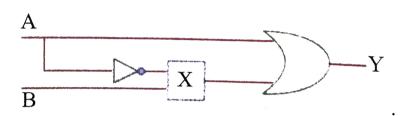

(iv) feedback voltage

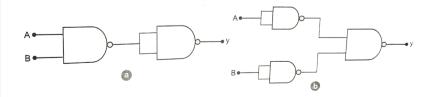
(v) new input voltage so that output voltage with feedback equals the output voltage without feedback.

26. Convert binary number 10111 into decimal number.



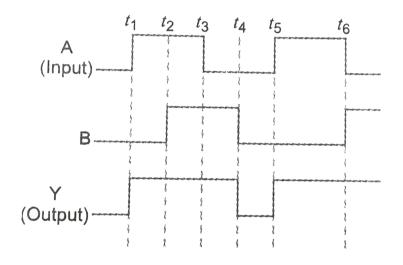
27. The Boolean expression of the output Y of the inputs A and B for the circuit shown in the fig.


28. The diagram of a logic circuit is given below. The output ${\cal F}$ of the circuit is represented by


29. The logic circuit and its truth table are given, what is the gate \boldsymbol{X} in the diagram

A	В	Y
1	1	1
1	0	1
0	1	1
0	0	0

30. You are given two circuit as shown in Fig.and . Which consists of NAND gates. Identify the logic operation carried out by the two circuits.



Watch Vidaa Calutian

watch video Solution

31. Justify the output wavefrom (y) of the OR gate for input and as gives in Fig.

32. Draw logic diagrams for the Boolean expressions given below:

(i)
$$A\cdot \overline{B}+\overline{A}\cdot B=Y$$

(ii)
$$\left(A+\overline{B}\right)\cdot\left(\overline{A}+B\right)=Y.$$

CUQ

1. Which property makes the crystalline solids to have sharp melting point ?

A. Equal strength of all the interatomic bonds

C. long range order

D. short range order

Answer: A

B. anisotropic

2.	Which	of	the	following	is	not	a	property	of	crystalline
SU	bstance	,								

A. sharp melting point

B. bounded by flat surface

C. isotropic

D. long range order

Answer: C

Watch Video Solution

3. A piece of copper and another of germanium are cooled from room temperature to 80K. The resistance of

A. each of these decreases

B. copper strip decreases and that of germanium decreases

C. copper strip decreases and that of germanium increases

D. each of these increases

Answer: C

Watch Video Solution

4. The difference in the variation of resistance with temperature in a metal and a semiconductor arises essentially due to the difference in the

- A. crystal structure
- B. variation of the number of charge carries with temperature
- C. type of bonding
- D. variation of scattering mechanism with temperature

Answer: B

- 5. The manifestation of band structure in solids is due to
 - A. Heisenberg's uncertainty principle
 - B. Pauli's exclusive principle
 - C. Bohe's correspondence principle

D. Boltzman's law

Answer: B

Watch Video Solution

6. A solid which is not transperent to visible light and whose conductivily increase with temperature is formed by

A. ionic bonding

B. covalent bonding

C. vander Wall's bonding

D. metallic bonding

Answer: B

Watch Video Solution

7. To a germanium sample, traces of gallium are added as an						
impurity. The resultant sample would behave like						
A. A conductor						
B. An-type semiconductor						
C. A n-type semiconductor						
D. An insulator						
Answer: B						
Watch Video Solution						
8. In semiconductors at a room temperature						

- A. The valence band is partially empty and the conduction band is partially filled.
- B. The valence band is completely filled and the conduction band is partially filled
- C. The valence band is completely filled
- D. The conduction band is completely filled

Answer: A

- **9.** Identify the property which is not characteristic for a semiconductor?
 - A. at a very low temperatures, it behaves like an insulator

- B. at higher temperatures two types of charge carries will cause conductivity
- C. the charge carries are electrons and holes in the valence band at higher temperatures.
- D. the semiconductor is electrically neutral.

Answer: C

10. Carbon, silicon and germanium have four valence electrons each. At room temperature which one of the following statements is most appropriate?

A. The number of free conduction electrons is negligibly small in all the three

B. The number of free electrons for conduction is significant in all the three.

C. The number of free electrons for conduction is significant only in Si and Ge but small in C.

D. The number of free conductor electrons is significant in $\it C$ but small in $\it Si$ and $\it Ge$.

Answer: C

11. The relation between number of free electrons (n) in a semiconductor and temperature (T) is given by

A.
$$n \propto T$$

B.
$$n \propto T^2$$

$$\mathrm{C.}\,n \propto \sqrt{T}$$

D.
$$n \propto T^{3/2}$$

Answer: D

Watch Video Solution

12. An electrically neutral semiconductor has

A. equal amounts of negative and positive charge

B. no minority charge carries

C. no majority charge carriers

D. no free charges

Answer: A

Watch Video Solution

- 13. There is no hole current in conductors because they have
 - A. high conductivity
 - B. high electron density
 - C. no valence band
 - D. overlapping of valence and conduction bands.

Answer: D

Watch Video Solution

14. In the insulators

- A. the valence band is partially filled with electrons
- B. the conduction band is partiallt filled with electrons
- C. the conduction band is partially filled with electrons and valence band is empty
- D. the conduction band is empty and the valence band is filled with electrons.

Answer: D

Watch Video Solution

15. In semiconductors the for bidden energy gap between $V.\ B$ and $C.\ B$ is of the order of

A. 1 eV

B. 5 eV

C. 1 KeV

D. 1 MeV

Answer: A

Watch Video Solu

16. The level formed due to impurity atom, in the for hidden energy gap, very near to the valence band in a p-type semiconductor is called

A. acceptor level

B. donar level

Answer: A **Watch Video Solution** 17. The bond in semiconductors is A. covalent B. ionic C. metallic D. hydrogen Answer: A **Watch Video Solution**

C. conduction level

D. forbidden level

18. On increasing temperature, the conductivity of pure semiconductors

- A. decreases
- B. increases
- C. remains unchanged
- D. becomes zero

Answer: B

Watch Video Solution

19. The mobility of free electrons is greater then that of free holes because

A. they carry negative charge B. they are light C. their matual collisions are less D. they require low energy to continue their motion Answer: D **Watch Video Solution 20.** A semiconductor at 0K behaves as A. conductor B. insulator C. super conductor D. extrinsic semiconductor

Answer: B

Watch Video Solution

21. Carbon , silicon and germanium have four valence elcectrons each . These are characterised by valence and conduction bands separated by energy band - gap respectively equal to $\left(E_g\right)_c\left(E_g\right)_{si}$ and $\left(E_g\right)_{Ge}$. Which of the following statements ture ?

A.
$$\left(E_g
ight)_{Si}<\left(E_g
ight)_{Ge}<\left(E_g
ight)_{C}$$

B.
$$\left(E_g
ight)_C<\left(E_g
ight)_{Ge}
ight)>\left(E_g
ight)_{Si}$$

C.
$$\left(E_g
ight)_C > \left(E_g
ight)_{Si} > \left(E_g
ight)_{Ge}$$

D.
$$\left(E_g
ight)_C=\left(E_g
ight)_{Si}=\left(E_g
ight)_{Ge}$$

22. The valency of impurity element for making p-type semiconductors is

 $\mathsf{A.}\ 5$

B.4

C. 3

D. 7

Answer: C

23. In n-type semiconductors the electron concentration is equal to

- A. density of donor atoms
- B. density of acceptor atoms
- C. density of both type of atoms
- D. neither density of acceptor atoms nor density of donor atoms

Answer: A

Watch Video Solution

24. Which of the following statements is not true?

A. the resistance of intrinsic semiconductors decreases with increase of temperature

B. doping pure Si with trivalent impurities gives p-type semiconductors

C. the majority charge carries in n-type semiconductors are holes

D. a p-n junction can act as a semiconductor diode

Answer: C

25. p-type semiconductor is

A. negativity charged

- B. positively charged
- C. neutral
- D. may be positive or negative

Answer: C

Watch Video Solution

- **26.** n-type semiconductor is
 - A. negativity charged
 - B. positively charged
 - C. neutral
 - D. may be positive or negative

Answer: C

27. An electric field is applied across a semiconductor. Let n be the number of charge carries. As temperature increases, n will

- A. increase
- B. decrease
- C. does not change
- D. may increase or decrease

Answer: A

Watch Video Solution

28. In a n-type semiconductor, the femi energy level lies

A. in the forbidden energy gap nearer to the conduction band.

B. in the forbidden energy gap nearer to the valence band.

C. in the middle of forbidden energy gap

D. outside the forbidden energy gap

Answer: A

29. An n-type and p-type silicon can be obtained by doping pure silicon with.

A. Arsenic and phosphrous

B. Indium and aluminium

- C. Phosphorous and indium
- D. aluminium and boron

Answer: C

Watch Video Solution

30. The width of forbidden gap in silicon crystal is 1.2ev. When the crystal is converted into a n-type semiconductor the distance of fermi level from conduction band is Greater than 0.55eV

- A. Greater than 0.55eV
- B. Equal to 0.55eV
- C. lesser than 0.55eV
- D. Equal to 1.1eV

Answer: C

Watch Video Solution

31. In extrinsic semiconductors

- A. the conduction band and valence band overlap
- B. thegap between conduction band and valence band is
 - near about 16eV
- C. the gap between conduction band and valence band is near about 1eV
- D. The gap between conduction band and valence band will
 - be 100eV and more

Answer: C

32. The element that can be used as acceptor impurity to dope silicon is

A. Antimony

B. Arsenic

C. Boron

D. phosphorous

Answer: C

33. Among the following, the wrong statement on the case of semiconductor is

- A. Resistivity is in between that of a conductor and insulator
- B. Temperature coefficient of resistance is negative
- C. Doping increases conductivity
- D. At absolute zero temperature it behaves like a conductor.

Answer: D

Watch Video Solution

34. The value indicated by fermi energy level in an intrinsic semiconductor is

- A. the average energy of electrons and holes
- B. the energy of electrons in conduction band
- C. the energy of holes in valence band
- D. the energy of forbidden region

Answer: A

- **35.** The conduction band and valency band of a good conductors are
 - A. well separated
 - B. just touch
 - C. very close

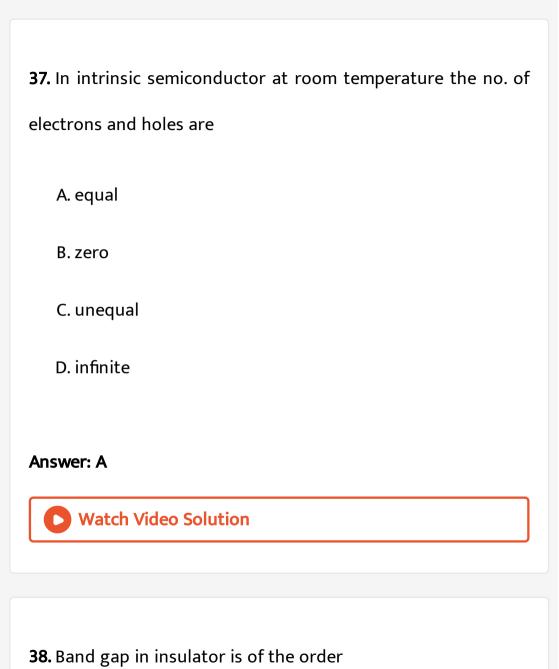
D. overlap

Answer: D

Watch Video Solution

36. Two pieces one of germinium and the other of aluminium are cooled from T_1K to T_2K . The resistance of

A. aluminium increases and that of gertmanium decreases


B. each of them decreases

C. aluminium decreases and that of germanium increases

D. each of them increases

Answer: C

A. 6eV

- B. 0.60eV
- $\mathsf{C.}-6eV$
- D. 0eV

Answer: A

Watch Video Solution

39. In p-type semiconductor conduction in due to

- A. greater number of holes and less number of electrons
- B. only electrons
- C. only holes
- D. greater number of electrons and less number of holes

Answer: A

- 40. In an intrinsic semiconductor, the fermi energy level is
 - A. nearear to valence band than conduction band
 - B. equidistant from conduction band and valence band
 - C. nearer to conduction band than valence band
 - D. bisecting the conduction band

Answer: B

Watch Video Solution

41. With increase in temperature in an intrinsic semiconductor

the ration of conduction electrons and holes is

A. 1:1 B. 1: 2C.2:1D. 1:3 Answer: A **Watch Video Solution** 42. To obtain n-type extrinsic semiconductor, the impurity element to be added to germanium should be of valency A. 2 B. 5 **C**. 4

					_
ΔΙ	ne	214	JΩ	r:	к
$\boldsymbol{\neg}$	112	3 V	,		v

Watch Video Solution

- 43. The majority carries in a p-type semiconductor are....
 - A. Electrons
 - B. Holes
 - C. Both
 - D. Impurities

Answer: B

44. The objective of adding impurities in the extrinsic semiconductor is

A. to increase the conductivity of the semiconductor

B. to increase the density of total current carries

C. to increase the density of either holes or electrons but

D. to eliminate the electron-hole pairs produced in intrinsic semiconductor.

Answer: C

Watch Video Solution

45. In intrinsic semiconductor conductivity is

A. low				
B. average				
C. high				
D. very low				
Answer: A				
Watch Video Solution				
46. In intrinsic semiconductor conductivity is due to.				
A. doping				
B. breaking of covalent bonds				
C. free electrons				
D. holes				

Answer: B

Watch Video Solution

47. When the conductivity of a semiconductor is only due to breaking of covalent bonds, the semi conductor is called.

A. n-type

B. p-type

C. intrinsic

D. extrinsic

Answer: C

48. Assertion (A): C, Si and Ge have 4 Valancy each both but C is an insulator where as Si and Ge are semi conductors Reason (R): Energy gap is least for Ge, less for Si compared to C, So that free electrons for conduction in Ge and Si are significant but negligible small for C.

- A. A,R are true and R explains A correctly
- B. A, R are true and R do not explain A correctly
- $\mathsf{C}.\,A$ is true, but R is false
- D . R is true, but A is false

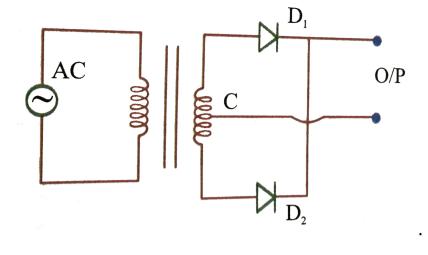
Answer: A

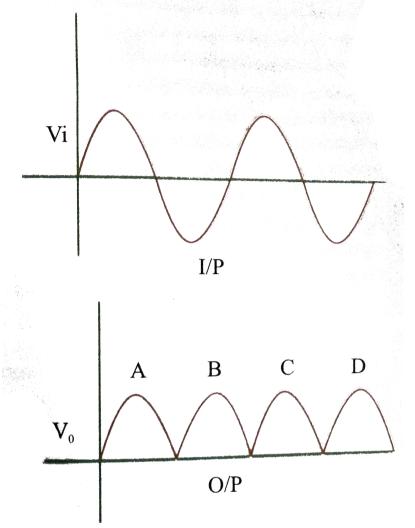
49. The potential barrier at PN junction is due to

- A. fixed acceptor and donor ions on either side of the junction
- B. minority carriers on either side of the junction
- C. majority carriers on either side of the junction
- D. both majority and minority carriers on either side of junction

Answer: A

- **50.** A PN junction diode cannot be used
 - A. as rectifier
 - B. for converting light energy to electric energy


- C. for gettting light radiation
- D. both majority and minority carriers on either side of junction


Answer: D

Watch Video Solution

51. A full wave rectifier with the output is shown in fig. the contributions from the diode (2) are.

A. C

B. **A,**C

C. B,D

D. A,B.C,D

Answer: C

Watch Video Solution

52. A full-wave rectifier is used to convert 'n' $HZa.\ c$ into $d.\ c$, then the number of pulses per second present in the rectified voltage is.

 $\mathsf{A.}\ n$

B. n/2

 $\mathsf{C.}\,2n$

D. 4n

Answer: C

53. If the input frequency of half-wave rectifier is nHzac, then its output is

A. a constant dc

B. n/2Hz pulsating dc

C. nHz pulsating dc

D. 2nHz pulsating dc

Answer: C

A. ohmic resistance B. non-ohmic resistance C. both 1 and 2D. amplifier **Answer: B Watch Video Solution** 55. The process of converting alternating current into direct current is known as A. modulation B. amplification C. detection

D. rectification

Answer: D

Watch Video Solution

56. On increasing reverse voltage in a p-n junction diode the value of reverse current will

- A. gradually increases
- B. first remains constant and then suddenly increase
- C. remains constant
- D. gradually decrease

Answer: B

57 lr	n forward	hiac	the de	nlation	laver	hehaves	مانا
37. II	i ioi wai u	DIAS	tile de	pietion	ıayeı	Dellaves	like

- A. an insulator
- B. a conductor
- C. a semiconductor
- D. capacitor

Answer: B

Watch Video Solution

58. p-n junction in reverse bias behaves like

- A. an inductor
- B. a condenser

C. amplifier

D. an off switch

Answer: D

Watch Video Solution

59. The main cause of avalence breakdown is

- A. collision by ionisation
- B. high doping
- C. recombination of electrons and holes
- D. low doping

Answer: A

60. The main cause of Zener breakdown is.

A. the base semiconductor being germanium

B. production of electron - hole pairs due to thermal exitation

C. low doping

D. high doping

Answer: D

Watch Video Solution

61. When p-n junction is forward biased, the current across the junction is mainly due to

- A. diffusion of charges
 - B. drifting of charges
- C. both diffusion and drifting of charges
- D. holes only

Answer: A

Watch Video Solution

- **62.** The current through any p-n junction is due to
- (a) drift of charge carriers

different regions.

- (b) diffusion of charge carriers
- (c) different concentrations of same type of charge carriers in
- (d) Same concentrations of same type of charge carriers in
- different regions

A. a, b and c ${\sf B.}\ a$ and b only $\mathsf{C}.\mathsf{only}\,d$ D. a, b, c, d**Answer: A Watch Video Solution 63.** The thickness of depletion layer is approximately A. $1\mu m$ B.1mm $\mathsf{C}.\,1cm$ D.1m

Answer: A

Watch Video Solution

- **64.** The depletion region is
 - A. region of opposite charges
 - B. neutral region
 - C. region of infinite energy
 - D. regon of free current carriers

Answer: D

65. Diffusion current in a p-n junction is greater than the drift current in magnitude

- A. forward biased
- B. reverse biased
- C. un biased
- D. both forward and reverse biased

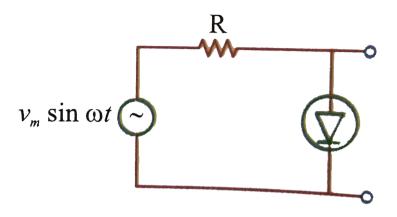
Answer: A

Watch Video Solution

66. Germanium diode.

A. may be used as rectifier because it offers a relatively low resistance for forward bias and very high resistance for reverse bias.

B. may be used as a rectifier because it offers a relatively high resistance for forward bias and very low resistance for reverse bias.


C. cannot be used as a rectifier

D. may be used as an amplifier

Answer: A

67. The output of the given circuit in Fig.

A. would be zero at all times

- B. would be like a half-wave rectifier with positive cycles in output
- C. would be like a half-wave rectifier with negative cycles in output
- D. would be like that of a full-wave rectifier.

Answer: C

68. Diode is forward biased and the applied voltage is greater than the potential barrier then

- (I) resistance of the junction in the forward bias decreases
- (II) potential barrier remains same
- (III) width barrier remains decreases
- (IV) p-type is at higher potential than the n-type.
 - A. all are true
 - B. all are false
 - C. I, III, IV are true
 - D. I, II, III are true

Answer: C

69. When a junction diode is reverse biased, then current called drift current is due to

A. majority changes carriers of both n&p sides

B. minority charge carriers of both n&psides

C. holes of both n&p sides

D. conduction band electrons of n-side only

Answer: B

Watch Video Solution

70. Among the following one statement is not correct when a junction diode is forward bias

- A. the width of depletion region decreases
- B. free electron on n-side will move towards the junction
- C. holes on p-side move towards the junction
- D. electron on n-side and holes on p-side will move away from junction

Answer: D

Watch Video Solution

71. Considering $a.\ p-n$ junction as a capacitor, forward with p and n material acting as thin metal electrodes and depletion layer width acting as seperation between them. Basing on this assume that a n-p-n transistor is working as an amplifier

in CE configuration. If C_1 and C_2 are base-emiter and collector emitter junction capacitances, then :

A.
$$C_1>C_2$$

B.
$$C_1 < C_2$$

$$\mathsf{C}.\,C_1=C_2$$

D.
$$C_1=C_2=0$$

Answer: A

- **72.** Consider the following statements A and B and identify the correct answer
- (1): Germanium is preferred over silicon in the construction of zener diode.

(2): Germanium has high thermal stability than silicon in the construction of Zener diode.

A. Both 1 & 2 are true

B. Both 1 & 2 are false

C. 1 is true 2 is false

D. 1 is false but 2 is true

Answer: B

Watch Video Solution

73. A Zener diode when used as a voltage regulator is connected

(a) in forward bias

(b) in reverse bias

- (c) in parallel to the load
- (d) in series to the load.
 - A. (a) and (b) are correct
 - B. (b) and (c) are correct
 - C. (a) only is correct
 - D. (d) only is correct

Answer: B

- **74.** Consider the following statements A and B and identify the correct answer
- (A) A Zener diode is always connected in reverse bias to use it as voltage regulator.

(B) The potential barrier of a p-n junction lies between $0.1\ {
m to}$ 0.3V, approximately.

A. A and B are correct

 $\operatorname{B.} A \text{ and } B \text{ are wrong} \\$

 ${\sf C.}\ A$ is correct but B is wrong

D. A is wrong but B is correct.

Answer: C

75. Consider the following statement A and B and identify the correct choice of the given answers

 $A\!:$ The width of the depletion layer in a P-N junction diode increases in forwards biase

 $B\colon \mbox{ In an intrinsic semiconductor the fermi energy level is}$ exactely in the middle of the forbidden gap

A. \boldsymbol{A} is true and \boldsymbol{B} is false

B. Both \boldsymbol{A} and \boldsymbol{B} are false

 ${\sf C.}\ A$ is false and B is true

D. Both \boldsymbol{A} and \boldsymbol{B} are true

Answer: C

76. The potential in the depletion layer due to.

A. Electrons

B. Holes

C. lons

D. Forbidden band

Answer: C

- **77.** Pickout the incorrect statement regarding reverse saturation current in the p-n junction diode.
 - A. this currect doubles for every $100\,^\circ\,C$ rise of temperature
 - B. the current is due to minority carriers
 - C. the curreny carriers are produced by thermal agitation
 - D. reverse saturation current is also known as leakage current

Answer: A

78. When the p-n junction diode is reverse biased, the thickness of the depletion layer

- A. increase
- B. decrease
- C. becomes zero
- D. remains constant

Answer: A

79. p-n junction diode can be used as

A. amplifier

B. detector

C. oscillator

D. capacitor

Answer: B

Watch Video Solution

80. A p-n junction diode is reverse biased. Then

A. more current flows

B. the barrier potential decreases

C. the barrier potential increases

D. resistance offered is low

Answer: C

Watch Video Solution

81. In the middle of the depletion layer of a reverse - biased

p-n junction , the

A. electric field is zero

B. potential is maximum

C. electric field is maximum

D. potential is zero

Answer: C

82. When p-n junction diode is forward biased then

- A. the depletion region is reduced and barrier height is increased
- B. the depletion region is widened and barrier height is reduced
- C. both the depletion region and barrier height are reduced
- D. both the depletion region and barrier height are increased

Answer: C

 ${f 83.}$ In a p-n junction photo cell, the value of the photo electromotive force produced by monochromatic light is proportional to

- A. The barrier voltage at the p-n junction
- B. The intensity of the light falling on the cell
- C. The frequency of the light falling on the cell
- D. The voltage applied at the p-n junction

Answer: B

- 84. There is a sudden increase in current in zener diode is
 - A. Due to rupture of bonds

- B. Resistance of deplection layer becomes less
- C. Due to high doping
- D. Due to less doping

Answer: A

Watch Video Solution

85. Application of a forward biase to a p-n junction:

- A. increases the number of donors on the n-side
- B. increases the electric field in the depletion zone
- C. increases the potential difference across the depletion

zone

D. widens the depletion zone

Answer: A

Watch Video Solution

- 86. In a p-n junction diode not connected to any circuit,
 - A. the potential is the same everywhere
 - B. then p-type side is at a higher potential than the n-type side.
 - C. there is an electric field at the junction directed from the n-type side to the p-type side.
 - D. there is an electric field at the junction directed from the p-type side to then n-type side.

Answer: C

87. Select the correct statement from the following:

- A. A diode can be used as a rectifier
- B. A triode cannot be used as a rectifier
- C. The currect in a diode is always proportional to the applied voltage
- D. The linear portion of the I-V characteristic of a triode is used for amplification without distortion.

Answer: A

88. When a PN juction diode is forwards biased, energy is released at the juction due to the recombination of electrons and holes. This energy is in

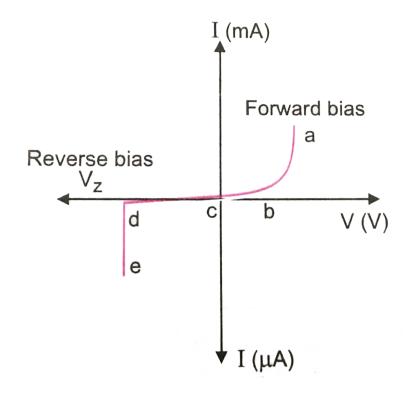
- A. Visible region
- B. Infrared region
- $\mathsf{C}.\,UV$ region
- D. X-ray region

Answer: B

Watch Video Solution

89. A Si and a Ge diode has identical physical dimensions. The band gap in Si is larger than that in Ge. An indentical reverse

bias is applied across the diodes.


- A. The reverse current in Ge is larger than that in Si
- B. The reverse current in Si is larger than that in Ge
- C. The reverse current is identical in the two diodes
- D. The relative magnitude of the reverse currents cannot be determined from the given data only.

Answer: C

90. The graph shown in Fig. represents the I-V characteristics of a zener diode. Which part of the characteristics curve is

most relevent for its operation as a voltage regular?

A. A, R are true and R explains A correctly

- B. A,R are true and R do not explain A correctly
- $\mathsf{C}.\,A$ is true, but R is false
- D. R is true, but A is false

Answer: D

Watch Video Solution

91. Assertion (A) : Si and GaAs are preferred materials for solar cells

Reason (R): Energy gap of Si is 1.1eV and that of GaAs is 1.53eV which gives maximum irradiance where as other materials like CdS or $CdSeig(E_g=2.4eVig)$ and $PbSig(E_g=0.4eVig)$ given minimum irradiance.

Watch Video Solution

92. Assertion (A) : Putting p-type semiconductor slabs directly in physical contact can not form p-n junction

Reason (R): The roughness at contact will be much more than

inter atomic crystal spacing $\left(=2\text{\AA} \to 3\text{Å}\right)$ and continuous flow of charge carriers is not possible.

Watch Video Solution

93. Assertion (A): Eventhough forward bias is known to be more (mA) than the current in the reverse bias (μA) , photodiodes are still used in reverse bias.

Reason (R): The fractional change in majority charge carriers woulb be much less than that in minority charge carriers due to photo-effects so that minority carrier reverse bias current is more easily to measure with photo diodes than majority carrier forward current.

94. The correct relation between current gains lpha and eta is

A.
$$eta=rac{lpha}{1-lpha}$$

$$\mathrm{B.}\,\beta = \frac{\alpha}{1+\alpha}$$

$$\mathsf{C}.\,\beta=\alpha(1-\alpha)$$

D.
$$\beta = \frac{1-\alpha}{\alpha}$$

Answer: A

Watch Video Solution

95. Transistors are made of.

A. insulators

B. conductors

C. alloys

D. doped semi-conductors

Answer: D

Watch Video Solution

96. In n-p-n transistor the arrow head on emitter represents that the convantional current flows from

- A. base to emitter
- B. emitter to base
- C. emitter to collector
- D. base to collector

Answer: A

97. In	a junction	transistor	the emitt	er, base	and	collector	are
made	of.						

- A. extrinsic semi conductors
- B. intrinsic semi conductors
- C. both 1 and 2
- D. metal

Answer: A

- A. both emitter and the collector are equally doped
- B. base is more heavily doped than collector
- C. collector is more heavily doped than the emitter
- D. the base is made very thin and is lightly doped

Answer: D

- 99. In a transistor
 - A. length of emitter is greater than that of collector
 - B. length of collector is greater than that of emitter
 - C. both emitter and collector have same length
 - D. any one of emitter and collector can have greater length

Answer: B

Watch Video Solution

- 100. In transistor the emitter current is.
 - A. slightly more than the collector current
 - B. slightly less than the collector current
 - C. equal to the collector current
 - D. equal to the base current

Answer: A

101. In the use of transistor as an amplifier

A. the emitter - base junction is revrese biased and the collector base junction is also revrese biased

B. the emitter - base junction is forward biased and the collector -base junction is reverse biased

C. both the junctions are forward biased

D. any of the two junctions may be forward biased

Answer: B

Watch Video Solution

102. One way in which the operation of an npn transistor differ from that of a pnp transistor is that

- A. the emitter junction is reverse biased in npn
- B. the emitter junction injects minority carriers into the base region of the pnp.
- C. the emitter injects holes into the base of the pnp and electrons into the base region of npn
- D. the emitter injects holes into the base of npn.

Answer: C

103. npn transistors are preferred to pnp transistors because they have

A. low cost

- B. low dissipation energy
- C. capable of handling large power
- D. electrons have high mobility than holes and hence high mobility of energy.

Answer: D

Watch Video Solution

104. A CE transistor amplifies weak current signal because collector current is.

- A. eta times I_b
- B. eta times I_C
- C. lpha times I_b

D. lpha times I_C

Answer: A

Watch Video Solution

105. When a positive voltage signal is applied to the base of a common emitter npn amplifier

- A. The emitter current decreases
- B. The collector voltage becomes more positive
- C. The collector voltage becomes less positive
- D. The collector current decreases

Answer: C

106. In case of common emitter p-n-p transistor input characteristic is a graph drawn.

A. With I_C on y-axis and V_{CE} on x-axis keeping I_B constant

- B. With I_B on y-axis and V_{BE} on x-axis keeping V_{CE} constant
- C. With I_C on y-axis and I_B on x-axis keeping V_{CE} constant
- D. With V_{BE} on y-axis and V_{CE} x- axis keeping I_{B} constant.

Answer: B

107. The output characterstics of an n-p-n transistor represent, $[I_C$ = Collector current, V_{CE} = potential difference between collector and emitter, I_B = Base current, V_{BB} = voltage given base , V_{BE} = the potential difference between base and emitter].

A. change in I_C as I_B and V_{BB} are changed

B. Changes in I_C with changes in $V_{CE}(I_B=cons\tan t)$.

C. changes in I_B with changes in V_{CE} .

D. Changes in I_C as V_{BE} is changed.

Answer: B

108. In a transistor the base is made very than and is lightly doped with an impurity, because.

- A. to enable the collector to collect about $95\,\%$ of the holes or electrons coming from the emitter side
- B. to enable the emitter to emit small number of holes or electrons
- C. to save the transistors from high current effects
- D. to enable the base to collect about $95\,\%$ of holes or electrons coming from the emitter side.

Answer: A

109. A p-n-p transistor is said to be in active region of operation, When

- A. Both emitter junction and collector junction are forward biased
- B. Both emitter junction and collector junction are reverse biased
- C. Emitter junction is forward biased and collector junction is rerverse biased
- D. Emitter junction is reverse biased and collector junction is forward biased.

Answer: C

110. An n-p-n transistor power amplifier in C-E configuration gives.

- A. Voltage amplification only
- B. Current amplification only
- C. Both current and voltage amplification
- D. Only power gain of unity

Answer: C

Watch Video Solution

111. When N-P-N transistor is used as an amplifier-

A. electrons move from base to collector

- B. holes moves from emitter to base
- C. holes move from collector to base
- D. holes move from base to emitter

Answer: A

Watch Video Solution

112. The part of a transistor which is heavily doped to produce a large number of majority carriers, is

- A. emitter
- B. base
- C. collector
- D. can be any of the above three

Answer: A

Watch Video Solution

- 113. When N-P-N transistor is used as an amplifier-
 - A. electrons move from collector to base
 - B. holes move from collector to base
 - C. electrons move from base to emitter
 - D. holes move from base to emitter

Answer: D

114. A n-p-n transistor conducts when

A. both collector and emitter are positive when respect to the base

B. collector is positive and emitter is negative with respect to the base

C. collector is positive and emitter is at same potential as the base

D. both collector and emitter are negative with respect to the base

Answer: B

115. In a common-base amplifier, the phase difference between the input signal voltage and output voltage is :

- A. $\frac{\pi}{4}$
- B. π
- C. zero
- D. $\frac{\pi}{2}$

Answer: C

Watch Video Solution

116. In a common emitter amplifier, the phase difference between the input signal voltage and output voltage is.

A.
$$\frac{\pi}{2}$$

- **B**. 0
- $C. \pi$
- D. $\frac{\pi}{4}$

Answer: C

Watch Video Solution

117. When n-p-n transistor is used as an amplifier :

- A. Electrons move from emitter to collector
- B. Holes move from emitter to base
- C. Electrons move from collector to base
- D. Holes move from base to collector

Answer: A

118. In a PNP transistor the base is the N-region. Its width relative to the P-region is

A. smaller

B. larger

C. same

D. not related

Answer: A

119. A three terminal device with one terminal common to both the output and input is called.

- A. rectifier
- B. transistor
- C. diode
- D. triode

Answer: B

Watch Video Solution

120. Input and output signal of an amplifier in CE configuration are always

A. Equal

- B. Inphase
- C. Having a phase difference
- D. Out of phase

Answer: D

Watch Video Solution

121. Ge transistor can be operated at a temperature

- A. upto $90^{\circ}\,C$
- B. upto $40^{\circ}\,C$
- C. upto $100^{\circ}\,C$
- D. upto $20^{\circ}\,C$

Answer: A

122. Transistor amplifier circuit with a feed back circuit is called

A. oscillator

B. detector

C. modulator

D. all

Answer: A

Watch Video Solution

123. A pulsating voltage is a mixture of an $a.\ c$ componet and $a.\ d.\ c$ compenent. The circuit used to separate $a.\ c$ and $d.\ c$

component is called

A. an oscillator

B. an amplifier

C. a rectifier

D. a filter

Answer: D

Watch Video Solution

124. The lpha and eta of a transistor are always

A. lpha > 1, eta < 1

B. lpha < 1, eta > 1

 $\mathsf{C.}\,\alpha=\beta$

D.
$$\alpha\beta=1$$

Answer: B

Watch Video Solution

125. In case of NPN transistor, emitter current is always greater than collector current, because :

- A. Collector side is revese biased and emitter side is forward biased
- B. Collector being reverse biased attracts more electrons
- C. Some electrons are lost in base
- D. Collector side is forward biased and emitter side is reverse biased.

Answer: C

Watch Video Solution

126. When a transistor amplifier having current gain of 75 is given an input signal, $V_I=2\sin(157t+\pi/2)$, the output signal is found to be $V_o=200\sin(157t+3\pi/2)$. The transistor is connected as :

- A. A common collector amplifier
- B. A common base amplifier
- C. A common emitter amplifier
- D. An oscillator

Answer: C

127. An oscillator is an amplifier with

- A. A large gain
- B. Negative oscillator
- C. Positive feedback
- D. No feedback

Answer: C

Watch Video Solution

128. In which of the transistor configurations, the voltage gain is highest?

- A. Common-base
- B. Common-emitter
- C. Common-collector
- D. Same in all three

Answer: B

Watch Video Solution

129. A working transitor with its three legs marked P,Q and R is tested using a multimeter No conduction is found between P,Q by connecting the common (negative) terminal of the multimeter to R and the other (positive) terminal to or Q some resistance is seen on the multimeter . Which of the following is true for the transistor?

- A. It is a pnp transistor with R as emitter
- B. It is an npn transistor with R as collector
- C. It is an npn transistor with R as base
- D. It is pnp transistor with R as collector.

Answer: D

Watch Video Solution

130. Common emitter mode of a transistor is wedely used.

Current gain, voltage gain, and power gain are maximum in

A. If both A and R are correct and R is the correct

explanation of $\cal A$

C. E mode of a transistors.

B. If both A and R are correct and R is not the correct explanation of A

C. If 'A' is correct and 'R' is incorrect

D. If 'A' is incorrect and 'R' is correct.

Answer: A

Watch Video Solution

131. Transistor in $C.\ E$ mode can be used as amplifier

A small change in base current produces a relatively large change in collector current.

A. If both A and R are correct and R is the correct explanation of A

B. If both A and R are correct and R is not the correct explanation of A

C. If 'A' is correct and 'R' is incorrect

D. If 'A' is incorrect and 'R' is correct.

Answer: A

132. In the Binary number system the number $100\,\mathrm{represents}$:

A. one

B. three

C. four

D. hundred

Answer: C

Watch Video Solution

133. Among the following is not the function of NOT gate is

- A. stop a signal
- B. invert an input signal
- C. complement a signal
- D. change the logic in a digital circuit

Answer: A

134. Digital circuit can be made by repetitive use of

- A. OR gates
- $\operatorname{B.}{AND}\operatorname{gates}$
- $\mathsf{C}.\,NOT$ gates
- D. NAND gates

Answer: D

Watch Video Solution

135. Among the following one gives output 1 in the AND gate.

- A. A = 0, B = 0
- B. A = 1, B = 1

$$C. A = 1, B = 0$$

D.
$$A = 0, B = 1$$

Answer: B

Watch Video Solution

136. Person who use Boolean algebra for describing the operation of logic gates first was

- A. Boole
- B. Shannon
- C. Schottky
- D. Zener

Answer: B

137. NAND and NOR gates are called universal gates because they

A. are universally available

B. can be combined to produce $OR,\,AND$ and NOT gates

C. are widely used in the Integrated circuits

D. can be easily manufactured

Answer: B

Watch Video Solution

138. In positive logic, the logic state 1 corresponds to

- A. positive voltage
- B. zero voltage
- C. lower voltage level
- D. higher voltage level.

Answer: D

- **139.** In Boolean algebra A+B=Y implies that :
 - A. sum of A and B is Y
 - B. Y exists when A exists or B exists or both A and B exist
 - C. Y exists only when A and B both exist

D. Y exists when A or B exist but not when both A and Bexist.

Answer: B

Watch Video Solution

140. In the Boolean algebra, the following one is wrong

A.
$$1 + 0 = 1$$

B.0 + 1 = 1

C.1 + 1 = 1

D.0 + 0 = 1

Answer: D

141. In Boolean algebra A.B = Y implies that :

A. product of A and B is Y

- B. Y exists when A exists or B exists
- C. Y exists when both A and B exist but not when only A or B exists
- D. Y exists when A or B exists but not both A and B exist.

Answer: C

Watch Video Solution

142. In the Boolean algebra, the following one is wrong

A.
$$1.0 = 0$$

$${\rm B.}\,0.1=0$$

$$\mathsf{C.}\,1.1 = 0$$

$$D. 1.1 = 1$$

Answer: C

Watch Video Solution

143. The following truth table is for

A B Y

1 1 0

 $0 \ 0 \ 1$

- $1 \quad 0 \quad 1$
- $0 \quad 1 \quad 1$
- A. NAND gate
 - $\mathsf{B}.\,AND$ gates

 $\mathsf{C}.\,XOR$ gate D. NOT gate

Answer: A

Watch Video Solution

A. both inputs are 0

B. either input is 1

C. both inputs are 1

D. either input is zero

Watch Video Solution

Answer: A

144. The output of a 2-input OR gate is zero only when its

145. Boolean	algebra	is essentially	based on
			,

A. symbols

B. logic

C. truth

D. numbers

Answer: B

Watch Video Solution

146. The value of $\overline{A}\,+A$ in the Boolean algebra is

A. A

B. \overline{A} $\mathsf{C}.0$ **D**. 1 **Answer: D** Watch Video Solution **147.** The value of $A.\ \overline{A}$ in Boolean algebra is. **A.** 0 B. 1 $\mathsf{C}.\,A$ D. \overline{A} **Answer: A**

148. The following is NOT equal to 0 in the Boolean algebra is

A.
$$\overline{\overline{A}\,.0}$$

B. $A.\ \overline{A}$

 $\mathsf{C}.\,A.0$

D. $\overline{A+\overline{A}}$

Answer: A

Watch Video Solution

149. An AND gate is following by a NOT gate in series. With two inputs $A \ \& \ B$, the Boolean expression for the out put Y

will be:

A. $A.\ B$

B.A + B

 $\mathsf{C}.\,\overline{A+B}$

D. \overline{A} . B

Answer: D

Watch Video Solution

150. NOR gate is the series combination of

A. NOT gate following by OR gate

B. OR gate following by NOT gate

C. AND gate followed by OR gate

D. OR gate followed by AND gate

Answer: B

Watch Video Solution

151. The gate that has only one input terminal

A. NOT

 $\mathsf{B.}\,NOR$

 $\mathsf{C}.\,NAND$

D. XOR

Answer: A

152. AND gate :

- A. It has no equivalence to switching circuit.
- B. It is equivalent to series switching circuit
- C. It is equivalent to parallel switching circuit
- D. It is mixture of series and parallel switching circuit

Answer: B

153. The gate that can act as a building block for the digital circuits is

- A. OR
- B.NOT

 $\mathsf{C}.\,AND$

 $\mathsf{D}.\, NAND$

Answer: D

Watch Video Solution

154. Assertion: NAND or NOR gates are called digital building blocks.

Reason: The repeated use of NAND (or NOR) gates can produce all the basic or complicated gates.

A. Statement -1 is false, statement -2 is true

B. statement $1-\,$ is true statement -2 is true statement

-2 is correct explanation of statement -1.

- C. statement 1- is true statement -2 is true statement
 - -2 is not correct explanation of statement -1
- D. statement 1 is true statement -2is false.

Answer: B

Watch Video Solution

155. NOT gate is also called invertor circuit.

NOT gate inverts the input order.

- A. Statement -1 is false, statement -2 is true
- B. statement $1-\,$ is true statement -2 is true statement
 - -2 is correct explanation of statement -1.

C. statement 1- is true statement -2 is true statement

-2 is not correct explanation of statement -1

D. statement 1 - is true statement -2is false.

Answer: B

Watch Video Solution

Level I C W

1. The electrical conductivity of a semiconductor increases when electromagnatic radiation of wavelength shorter than 2480 nm is incident on it. The band gap (in eV) for the semiconductor is [hc=1242eVnm]

 $\mathsf{A.}\ 0.7eV$

 ${\sf B.}~0.5eV$

 $\mathrm{C.}\,2.5eV$

 ${\rm D.}\ 1.2eV$

Answer: B

- **2.** Pure Si at 300K has equal electron $\left(n_i\right)$ concentrations of
- $1.5 imes10^{16}m^{-3}.$ Doping by indium increases

$$n_h = 4.5 imes 10^{22} m^{\,-3}.~N_e$$
 in the doped Si is

A.
$$5 imes 10^9$$

$$\text{B.}~7\times10^9$$

$$\mathsf{C.}\,9 imes 10^9$$

D.
$$8 \times 10^9$$

Answer: A

View Text Solution

3. In a p-n junction the depletion region is 400nm wide and electric field of $5\times 10^5 Vm^{-1}$ exists in it. The minimum energy of a conduction electron, which can diffuse from n-side to the p-side is.

A. 4eV

B. 5eV

 ${\rm C.}\ 0.4eV$

 ${\rm D.}\,0.2eV$

Answer: D

Watch Video Solution

4. The reverse bias in a junction diode is changed from 5V to 15V then the value of current changes from $38\mu A$ to $88\mu A$. The resistance of junction diode will be.

A.
$$4 imes 10^5 \Omega$$

B.
$$3 imes 10^5 \Omega$$

C.
$$2 imes 10^5 \Omega$$

D.
$$10^6\Omega$$

Answer: C

5. A diode made of silicon has a barrier potential of 0.7V and a current of 20mA passes through the diode when a battery of emf3V and a resistor is connected to it. The wattage of the resistor and diode are

A. 0.046W, 0.014W

B. 4.6W, 0.14W

 $\mathsf{C.}\ 0.46W,\, 0.14W$

D. 46W, 14W

Answer: A

6. In a half wave rectifier output is taken across a 90ohm load resistor. If the resistance of diode in forward biased condition is 10ohm, the efficiency of rectification of ac power into dc power is.

- A. 40.6~%
- $\mathsf{B.}\,81.2\,\%$
- C. $73.08\,\%$
- D. 36.54~%

Answer: D

7. In a full wave rectifier output is taken across a load resistor of 800ohm. If the resistance of diode in forward biased condition is 200ohm, the efficiency of rectification of ac power into dc power is.

- A. 64.96~%
- B. 40.6~%
- C. $81.2\,\%$
- D. $80\,\%$

Answer: A

8. In a P-N-P transistor, the collector current is 10mA. If $90\,\%$ of the holes reach the collector, then emitter current will be :

- A. 13mA
- B. 12mA
- C. 11mA
- D. 10mA

Answer: C

Watch Video Solution

9. A transistor has a base current of 1mA and emitter current 100mA. The current transfer ratio will be

- A. 0.9
- $\mathsf{B.}\,0.99$
- C. 1.1
- D. 10.1

Answer: B

Watch Video Solution

10. When base -emitter voltage of a transistor connected in the common-emitter mode is changed by 20mV the collector current is changed by 25mA. Find the transconductance.

- A. $1.25\Omega^{-1}$
- B. $2.50\Omega^{-1}$

C.
$$0.5\Omega^{-1}$$

D.
$$5.5\Omega^{-1}$$

Answer: A

Watch Video Solution

11. In a transistor circuit the base current changes from $30\mu A$ to $90\mu A$. If the current gain of the transistor is 30, the change in the collector current is.

A. 4mA

B. 2mA

 $\mathsf{C.}\,3.6mA$

D. 1.8mA

Answer: D

Watch Video Solution

- 12. The circuit gain of transistor in a common emitter circuit is
- 40. The ratio of emitter current to base current is.
 - A. 40
 - B. 41
 - C. 42
 - D. 43

Answer: B

13. In a common base configuration the emitter current changes by 5mA when emitter voltage is changed by 200mV at a fixed collector to base voltage. The input resistance is.

- A. 40Ω
- $\mathrm{B.}\ 1000\Omega$
- $\mathsf{C}.\,2.5\Omega$
- D. 4Ω

Answer: A

Watch Video Solution

14. For a common base amplifier, The values of resistance gain and voltage gain are 3000 and 2800 respectively. The current gain will be.

- A. 0.93
- $\mathsf{B.}\ 0.83$
- $\mathsf{C.}\ 0.73$
- D.0.63

Answer: A

Watch Video Solution

15. In a transistor amplifier $\beta=62,$ $R_L=5000\Omega$ and internal resistance of the transistor is 500Ω . Its power amplification will be.

- A. 25580
- B. 33760

16. Decimal number 15 is equivalent to the binary number : A. 110001 B. 000101 C. 101101 D. 001111 Answer: D **Watch Video Solution**

C. 38440

D. 55280

Watch Video Solution

Answer: C

17. Binary number 1001001 is equivalent to the decimal number :

A. 37

 $\mathsf{B.}\ 73$

C. 41

D. 32

Answer: B

Watch Video Solution

18. In the Binary number system 1+1=

A. 2

B. 1

C. 10

D. 100

Answer: C

Watch Video Solution

19. If A=B=1, then in terms of Boolean algebra the value of $A.\ B+A$ is not equal to.

A. B. A + B

B.B+A

 $\mathsf{C}.\,B$

D. \overline{A} . B

Answer: D

Watch Video Solution

20. In the Bollean algebra, the following one which is not equal to \boldsymbol{A} is.

$$B.A + A$$

$$\mathsf{C}.\,\overline{A}\,.\,A$$

D.
$$\overline{\overline{A}\,+\,\overline{A}}$$

Answer: C

21. The logic expression which is NOT true in Boolean algebra is.

A.
$$(ar{1}+ar{1})$$
. $1=0$

B.
$$(\bar{1}+0)$$
. $1=0$

C.
$$(\bar{1} + 0)$$
. $\bar{1} = 0$

D.
$$(1+1).1=0$$

Answer: D

Level Ii C W

1. Mobilities of electrons and holes in a sample of intrinsic germanium at room temperature are $0.36m^2\,/Vs$ and

 $0.17m^2/Vs$. The electron and hole densities are each equal to

 $2.5 imes10^{19} m^{-3}.$ The electrical conductivity of germanium is.

A. 0.47S/m

B. 5.18S/m

 $\mathsf{C.}\ 2.12S/m$

D. 1.09S/m

Answer: C

2. In a p-n junction diode the thickness of deplection layer is $2\times 10^{-6}m$ and barrier potential is 0.3V. The intensity of the electrical field at the junction is.

A. $0.6 imes 10^{-6} Vm^{-1}$ from n to p side

B. $0.6 imes 10^{-6} Vm^{-1}$ from p to n side

C. $1.5 imes 10^5 Vm^1$ from n to p side

D. $1.5 imes 10^5 Vm^{-1}$ from p to n side.

Answer: C

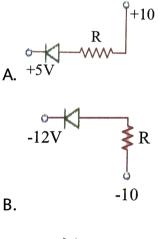
Watch Video Solution

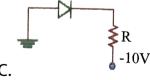
3. A potential barrier V volts exists across a P-N junction. The thickness of the depletion region is 'd'. An electron with velocity 'v' approches P-N junction from N-side. The velocity of the electron acrossing the junction is.

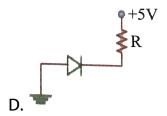
A.
$$\sqrt{v^2 + rac{2V\epsilon}{m}}$$

B.
$$\sqrt{v^2-rac{2 \, v \, e}{m}}$$

C. v

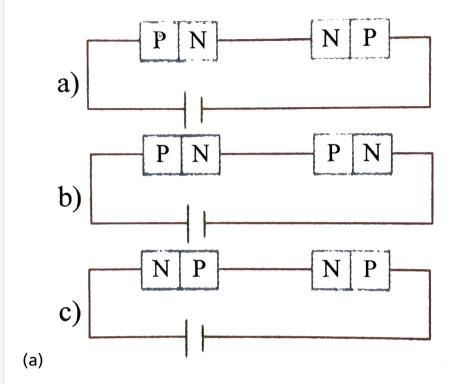

D.
$$\sqrt{\frac{2Ve}{m}}$$


Answer: B



Watch Video Solution

4. In the following, reverse biased diode is.

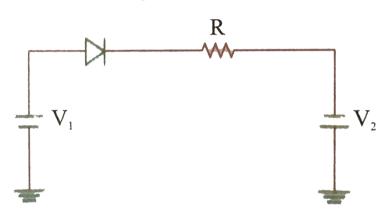

Answer: D

Watch Video Solution

5. Two similar p-n junctions can be connected in three different ways as shown in the figure. The two connections

across which the potentional difference is same are.

A. circuit a and b


B. circuit \boldsymbol{b} and \boldsymbol{c}

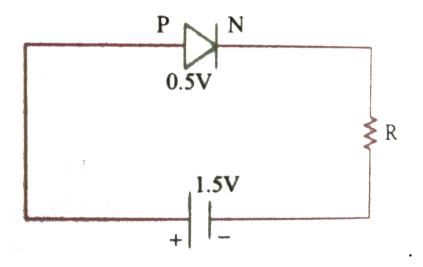
C. circuits \boldsymbol{a} and \boldsymbol{c}

D. all the circuits

Answer: B

6. If $V_1>V_2,\,r$ is resistance offered by diode in forward bias then current through the diode is.

A. 0


B.
$$\dfrac{V_1+V_2}{R+r}$$

C.
$$\frac{V_1-V_2}{R+r}$$

D. None

Answer: B

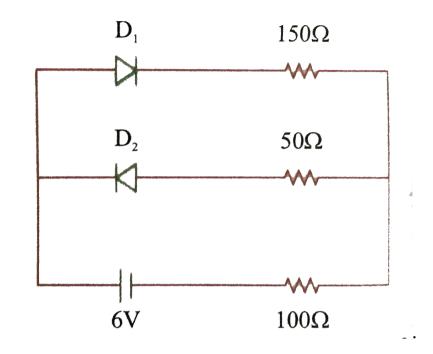
7. A PN junction diode when forward biased has a drop of 0.5V which is assumed to be independent of current. The current in excess of 10mA through the diode produces large joule heating which damages the diode. If we diode, the resistor used in series with the diode so that the maximum current does not exceed 5mA is.

A. $2 imes 10^2 \Omega$

B.
$$2 imes 10^5 \Omega$$

C.
$$2 imes 10^3 \Omega$$

D.
$$2 imes 10^4 \Omega$$


Answer: A

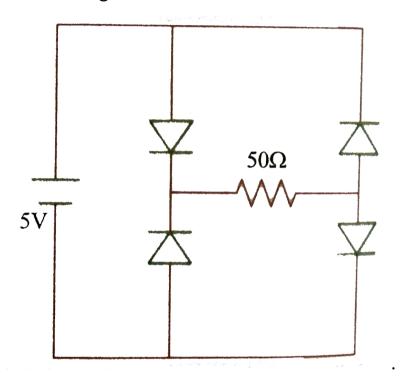
Watch Video Solution

8. The circuit shown in figure (1) Contains two diodes each with a forward resistance of 50ohm and with infinite reverse resistance. If the battery voltage is 6V, the current through

the 100ohm resistance is.

A. 0.01A

B. 0.02A


C. 0.03A

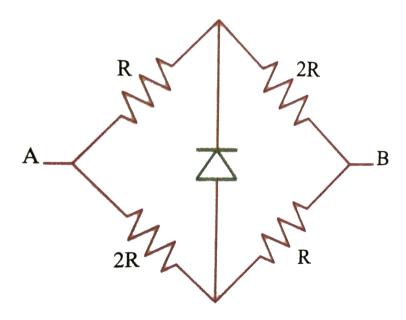
D. 0.04A

Answer: B

9. 4 ideal diodes are connected as shown in the circuit the current through 50Ω is.

A. 0.1A

B.0.5A


 $\mathsf{C.}\ 0.6A$

Answer: A

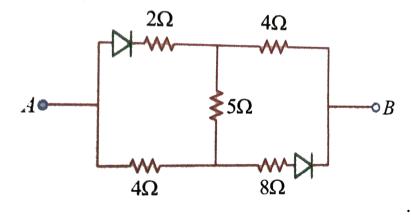
Watch Video Solution

10. Find the effective resistance between A & B

A. $\frac{2}{3R}$

B.
$$\frac{3R}{2}$$

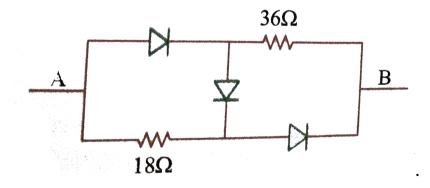
$$\mathsf{C.}\ \frac{2R}{2}$$


 $\mathsf{D}.\,R$

Answer: B

Watch Video Solution

11. The equivalent resistance of the circuit across ${\it AB}$ is given by


- A. 4Ω
- B. 13Ω
- C. 4Ω or 13Ω
- D. 4Ω or zero

Answer: C

Watch Video Solution

12. The equivalent resistance between A and B is

A. 36Ω if $V_A>V_B$

B. 18Ω if $V_A < V_B$

C. Zero if $V_A < V_B$ and 54Ω if $V_A > V_B$

D. Zero if $V_A > V_B$ and 54Ω If $V_A < V_B$

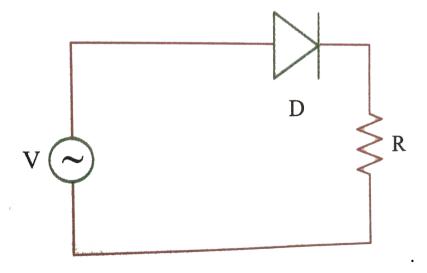
Answer: D

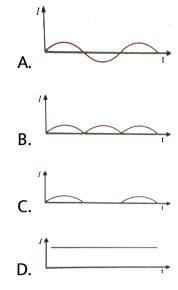
Watch Video Solution

13. A junction diode is connected to a 10V source and $10^3\Omega$ rheostat. The slope of load line on the characteristic curve of diode by $(\operatorname{in} A/V)$.

A. 10^{-1}

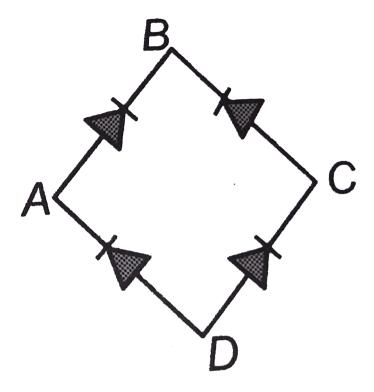
 $B. 10^{-2}$


 $c. 10^{-3}$


Answer: C

Watch Video Solution

14. A p-n junction (D) shown in the figure can act as a rectifier. An alternating current source (V) is connected in the circuit.

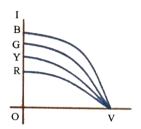


Answer: C

15. In the diagram, the input is across the terminals A and C and the output is across the terminals B and D, then the

outputs is

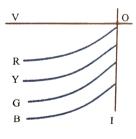
A. Zero

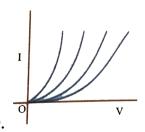

B. Same as the input

C. Full wave rectified


D. Half-wave rectified

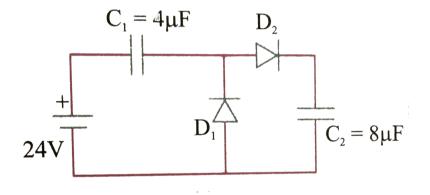
Answer: C


16. The I-V characteristic of an LED is.


A.

В.

C.



Answer: D

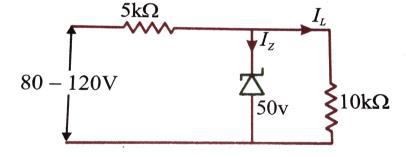
Watch Video Solution

17. In the circuit shown. The potential drop across each capacitor is (assuming the two diodes are ideal).

A. 12 V,12 V

B. 16 V,8 V

C. zero, 24 V


D. 8 V, zero

Answer: B

Watch Video Solution

18. The maximum and minimum values of zener diode current are

A. 6mA,5mA

B. 14mA,5mA

C. 9mA,1mA

D. 3mA,2mA

Answer: C

Watch Video Solution

19. In an n-p-n transistor circuit, the collector current ia 10 mA. If 90% of the electrons emitted reach the collector.

A. the emitter current, the will be 9mA

B. the base current will be 1mA

C. the emitter current will be 11mA

D. both 2 & 3

Answer: D

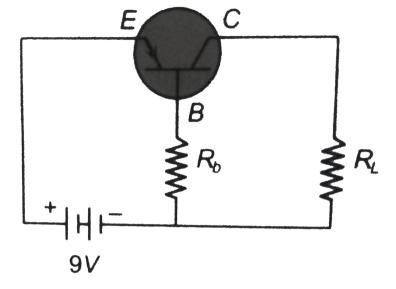
20. The constant α of a transistor is 0.9 What would be the change in the collector current corresponding to a change of 4mA in the base current in a common emitter arrangement ?

- A. 30mA
- ${\rm B.}\,63mA$
- $\mathsf{C.}\,36mA$
- D. 3.6mA

Answer: C

21. A voltage amplifier operated from a 12volt battery has a collector load $6k\Omega$. Calculate the maximum collector current in the circuit.

- A. 0.5mA
- B. 1mA
- $\mathsf{C}.\,3mA$
- D. 2mA


Answer: D

Watch Video Solution

22. In a transistor circuit shown here the base current is $35\mu A$.

The value of the resistor R_b is

- A. $124k\Omega$
- B. $257k\Omega$
- C. $352k\Omega$
- D. None of these

Answer: B

23. In a single state transistor amplifier, when the signal changes by 0.02V the base current by $10\mu A$ and collector current by 1mA. If collector load $R_C=2k\Omega$ and $R_L=10k\Omega$, Calculate :

- (i) Current Gain
- (ii) Input Impedance,
- (iii) Effective AC load,
- (iv) Voltage gain and
- (v) Power gain.
 - A. $50, 2k\Omega, 1.66k\Omega, 83, 8300$
 - B. $100, 1k\Omega, 1.66\Omega, 83, 8300$
 - C. $100, 2k\Omega, 1.66k\Omega, 83, 830$
 - D. $100, 2k\Omega, 1.66k\Omega, 83.8300$

Answer: D

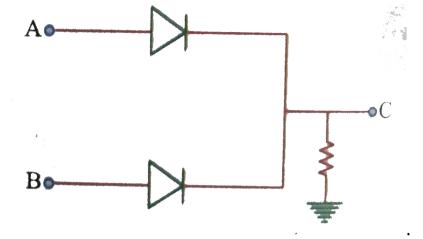
24. On subtracting	010101 from	101010, we	get:
---------------------------	--------------	------------	------

A. 001011

B.001100

C. 010101

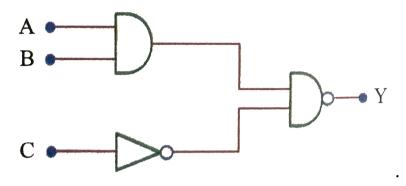
D. 011111


Answer: C

Watch Video Solution

25. The minimum number of gates required to realise this expression $Z=DABC+DA\overline{BC}$ is.

A. One		
B. Two		
C. Eight		
D. Five		
Answer: A		
Watch Video Solution		
26. In the circuit below, A and B represents two inputs and C		
represents the output, the circuit represents.		


- A. NOR gate
- $\operatorname{B.}AND\operatorname{\mathsf{gates}}$
- C. NANDgate
- D. ORgate

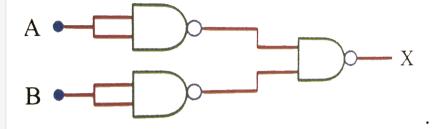
Answer: D

27. In the following circuit the output Y becomes zero for the

inputs

A.
$$A = 1, B = 0, C = 0$$

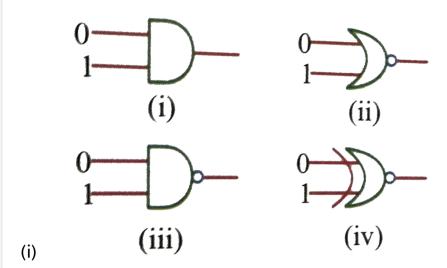
B.
$$A = 0, B = 1, C = 1$$


C.
$$A = 0, B = 0, C = 0$$

D.
$$A = 1, B = 1, C = 0$$

Answer: D

28. The combination of gates shown below yields



- A. NAND gate
- ${\sf B.}\ OR\ {\sf gate}$
- $\operatorname{C.} NOT \text{ gates}$
- $\operatorname{D.}XOR \operatorname{\mathsf{gate}}$

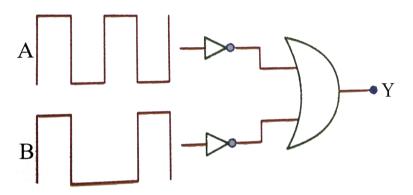
Answer: B

29. The logic gate having an output of 1 is.

A. (iv)

B. (i)

C. (ii)

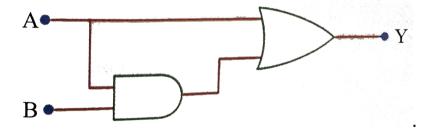

D. (iii)

Answer: D

30. In a given circuit as shown the two input wave forms \boldsymbol{A} and

 ${\cal B}$ are applied simultaneously.

The resultant wave format at Y is.


D.

Answer: A

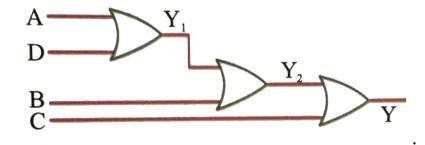
Watch Video Solution

31. The output of the combination of the gates shown in the figure below is

A. A + A. B

B. $(A+B)A+\overline{B}$

 $\mathsf{C.}\left(A.\,B
ight)+\left(\overline{A}\,.\,\overline{B}
ight)$


D.
$$(A+B)(\overline{A.B})$$

Answer: A

Watch Video Solution

32. The expression of Y in following circuit is

A. ABCD

 $\operatorname{B.}A+BCD$

 $\mathsf{C.}\,A+B+C+D$

 $\operatorname{D.}AB+CD$

Answer: C

Watch Video Solution

33. How many NAND gate are used to from AND gate?

A. four

B. two

C. three

D. Five

Answer: C

1. If the ratio of the concentration of electron to that of holes in a semiconductor is $\frac{7}{5}$ and the ratio of current is $\frac{7}{4}$ then what is the ratio of their drift velocities ?

- A. 5/8
- B.4/8
- C.5/4
- D. 4/7

Answer: C

Watch Video Solution

2. If the resistivity of copper is $1.7 \times 10^{-6} \Omega cm$, then the mobility of electrons in copper, if each atom of copper

contributes one free electron for conduction, is [The amomic weight of copper is 63.54 and its density is 8.96g/cc] :

- A. $23.36cm^2/Vs$
- B. $503.03cm^2/Vs$
- C. $43.25cm^2\,/Vs$
- D. $88.0cm^2/Vs$

Answer: C

3. A pure silicon crystal of length l(0.1m) and area $A\left(10^{-4}m^2\right)$ has the mobility of electron (μ_e) and holes (μ_h) as $0.135m^2/Vs$ and $0.48m^2/Vs$, respectively, If the voltage applied across it is 2V and the intrinsic charge concentration

it is 2V and the intrinsic charge concen-tration is $n_i=1.5 imes10^6m^{-3}$, then the total current flowing through the crystal is.

A.
$$8.78 imes 10^{17} A$$

B.
$$6.25 imes10^{-17}A$$

$$\mathsf{C.}\,7.89 imes 10^{-17} A$$

D.
$$2.456 imes 10^{-17} A$$

Answer: A

- **4.** Find the current produced at room temperature in a pure germanium plate of area $2 imes 10^{-4} m^2$ and of thickness
- $1.2 imes10^{-3}m$ when a potential of 5V is applied across the

faces. Concentration of carries in germanium at room temperature is $1.6 imes 10^6$ per cubic metre. The mobilities of electrons and holes are $0.4m^2V^{\,-1}s^{\,-1}$ and $0.2m^2V^{\,-1}s^{\,-1}$ respectively. The heat energy generated in the plate in 100second is.

A.
$$2.4 imes10^{-11}J$$

B. $3.4 imes10^{-11}J$

C. $5.4 imes10^{-11}J$

D. $6.4 imes10^{-11}J$

Answer: D

5. An n-type semiconductor has impurity level 20meV below the conduction band. In a thermal collision, transferble enegry is KT. The value of T for which electrons start to jump in conduction bond is :

- A. 232 K
- B. 348 K
- C. 400 K
- D. 600 K

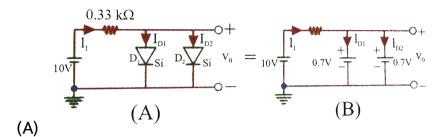
Answer: A

6. Assume that the number of hole-electron pair in an intrinsic semiconductor is proportional to $e^{-\Delta E/2KT}$. Here ΔE = energy gap and $k=8.62\times 10^{-5} eV/{
m kelvin}$

The energy gap for silicon is 1.1eV. The ratio of electron hole pairs at 300K and 400K is :

A.
$$e^{\,-5.31}$$

B.
$$e^{-5}$$


$$\mathsf{C}.\,e$$

D.
$$e^2$$

Answer: A

7. In the circuit shown in figure (1), the $V_0,\,I_1,\,I_{D_1}$, and I_{D_3} are respectively.

- A. 0.5V, 25mA, 15mA
- B. 0.7V, 28mA, 14.09mA
- C. 0.4V, 15mA, 20mA
- D. 0.3V, 15.06mA, 20.18mA

Answer: B

8. For a junction diode, the ratio of forward current $\left(I_f\right)$ and reverse current is.

 $[I_e$ = electronic charge,

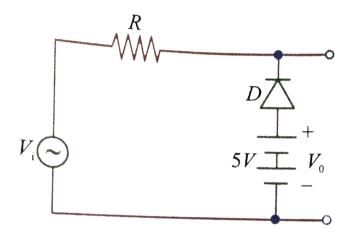
V = voltage applied across junction,

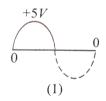
k = Boltzmann constant

T = temperature in kelvin].

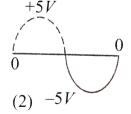
A. $e^{\,-\,v\,/\,kT}$

B. $e^{V/kT}$

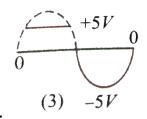

C. $\left(e^{eV/kT}
ight)$

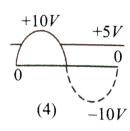

D. $\left(e^{V/kT}-1
ight)$

Answer: C



9. In the diagram D an ideal diode and an alternating voltage of peak value 10V is connected as input V_1 . Which of the following diagram represents the correct wavelength of output voltage V_{θ} ?





A.

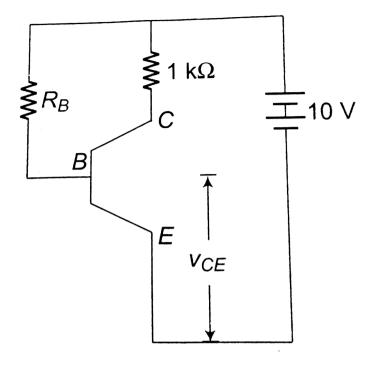
В.

Answer: D

D.

10. For a CE-transistor amplifier, the audio signal voltage across the collector resistance of $2k\Omega$ is 2V. Suppose the current amplification factor of the transistor is 100. Find the input signal voltage and base current, if the base resistance is $1k\Omega$.

- $\mathsf{A.}\ 0.02V$
- ${\rm B.}\ 0.01V$
- $\mathsf{C.}\ 0.03V$
- $\mathsf{D.}\ 0.04V$


Answer: B

Watch Video Solution

11. In the cuircuit shown here the transistor used has a current gain eta=100. What should be the bias resistor R_{BE} so that

 $V_{CE} = 5V({
m neglect} \;\; V_{BE})$

A.
$$200k\Omega$$

B.
$$1k\Omega$$

C.
$$500k\Omega$$

D.
$$2k\Omega$$

Answer: A

Watab Widaa Calutian

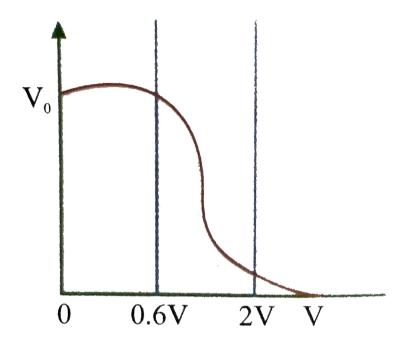
watch video Solution

12. An n - p- n transistor is connected in common - emitter configuraration in which collector supply is 8 V and the voltage drop across the load resistance of 800Ω connected in the collector circuit is 0.8 V . If current amplification factor is 25 , determine collector - emitter voltage and base current . If the internal resistance of the transistor is 200Ω , calculate the voltage gain and the power gain.

- A. 5.2V, 1.86, 3
- B. 6.2V, 186, 5.5
- c. 7.2V, 3.86, 3.698
- D. 8.2V, 4.91, 3.15

Answer: C

13. For a CE transistor amplifier, the audio signal voltage across the collector resistance of $2k\Omega$ is 2V. Suppose the current amplification factor of the transistor is 100. The value of R_B in series with V_{BB} supply of 2V, if the DC base current has to be 10 times the signal current is.


- A. $4k\Omega$
- B. $14k\Omega$
- $\mathsf{C.}\ 28k\Omega$
- D. $54k\Omega$

Answer: B

14. Figure shows the transfer characteristics of a base biased

CE transistor. Which of the following statements are true?

(A) At $V_1=0.14V$ transistors is in active state

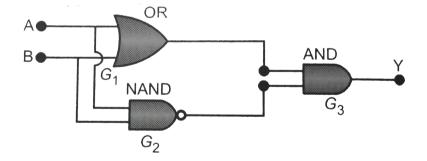
(B) At $V_1={
m 1}V$ it can be used as an amplifier

(C) At $V_1=0.5V$, it can be used as a switch turned off

(D) At $V_1=2.5V$, it can be used as switch turned on

A.A.B.C

B, B, C, D

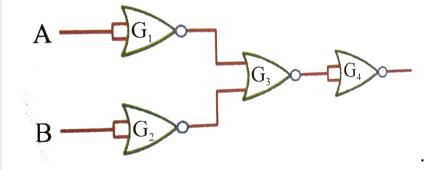

- C.A,C,D
- $\operatorname{D.}A,B,D$

Answer: B

Watch Video Solution

15. The following configuration of gate is equivalent to

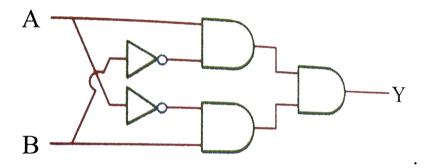
- A. NAND gate
- $\operatorname{B.}XOR\ \operatorname{gate}$
- $\mathsf{C}.\,OR$ gate


 $\operatorname{D.}{NOR}\operatorname{gate}$

Answer: B

Watch Video Solution

16. The combination of the gates shown below produces


- A. AND gate
- $\operatorname{B.}XOR\operatorname{gate}$
- ${\sf C.}\ NOR\ {\sf gate}$
- D. NAND gate

Answer: D

Watch Video Solution

17. Which of the following truth tables is true?

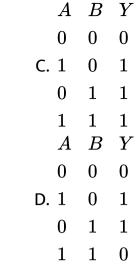
A B Y

 $0 \ 0 \ 0$

A. 1 0 0

 $0 \quad 1 \quad 0$

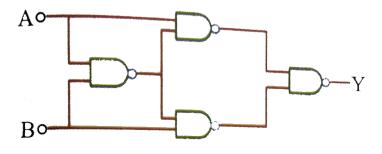
1 1 0

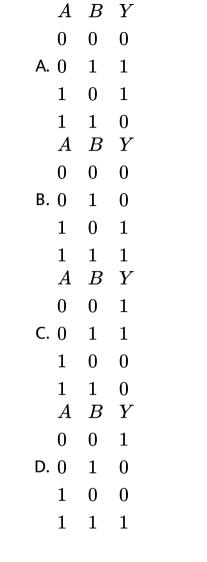

A B Y

0 0 0

B. 1 0 0

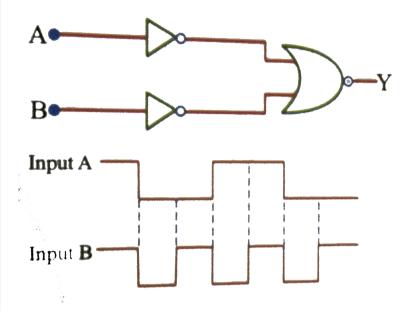
 $0 \quad 1 \quad 1$

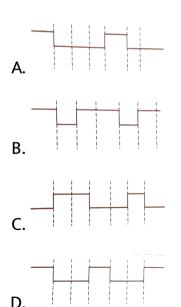

1 1 1



Answer: A

18. Truth table for system of four NAND gates as shown in figure is :





Answer: A

19. The logic circuit shown below has the input waveforms 'A' and 'B' as shown. Pick out the correct output waveform

Answer: A

Watch Video Solution

20. Logic gates X and Y have the truth tables shown below

$$0 \quad 0 \quad 0 \quad 0 \quad 1$$

$$1 \quad 0 \quad 0 \quad 1 \quad 0$$

$$0 \quad 1 \quad 0$$

When the output of X is connected to the input of Y, the resulting combination is equivalent to a single.

A. NOT gate

B. OR gate

 $\mathsf{C}.\,NOR\,\mathsf{gate}$

D. NAND gate

Answer: D

Watch Video Solution

Ncert Comprehension

1. A block of pure silicon at 300K has a length of 10cm and an area of $1.0cm^2$. A battery of emf 2V is connected across it. The mobility of electron is $0.14m^2v^{-1}S^{-1}$ and their number density is $1.5\times 10^{16}m^{-3}$. The mobility of holes is $0.05m^2v^{-1}S^{-1}$.

The electron current is

A.
$$6.72 imes 10^{-4} A$$

B.
$$6.72 imes 10^{-5} A$$

C.
$$6.72 imes 10^{-6} A$$

D.
$$6.72 imes 10^{-7} A$$

Answer: D

Watch Video Solution

2. A block of pure silicon at 300K has a length of 10cm and an area of $1.0cm^2$. A battery of emf 2V is connected across it. The mobility of electron is $0.14m^2v^{-1}S^{-1}$ and their number density is $1.5\times 10^{16}m^{-3}$. The mobility of holes is $0.05m^2v^{-1}S^{-1}$.

The hole current is

A.
$$2.0 imes10^{-7}A$$

B.
$$2.2 imes10^{-7}A$$

C.
$$2.4 imes10^{-7}A$$

D. 2.6

Answer: C

Watch Video Solution

3. A block of pure silicon at 300K has a length of 10cm and an area of $1.0cm^2$. A battery of emf 2V is connected across it. The mobility of electron is $0.14m^2v^{-1}S^{-1}$ and their number density is $1.5\times 10^{16}m^{-3}$. The mobility of holes is $0.05m^2v^{-1}S^{-1}$.

The total current in the block is

A.
$$2.4 imes10^{-7}A$$

B.
$$6.72 imes 10^{-7} A$$

$$\mathsf{C.}\,4.32\times10^{-7}A$$

D.
$$9.12 imes 10^{-7} A$$

Answer: D

Watch Video Solution

4. The input and output resistances in a common base amplifier circuits are 400Ω and $400K\Omega$ respectively. The emitter current is 2mA and current gain is 0.98.

The collector current is

A.
$$1.84mA$$

 $\mathsf{B.}\ 1.96mA$

 $\mathsf{C}.\,1.2mA$

D. 2.04mA

Answer: B

Watch Video Solution

5. The input and output resistances in a common base amplifier circuits are 400Ω and $400K\Omega$ respectively. The emitter current is 2mA and current gain is 0.98.

The base current is

A. 0.012mA

B. 0.022mA

 $\mathsf{C.}\ 0.032mA$

D. 0.042mA

Answer: D

Watch Video Solution

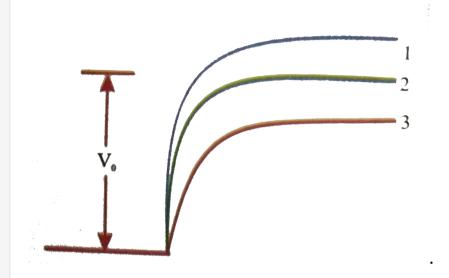
6. The input and output resistances in a common base amplifier circuits are 400Ω and $400K\Omega$ respectively. The emitter current is 2mA and current gain is 0.98.

Voltage gain of transistor is

- A.960
- B.970
- C.980
- D. 990

Answer: C

7. The input and output resistances in a common base amplifier circuits are 400Ω and $400K\Omega$ respectively. The emitter current is 2mA and current gain is 0.98.


Power gain of tranistor is

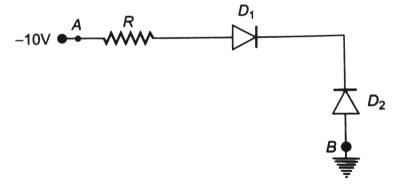
- A.950
- B.960
- C.970
- D. 980

Answer: B

8. In Fig. V_0 is the potential barrier across a p-n junction, when no battery is connected across the junction :

A. 1 and 3 both correspond is forward bias of junction

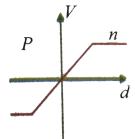
- B. 3 corresponds to forward bias of junction and 1 corresponds to reverse bias junction
- C. 1 corresponds to forward bias and 3 corresponds to reverse bias junction


D. 3 and 1 both correspond to reverse bias and 3 corresponds to revers bias of junction

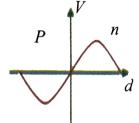
Answer: B

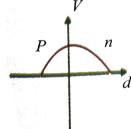
Watch Video Solution

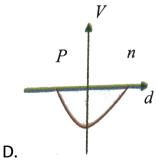
9. In figure, assuming the diodes to be ideal,


A. D_1 is forward biased and D_2 is reverse biased and hence current flows from A to B

- B. D_2 is forward biased and D_1 is reverse biased and hence no current flows from B to A and vice versa
- C. D_1 and D_2 are both forward biased and hence current flows form A to B
- D. D_1 and D_2 are both revrese biased and hence no current flows from A and B and vica-versa.

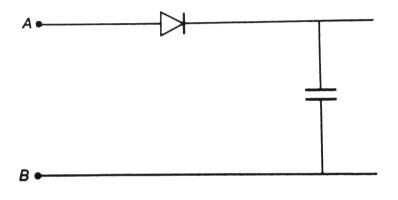

Answer: B


10. The correct curve between potential (V) and distance (d) near p-n junction is.


A.

В.

C.

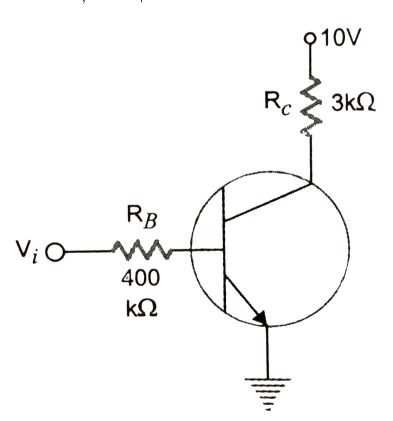


Answer: A

11. A 220 V AC supply is connected between points A and B.

What will be the potential difference V across the capacitor?

A. 220 V


B. 110 V

C. 0 V

D. 220 V

Answer: D

12. In the circuit shown in Fig. when the input voltage of the base resistance is $10V,\,V_{be}$ is zero and V_{ce} is also zero. Find the values of $I,\,I$ and $\beta.$

- B. $20\mu A, 3.33mA$
- C. $20\mu A$, 1.33mA
- D. $25\mu A$, zero

Answer: A

Watch Video Solution

- **13.** In the above problem the current amplification factor β is
 - A. 83
 - B. 100
 - C.133
 - D. 203

Answer: C

Level I H W

1. The electrical conductivity of a semiconductor increases when electromagnetic radiation of wavelength shorter than 1240nm is incident on it. The forbidden band energy for the semi-conductor is (in eV).

 $\mathsf{A.}\ 0.5$

B. 0.97

C. 0.7

D. 1.1

Answer: B

2. A semiconductor is known to have an electron concentration of $5 imes 10^{13}/cm^3$ and hole concentration of $8 imes 10^{12}/cm^3$. The semiconductor is

- A. n-type
- B. p-type
- C. intrinsic
- D. insulator

Answer: A

3. A potential barrier of 0.50V exists a p-n junction. If the width of depletion layer is 10^6m , then intensity of electric field in this region will be

A.
$$1 imes 10^6 V/m$$

B.
$$5 imes 10^5 V/m$$

C.
$$4 imes 10^4 V/m$$

D.
$$2 imes 10^6 V/m$$

Answer: B

Watch Video Solution

4. A p-n junction diode has breakdown voltage of 28V. If applied external in reverse bias is 40V the current through it is

- A. Zero
- B. infinite
- $\mathsf{C.}\ 10A$
- D. 15A

Answer: B

Watch Video Solution

5. The value of current in the following diagram is (diode assumed to be ideal one)

- $\mathsf{A.}\ 0.1amp$
- B. 0.01amp

C. 1 <i>amp</i>
D. zero

Answer: D

Watch Video Solution

6. A half-wave rectifier is used to convert $50HzA.\ C.$ to $D.\ C$ voltage. The number of pulses per second in the rectified voltage are

A. 50

B. 25

 $\mathsf{C.}\ 100$

 $\mathsf{D.}\ 75$

Answer: A

Watch Video Solution

7. If a full wave rectifier circuit is operating from 50Hz mains, the fundamental frequency in the ripple will be

- A. 25Hz
- B. 50Hz
- C.70.7Hz
- D. 100Hz

Answer: D

8. In an npn transistor the base the collector currents are $100\mu A$ and $9\mu A$ respectively. Then the emitter current will be

A. 9.1mA

 $\mathsf{B.}\ 18.2mA$

 $\mathsf{C.}\ 3.91mA$

D. $18.2\mu A$

Answer: A

9. A change of 8mA in the emitter current brings a change if 7.9mA in the collector current. The change in base current required to have the same change in the collector is

- A. 0.01mA
- $\mathsf{B.}\,1A$
- $\mathsf{C.}\ 10mA$
- $\mathsf{D}.\,0.1mA$

Answer: D

Watch Video Solution

10. For a p-n-p transistor in CB configuration, the emitter current I_E is 1mA and lpha=0.95. The base current and collector current are

- A. 0.95, A, 0.05mA
- B. 0.05mA, 0.95mA

C. 9.5, A, 0.5mA

D. 0.5mA, 9.5mA

Answer: B

Watch Video Solution

11. If a change of $100\mu A$ in the base current of an n-p-n transistor in CE causes a change of 10mA in the collector current, the ac current gain of the transistor is

A. 10

B. 100

 $\mathsf{C.}\ 1000$

D. 10000

Answer: B

Watch Video Solution

12. For a common emitter amplifier, current gain is 70. If the emitter current is 8.4mA, then the base current is

A. 0.236mA

B. 0.118mA

C. 0.59mA

D.8.3mA

Answer: B

13. The base current of a transistor is $105\mu A$ and the collector current is 2.05mA. Then β of the transistor is

- A. 1.952
- B. 19.52
- $\mathsf{C.}\ 195.2$
- D. 1952

Answer: A

- **14.** For a transistor the value of α is 0.9. β value is
 - **A**. 9
 - B. 0.9

C.0.09

D.90

Answer: C

Watch Video Solution

15. For a transistor the current amplification factor is $0.8\,$ The transistor is connected in common emitter configuration, the change in collector current when the base current changes by 6mA is

A. 6mA

 $\mathsf{B.}\ 4.8mA$

 $\mathsf{C.}\,24mA$

D. 8mA

Answer: C

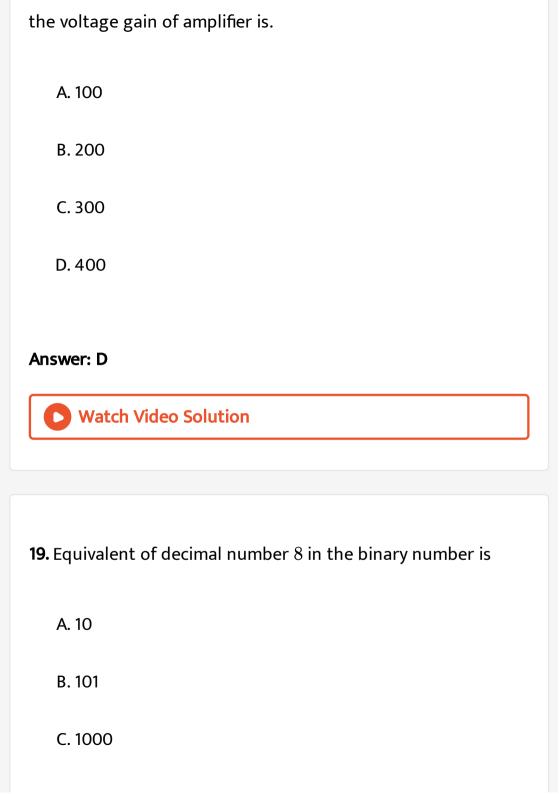
Watch Video Solution

16. A change of 400mV in base-emitter voltage causes a change of $200\mu A$ in the base current. The input resistance of the transistor is

- A. $1K\Omega$
- B. $6K\Omega$
- $\mathsf{C.}\,2K\Omega$
- D. $8K\Omega$

Answer: C

17. In a common base circuit, if the collector base voltage is changed by 0.6V, collector current changes by 0.02mA. The output resistance will be


- A. $10^4\Omega$
- B. $2 imes 10^4 \Omega$
- C. $3 imes 10^4 \Omega$
- D. $4 imes 10^4 \Omega$

Answer: C

Watch Video Solution

18. A common emitter transistor amplifier has a current gain of 50. If the load resistance is $4k\Omega$, and input resistance is 500Ω ,

D.	1	0	1	1
し .		$\mathbf{\mathcal{I}}$		

Answer: C

Watch Video Solution

20. The equivalent of 110 in the decimal number is

A. 2

B. 4

C. 8

D. 6

Answer: D

21. If A=1,B=0 then the value of $\overline{A}+B$ in terms of Boolean algebra is

A. A

B.B

C. B +A

D. A. \overline{B}

Answer: B

Watch Video Solution

22. In the Boolean algebra : A + B =

A. $\overline{A}+\overline{B}$

B.A.B

C.
$$\overline{\overline{A}}+\overline{\overline{B}}$$

D.
$$\overline{\overline{A}}+\overline{B}$$

Answer: C

Watch Video Solution

23. The following one represents logic addition is

A.
$$1 + 1 = 2$$

$${\rm B.}\,1+1=10$$

$$C.1 + 1 = 1$$

D.
$$1 + 1 = 11$$

Answer: C

24. In the Boolean algebra : \overline{A} . $\overline{B} = \ldots$

A.
$$\overline{A+B}$$

 $\mathsf{B.}\,A.\,B$

C. $\overline{\overline{A} + \overline{B}}$

 $\mathsf{D}.\,A+B$

Answer: A

Watch Video Solution

25. In the Boolean algebra, which gate is expressed as

A. OR

 $Y = \overline{A + B}$.

B. NAND

 $\mathsf{C}.\,AND$

D. NOR

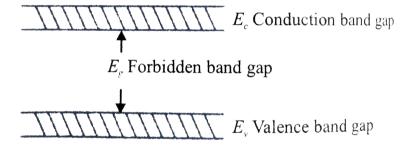
Answer: D

Watch Video Solution

26. The truth table for NOT gate is.

A.
$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

$$\mathsf{B.}\begin{bmatrix}1 & 0\\ 0 & 0\end{bmatrix}$$


$$\mathsf{C.}\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}$$

D.
$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

Answer: C

Level Ii H W

1. If the lattice constant of this semiconductor is decreased, then which of the following is correct?

- A. All $E_c, E_g\&E_v$ decrease
- B. All $E_c, E_g\&E_v$ increase
- C. E_c and E_v increase, but E_g decrease
- D. E_c and E_v decrease but E_g increase

Answer: D

Watch Video Solution

- **2.** A Ge specimen is dopped with Al. The concentration of acceptor atoms is $\sim 10^{21} atoms/m^3$. Given that the intrinsic concentration of electron hole pairs is $\sim 10^{19}/m^3$, the concentration of electron in the specimen is
 - A. $10^{17} / m^3$
 - B. $10^{15} / m^3$
 - C. $10^4 / m^3$
 - D. $10^2 / m^3$

Answer: A

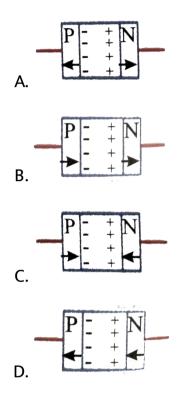
3. The following data are for intrinsic germanium at

$$300K.\ n_i = 2.4 imes 10^{19} \, / \, m^3, \, \mu_e = 0.39 m^2 \, / \, Vs, \, \mu_h = 0.19 m^2 \, / \, Vs$$

. Calculate the coductivity of intrinsic germanium.

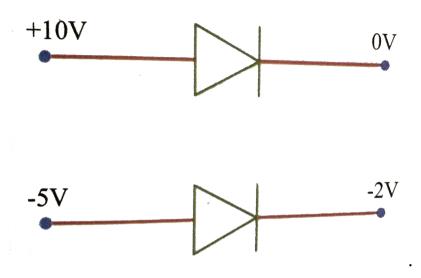
A.
$$4.3 Sm^{\,-1}$$

B. $1.21Sm^{-1}$


C. $2.22Sm^{-1}$

D. $4.22Sm^{-1}$

Answer: C


4. The diagram correctly represents the direction of flow of charge carriers in the forward bias of p-n junction is.

Answer: C

5. In the figure shown below

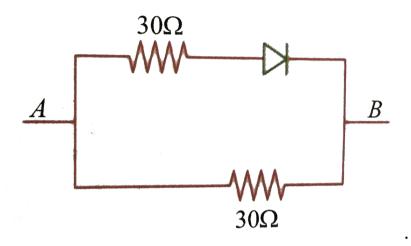
- A. In both Fig a and Fig b the diodes are forward biased
- B. In both Fig, a and Fig b the diodes are reverse biased
- C. In Fig a the diode is forward biased and in Fig b, the diode is reverse biased
- D. In Fig a the diode is reverse biased and in Fig b, it is forward biased

Answer: C

6. A P-N junction diode can withstand currents up to 10mA . Under forward bias, The diode has a potential drop of 0.5V across it which is assumed to be independent of current. The maximum voltage of the battery used to forward bias the diode when a resistance of 200Ω is connected in series with it is

- A. 2.5V
- B. 2.6V
- $\mathsf{C}.\,2.7V$
- $D.\,2.8V$

Answer: A

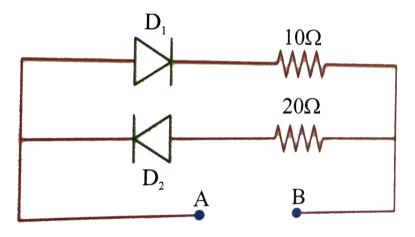

7. A cell of emf. 4.5V is connected to a junction diode whose barrier potential is 0.7V. If the external resistance in the circuit is 190Ω . The current in the circuit is

- A. 20mA
- B.2mA
- $\mathsf{C.}\,23mA$
- D. 200mA

Answer: A

8. V_A and V_B denote potential of A and B, then the equivalent resistance between A and B in the adjoining circuit is (ideal diode).

A. 15Ω if $V_A > V_B$


B.
$$30\Omega$$
 if $V_A < V_B$

C. both 1 and 2

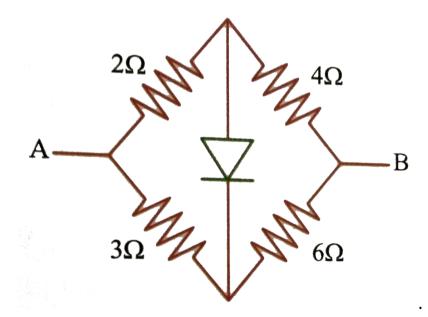
D. neither 1 nor 2

Answer: C

9. Two ideal junction diodes $D_1,\,D_2$ are connected as shown in the figure. A 3V battery is connected between A and B. The current supplied by the battery if its positive terminal is connected to A is

A. 0.1A

B.0.3A


 $C. \, 0.9A$

Answer: B

Watch Video Solution

10. Find the effective resistance between A and B

B.
$$9/5_{\Omega}$$

C.
$$18/5_{\Omega}$$

D.
$$5/9_\Omega$$

Answer: C

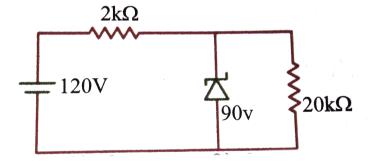
Watch Video Solution

11. The peak voltage in the output of a half-wave diode rectifier fed with a sinusiodal signal without filter is 10V. The dc component of the output voltage is

A.
$$10/\sqrt{2}V$$

B.
$$10/\pi V$$

$$\mathsf{C.}\ 10V$$


D.
$$20/\pi V$$

Answer: B

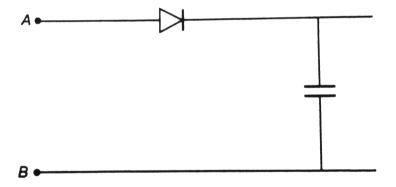
Watch Video Solution

12. In the figure shown the potential drop across the series resistor is

A. 30 V

B. 60 V

C. 90 V


Answer: A

Watch Video Solution

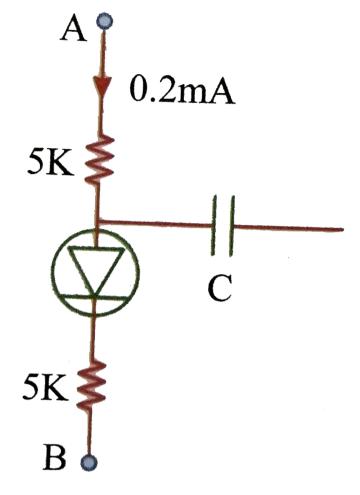
13. A 220 V AC supply is connected between points A and B.

What will be the potential difference V across the capacitor?

A. 200 V

B. 110 V

C. 0 V


D. $220\sqrt{2}V$

Answer: D

Watch Video Solution

14. In the circuit shown(Fig.) if the diode forward voltage drop is 0.3V, the voltage difference between A and B is :

A. 1.3V

 ${\rm B.}\ 2.3V$

 $\mathsf{C.}\,0$

 ${\rm D.}\,0.5V$

Answer: B

Watch Video Solution

15. In an n-p-n transistor 10^{10} electrons enter the emitter in 10^{-6} s. If 2% of the electrons are lost in the base, find the current transfer ratio and the current amplification factor.

- A. 0.98, 49
- B. 0.49, 49
- C. 0.98, 98
- D. 0.49, 98

Answer: A

16. In a common base mode of transistor, collector current is 5.488mA for an emitter current of 5.60mA. The value of the base current amplification factor (β) will be :

- A. 48
- B. 49
- C. 50
- D. 51

Answer: B

Watch Video Solution

17. Current amplification factor of a common base configuration is 0.88. Find the value of base current when the

emitter current is 1mA.

A. 0.12mA

 ${\rm B.}\,0.1mA$

 $\mathsf{C}.\,0.5mA$

D. 0.2mA

Answer: A

18. For a transistor eta=40 and $I_B=25\mu A.$ Find the value of

A. 1mA

 I_E .

B. 1.025mA

C. 2 mA

D. 1.2mA

Answer: B

Watch Video Solution

- **19.** In a transistor if $rac{I_C}{I_E}=lpha$ and $rac{I_C}{I_B}=eta$,If lpha varies between 20 100
- $\frac{20}{21}$ and $\frac{100}{101}$, then the value of β lied between.

A.1 - 10

 ${\rm B.}\,0.95-0.99$

 $\mathsf{C.}\,20-100$

D. 200 - 300

Answer: C

20. For a transistor
$$x=\frac{1}{\alpha}\&y=\frac{1}{\beta}$$
 where $\alpha\&\beta$ are current gains in common base and common emitter configuration.

Then

A.
$$x + y = 1$$

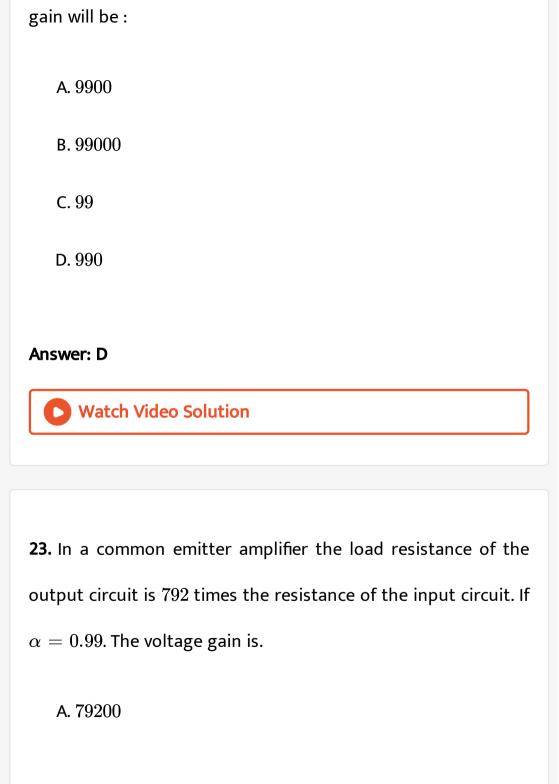
B.
$$x - y = 1$$

$$C. 2x = 1 - y$$

D.
$$x + y = 0$$

Answer: B

21. A voltage amplifier operated from a 12 volt battery has a collector load $6k\Omega$. Calculate the maximum collector current in the circuit.


- A. 0.5mA
- B. 1mA
- $\mathsf{C}.\,3mA$
- D.2mA

Answer: D

Watch Video Solution

22. A CE amplifier is designed with a transistor having lpha=0.99. Input impedance is $1k\Omega$ and load is $10k\Omega.$ Voltage

- B. 39600
- C.7920
- $\mathsf{D.}\ 3960$

Answer: A

Watch Video Solution

24. In a transistor amplifier $\beta=62,$ $R_L=5000\Omega$ and internal resistance of the transistor is 500Ω . Its power amplification will be.

- A. 25580
- $\mathsf{B.}\ 33760$
- C.38440

D. 55760

Answer: C

Watch Video Solution

25. The tuned collector oscillator circuit used in the local oscillator of a ratio receiver makes use of a tuned circuit with $L=60\mu H$ and C=400pE. Calculate the frequency of oscillations.

A. 1.03KHz

B. 1.03Hz

 $\mathsf{C.}\ 1.03GHz$

D. 1.03MHz

Answer: D

Watch Video Solution

26. When we add binary number 111 and 111 we get the binary number :

A. 222

B. 1000

C. 1110

D. 000

Answer: C

27. If A=B=C=1 and $X=\overline{ABC}+B\overline{BC}+C\overline{AB}$, then X=

28. The input of A and Bfor the Boolean expression

٦. ر

B. 1

C. 100

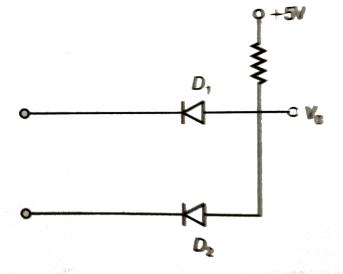
D. 110

Answer: A

■ Watch Video Solution

 $(\overline{A+B}).(\overline{A.B})=1$ is.

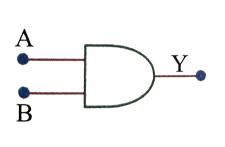
A. 0, 0


- B.0, 1
- C. 1, 0
- D. 1, 1

Answer: A

Watch Video Solution

29. Write the truth table for the circuit shown in figure given below. Name the gate that the circuit resembles.



- A. AND gate
- $\operatorname{B.}OR\operatorname{gate}$
- C. NOR gate
- $\operatorname{D.}XOR \operatorname{\mathsf{gate}}$

Answer: A

30. Consider a two-input AND gate of figure below. Out of the four entries for the Truth Table given here, the correct ones are.

	Input Output		
	A	В	Y
1	0	1	0
2	1	0	0
3	1	1	1
4	0	. 0	1

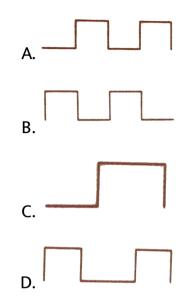
A. All

 $\mathsf{B.}\ 1\ \mathsf{and}\ 2\ \mathsf{only}$

 $\mathsf{C.}\ 1,\ 2\ \mathsf{and}\ 3\ \mathsf{only}$

D. 1, 3 and 4 only

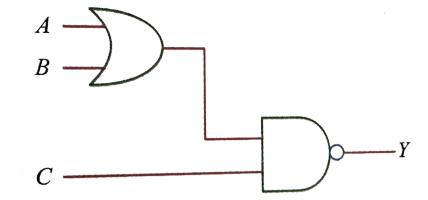
Answer: C


31. A Truth table is given below. The below. The logic gate having following truth table is.

- A B Y
- $0 \ 0 \ 1$
- $1 \quad 0 \quad 0$.
- $0 \quad 1 \quad 0$
- 1 1 0
 - A. NAND gate
 - $\operatorname{B.}{NOR}\operatorname{gate}$
 - $\operatorname{C.}{AND}\ \mathsf{gate}$
 - D. OR gate

Answer: B

32. For a logic 0101 the waveform is.



Answer: A

33. For the given combination of gates, if the logic states of inputs A,B,C are as follows A=B=C=-0 and

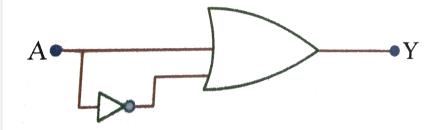
 $A=B=1,\,C=0$ then the logic states of output D are



- A. 0, 0
- B. 0, 1
- C. 1, 0
- D. 1, 1

Answer: D

34. Identify the gate represented by the block diagram as shown in fig.



- A. AND gate
- ${\sf B.}\,NOT$ gate
- $\mathsf{C}.\,NAND$ gate
- $\operatorname{D.}NOR$ gate

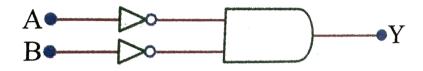
Answer: D

35. The Boolean expression for the gate circuit shown below is

A.
$$A+\overline{A}=1$$

B.
$$A + 1 = 1$$

$$\mathsf{C}.\,A + A = A$$


$$\mathsf{D}.\,A+0=A$$

Answer: A

 ${f 36.}$ The output Y of the gate circuit shown in the figure below

is

- A. $\overline{A}.\ \overline{B}$
- B. \overline{A} . \overline{B}
- $\operatorname{C.}\overline{\overline{A.\,B}}$
- D. $\overline{A}+\overline{B}$

Answer: B

