
CHEMISTRY

FOR IIT JEE ASPIRANTS OF CLASS 12 FOR CHEMISTRY

NITROGEN COMPOUNDS

1. Compound is a -

A. 1° and 3° amine

B. Only primary amine

C. 2° and 3° amine

D. Only secondary amine

Watch Video Solution

2. The third member of homologous series of dimethy1 amine-

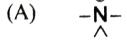
A.
$$CH_3-CH_2-NH-CH_2-CH_3$$

$$\operatorname{B.}CH_3-NH-CH_2-CH_2-CH_{3-}$$

$$\mathsf{C.}\,CH_3-NH-CH(CH_3)_2$$

D. 2^{nd} and 3^{rd} are correct

Answer: D


- 3. Tertiary butyl amine is a-
 - A. 1° Amine

- B. 2° Amine
- $\mathsf{C.}\,3^\circ$ Amine
- D. Quaternary salt

Watch Video Solution

4. N-atom in quaternary ammmonium halide will have the form-

В.

D.

Watch Video Solution

5. $-CONH_2 \xrightarrow{\text{Reduction}} -CH_2NH_2$

In above reaction hybridisation state of carbon changes fromto......

A. $sp o sp^2$

 ${\rm B.}\, sp \to sp^3$

 $\mathsf{C.}\, sp^2 \to sp^3$

D. $sp^2 o sp$

Answer: C

6. Acetamide is treated separetely with the following reagents. Which one of these will give methylamine?

- A. PCL_5
- B. $NaOH + Br_2$
- C. soda lime
- D. hot conc. H_2SO_4

Answer: B

Watch Video Solution

7. The compound which on rection with aqueous nirous acid at low temperature produces an oily nitrosamine, is

- A. methyl amine
- B. ethyl amine
- C. diethyl amine

D. triethyl amine

Answer: C

Watch Video Solution

- 8. Which of the following statement is not correct?
 - A. Primary amines show intermolecular hydrogen bonding.
 - B. Secondary amines show intermolecular hydrogen bonding.
 - C. Tertiary amines show intermolecular hydrogen bonding.
 - D. Amines have a lower boiling point as compared to those of alcohols and carboxylic acids of comparab,e molar masses.

Answer: C

9. Give the structure of (A) (explanations are not required). $A(C_3H_9N)$

reacts with bezenesulphonyl chloride to give a solid insoluble in alkali'.

- A. $CH_3NHC_2H_5$
- B. $(CH_3)_3N$
- C. $CH_3CH_2CH_2NH_2$
- D. insufficient data to predict.

Answer: A

Watch Video Solution

10. Pthalimide $+KOH(alc.\)
ightarrow [A]$

 $[A] + CH_3CH_2CH_2Br
ightarrow [B]$

 $[B] + h_2O, OH^- \stackrel{ riangle}{\longrightarrow} [C] + [D]$

The final products [C] [D] in the sequence of the above reactions are

A. $CH_3NHC_2H_5$,

B. $CH_3CH = CH_2$,

 $\mathsf{C.}\,(CH_3)_3N,$

D.
$$CH_3CH_2CH_2NH_2$$
,

Answer: D

Watch Video Solution

11. Formalodoxime on reaction with Na/EtOH gives -

D. All above Answer: A **Watch Video Solution** 12. Which of the following compounds on reduction gives an amine-A. Alkyl cyanide B. Aldoxime C. Alkyl isocyanide D. All above **Answer: D Watch Video Solution**

A. 1° Amine

B. 2° Amine

 $C.3^{\circ}$ Amine

13. An alkyl amine is prepared by the following reaction-

$$RCOOH + N_3H \stackrel{ ext{Conc.} H_2So_4}{\longrightarrow} RNH_2 + C0_2 + N_2$$

Name of the above reaction is:

- A. Schmidt reaction
- B. Stephan's reaction
- C. Schotton-Baumann reaction
- D. Reimer-tiemann reaction

Answer: A

- 14. Alkyl halide reacts with AgCN to from -
 - A. Alcohol
 - B. Cyanide

D. Both B & C					
Answer: D					
Watch Video Solution					
15. Amide on heating with P_2O_5 gives					
A. Alkane nitrile					
B. Alkyl halide					
C. Amine					
D. None					
Answer: A					
Watch Video Solution					

C. Isocyanide

16. Which of the following amine does not react with Hinsberg reagent-

A. Neopentyl amine

B. Isopropyl Amine

C. Triethyl Amine

D. Ethyl methyl amine

Answer: C

17. In which of the following sequence of reaction the end product does not exhibit tautomerism-

A.
$$CH_3CH_2NH_2 \stackrel{ ext{NOCL}}{\longrightarrow} \stackrel{AgNO_2}{\longrightarrow}$$

$$\mathsf{B.}\left(CH_{3}\right)_{2}CHNH_{2}\overset{\mathrm{NOCL}}{\longrightarrow}\overset{AgNO_{2}}{\longrightarrow}$$

$$\mathsf{C.}\left(CH_{3}\right)_{3}CNH_{2}\overset{\mathrm{NOCL}}{\longrightarrow}\overset{AgNO_{2}}{\longrightarrow}$$

$$\mathsf{D}.\,CH_3CH(NH_2)C_2H_5\stackrel{\mathrm{NOCL}}{\longrightarrow}\stackrel{AgNO_2}{\longrightarrow}$$

Answer: C

- **18.** Amide on heating with $P_2 {\cal O}_5$ gives
 - A. Alkalinenitrile
 - B. Alkyl halide
 - C. Amine
 - D. None

Answer: A

- 19. The alkanenitriles are isomeric with-
 - A. Primary alkanamines

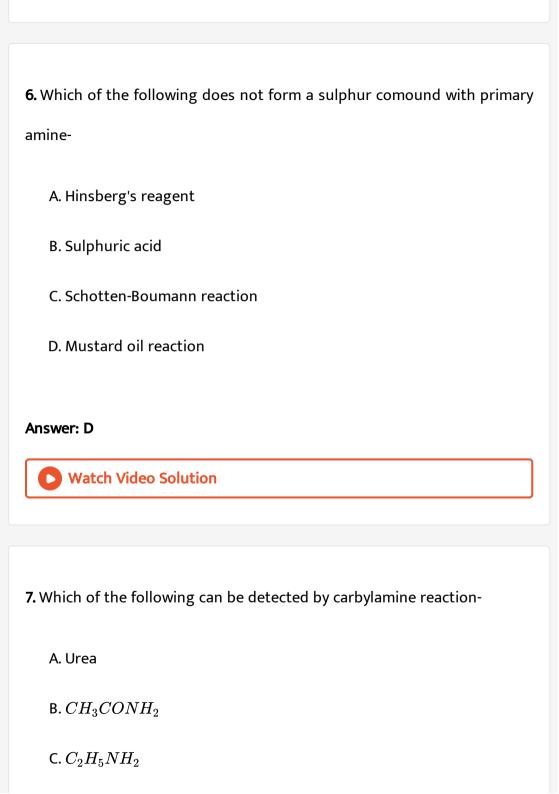
C. Alkyl isocyanides
D. Nitroalkanes
Answer: C
Watch Video Solution
20. Mendius reaction involves the reduction of-
A. Cyanoalkanes
B. Alkyl isocyanides
C. Oximes
D. Nitroalkanes
Answer: A
Watch Video Solution

B. secondary alkanamines

11 VVIIICII SCACCIIICIIC IS IIOC COIICC	1.	Which	statement	is	not	correct
---	----	-------	-----------	----	-----	---------

- A. methyl amine is more basic than NH_3
- B. Amines from hydrogen bonds
- C. Ethyl amine has higher boiling points than propane
- D. Dimethyl amine is less basic than methyl amine

Answer: D


- 2. Amines are basic in nature because-
 - A. They produce OH^- ions when treated with water
 - B. They have replaceable H atoms on N atoms
 - C. They have lone pair electron on N atom

Answer: C	
Watch Video Solution	
3. Lowest boiling point will be of the compound-	
A. Ethylamine	
B. Ethylmethylamine	
C. 1-Propaneamine	
D. N,N-Dimethylmethanamine	
Answer: A	
Watch Video Solution	

4. Which of the following compund gives the smell of mustard oil-

D. None of these

A. Alkyl isocynate B. Allyl isothiocyanate C. Alkyl isocyanide D. Alkyl isonitrile **Answer: B Watch Video Solution** 5. Hydrolysis of alkyl isocyaide yeilds -A. Primary amines B. Tert. Amine C. Alcohal D. Aldehyde **Answer: A Watch Video Solution**

D. All the above
Answer: C
Watch Video Solution
3. Himesberg's reagent is-
A. Diethyl oxalate
B. Benzyl choride
C. Benzene sulphonyl chloride
D. None of these
Answer: C
Watch Video Solution

9. The presence of primary amines can be confiremed by-

A. Reaction with HNO_2 B. Reaction with $CHCl_3$ and $alc.\ KOH$ C. Reaction with Grignard reagent D. Reaction with acetyl chloride **Answer: B Watch Video Solution 10.** How many isomeric amines can have the formula $C_4H_{11}N-$ A. Five B. SIX C. SEVEN D. EIGHT **Answer: D Watch Video Solution**

11. Ethylamine can be prepared by the all except-

A. Curtius reaction

B. Hofmann reaction

C. Mendius reaction Reduction of formaldoxime

D. Reduction of formalodoxime

Answer: D

12. Which of the following mixtures when heated in alcoholic KOH gives carbylamine test?

A. $CHCL_3 + Ag$ powder

 $\mathsf{B.}\,CHCL_3 + CH_3NH_2$

 $\mathsf{C.}\ CH_3CL + CH_3NH_2$

D.
$$CH_3CN + CH_3NH_2$$

Answer: B

Watch Video Solution

13. which of the following is produced by reducing RCN in sodium and alcohol?

A. $RCONH_2$

B. $RCOONH_4$

 $\mathsf{C.}\,RCH_2NH_2$

D. $(RCH_2)_3N$

Answer: C

14. Which of the following amines does not show carbylamine recation?

A. Ethylamine

B. Dimethylamine

C. Methylamine

D. Phenylaniline

Answer: B

15. In the following reaction

 $CHCl_3 + C_6H_5NH_2 \stackrel{ ext{KOH}}{\longrightarrow} A + 3B + 3C + , \,\, ext{the product 'A', is}$

A. phenyl isocyanide

B. phenyl cyanide

C. ethylene chloride

D. chloro benzene

Watch Video Solution

16. Dehydration of benzaldoxime with acetic anhydride gives

- A. benzonitrile
- B. benzamide
- C. benzaldehyde
- D. benzaniline

Answer: A

Watch Video Solution

17. When a solution of aliphatic aminne is treated with $NANO_2$, the effervescence occurs due to the formation of

A. CO_2
B. NO_2
C. N_2
D. H_2
Answer: C
Watch Video Solution
18. Amides can be converted into amines by a reactions named after .
A. Perkin
B. Claisen
C. Hofmann
D. Sand Meyer
Answer: C
Watch Video Solution

44			37 /0	
19. Aldoximes on	reduction wit	:h $LiAlH_4$ o	r Na / C	J_2H_5OH give

- A. 1° amines
- B. 2° amines
- C. 3° amines
- D. Quaternary salts

Watch Video Solution

20. C_3H_9N represents a

- A. Primary amines
- B. Secondary amines
- C. Tertiary amines

D. All the above

Answer: D

Watch Video Solution

21. Which of the following amines gives positively the carbylamine test?

A.
$$C_6H_5-NH-CH_3$$

$$(B)$$
 Me \longrightarrow NH₂

C. $C_6H_5-NH-C_4H_9$

(D)
$$C_2H_5$$
 \longrightarrow NH_2

Answer: B

Watch Video Solution

22. Amongst the following the most basic compound is:

A. benzyl B. aniline C. acetanilide D. p-nitro-aniline Answer: A Watch Video Solution 23. The compound which on rection with aqueous nirous acid at low temperature produces an oily nitrosamine, is A. Diethyl amine B. ethyl amine C. Aniline D. methyl amine Answer: A

24. Butanenitrile may be prepared by heating

- A. propyl alcohol with KCN
- B. butyl alcohol with KCN
- C. butyl chloride with KCN
- D. propyl chloride with KCN

Answer: D

Watch Video Solution

25. Determine the end prodcut of the following reactions

$$C_2H_5NH_2 \stackrel{HNO_2}{\longrightarrow} A \stackrel{PCL_5}{\longrightarrow} B \stackrel{NH_3}{\longrightarrow} C$$

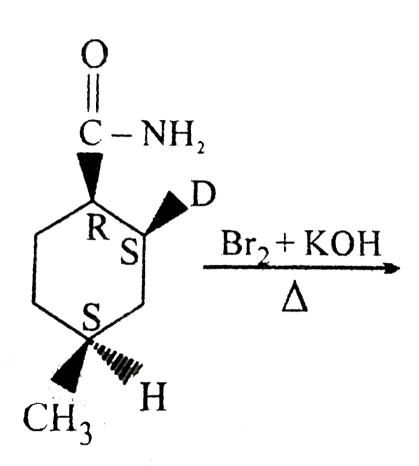
- A. ethyl cyanide
- B. methyl amie

C. Ethyl amine has higher boiling points than propane

D. acetamide

Answer: B

Watch Video Solution


26. Which of the following can not give Hoffmann's bromamide raction:

A.
$$Me-\overset{\sqcap}{C}-NH-Br$$

$$(B) \bigcirc C - NH$$

C.
$$Me-\overset{||}{C}-NH-M\epsilon$$

Answer: C

27. Primary

amine

the correct confirguration of product i.e. primary amine is

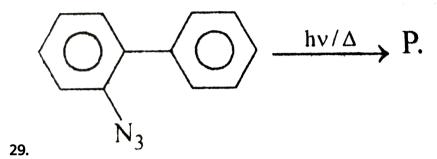
A. IR, 2S, 4S

B. 1S, 2S, 4S

C. 1S,2R,4R

D. All are possible

Answer: A


Watch Video Solution

28. $C_4H_7OCl \xrightarrow{NH_3} C_4H_9ON \xrightarrow{Br_2} CH_3CH_2CH_2NH_2$ Compound (X) is

A.
$$(A)$$
 CI CH_3 O

Answer: A

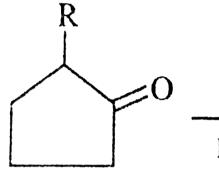
P, is ,

A.

В.

C.

D.


Answer: B

30. Complete

the

following

reaction

$$\xrightarrow{\text{HN}_3} \text{P.}$$

$$\text{H}_2\text{SO}_4$$

Identify P.

A.

В.

C.

D. Both A & C

Answer: D

Watch Video Solution

Exercise 2 Paragraph

1. The conversion of an amide by action of NaOH and Br_2 to primary amine that has one carbon less than the starting amide is known as Hofmann-Bromamide reaction.

$$R-\stackrel{O}{C}-NH_2 \xrightarrow[ext{or NaOBr}]{Br_2+NaOH} R-NH_2+NaBr+Na_2CO_3$$

$$R - C - NH_2 \xrightarrow{Br_2 + NaOH} R - NH_2 + NaBr + Na_2CO_3$$

$$R - C - NH - H \xrightarrow{OH} \xrightarrow{OH} R - C = NH + Br - Br \longrightarrow R - C - N - Br$$

$$-H_{2}O \longrightarrow H \longrightarrow H$$

$$-H_{2}O \longrightarrow H$$

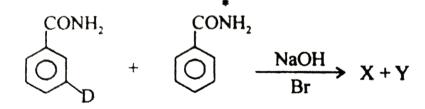
Number of moles of NaOH consumed in a above reaction:

- A. 1
- B. 2
- C. 3
- D. 4

Answer: D

2. The conversion of an amide by action of NaOH and Br_2 to primary amine that has one carbon less than

the starting amide is known as Hofmann-Bromamide reaction.


$$R - C - NH_2 \xrightarrow[\text{or } NaOBr]{Br_2 + NaOH} R - NH_2 + NaBr + Na_2Co_3$$

$$R - C - NH_2 \xrightarrow[\text{or } NaOBr]{Br_2 + NaOH} R - NH_2 + NaBr + Na_2CO_3$$

$$R - C - NH - H \xrightarrow{OH} \xrightarrow{OH} R - C = NH + Br - Br \longrightarrow R - C - N - Br$$

$$-H_{2}O \longrightarrow OH \longrightarrow R$$

$$R - NH_{2} + Na_{2}CO_{3} \xleftarrow{H_{3}O} C = N - R \xrightarrow{Slow} R - C - N \xrightarrow{Br} Br$$

$$\xrightarrow{NaOH} X + Y$$

Find X and Y:

$$\mathbf{A}. \quad (A) \ \mathbf{X} = \mathbf{A}. \quad \mathbf{Y} = \mathbf{A}.$$

$$B. \qquad (B) X = \bigcup_{D} Y = \bigcup_{NH_2} Y = \bigcup_{NH_$$

(C)
$$X = Y = \bigcup_{D}^{NH_2}$$

$$(D) \bigcirc^* = X = Y$$

Answer: B

D.

Watch Video Solution

3. The conversion of an amide by action of NaOH and Br_2 to primary amine that has one carbon

less than the starting amide is known as Hofmann-Bromamide reaction.

$$R-\stackrel{\mid\mid}{C}-NH_{2}\stackrel{Br_{2}+NaOH}{ ext{or}}R-NH_{2}+NaBr+Na_{2}Co_{3}$$

$$R - C - NH_{2} \xrightarrow{Br_{2} + NaOH} R - NH_{2} + NaBr + Na_{2}CO_{3}$$

$$R - NH_{2} + NaBr + Na_{2}CO_{3}$$

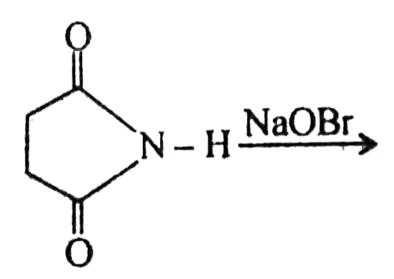
$$R - C - NH - H \xrightarrow{OH} \xrightarrow{OH} R - C = NH + Br - Br \longrightarrow R - C - N - Br$$

$$-H_{2}O \longrightarrow H \longrightarrow H$$

$$-H_{2}O \longrightarrow H$$

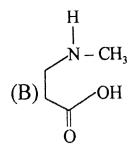
$$-H_{2}O \longrightarrow H$$

$$-H_{2}O \longrightarrow H$$


$$-H_{3}O \longrightarrow H$$

$$-H_{4}O \longrightarrow H$$

$$-H_{4}O \longrightarrow H$$


$$-H_{5}O \longrightarrow H$$

$$-H_{5$$

, Find out X:

$$(A) \begin{pmatrix} NH_2 \\ \ominus \oplus \\ O \\ Na \\ O \end{pmatrix}$$

(C)
$$NH_2$$

D. All of these

Answer: A

В.

Watch Video Solution

4. Ketoxine when heated with certain reagents undergoes rearrangement to form amides. This is known as Beckmann's rearrangement.

$$C = N$$

$$C = N - R'$$

$$O = N$$

$$N - Substituent amid$$

Mechanism:

Find out slowest step of the reation:

A. I

B. II

C. III

D. IV

Answer: B

Watch Video Solution

5. Ketoxine when heated with certain reagents undergoes rearrangement to form amides. This is known as Beckmann's rearrangement.

$$R = N \xrightarrow{\text{OH}} \frac{\text{Conc. H.SO.}_{4}}{\Delta} \qquad R = C - N - R'$$

$$0 \text{ H}$$
N. Substituent amid

Mechanism:

$$R = N$$

$$R =$$

$$C = N \xrightarrow{PCl_5} (X)$$

$$H_3C$$

Find out (X):

$$\begin{array}{c} O \\ | \\ | \\ | \\ C - NH - Ph \end{array}$$

C.
$$Ph-\stackrel{O}{c}-NH-Ph$$

Answer: C

6. Ketoxine when heated with certain reagents undergoes rearrangement

to form amides. This is known as Beckmann's rearrangement.

R
$$C = N$$

$$C$$

Mechanism:

$$R = N$$

$$R =$$

Ph
$$CH_3$$
 CH_3 CH_3 $CONC. H_2SO_4$ CH_3 CH_3 $CONC. H_2SO_4$ CH_3 $CONC. H_2SO_4$ $CONC. H_2SO_4$

Find out (X) of the reaction:

$$CH_3$$
 Ph

$$O = C$$

$$H - N$$

$$CH_3$$

A.

$$O = C$$

$$CH_3$$

$$Ph$$

$$Ph$$

В.

Ph
$$(C) O = C$$

$$CH_3$$

Answer: D

Watch Video Solution

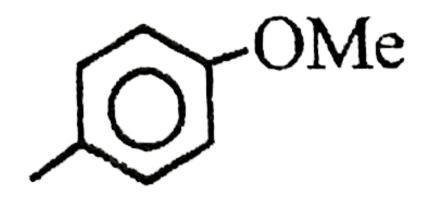
Exercise 2 Reasoning Type

1.

Statement

-1

.

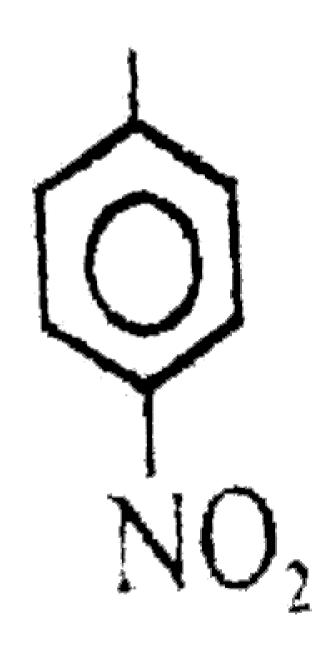

$$C=N \longrightarrow OH \xrightarrow{PCl_5} O_2N \longrightarrow C-NH-O\longrightarrow OMe$$

Statement-II

Migratory

aptitute

of


group is

greater than

migratory

aptitude

of

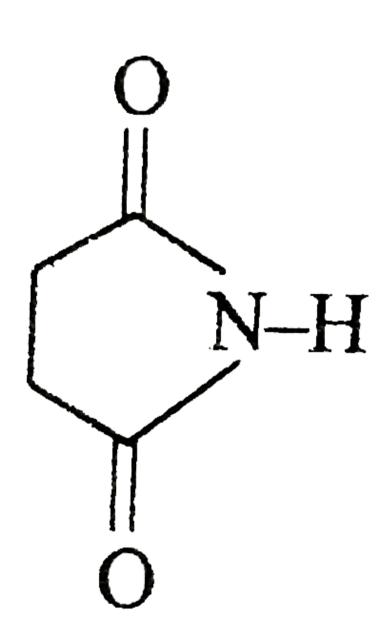
group during

 $cation\ rearrangments.$

A. If both Statement-I & Satement-II are True & the Statement-II is not

a correct explanation of the Statement-I.

B. If both Statement-I & Statement-II are True but Statement-II is not a


correct explanation of the Statement-II

C. If Statement-I is True but the Statement-II is False.

D. If Statement-I is False but the Statement-II is True.

Answer: D

does not give

bromamide reaction.

Statement-II: secondary amides does not give bromamide reaction.

A. If both Statement-I & Satement-II are True&the Statement-II is not a correct explanation of the Statement-I.

B. If both Statement-I & Statement-II are True but Statement-II is not a correct explanation of the Statement-II

C. If Statement-I is True but the Statement-II is False.

D. If Statement-I is False but the Statement-II is True.

Answer: D

$$R - C \equiv N \xrightarrow{Sn} RCH_2 - NH_2$$

$$\downarrow SnCl_2 \longrightarrow RCH = NH$$

3. Statement-I

Statement-II : Sn can give maximum of 4 electron during reduciton, whereas $Sncl_2$ can give only 2.

A. If both Statement-I & Satement-II are True & but Statement-II is not

a correct explanation of the Statement-I.

B. If both Statement-I & Statement-II are True but Statement-II is not a

correct explanation of the Statement-II

C. If Statement-I is True but the Statement-II is False.

D. If Statement-I is False but the Statement-II is True.

Answer: B

Watch Video Solution

Exercise 2 Multiple Correct Choice Type

1. The presence of a primary amine can be confirmed by its reaction with .

A. HNO_2

B. $CHCL_3$ +NaOH

 $\mathsf{C.}\,\mathit{CS}_2$ and HgCl_2

 $\operatorname{D.} H_2SO_4$

Answer: A::B::C

Watch Video Solution

2. Which of the following reaciton can be used to make ethyl isocynide?

A.
$$CH_3CH_2NH_2+CHCL_3 \stackrel{ ext{KOH}}{\longrightarrow}$$

B.
$$CH_3CH_2Br + AgCN
ightarrow$$

$$\operatorname{\mathsf{C.}} CH_3CH_2-NH-\mathop{C}_{\stackrel{||}{O}}-H\stackrel{POCl_3}{\overset{||}{\longrightarrow}}$$

D. $CH_3CH_2Br + KCN
ightarrow$

Answer: A::B::C

3. By which pf the following reactions can methylcyanide be prepared?

A.
$$CH_3Br \xrightarrow[DMF]{ ext{KCN}}$$

$$\operatorname{B.}CH_3NH_2 + CHCl_3 \stackrel{\operatorname{KOH}}{\longrightarrow}$$

C.
$$CH_3-CH=N-OH \stackrel{P_2O_5}{\stackrel{ riangle}{\hookrightarrow}}$$

D.
$$CH_3 - \overset{O}{\overset{||}{C}} - NH_2 \overset{P_4O_{10}}{\overset{\triangle}}$$

Answer: A::C::D

Watch Video Solution

4. $C_6H_5-CH_2-I \stackrel{NaN_3}{\stackrel{\wedge}{\longrightarrow}}$ Products

Reaction is assumed to involve nitrene as intermediate, then varios possibe products are:

A.
$$C_6H_5CH_2NH_2$$

$$\operatorname{B.} C_6H_5N=CH_2$$

$$\mathsf{C.}\, C_6H_5CH=NH$$

Answer: B::C

Watch Video Solution

5. Which of the following amines, can give N-nitrosoamine on treatment with HNO_2 ?

$$(A) \left(\underbrace{N - H} \right)$$

۹.

D.

B.
$$H_3C - CH - NH_2$$

$$CH_3$$
(C) \nearrow $N - CH_3$

Watch Video Solution

6. Choose the correct comparisons of basicity

$$A. \qquad (A) \xrightarrow{\qquad NH_2 < N}$$

$$(C) > NH_2 < N$$

D.

(D)
$${}_{2}^{1}\ddot{N}$$
 $|N(1)>N(3)$

Answer: A::B::C

7. Which of the following will give Hofmann-Bromoamide reaction?

$$(A) \bigwedge_{NH_2}^{O}$$

A

В.

$$(C) \nearrow \begin{matrix} O \\ N \end{matrix} \nearrow Br$$

$$\begin{matrix} H \end{matrix}$$

C

D.

Answer: A::B::C

8. Which of the following reaction represents major products?

- $B_{\bullet} \stackrel{\text{(B)}}{\stackrel{\text{H,C}}{\longrightarrow} \bigcirc} \stackrel{\text{(B)}}{\stackrel{\text{(B)}}{\longrightarrow}} \stackrel{\text{(B)}}{\stackrel{\text{(B)}}{\longrightarrow}} \stackrel{\text{(B)}}{\longrightarrow} Ph-C = C \stackrel{\text{(C)}}{\longrightarrow} -CH,$
- C. (C) Ph C NH, $Br_2 + NaOH \rightarrow Ph NH_2$
- $(D) \stackrel{O}{\longmapsto} \xrightarrow{Br_2 + NaOH} \stackrel{NH_2}{\longmapsto}$ D.

Answer: A::B::C

View Text Solution

9. Which of the following products will not form by following reaction?

$$H_3C - O$$
 $-NH_2 - CHCl_3 + KOH$

- $(A) H_3C (C) CN$
- $(B) H_3C \bigcirc -NC$

C.

(D)
$$H_3C \longrightarrow NH - CH$$

Answer: A::C::D

Watch Video Solution

10. $Ph-\stackrel{O}{C}-NH_2+Ph-CH_2-\stackrel{O}{C}-NH_2 \stackrel{\Theta}{\longrightarrow} A+B$

Product A and B are:

A.
$$Ph-NH_2$$

B.
$$Ph-CH_2-\overset{15}{N}H_2$$

$$\mathsf{C.}\,Ph-CH_2-NH_2$$

D.
$$Ph-\stackrel{15}{N}H_2$$

Answer: A::B

11. Reaction involves isocyanate as intermediate product

- A. Curtius reaarangement
- B. Lossen rearrangement
- C. Schmidt rearrangment
- D. Hafmann rearrangement

Answer: A::B::C::D

Watch Video Solution

12. Which are relateed with Curtius rearrangement?

- A. NaN_3
- $\mathrm{B.}\,R-NH_2$
- C. $R-\stackrel{|}{C}-C$
- D. $R \overset{||}{C} OH$

Answer: A::B::C

View Text Solution

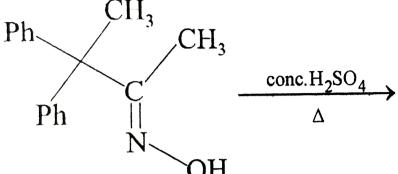
McO
$$\stackrel{\text{(i)} \text{ H}_2\text{O}}{\longrightarrow} P_1$$

$$\stackrel{\text{(ii)} \text{ ROH}}{\longrightarrow} P_2$$

$$\stackrel{\text{(ii)} \text{ ROH}}{\longrightarrow} P_3$$

13.

$P_1, P_2, P_3, are:$


(A) MeO
$$\longrightarrow$$
 NH₂

(C) MeO
$$\sim$$
 N = C = O

$$D$$
. (D) MeO \longrightarrow NH $\stackrel{\circ}{-}$ NH $\stackrel{\circ}{-}$ NHR

Answer: A::B::D

14. Product is:

(A) Ph—
$$\begin{array}{c} CH_3 \\ NH - C - CH_3 \\ O \end{array}$$
 A. Ph

(B)
$$C = CH_2$$

D. CH_3CN

Answer: B::D

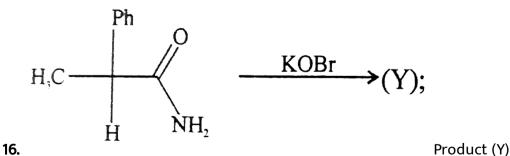
В.

15. Which of the following reaction is not representing major product.

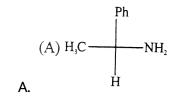
 $\textbf{A.} \overset{\text{(A)} \bigodot c}{\bigcirc c_{g_{g}}} \overset{\text{OH}}{\bigcirc} \overset{\text{H}^{*}}{\xrightarrow{\Lambda}} \text{CH}_{3} \overset{\text{(P)}}{\bigcirc} \overset{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(A)}}{\stackrel{\text{(P)}}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}}{\stackrel{\text{(P)}}{\stackrel{\text{(P)}}}{\stackrel{\text{(P)}}}{\stackrel{\text{(P)}}}{\stackrel{\text{(P)}}}{\stackrel{\text{(P)}}}{\stackrel{\text{(P)}}}{\stackrel{\text{(P)}}}}\stackrel{\text{(P)}}{\stackrel{\text{(P)}}}{\stackrel{\text{(P)}}}}\stackrel{\text{(P)}}{\stackrel{\text{(P)}}}}\stackrel{\text{(P)}}}}\stackrel{\text{(P)}}}{\stackrel{\text{(P)}}}}\stackrel{\text{(P)}}}\stackrel{\text{(P)}}}\stackrel{\text{(P)}}}\stackrel{\text{(P)}}}\stackrel{\text{(P)}}}\stackrel{\text{(P)}}}\stackrel{\text{(P)}}}\stackrel{\text{(P)}}}\stackrel{\text{(P)}}}\stackrel{\text{(P)}}}\stackrel{\text{(P)}}}\stackrel{\text{(P)}}}\stackrel{\text{(P)}}}\stackrel{\text{(P)}}}\stackrel{\text{(P)}}}\stackrel{\text{(P)}}}\stackrel{$

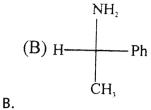
$$(B) \bigcirc C \stackrel{\text{i.d.}}{\bigcirc} C_{I} \xrightarrow{p_{B-L,i}} \bigcirc C = \stackrel{\text{i.d.}}{\bigcirc} - C = \stackrel{\text{i.d.}}{\bigcirc} - CH,$$

В.

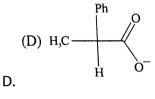

C.
$$Ph-\overset{O}{C}-NH_2 \overset{Br_2}{\underset{KOH}{\longrightarrow}} Ph-NH_2$$

D. 📝


Answer: A::B::D



View Text Solution



of the reaction:

C. Mixture Of A & B

Answer: A::B

$$O$$
 NH_2
 $Br_2 + KOH$
 CH_3
Product

17.

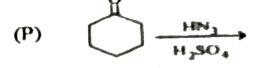
The final Product is:

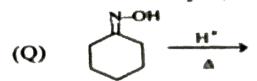
$$H_2N$$
 CH_3

A.

В.

$$(C)$$
 (C)
 (C)


Answer: A::B



Watch Video Solution

Exercise 2 Match The Column

Column B

(S)
$$C=N$$
 OH PCl_3

1.

$${
m Column} I$$

Column II

2.
$$(B)R-\stackrel{O}{\stackrel{||}{C}}-NH_2
ightarrow R-NH_2 \qquad \qquad (Q)P_2O_5$$

$$R-CN$$
 (R) Hofmann reaction CNH_2 (S) $LiAlH_4$

Watch Video Solution

3.

 $\operatorname{Column} I$ Column II(Name of Lab test) (Reagent)

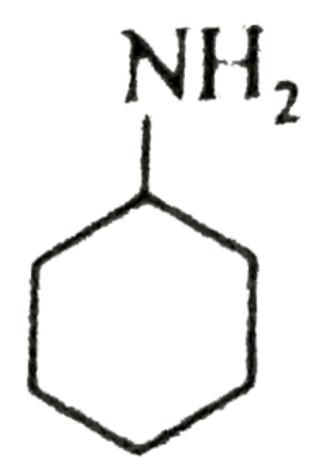
- (A)Lucus test (P) NaOI
- (B)Haloform test (Q) CUSO₄ and potassium, Sodium Tartrate
- $(R) \quad \left[Ag(NH_2)_2\right]^A \stackrel{\Theta}{O} H$ (c)Isocyanide test
- (D)Tollen's test (S) $CHBr_3/KOH$ (E)Fehling test (T) $HCL/ZnCl_2$

1. Compare the basicities

A.

$$CH_{2} = CH - _{I}CH_{2} - NH_{2}, CH_{3} - CH_{2} - _{II}CH_{2} - NH_{2}, CH \equiv C_{I}$$

 $-CH_2 - NH_2$


 $B. \stackrel{\text{(b)}}{\frown} \stackrel{\text{CH}_{i^-} \text{NH}_{i},}{\bigcirc} \stackrel{\text{CH}_{i^-} \text{NH}_{i},}{\bigcirc} \stackrel{\text{O}_{i} \text{N} - \bigcirc}{\prod} - \text{CH}_{i^-} \text{NH}_{i}}$

(c)
$$Ph-NH_2$$
, Ph_2-NH_2 , MH_2

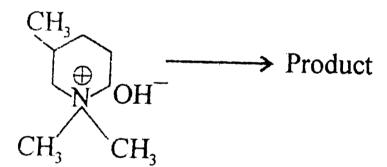
D.
$$CH_3-CH_2-NH_2,$$
 $CH_3-\mathop{C}\limits_{II}^{O}-NH_2,$ $Ph-\mathop{C}\limits_{III}^{O}-NH_2$

Answer: A::B::C::D

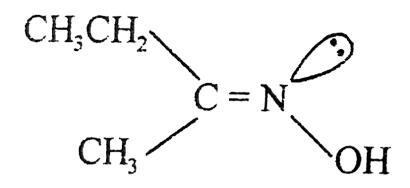
2.

$$\stackrel{3CH_3l}{\longrightarrow} (A) \stackrel{Ag_2O}{\longrightarrow} (B) \stackrel{ riangle}{\longrightarrow} C + D + H_2O$$

What are A, B, C, D


3.
$$\left[CH_3-CH_2-CH_2-egin{array}{c} Ch_3 & & & & \oplus & & & \oplus \\ CH_3-CH_2-CH_2-N & & & & & OH & \longrightarrow \\ & & & & & & & & & & & & & \\ CH_2CH_3 & & & & & & & & & & \end{array}
ight]$$

What are the product due to Hofmann elimination.


Watch Video Solution

4. Haffmann's eliminaition product of 'A'

to Product

5.

$$\stackrel{H^+}{\longrightarrow} (A) \stackrel{H_2rac{\emptyset}{H^+}}{\longrightarrow} B + C$$

Find A, B, C

Watch Video Solution

6. Find the product

A.
$$CH_2=CH_2$$
" " $\stackrel{N_3H}{\longrightarrow}$

B.
$$CH_3-CH=CH_2 \longrightarrow \stackrel{N_3H}{\longrightarrow}$$

C.
$$C_6H_5-\overset{O}{\overset{||}{C}}=Cl$$
 $\overset{Nan_3}{\overset{M}{\overset{-}{\rightarrow}}}$

D.
$$C_6H_5-\overset{O}{\overset{|}{C}}-NH-OH\overset{H^+}{\overset{}{\overset{+}{H_2O}}}$$

Watch Video Solution

7. Complete the reaction

(i)
$$CH_3 - \overset{O}{C} - Cl \mathrm{to} CH_3 - NH_2$$

(ii)

'CH (3)-CH (2)-NH (2)

"to"

(iii)

8.

Exercise 4 Section 4

1. Acetamide is treated separaately with the following reagents Which one of these would give methylamine?.

A. PCL_5

B. Sodalime

C. $NaOH + Br_2$

D. $hotconc.\ H_2SO_4$

Answer: C

Watch Video Solution

- **2.** Carbylamine test is performed in alc . KOH by heating a mixture of :
 - A. Chloroform and silver powder
 - B. trihalogenated methane and a primary amine
 - C. an alkyl halide and a primary amine
 - D. an alkyl cyanide and a primary amine

Answer: B

3. The reation of $RCONH_2$ with a mixture of Br_2 and aqueous KOH gives RNH_2 as the main product The intermediate (s) involved in this reation is (are) .

A.
$$R-CO-NHBr$$

$$B.R-NHBr$$

$$\mathsf{C.}\,R-N=C=O$$

$$\mathsf{D.}\,R-CO.\,NBr_2$$

Answer: A::C

Watch Video Solution

4. A positive carbylamine test is given by:

A. N.N-dimethylaniline

B. 2,4-dimethylaniline

C. N-methyl-O-methylaniline

D. P-mehtylbenzyline

Answer: D

Watch Video Solution

5. In the following reaction,

$$CH_3NH_2 + CHCl_3 + KOH
ightarrow$$
 Nitrogen containing compound

$$+KCl+H_{2}O$$
. The nitrogen containing compound is

A.
$$CH_3-C\equiv N$$

$$\mathsf{B.}\,CH_3-NH-CH_3$$

C.
$$CH_3 - \stackrel{-}{N} \equiv \stackrel{+}{C}$$

D.
$$CH_3 - \stackrel{+}{N} \equiv \stackrel{-}{C}$$

Answer: D

6. In this reaction shown below, the major product(s) formed is //are

Α

(B)
$$H$$
 + CH_3 COOH

В

$$(C) \begin{array}{c} H \\ O \\ O \\ O \\ O \end{array} + H_2C$$

C

Answer: A

D.

Exercise 4 Section 4 Paragraph Question

1. $RCONH_2$ is converted into RNH_2 by means of Hofmann bromamide degradation.

$$CI \xrightarrow{O} CI \xrightarrow{O} NH - Br$$

$$CI \xrightarrow{O} NH - Br$$

$$CI$$

In this RCONHBr is formed form which this reaction has derived its name. Electron-donating group at phenyl activities the reaction. Hofmann degradation reaction is an intramolecular reaction.

Hoe can the conversation of (i)
ightarrow (ii) be brought about ?

A. KBr

 $\mathsf{B.}\,KBr + CH_3ONa$

C. KBr+KOH

 $\mathsf{D}.\,Br_2+KOH$

Answer: D

Watch Video Solution

2. $RCONH_2$ is converted into RNH_2 by means of Hofmann bromamide degradation.

$$CI \longrightarrow NH_2 \longrightarrow CI \longrightarrow NH - Br$$

$$O \longrightarrow CI \longrightarrow NH - Br$$

$$O \longrightarrow O \longrightarrow NH_2 \longrightarrow CI$$

$$O \longrightarrow NH_2 \longrightarrow$$

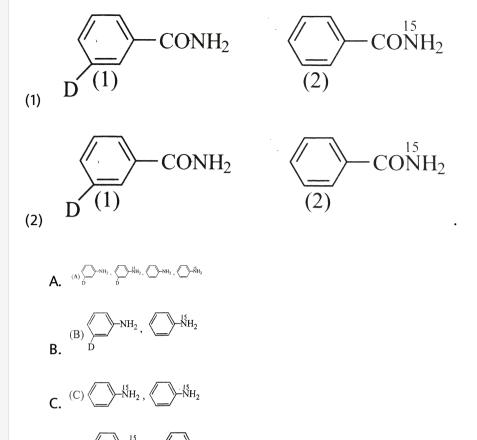
In this RCONHBr is formed form which this reaction has derived its name. Electron-donating group at phenyl activities the reaction. Hofmann degradation reaction is an intramolecular reaction.

Which is the rate-determining step in Hofmann bromamide degradation?

- A. Formation of (i)
- B. Formation of (ii)
- C. Formation of (iii)
- D. Formation of (iv)

Answer: D

 ${f 3.}\,RCONH_2$ is converted into RNH_2 by means of Hofmann bromamide degradation.


$$CI \xrightarrow{O} CI \xrightarrow{O} NH - Br$$

$$CI \xrightarrow{O} NH - Br$$

$$CI$$

In this RCONHBr is formed form which this reaction has derived its name. Electron-donating group at phenyl activities the reaction. Hofmann degradation reaction is an intramolecular reaction.

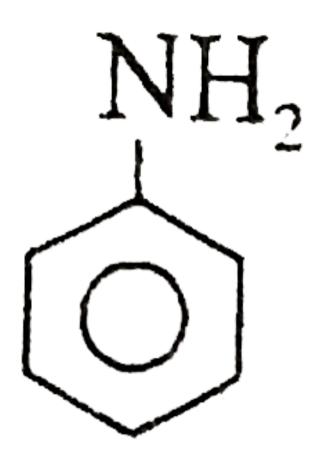
What are the constituent amines formed when the mixture of (1) and (2) undergoes Hofmann bromamide degradation ?

Answer: B

4. In the reaction, the structure of the product T is:

$$(B) \bigvee_{O} -NH CH_{3}$$

Answer: C


D.

A.

В.

1. In this chemical reactions:

 $\xrightarrow{NaNO_2}$

 $\stackrel{HBF_4}{\longrightarrow}~$ B the compounds 'A' and 'B'

respectively are

A. benzene diazonium chloride and fluorobenzene

B. nitrobenzene and chloeobenzene C. nitrobenzene and fluorobenzene D. phenol and benzene Answer: A **Watch Video Solution 2.** A compound with molecular mass 180 is acylated with CH_3COCI to get a compound with molecule of the fomer compound is . A. 5 B. 4 C. 6 D. 2 Answer: A **Watch Video Solution**

3. The gas leaked from a stronge tank of the Union Carbide plant in
Bhopal gas tragedy was
A. Methylamine

B. Ammonia

C. Phosgene

D. Methylisocyanate

Answer: D

4. An orgainc compound A upon reacting with NH_3 gives B On heating B give C. C in presence KOH reacts with Br_2 to yield $CH_3CH_2NH_2A$ is .

A. $CH_3CH_2CH_2COOH$

B. $CH_3CH - COOH$ CH_3

C. CH_3CH_2COOH

D.

Answer: C

Watch Video Solution

5. On heating an aliphatic primary amine with chloroform and enthanolic potassium hydrozide, the organic compound formed is

A. an alkanediol

B. an alkyl cyanide

C. an alkyl isocyanide

D. an alkanol

Answer:

