© 「'doubtnut

CHEMISTRY

FOR IIT JEE ASPIRANTS OF CLASS 12 FOR CHEMISTRY

THERMOCHEMISTRY

Illustration

1. The $\Delta_{f} H^{\circ}\left(\mathrm{N}_{2} \mathrm{O}_{5}, \mathrm{~g}\right)$ in $\mathrm{kJ} / \mathrm{mol}$ on the basic of the following data is:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta_{r} H^{\circ}=-114 \mathrm{~kJ} / \mathrm{mol}$
$4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \quad \Delta_{r} H^{\circ}=-102.6 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{f} H^{\circ}(N O, g)=90.2 \mathrm{~kJ} / \mathrm{mol}$
A. 15.1
B. 30.2
C. -36.2
D. None of these

Answer: A

D View Text Solution

2. The heat of combustion of sucrose, $C_{12} H_{22} O_{11}(s)$ at constant volume is $-1348.9 \mathrm{kcal} \mathrm{mol}^{-1}$ at $25^{\circ} \mathrm{C}$ then the heat of reaction at constant pressure, when stem is produced, is

- View Text Solution

3. The heats of combustion of yellow phosphorus and red phosphorous are $-9.19 K J$ and $-8.78 K J$ respectively, then heat of transition of yellow phosphorus to red phosphorous is

- View Text Solution

4. For the reaction

$$
N_{2} H_{4}(g) \rightarrow N_{2} H_{2}(g)+H_{2}(g) \quad \Delta_{r} H^{\circ}=109 K J / m o l
$$

Calculate the bond enthalpy of $N=N$.
Given
B. $E .(N-N)=163 K J / m o l, B . E .(N-H)=391 K J / m o l, B . E .(H$

- Watch Video Solution

5. Calculate lattice energy for the change,
$L i^{+}(g)+C l^{-}(g) \rightarrow \operatorname{LiCl}(g)$
Given that
$\Delta H_{\text {sublimation }}$ of $L i=160.67 \mathrm{kJmol}^{-1}, \quad \Delta H_{\text {Dissociation }}$ of $C l_{2}=244$.
$\Delta H_{\text {ionisation }}$ of $L i(g)=520.07 \mathrm{kJmol}^{-1}, \quad \Delta H_{E . A}$ of $C l(g)=-365$. ΔH_{f} of $\operatorname{LiCl}(s)=-401.66 \mathrm{kJmol}^{-1}$,

- Watch Video Solution

6. 100 gm of anhydrous CuSO_{4}, when dissolved in excess of water produces 42 kJ of heat. The same amount of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ on dissolving in large excess of water absorbed 4.60 kJ . What is the heat of hydration CuSO_{4} ?
7. Heat of neutralization (ΔH) of $\mathrm{NH}_{4} \mathrm{OH}$ and HF are -51.5 and -68.6 kJ respectively. Calculate their heat of dissociation?
(i) $\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}, \quad \Delta \mathrm{H}=-57.3 \mathrm{~kJ}$
(ii)

$$
\mathrm{HCl}(a q)+\underset{\text { (weak base) }}{\mathrm{NH}_{4} \mathrm{OH}(a q)} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(a q)+\mathrm{H}_{2} \mathrm{O}, \quad \Delta H=-51.5 k J
$$

- View Text Solution

8. Calculate resonance energy of $C_{6} H_{6}(g)$.

Given: $\Delta_{f}\left[C_{6} H_{6}(g)\right]=-360 \mathrm{kJmol}^{-1}$
$\Delta H_{\text {Sub }}[C($ graphite $)]=716 \mathrm{kJmol}^{-1}$
B. $E \cdot{ }_{H-H}=437 \mathrm{kJmol}^{-1}$
B. $E \cdot{ }_{C=C}=620 \mathrm{kJmol}^{-1}$
B. $E \cdot{ }_{C-C}=340 \mathrm{kJmol}^{-1}$
B. $E \cdot{ }_{C-H}=490 \mathrm{kJmol}^{-1}$

- Watch Video Solution

9. A calorimeter will heat capacity equivalent to having 13.3 moles of water is used to measured the heat of combustion from $0.303 g$ of sugar ($\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$). The temperature increase was found to be 5.0 K . Calculate the heat released, the amount of heat released by 1.0 g , and 1.0 mole of sugar.

- Watch Video Solution

10. The temperature of a calorimeter increases 0.10 K when 7.52 J of electric energy is used to heat it. What is the heat capacity of the calorimeter?

- Watch Video Solution

11. When $0.1025 g$ of benzoic acid was burnt in a bomb calorimeter the temperature of the calorimeter increased by $2.165^{\circ} \mathrm{C}$. For benzoic acid $\Delta H_{\text {comb }}^{\circ}=-3227 \mathrm{kJmol}^{-1}$. Calculate the heat capacity of the calorimeter.

View Text Solution

Solved Example

1. Benzene burns according to the following equation
$2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}=-6542 \mathrm{KJ}$
What is the ΔE° for the combustion of 1.5 mol of benzene
A. $-3271 K J$
B. $-9813 k J$
C. $-4906.5 k J$
D. None of these

Answer: D

2. What is the value of change in internal energy at 1 at, in the process
$\mathrm{H}_{2} \mathrm{O}(l, 323 \mathrm{~K}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}, 473 \mathrm{~K})$
Given
$C_{p}\left(H_{2} \mathrm{O}, \mathrm{l}\right)=75.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, C_{p}\left(\mathrm{H}_{2} \mathrm{O}, g\right)=33.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \Delta H_{v a}$
at $373 \mathrm{~K}=40.7 \mathrm{~kJ} / \mathrm{mol}$
A. $109.1 \mathrm{~kJ} / \mathrm{mol}$
B. $37.6 \mathrm{KJ} / \mathrm{mol}$
C. $43.86 \mathrm{KJ} / \mathrm{mol}$
D. $48.36 \mathrm{KJ} / \mathrm{mol}$

Answer: C

- View Text Solution

3. Given : $S_{(s)}+\frac{3}{2} O_{2(g)} \rightarrow \mathrm{SO}_{3(g)+2 X K c a l}$
$\mathrm{SO}_{2(\mathrm{~s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{3(\mathrm{~g})+\mathrm{YKcal}}$
The heat of formation of $S O_{2}$ is :-
A. $(y-2 x)$
B. $(2 x+y)$
C. $(x+y)$
D. $2 x / y$

Answer: A

- Watch Video Solution

4. The molar heat capacities at constant pressure (assumed constant with respect to temperature) of A, B and C are in ratio of $1.5: 3.0: 2.5$. If enthalpy change for the exothermic reaction $A+2 B \rightarrow 3 C$ at $300 K$ and 310 K is ΔH_{1} and ΔH_{2} respectively then
A. $\Delta H_{1}>\Delta H_{2}$
B. $\Delta H_{1}<\Delta H_{2}$
C. $\Delta H_{1}=\Delta H_{2}$
D. If $T_{2}>T_{1}$ then $\Delta H_{2}>\Delta H_{1} 7$ if $T_{2}<T_{1}$ then $\Delta H_{2}<\Delta H_{1}$

D Watch Video Solution

5. Solid $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is taken in a container fitted with a frictionless piston initially containing no other gases. The external pressure is maintained at 1 atm and the container is heated till the equilibrium is achieved.
$\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(s) \Rightarrow 2 \mathrm{CaSO}_{4}(s)+2 \mathrm{H}_{2} \mathrm{O}(g)$
If $\Delta H^{\circ}=+30 \mathrm{Kcal} / \mathrm{mol}$ and $\Delta S^{\circ}=+40 \mathrm{cal} / \mathrm{K}, \quad$ at what temperature equilibrium will be establised in the container. (Ignore variation of ΔH_{0} and ΔS_{0} with temperature)
A. 600 K
B. 750 K
C. 700 K
D. 300 K

D Watch Video Solution

6. For the reaction
$\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
using data given in table find out incorrect statement (s) among the following

$$
\Delta H_{f}^{\circ}(k J / \text { mole }) \quad S^{\circ}(J / K \text { mole })
$$

$\mathrm{CO}(g)$	-110	+197
$\mathrm{O}_{2}(g)$	0	+205
$\mathrm{CO}_{2}(g)$	-395	+213

Assume vibration modes of motion do not contribute to heat capacity at low temperature.
A. $\Delta H^{\circ}>\Delta U^{\circ}$ for the reaction at 298 K
B. In
standard
state conditin, the
rection
$\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$ attain equilibrium at very hight temperature.
C. At low temperature $\frac{d(\Delta H)^{\circ}}{d T}=-v e$
D. In a $C O, O_{2}$ fuel cell electrical energy obtained by cell

$$
>\left|\Delta H_{\text {combustion }}^{\circ}[C O(g)]\right|
$$

Answer: A

- View Text Solution

7. The heat of vaporisation : $\Delta H_{\text {vap }}$, of $C C l_{4}$ at $27^{\circ} C$ is $42 \mathrm{~kJ} / \mathrm{mole}$ $C C l_{4}(l) \rightarrow C C l_{4}(g): \Delta H_{\text {vap }}=42.0 \mathrm{~kJ} / \mathrm{mole}$

If 1 mole of liquid $\mathbb{C l}_{4}$ at $27^{\circ} \mathrm{C}$ has entropy of $214 \mathrm{~J} / \mathrm{K}$ mole, what is the entropy (in $\mathrm{J} / \mathrm{K}-\mathrm{mol}$) of 1 mole of vapour in equilibrium with liquid at this temperature.
A. 74
B. 454
C. 354
D. 254

Answer: C

D View Text Solution

8. If $\Delta H_{\text {vaporisation }}$ of substance $X(l)$ (molar mass : $30 \mathrm{~g} / \mathrm{mol}$) is $300 \mathrm{~J} / \mathrm{g}$ at it's boling point 300 K , then molar entropy change for reversible condensation process is
A. $30 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$
B. $-300 \mathrm{~J} / \mathrm{mol}$. K
C. $-30 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$
D. none of these

Answer: C

- Watch Video Solution

9. The following sequence of reaction occurs in commercial production of aqueous of aqueous nitric acid.

$$
\begin{array}{ll}
4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) & \Delta H=-904 k J \ldots . .(1) \\
2 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g) & \Delta H=-112 k J \ldots .(2) \\
3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g) & \Delta H=-140 k J \ldots .(3)
\end{array}
$$

Determine the total heat liberated (in $\mathrm{kJ} / \mathrm{mol}$) at constant pressure for the production of exactly 1 mole of aqueous nitric acid from NH_{3} by this process.
A. 986
B. 493
C. 246.5
D. none of these

Answer: B

- Watch Video Solution

10. If $\Delta H_{\text {vaporisation }}$ of $\left(C_{2} H_{5}\right) O(l)$ is $350 \mathrm{~J} / \mathrm{g}$ at it's boiling point 300 K , then molar entropy change for condensation process is
A. $86.33 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$
B. $-86.33 \mathrm{~J} / \mathrm{mol}$. K
C. $-1.16 \mathrm{~J} / \mathrm{mol}$. K
D. 1.16

Answer: B

- Watch Video Solution

11. Calculate ΔG (in kJ) for the reaction at 300 K ,
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$
Given
at
300
K,
$B E_{H-H}=435 \mathrm{kJmol}^{-1}, B E_{C l-C l}=240 \mathrm{kJmol}^{-1}, B E_{H C l}=430 \mathrm{kJmol}^{-1}$
Entropies of $H_{2}, C l_{2}$ and HCl are 131, 223 and $187 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
respectively.
A. 191
B. 291
C. -191
D. None of these

Answer: C

- Watch Video Solution

12. $\mathrm{NH}_{3}(g)+3 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{NCl}_{3}(g)+3 \mathrm{HCl}(g), \quad \Delta H_{1}$
$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \quad \Delta \mathrm{H}_{2}$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g}), \quad \Delta H_{3}$
The heat of formation of NCl_{3} in the terms of $\Delta H_{1}, \Delta H_{2}$ and ΔH_{3} is
A. $\Delta H_{f}=-\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
B. $\Delta H_{f}=\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
C. $\Delta H_{f}=\Delta H_{1}-\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
D. None

Answer: A

- Watch Video Solution

13. If $\mathrm{Ag}_{2} \mathrm{O}(s)$ is ecposed to atmosphere having pressure 1 atm and temperature 1 atm and temperature $27^{\circ} \mathrm{C}$. Under these conditions comment whether it will dissociate spontaneously or not.
$2 \mathrm{Ag}_{2} \mathrm{O}(s) \Leftrightarrow 3 \mathrm{Ag}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$
Given :
ΔH_{f}
(kJ/mol)
ΔS°
($\mathrm{J} / \mathrm{K} \mathrm{mol}$) at
$27^{\circ} \mathrm{C}$

$\mathrm{Ag}(\mathrm{s})$	0	42.0
$\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})$	-30	121.0
$\mathrm{O}_{2}(g)$	0	204.0

(Air consist of $20 \% O_{2}$ by volume)
Take : $R=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

- View Text Solution

14. A 500 gm sample of water is reacted with an equimolar amount of CaO (both at an initial temp of $25^{\circ} \mathrm{C}$). What is the final temperature of the product? [Assume that the product absorbs all of the heat released in
the reaction] Heat produced per mol of $\mathrm{Ca}(\mathrm{OH})_{2}$ is $65.2 k J$ and specific heat $\mathrm{Ca}(\mathrm{OH})_{2}$ is $1.2 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.
A. $\approx 735^{\circ} \mathrm{C}$
B. $\approx 760^{\circ} \mathrm{C}$
C. $\approx 746^{\circ} \mathrm{C}$
D. $\approx 789^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

15. The enthalpy of formation of enthane and benzene from the gaseous atoms are -2839.2 and $-5506 \mathrm{~kJ} / \mathrm{mol}$ respectively. Bond enthalpy of
$C=C$ bond is
Given: Resonance energy of benzene $=-23.68 \mathrm{~kJ} / \mathrm{mol}$
Bond enthalpy of $C-H$ bond $=411.0 \mathrm{~kJ} / \mathrm{mol}$
A. $373.98 \mathrm{~kJ} / \mathrm{mol}$
B. $632.24 \mathrm{~kJ} / \mathrm{mol}$
C. $647.5 \mathrm{~kJ} / \mathrm{mol}$
D. $1896.72 \mathrm{~kJ} / \mathrm{mol}$

Answer: B

- Watch Video Solution

16. The reaction $\mathrm{CH}_{4}(g)+\mathrm{Cl}_{2}(g) \rightarrow \mathrm{CH}_{3} \mathrm{Cl}(g)+\mathrm{HCl}(g)$ has
$\Delta H=-25 \mathrm{kCaI}$.

Bond	Bond Energy k Cal
$\varepsilon_{C-C l}$	84
$\varepsilon_{H-C l}$	103
ε_{C-H}	x
$\varepsilon_{C l-C l}$	y
$x: y=9: 5$	

From the given data, what is the bond energy of $C l-C l$ bond (in k.cal)
A. 70 kCal
B. 80 kCal
C. 67.75 kCal
D. 57.75 kCal

Answer: D

- Watch Video Solution

17. Ethyl chloride $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right)$, is prepared by reaction of ethylene with hydrogen chloride:
$C_{2} H_{4}(g)+H C l(g) \rightarrow C_{2} H_{5} C l(g) \quad \Delta H=-72.3 K J / \mathrm{mol}$
What is the value of $\Delta E($ in KJ$)$, if 98 g fo ethylene and 109.5 g if HCl are allowed to react at 300 K
A. -64.81
B. -190.71
C. -209.41
D. -224.38

Answer: C

18. (i) Determine $\Delta_{f} H^{\circ}(N O, g)$ at $25^{\circ} C$. Using the following information

$$
\begin{array}{ll}
\Delta_{f} H^{\circ}\left(\mathrm{CO}_{2}, g\right)=-393.5 \mathrm{~kJ} / \mathrm{mol} & \\
2 \mathrm{NO}(g)+O_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)(g) & \Delta_{r} H^{\circ}=-114.0 \mathrm{~kJ} / \mathrm{mol} \\
2 \mathrm{CO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g) & \Delta_{r} H^{\circ}=-566.0 \mathrm{~kJ} / \mathrm{mol} \\
4 \mathrm{CO}(g)+2 \mathrm{NO}_{2}(g) \rightarrow 4 \mathrm{CO}_{2}(g)+\mathrm{N}_{2}(g) & \Delta_{r} H^{\circ}=-1198.4 \mathrm{~kJ} / \mathrm{mo}
\end{array}
$$

(ii) Calculate the equilibrium pressure (in Pascal) for the conversion of grapgite to diamond at $25^{\circ} \mathrm{C}$. The densities of graphite and diamond may be taken to be 2.20 and $3.40 \mathrm{~g} / \mathrm{cc}$ respectively independent of pressure.

Given : $\Delta G^{\circ}(C($ graphite $) \rightarrow C($ diamond $))=2900 \mathrm{~J} / \mathrm{mol}$.

D View Text Solution

19. Which of the following do(es) not represent ΔH formation of the product.
$(I) \frac{1}{2} H_{2}(g)+(a q) \rightarrow H^{+}(a q)$
$(\mathrm{II}) \frac{2}{3} \mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})$
$(\mathrm{III}) \mathrm{NH}_{4}^{+}(g)+\mathrm{Cl}^{-}(g) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \quad(\mathrm{IV}) \mathrm{P}_{4}($ black $)+5 \mathrm{O}_{2}(g) \rightarrow P_{4}($
(V) Reaction representing $\Delta H_{\text {combustion }}$ of C (graphite).
A. $I, I V, V$
B. II, IV
C. $I I, I I I, I V$
D. $I I, I I I, I V, V$

Answer: C

- View Text Solution

20. White phosporus is a tetra-atomic solid $P_{4}(s)$ at room temperature.

Find average $(P-P)$ bond enthalpy in $\mathrm{kJ} / \mathrm{mol}$.
Given: $\Delta H_{\text {sublimation }}$ of $P_{4}(s)=59 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{\text {atomisation }}$ of $P_{4}(s)=1265 \mathrm{~kJ} / \mathrm{mol}$
21. Calculate the strength of H -bond between $\mathrm{F}^{-}(\mathrm{g})$ and $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{g})$
from the given data.
$\Delta H_{\text {solution }}\left[\mathrm{KF}. \mathrm{CH}_{3} \mathrm{COOH}(s)\right]$ in glacial acetic acid $=-3 \mathrm{~kJ} / \mathrm{mole}$ $\Delta H_{\text {solution }}[K F(s)]$ in glacial acetic acid $\quad=+35 \mathrm{~kJ} / \mathrm{mole}$
Lattice Enthalpy KF(s)
Lattice enthalpy of $\mathrm{KF} . \mathrm{CH}_{3} \mathrm{COOH}(s)$
$=+797 \mathrm{~kJ} / \mathrm{mole}$
$\Delta H_{\text {vaporization }}\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})\right]$
$=+734 \mathrm{~kJ} / \mathrm{mole}$
$=+21 \mathrm{~kJ} / \mathrm{mole}$

- View Text Solution

22. Find the bond enthalpy (in $\mathrm{kJ} / \mathrm{mol}$) of one "three centre two electron bond" in $B_{2} H_{6}\{B-H-B \rightarrow 2 B(g)+H(g)\}$ from the given data.

$$
\begin{array}{ll}
\Delta H_{f}^{\circ}\left[B H_{3}(g)\right]=100 \mathrm{~kJ} / \mathrm{mole} & \Delta H_{f}^{\circ}\left[B_{2} H_{6}(g)\right]=36 \mathrm{~kJ} / \mathrm{mole} \\
\Delta H_{\mathrm{atm}}[B(s)]=565 \mathrm{~kJ} / \mathrm{mole} & \Delta H_{\mathrm{atm}}=\left[H_{2}(g)\right]=218 \mathrm{~kJ} / \mathrm{mole}
\end{array}
$$

- View Text Solution

23. For the reaction
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
using data given in table find out incorrect statement(s) among the following.

$\mathrm{CO}(g)$	-110	+197
$\mathrm{O}_{2}(g)$	0	+205
$\mathrm{CO}_{2}(g)$	-395	+213

Assume vibration modes of motion do not contribute to heat capacity at low temperature.
A. $\Delta H^{\circ}>\Delta U^{\circ}$ for the reaction at 298 K .
B. In standard state condition, the reaction
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$ attain equilibrium at very high temperature.
C. At low temperature $\frac{D(\Delta H)^{\circ}}{d T}=-v e$
D. In a $C O, O_{2}$ fuel cell electrical energy obtained by cell

$$
>\left|\Delta H_{\text {combustion }}^{\circ}[C O(g)]\right|
$$

Answer: A

- View Text Solution

24. At temperature above 85 K , decarboxylation of acetic becomes a spontaneous process under standard state conditions. What is the standard entropy change (in J/K-mol) of the reaction.

$$
\mathrm{CH}_{3} \mathrm{COOH}(a q) \rightarrow \mathrm{CH}_{4}(g)+\mathrm{CO}_{2}(g)
$$

Given: $\Delta H_{f}^{\circ}\left[\mathrm{CH}_{3} \mathrm{COOH}(a q)\right]=-484 \mathrm{~kJ} / \mathrm{mole}$

$$
\begin{array}{ll}
\Delta H_{f}^{\circ}\left[C O_{2}(g)\right] & =-392 \mathrm{~kJ} / \mathrm{mole} \\
\Delta H_{f}^{\circ}\left[C H_{4}(g)\right] & =-75 \mathrm{~kJ} / \mathrm{mole}
\end{array}
$$

- Watch Video Solution

25. The enthalpy changes of the following reactions at $27^{\circ} \mathrm{C}$ are

$$
\begin{array}{ll}
\mathrm{Na}(s)+\frac{1}{2} \mathrm{Cl}_{2}(g) \rightarrow \mathrm{NaCl}(s) & \Delta_{r} H=-411 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{H}_{2}(g)+\mathrm{S}(s)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(l) & \Delta_{r} H=-811 \mathrm{~kJ} / \mathrm{mol} \\
2 \mathrm{Na}(\mathrm{~s})+S(s)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(s) & \Delta_{r} H=-1382 \mathrm{~kJ} / \mathrm{mol} \\
\frac{1}{2} \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{Cl}_{2}(g) \rightarrow \mathrm{HCl}(g) & \Delta_{r} H=-92 \mathrm{~kJ} / \mathrm{mol}, \quad R=
\end{array}
$$

from these data, the heat change of reaction at constant volume (in
$\mathrm{kJ} / \mathrm{mol}$) at $27^{\circ} \mathrm{C}$ for the process
$2 \mathrm{NaCl}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})+2 \mathrm{HCl}(g)$ is
A. 67
B. 62.02
C. 71.98
D. None

Answer: B

- Watch Video Solution

26. Calculate $\left|\Delta_{f} G^{\circ}\right|$ for $\left(\mathrm{NH}_{4} \mathrm{Cl}, s\right)$ at 350 K .

Given : $\Delta_{f} H^{\circ}\left(N H_{4} C l, s\right)=-314.5 \mathrm{~kJ} / \mathrm{mol}$
$\left(S_{N_{2}(g)}^{\circ}=192 \mathrm{JK}^{-1} \mathrm{~mol}^{-1},, S_{H_{2}(g)}^{\circ}=130.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1},\right),\left(S_{\mathrm{Cl}_{2}(g)}^{\circ}=\right.$
$\left(\Delta_{r} C_{P}=-20 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, \ln \left(\frac{350}{300}\right)=0.15,\right)$

- View Text Solution

27. If enthalpy of hydrogenation of $C_{6} H_{6}(l)$ into $C_{6} H_{12}(l)$ is $-205 \mathrm{~kJ} \&$ resonance energy of $C_{6} H_{6}(l)-152 \mathrm{~kJ} / \mathrm{mol}$ then enthalpy of hydrogenation
of 1,4 -cyclohexadiene (l) is
Assume $\Delta H_{\text {vap }}$ of $C_{6} H_{6}(l), C_{6} H_{8}(l), C_{6} H_{12}(l)$ all are equal
A. $-535.5 \mathrm{~kJ} / \mathrm{mol}$
B. $-238 \mathrm{~kJ} / \mathrm{mol}$
C. $-357 \mathrm{~kJ} / \mathrm{mol}$
D. None

Answer: B

- View Text Solution

28. The enthalpy of gas phase trimerization of one mole of gaseous formaldehyde in (kJ/mole)

- View Text Solution

29. Calculate the enthalpy change for the given reaction from data provided (kJ/mole)

$H A(g)$
(weak acid)
:---
:---

$\Delta H_{\text {neutralization }}\{H A(a q)[$ at infinite dilution $] / B(a q)[$ at infinite dilution $]\}=$
$\Delta H_{\text {solution }}[H A(g)]=-10 \mathrm{~kJ} /$ mole \quad \{at infinite dilution\}
$\Delta H_{\text {solution }}[B(g)]=-5 \mathrm{~kJ} / \mathrm{mole} \quad$ \{at infinite dilution $\}$
$\Delta H_{\text {solution }}[H A B(s)]=+8 \mathrm{~kJ} / \mathrm{mole} \quad\{$ at infinite dilution $\}$
A. -36
B. -63
C. -45
D. -37

Answer: B

- View Text Solution

30. Estimate ΔH_{f}° \{pyridine (l) $\}$ from the given data.
31. The standard enthalpy of atomisation of $\mathrm{PCl}_{3}(\mathrm{~g})$ is $195 \mathrm{Kcal} / \mathrm{mol}$. What will be the standard enthalpy of atomisation of $\mathrm{PCl}_{5}(\mathrm{~g})$, if the bond dissociation energies of axial $P-C l$ bonds in $\mathrm{PCl}_{5}(g)$ are 10% lesser and the bond dissociation energies of equatorial $P-C l$ bonds in $\mathrm{PCl}_{5}(\mathrm{~g})$ are 10% higher than the bond dissociation energies of $\mathrm{P}-\mathrm{Cl}$ vonds in $\mathrm{PCl}_{3}(\mathrm{~g})$.
A. $195 \mathrm{~K} \mathrm{cal} / \mathrm{mol}$
B. $325 \mathrm{~K} \mathrm{cal} / \mathrm{mol}$
C. $331.5 \mathrm{~K} \mathrm{cal} / \mathrm{mol}$
D. $318.5 \mathrm{~K} \mathrm{cal} / \mathrm{mol}$

Answer: C

- Watch Video Solution

32. An important reaction in production of smog is
$\mathrm{NO}_{2}(g)+h v \rightarrow \mathrm{NO}(g)+\mathrm{O}(g)$
If light of wavelength $4.4 \times 10^{-7} \mathrm{~m}$ is used to cause above reaction.
Calculate $N-N$ bond enthalpy.
Given : $\Delta H_{f}[N O(g)]=91 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad h=6.6 \times 10^{-34} \mathrm{Js}$

$$
\begin{array}{ll}
\Delta H_{f}\left[N_{2} O_{4}(g)\right]=9 \mathrm{~kJ} \mathrm{~mol}^{-1} & c=3 \times 10^{8} \mathrm{~ms}^{-1} \\
\Delta H_{O=O}=498 \mathrm{~kJ} \mathrm{~mol}^{-1} & N_{A}=6 \times 10^{23}
\end{array}
$$

- Watch Video Solution

Exercise

1. How much heat will be required at constant pressurent to form 1.28 kg of CaC_{2} from $\mathrm{CaO}(s) \& C(s)$?
Given: $\Delta_{f} H^{\circ}(\mathrm{CaO}, \mathrm{s})=-152 \mathrm{kcal} / \mathrm{mol}$
$\Delta_{f} H^{\circ}\left(\mathrm{CaC}_{2}, \mathrm{~s}\right)=-14 \mathrm{kcal} / \mathrm{mol}$
$\Delta_{f} H^{\circ}(C O, g)=-26 \mathrm{kcal} / \mathrm{mol}$
A. +112 kcal
B. 224 kcal
C. 3840 kcal
D. 2240 kcal

Answer: D

- View Text Solution

2. (1) For the given heat of reaction,
(i) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})=\mathrm{CO}_{2}(\mathrm{~g})+97 \mathrm{kcal}$
(ii) $\mathrm{CO}_{2}(g)+\mathrm{C}(\mathrm{s})=2 \mathrm{CO}(g)-39 \mathrm{kcal}$ the heat of combustion of $\mathrm{CO}(\mathrm{g})$ is:

Watch Video Solution

3. Calculate the heat of transition for carbon from the following:
$C_{\text {Diamond }}+O_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H=-94.3 k c a l$
$C_{\text {Amorphous }}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H=-97.6 \mathrm{kcal}$
Also calculate the heat required to change $1 g$ of $C_{\text {Diamond }}$ to $C_{\text {Amorphous }}$.
4. What is the Bond energy ($\mathrm{ln} \mathrm{kJ} / \mathrm{mol}$) of $C-H$ in Methane from the following data?

$\Delta H_{f}\left[C O_{2}(g)\right]$	$=-394 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{f}\left[H_{2} O(l)\right]$	$=-285 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{\text {siblimation }}\{$ Carbon (graphite) $\}$	$=+716 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{\text {combustion }}\left[C H_{4}(g)\right]$	$=-890 \mathrm{~kJ} / \mathrm{mol}$
Bond energy $(H-H)$	$=435 \mathrm{~kJ} / \mathrm{mol}$

- View Text Solution

5. Calculate $\Delta_{\text {neut }} H$ of $H A$. If bond dissociation energy of $H-A$ is $5 K J / \mathrm{mol}$

- View Text Solution

6. The standard molar enthalpies of formation of cyclohexane (l) and benzene (l) at $25^{\circ} \mathrm{C}$ are -156 and $+49 \mathrm{KJmol}^{-1}$ respectively. The standard enthalpy of hydrogenation of cyclohexene (l) at $25^{\circ} \mathrm{C}$ is
$-119 \mathrm{lmmol}^{-1}$. Use these data to estimate the magnitude of the resonance energy of benzene.

- View Text Solution

7. The heat released by one mole of sugar from a bomb calorimeter ecperiment is $5648 \mathrm{KJ} / \mathrm{mol}$. Calculate the enthalpy of combution per mole of sugar.

- View Text Solution

8. When $0.7022 g$ of oxalic acid $\left(\mathrm{C}_{2} \mathrm{O}_{4} \mathrm{H}_{2}\right)$ is burnt in the calorimeter. The temperature. The temperature increased by $1.602^{\circ} \mathrm{C}$. The heat capacity of the calorimeter is $1.238 \mathrm{KJ} / \mathrm{K}$. Calculate ΔH° comb.

- View Text Solution

1. For which change $\Delta H \neq \Delta E$:-
A. $H_{2}(g)+I_{2}(g) \rightarrow 2 H I(g)$
B. $\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
C. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
D. $\mathrm{N}_{g}+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

Answer: D

- Watch Video Solution

2. Reactions involving gold have been of particular interest to a chemist.

Consider the following reactions,

$$
\begin{array}{ll}
\mathrm{Au}(\mathrm{OH})_{3}+4 \mathrm{HCl} \rightarrow \mathrm{HAuCl}_{4}+3 \mathrm{H}_{2} \mathrm{O}, & \Delta H=-28 \mathrm{kCal} \\
\mathrm{Au}(\mathrm{OH})_{3}+\mathrm{HBr} \rightarrow \mathrm{HAuBr}_{4}+3 \mathrm{H}_{2} \mathrm{O}, & \Delta H=-36.8 k \mathrm{Cal}
\end{array}
$$

In an experiment there was an absorption of 0.44 k Cal when one mole of
$H A u B r_{4}$ was mixed with 4 moles of HCl . what is the percentage conversion of HAuBr_{4} into HAuCl_{4} ?
A. 0.005
B. 0.006
C. 0.05
D. 0.5

Answer: C

- View Text Solution

3. If x_{1}, x_{2} and x_{3} are enthalpies of $\mathrm{H}-\mathrm{H}, \mathrm{O}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ bonds respectively , and x_{4} is the enthalpy of vaporisation of water, estimate the standard enthalpy of combustion of hydrogen:
A. $x_{1}+\frac{x_{2}}{2}-2 x_{3}+x_{4}$
B. $X_{1}+\frac{x_{2}}{2}-2 x_{3}-x_{4}$
C. $x_{1}+\frac{x_{2}}{2}-x_{3}+x_{4}$
D. $2 x_{3}-x_{1}-\frac{x_{2}}{2}-x_{4}$

Answer: B

- Watch Video Solution

4. For the allotropic change represented by the equation C (graphit) \rightarrow

C (diamond), $\Delta H=1.9 k J$. If 6 g of diamond and 6 g of graphite are separately burnt to yield CO_{2}, the enthalpy liberated in first case is
A. less than in the second case by 1.9 kJ
B. more than in the seocnd in first case is
C. more than in the second case by 0.95 kJ
D. less than in the second case by 11.4 kJ

Answer: C

- Watch Video Solution

5. Given :

(i) $\mathrm{NH}_{3}(g)+3 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{NCl}_{3}(g)+3 \mathrm{HCl}(g), \Delta H_{1}$
(ii) $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g), \Delta H_{2}$
(iii) $\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{HCl}(g), \Delta H_{3}$

Express the enthalpy of formation of $\mathrm{NCl}_{3}(g)\left(\Delta H_{f}\right)$ in terms of $\Delta H_{1}, \Delta H_{2}$ and $\Delta H_{3}:$
A. $\Delta H_{f}=-\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
B. $\Delta H_{f}=\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
C. $\Delta H_{f}=\Delta H_{1}-\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
D. None

Answer: A

D Watch Video Solution

6. Ethanol can undergo decompostion to form two sets of products.

If the molar ratio of $\mathrm{C}_{4} \mathrm{H}_{4}$ to $\mathrm{CH}_{3} \mathrm{CHO}$ is $8: 1$ in a set of product gases,
then the energy involved in the decomposition of 1 mole of ethanol is:
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g}) \longrightarrow \begin{aligned} & 1 \\ & \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ;\end{aligned} \quad \Delta H^{\circ}=45.54 \mathrm{~kJ}$
A. 65.98 kJ
B. 48.137 kJ
C. 48.46 kJ
D. 48.46 kJ

Answer: B

- Watch Video Solution

7. Find $\Delta_{r} U^{\circ}$ for the reaction $4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(g)$ at 300 K . Assume all gases are ideal

Given $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g}) \quad \Delta_{r} H_{300}^{\circ}-184.5 \mathrm{~kJ} / \mathrm{mole}$

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta_{r} H_{300}^{\circ}=-483 \mathrm{~kJ} / \mathrm{mole}(\mathrm{Use} R=
$$

A. $111.5 \mathrm{~kJ} / \mathrm{mole}$
B. $-109.01 \mathrm{~kJ} / \mathrm{mole}$
C. $-111.5 k J /$ mole
D. None

Answer: C

- View Text Solution

8. The enthalpy change of the following reactions at $27^{\circ} \mathrm{C}$ are
$\left(N a(s)+\frac{1}{2} \mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}(\mathrm{s}), \Delta_{r} H=-411 \mathrm{~kJ} / \mathrm{mol},\right),\left(H_{2}(g)+S(s)+\right.$
$\left(2 \mathrm{Na}(\mathrm{s})+\mathrm{S}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Na} \mathrm{SO}_{4}(\mathrm{~s}), \Delta_{r} \mathrm{H}=-1382 \mathrm{~kJ} / \mathrm{mol},\right),\left(\frac{1}{2}\right.$.
form these data, the heat change of reaction at constant volume (in $\mathrm{KJ} / \mathrm{mol}$) at $27^{\circ} \mathrm{C}$ for the process
$2 \mathrm{NaCl}(s)+\mathrm{H}_{2} \mathrm{SO}_{4}(l) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(s)+2 \mathrm{HCl}(g)$ is
A. 67
B. 62.02
C. 71.98
D. None

Answer: B

- View Text Solution

9. What is the ratop of the enthalpy yield on combustion of hydrogen of hydrogen atoms to steam to the yield on combustion of an equal mass of hydrogen molecules to steam ?

Given: $\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g), \Delta H=-242 k J$
B. $E .(H-H)=436 k J$
A. $0.80: 1$
B. 1: 0.80
C. 1.80:1
D. $1.80: 1$

Answer: D

- Watch Video Solution

10. The molar heat capacities at constant pressure (assume constant with respect to temperature) of A, B and C are in ratio of $1.5: 3.0: 2.0$. If enthalpy change for the exotherimic reaction $A+2 B \rightarrow 3 C$ at $300 K$ is $-10 \mathrm{~kJ} / \mathrm{mol} \& C_{p . m}(\mathrm{~B})$ is $300 \mathrm{~J} / \mathrm{mol}$ then enthalpy change at 310 K is:
A. $-8.5 \mathrm{~kJ} / \mathrm{mol}$
B. $8.5 \mathrm{~kJ} / \mathrm{mol}$
C. $-11.5 \mathrm{~kJ} / \mathrm{mol}$
D. none of these

Answer: C

- Watch Video Solution

11. The lattice enthalpy of solid NaCl is $772 \mathrm{kJmol}^{-1}$ and enthalpy of solution is $2 \mathrm{kJmol}^{-1}$. If the hydration enthaply of $\mathrm{Na}^{+} \& \mathrm{Cl}^{-}$ions are in the ratio of $3: 2.5$, what is the enthalpy of hydration of chloride ion?
A. $-140 \mathrm{kJmol}^{-1}$
B. $-350 \mathrm{kJmol}^{-1}$
C. $-351.81 \mathrm{~mol}^{-1}$
D. None

Answer: B

- Watch Video Solution

12. ΔH_{f}° of water is $-285.5 \mathrm{KJ} \mathrm{mol}^{-1}$. If enthalpy of neutralisation of monoacid strong base is $-57.3 \mathrm{KJ} \mathrm{mol}^{-1}, \Delta H_{f}^{\circ}$ of $O H^{-}$ion will be
A. $-228.5 \mathrm{kJmol}^{-1}$
B. $228.5 \mathrm{kmol}^{-1}$
C. $114.25 \mathrm{kJmol}^{-}$
D. $-114.25 \mathrm{kJmol}^{-1}$

Answer: A

- Watch Video Solution

13. Select the correct option.
A. $\Delta H_{f}[H(g)]$ is equal to $\Delta H_{\text {atomisaation }}$ of $H_{2}(g)$
B. $\Delta H_{B E}(H-H)$ is equal to ΔH_{f} of
C. $\Delta H_{B E}(H-H)$ is equal to $\Delta H_{\text {atomisation }}$ of $H_{2}(g)$
D. $\Delta H_{\text {comustion }}\left[H_{2}(g)\right]$ is equal to $\Delta H_{f}\left[H_{2}(g)\right]$

Answer: C

14. The standard enthalpy of formation of ammonia gas is

Given: $\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta H_{r}^{\circ}=-40 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{f}^{\circ}\left[N_{2} H_{4}(g)\right]=-120 \mathrm{~kJ} / \mathrm{mol}$
A. -60
B. -180
C. 40
D. -80

Answer: D

- Watch Video Solution

15. Study the following therochemical equations:

$A \longrightarrow B$	ΔH	$=+100 \mathrm{Kcal}$
$B \longrightarrow C$	ΔH	$=-80 \mathrm{Kcal}$

The correct order of enthapies of formation of A, B and C is

$$
\text { A. } A<B<C
$$

B. $A<C<B$
C. $C<A<B$
D. $B<C<A$

Answer: B

- Watch Video Solution

16. Select the option in which heat evolved is maximum.

Given

$$
\Delta_{f} H^{\circ}\left(\mathrm{CO}_{2}, g\right)=-75 \mathrm{kCal} / \mathrm{mol}, \quad \Delta_{f} H^{\circ}(\mathrm{CO}, g)=-25 \mathrm{kCal} / \mathrm{mol}
$$

The product will be CO if excess amount of carbon is present and CO_{2} if excess O_{2} is present
A. 10 moles of carbon and 4.5 moles of O_{2}
B. 24 gm of carbon and 64 gm of O_{2}
C. 4 moles of carbon and 3.5 moles of O_{2}
D. 30 gm of carbon and 80 gm of O_{2}

Answer: C

D View Text Solution

Exercise 2

1. An stoichiometric mixture of hydrogen gas and the air at $25^{\circ} \mathrm{C}$ and a total pressure of 1 atm, is exploded in a closed rigid vessel. If the process occurs under adiabatic condition then using the given data answer the question that follow:

Given
$C_{P}=8.3 \mathrm{Cal} \mathrm{deg}^{-1} \mathrm{~mol}^{-1},(i i) C_{P}=11.3 \mathrm{Cal} \mathrm{deg}^{-1} \mathrm{~mol}^{-1}, \Delta H_{f}\left[H_{2^{\prime}}\right.$
[Take air as $80 \% N_{2}, 20 \% O_{2}$ by volume]
The value of C_{P} of $N_{2} \& H_{2} O$ will be (in Cal.deg. ${ }^{-1} \mathrm{~mol}^{-1}$)
A. $8.3,8.3$
B. $8.3,11.3$
C. $113,11.3$

D. 11.3, 8.3

Answer: B

- View Text Solution

2. An stoichiometric mixture of hydrogen gas and the air at $25^{\circ} \mathrm{C}$ and a total pressure of 1 atm, is exploded in a closed rigid vessel. If the process occurs under adiabatic condition then using the given data answer the question that follow:

> Given
$C_{P}=8.3 \mathrm{Cal} \mathrm{deg}^{-1} \mathrm{~mol}^{-1},(i i) C_{P}=11.3 \mathrm{Cal} \mathrm{deg}^{-1} \mathrm{~mol}^{-1}, \Delta H_{f}\left[H_{2}\right.$
[Take air as $80 \% N_{2}, 20 \% O_{2}$ by volume]

What will be the maximum temperature attained if the process occurs in adiabatic container?
A. $\cong 2937 K$
B. $\cong 2665 K$
C. $\cong 1900 K$

D. $\cong 298 K$

Answer: A

- View Text Solution

3. An stoichiometric mixture of hydrogen gas and the air at $25^{\circ} \mathrm{C}$ and a total pressure of 1 atm , is exploded in a closed rigid vessel. If the process occurs under adiabatic condition then using the given data answer the question that follow:

Given
$C_{P}=8.3 \mathrm{Cal} \mathrm{deg}^{-1} \mathrm{~mol}^{-1},(i i) C_{P}=11.3 \mathrm{Cal} \mathrm{deg}^{-1} \mathrm{~mol}^{-1}, \Delta H_{f}\left[H_{2}\right.$
[Take air as $80 \% N_{2}, 20 \% O_{2}$ by volume]
What will be final pressure in atm ?
A. $\cong 8.5$
B. $\cong 7.6$
C. $\cong 5.46$
D. $\cong 0.85$

- View Text Solution

4. A mixture of hydrogen gas and theortical amount of air at $25^{\circ} \mathrm{C}$ and a total pressure of 1atm, is exploded in a closed right vessel. If the process ossurs under adiabatic conditions then using the given data anwer the question that follow :

Given :

$C_{p}\left(N_{2}\right)$ and $C_{p}\left(\mathrm{H}_{2} \mathrm{O}\right)$ are8.3 and $11.3 \mathrm{caldeg}^{-1} \mathrm{~mol}^{-1}$ not necessarily in the same order.
$\Delta H_{f}\left[H_{2} O(g)\right]=-57.8 k c a l$
[take air as $80 \% N_{2}, 20 \% O_{2}$ by volume.]
If at a initial temperature $T_{1},\left(e_{1}\right)$ is initial energy and higher final temperature $, T_{2}, E_{2}$ is the final internal energy, then which option is true?
A. $E_{1}>E_{2}$
B. $E_{2}>E_{1}$
C. $E_{1}=E_{2}$
D. can't be compared from the given data

Answer: C

- Watch Video Solution

5. Statement-I : The enthalpy of neutralization of the reaction between HCl and NaOH is $-13.7 \mathrm{kCal} / \mathrm{mol}$. If the enthalpy of neutralization of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ by a strong base is $-25.4 \mathrm{kCal} / \mathrm{mol}$, then the enthalpy change $\left(\left|\Delta_{r} H\right|\right)$ of the process $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ is $11.7 \mathrm{kCal} / \mathrm{mol}$.

Statement-II : $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is a weak acid.
A. If both Statement-I \& Statement-II are True \& the Statement-II is a correct explanation of the Statement-I
B. If both Statement-I \& Statement-II are True but Statement-II is not a
C. If statement-I is True but the Statement-II is False.
D. If Statement-I is False but the Satement-II is True

Answer: D

- Watch Video Solution

6. Statement-I : Standard enthalpy of isomerisation of an anatiomer into the other is zero.

Statement-II : The two enantiomers of any chiral compound have the same enthalpy of formation.
A. If both Statement-I \& Statement-II are True \& the Statement-II is a correct explanation of the Statement-I
B. If both Statement-I \& Statement-II are True but Statement-II is not a correct explanation of the Statement-I
C. If statement-I is True but the Statement-II is False.
D. If Statement-I is False but the Satement-II is True

Answer: A

D View Text Solution

7. $100 \mathrm{ml} 0.25 \mathrm{MH}_{2} \mathrm{SO}_{4}$ (strong acid) is neutralised with 200 ml $0.2 \mathrm{MNH}_{4} \mathrm{OH}$ in a constant pressure Calorimeter which results in temperature rise of $1.4^{\circ} \mathrm{C}$. If heat capacity of Calorimeter constent is
$1.5 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. Which statement is/are correct
Given: $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+57 \mathrm{~kJ}$

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COONH}_{4}+\mathrm{H}_{2} \mathrm{O}+48.1 \mathrm{~kJ}
$$

A. Enthalpy of neutralisation of $\mathrm{HCl} \mathrm{v} / \mathrm{s} \mathrm{NH}_{4} \mathrm{OH}$ is $-52.5 \mathrm{~kJ} / \mathrm{mol}$
B. Enthalpy of dissociation (ionization) of $\mathrm{NH}_{4} \mathrm{OH}$ is $4.5 \mathrm{~kJ} / \mathrm{mol}$
C. Enthalpy of dissociation of $\mathrm{CH}_{3} \mathrm{COOH}$ is $4.6 \mathrm{~kJ} / \mathrm{mol}$
D. ΔH for $2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{H}^{+}(a q)+.2 \mathrm{OH}^{-}(a q$.$) is 114 \mathrm{~kJ}$

Answer: A::B::D

- View Text Solution

8. From the following data at $25^{\circ} \mathrm{C}$

| Reaction | $\Delta_{r} H^{\circ} \quad \mathrm{kJ} / \mathrm{mol}$ |
| :--- | :--- | :--- |
| $\frac{1}{2} \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{OH}(g)$ | 42 |
| $\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)$ | -242 |
| $\mathrm{H}_{2}(g) \rightarrow 2 \mathrm{H}(g)$ | 436 |
| $\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{O}(g)$ | 495 |

Which of the following statement (s) is/are correct:
A. $\Delta_{r} H^{\circ}$ for the reaction $H_{2} O(g) \rightarrow 2 H(g)+O(g)$ is $925.5 \mathrm{~kJ} / \mathrm{mol}$
B. $\Delta_{r} H^{\circ}$ for the reaction $O H(g) \rightarrow H(g)+O(g)$ is $502 \mathrm{~kJ} / \mathrm{mol}$
C. Enthalpy of formation of $H(g)$ is $-218 \mathrm{~kJ} / \mathrm{mol}$
D. Enthalpy of formation of $O H(g)$ is $42 \mathrm{~kJ} / \mathrm{mol}$

Answer: A: D

- Watch Video Solution

9. Which of the following do(es) not represent ΔH formation of the product.
A. $\frac{1}{2} H_{2}(g)+\frac{1}{2} B r_{2}(g) \rightarrow H B r$
B. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}$
C. $\mathrm{NH}_{4}^{+}(g)+\mathrm{Cl}^{-}(g) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
D. $P_{4}($ black $)+5 O_{2}(g) \rightarrow P_{4} O_{10}(s)$

Answer: A::B::C::D

- View Text Solution

10. From the following data, mark the option (s) where ΔH is correctly written for the given reaction. Given:
$\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta H=-57.3 k J$
$\Delta H_{\text {solution }}$ of $H A(g)=-70.7 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{\text {solution }}$ of $B O H(g)=20 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{\text {ionization }}$ of $H A=15 \mathrm{~kJ} / \mathrm{mol} \& B O H$ is a strong base
Reaction
$\Delta H_{R}(\mathrm{~kJ} / \mathrm{mole})$
$\mathrm{HA}(a q)+\mathrm{BOH}(a q) \rightarrow \mathrm{BA}(a q)+\mathrm{H}_{2} \mathrm{O}-42.3$
Reaction
$\Delta H_{R}(\mathrm{~kJ} / \mathrm{mole})$
$H A(g)+B O H(g) \rightarrow B A(a q)+H_{2} O-93$
Reaction
$\Delta H_{R} \quad(\mathrm{~kJ} / \mathrm{mole})$
$H A(g) \rightarrow H^{+}(a q)+A^{-}(a q) \quad-55.7$
D. $\begin{array}{ll}\text { Reaction } & \Delta H_{R} \\ B^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow B O H(a q) & -20\end{array}$

Answer: A::B::C

- View Text Solution

11. Match the column-

Column-I
Colur
$\left(\Delta H_{r}\right.$
(A) C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
(B) C (graphite) $\rightarrow C$ (gas)
(C) $\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$

- Watch Video Solution

12. Carafully observe the given diagrams which indicates standard enthalpy of formation of different states of one mole Mg and 2 mole Cl
atom and match the entries in column I and II provided.

- View Text Solution

Exercise 3

1. When 2 moles of $C_{2} H_{6}(\mathrm{~g})$ are completely burnt 3120 kJ of heat is liberated. Calculate the enthyalpy of formation, of $C_{2} H_{6}(g)$. Given $\Delta_{f} H$ for $\mathrm{CO}_{2}(\mathrm{~g}) \& \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are $-395 \&-286 \mathrm{~kJ}$ respectively.

- Watch Video Solution

2. Calculate standard enthalpies of formation of carbon-di -sulphide (l).

Given the standard enthylpy of combustion of carbon (s), sulphur (s) \& carbon-di-sulphide (l) are :- $393.3,-293.72$ and $-1108.76 \mathrm{kJmol}^{-1}$ respectively.
3. From the following data at $25^{\circ} \mathrm{C}$, Calculate the standard enthalpy of formation of $\mathrm{FeO}(s)$ and of $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$.
Reaction
$\Delta_{r} H^{\circ} \quad(\mathrm{kJ} / \mathrm{mole})$
(1) $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{C}$ (graphite) $\rightarrow 2 \mathrm{Fe}(s)+3 \mathrm{CO}(g) 492.6$
(2) $\mathrm{FeO}(s)+\mathrm{C}$ (graphite) $\rightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}(g) \quad 155.8$
(3) C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad-393.51$
(4) $\mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$

- 282.98

- Watch Video Solution

4. The enthalpy change for the reaction $C_{3} H_{8}(g)+H_{2}(g) \rightarrow C_{2} H_{6}(g)+\mathrm{CH}_{4}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$ is $-55.7 \mathrm{~kJ} / \mathrm{mol}$. Calculate the enthalpy of combustion of $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$. The enthalpy of combustion of $H_{2}, \& \mathrm{CH}_{4}$ are $-285.8 \&-890.0 \mathrm{~kJ} / \mathrm{mol}$ respectively. enthalpy of combustion of propane is $-2220 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

- Watch Video Solution

5. At 300 K , the standard enthalpies of formation of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{s}), \mathrm{CO}_{2}(\mathrm{~g}) \quad \& \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad$ are $\quad, \quad-408,-393 \quad$ \& $-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

Calculate the heat of combustion of benzoic acid at :
(i) constant pressure
(ii) constant volume.

- View Text Solution

6. A cylinder of gas is assumed to contains 11.2 kg of butane. If a normal family needs $20,000 \mathrm{~kJ}$ of energy per day for cooking, how long will the cylinder last if the enthalpy of conbustion, $\Delta H=-2658 \mathrm{~kJ} /$ mole for butane.

- Watch Video Solution

7. Using bond enthalpy data, calculate enthalpy of formation of isoprene.

Neglect resonance in isoprene.
$5 \mathrm{C}(\mathrm{s})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}(\mathrm{~g})$

$\mathrm{CH}_{3} \mathrm{H}$

(Given :, $C-H=98.9 \mathrm{k} \mathrm{Cal},,, H-H=104 \mathrm{k} \mathrm{Cal}$, , $),(, C-C=83$

- View Text Solution

8. The heat of atomisation of $\mathrm{PH}_{3}(\mathrm{~g})$ and $\mathrm{P}_{2} \mathrm{H}_{4}(\mathrm{~g})$ are $954 \mathrm{kJmol}^{-1}$ and $1485 \mathrm{kJmol}^{-1}$ respectively. The $P-P$ bond energy in kJmol^{-1} is

- Watch Video Solution

9. Using the bond enthalpy data given below, calculate the enthalpy change for the reaction.
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
(Bond, $C-C, C=C, C-H, H-H)$, (Bond Enthalpy, $336.81 \mathrm{~kJ} / \mathrm{mol}$,

- Watch Video Solution

10. From the following data :

Enthalpy of formation of $\mathrm{CH}_{3} \mathrm{CN}=87.86 \mathrm{~kJ} / \mathrm{mol}$
Enthalpy of formation of $C_{2} H_{6}=-83.68 \mathrm{~kJ} / \mathrm{mol}$
Enthalpy of sublimation of graphite $=719.65 \mathrm{~kJ} / \mathrm{mol}$
enthalpy of dissociation of nitrogen $=945.58 \mathrm{~kJ} / \mathrm{mol}$
Enthalpy of dissociation of $H_{2}=435.14 \mathrm{~kJ} / \mathrm{mol}$
$C-H$ bond enthalpy $=414.22 \mathrm{~kJ} / \mathrm{mol}$
Calculate the bond enthalpy of (i) $C-C$, (ii) $C \equiv N$

- Watch Video Solution

11. the enthalpy of combustion of acetylene is -312 kCal per mole. If enthalpy of formation of $\mathrm{CO}_{2} \& \mathrm{H}_{2} \mathrm{O}$ are $-94.38 \&-68.38 \mathrm{kCal}$ per mole respectively, calculate $C \equiv C$ bond enthalpy.
given that enthalpy of atomisation of C is 150 kCal per mole and $H-H$ bond enthlpy and $C-H$ bond enthalpy are 103 kcal per mole and 93.64 kCal per mole respectively.
12. Using the given data calculate enthalpy of formation of acetone (g). [All value in $\mathrm{KJ} \mathrm{mol}^{-1}$] bond enthalpy of:
$(C-H=413.4,,, C-C=347.0,,,(C=O)=728.0,),,((O=O)=$

- View Text Solution

13. Find the enthalpy of $S-S$ bond from the following data.
(i) $C_{2} H_{5}-S-C_{2} H_{5}(g) \quad \Delta_{f} H^{\circ}=-147.2 \mathrm{~kJ} / \mathrm{mol}$
(ii) $C_{2} H_{5}-S-S-C_{2} H_{5}(g) \quad \Delta_{f} H^{\circ}=-201.9 \mathrm{~kJ} / \mathrm{mol}$
(iii) $S(g) \quad \Delta_{f} H^{\circ}=222.8 \mathrm{~kJ} / \mathrm{mol}$

- View Text Solution

14. Calculate the enthalpy change when infinitely solution of CaCl_{2} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are mixed $\Delta_{f} \mathrm{H}^{\circ}$ for $\mathrm{Ca}^{2+}\left(a q, \mathrm{CO}_{3}^{2-}(a q)\right.$ and $\mathrm{CaCO}_{3}(s)$ are $-129.80,-161.65,-288.5 \mathrm{kCal} \mathrm{mol}^{-1}$ respectively.

- View Text Solution

15. The enthalpies of neutralization of $\mathrm{NaOH} \& \mathrm{NH}_{4} \mathrm{OH}$ by HCl are -13680 Cal and -12270 Cal respectively. What would be the enthalpy change if one gram equivalent of NaOH is added to one gram equivalent of $\mathrm{NH}_{4} \mathrm{Cl}$ in solution? Assume that $\mathrm{NH}_{4} \mathrm{OH}$ and NaCl are quantitatively obtained.

- Watch Video Solution

16. The heat of solution of anhydrous CuSO_{4} is -15.9 kcal and that of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ is 2.8 kcal . The heat of hydration of CuSO_{4} will be

- Watch Video Solution

17. Determine ΔH for the following reaction at 500 K and constant pressure:
$\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)$

Use the following data :
Substance $C_{P}(\mathrm{~J} / \mathrm{mol} \mathrm{K}) \quad \Delta_{f} H(298 K)(\mathrm{kJ} / \mathrm{mol})$

CO	29.12	-110.5
$\mathrm{H}_{2} \mathrm{O}$	33.58	-241.8
CO_{2}	37.11	-393.5
H_{2}	29.89	0.0

- View Text Solution

18. If the enthalpy of formation of $\mathrm{HCl}(\mathrm{g})$ and $\mathrm{Cl}^{-}(a q)$ are $-92.3 \mathrm{~kJ} /$ mole and $-167.44 \mathrm{~kJ} / \mathrm{mol}$, find the enthalpy of solution of hydrogen chloride gas.

- Watch Video Solution

19. From the data of ΔH of the following reactions

$$
\begin{aligned}
& C(s)+1 / 2 \mathrm{O}_{2}(g) \rightarrow C O(g), \Delta H=-110 k J \\
& \text { and } C(s)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{CO}(g)+\mathrm{H}_{2}(g), \Delta H=132 k J
\end{aligned}
$$

Calculate the mole composition of the mixture of steam and oxygen on being passed over coke at 1273 K , keeping the reaction temperature constant.
20. 0.16 g of methane was subjected to combustion at $27^{\circ} \mathrm{C}$ in a bomb calorimeter. The temperature of Calorimeter system (including water) was found to rise by $0.5^{\circ} \mathrm{C}$. Calculate the heat of combustion of methane at
(i) constant volume (ii) constant pressure.

The thermal capacity of Calorimater system is $17.7 \mathrm{~kJ} \mathrm{~K}^{-1}$. $\left(R=8.313 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}\right)$

- View Text Solution

21. 1.0litre sample of a mixture of CH_{4} and O_{2} measured at $25^{\circ} \mathrm{C}$ and 740 torr, was allowed to react at constant pressure in a calorimeter, together with its contents had a heat capacity of $1260 \mathrm{calK}{ }^{-1}$. The complete combustion of CH_{4} to CO_{2} and water caused a temperature rise in calorimeter of 0.667 K . Calculate mole $\%$ of CH_{4} in the original mixture. Heat of combustion of CH_{4} is -210.8 kcal .
22. Two solutions initially at $25^{\circ} \mathrm{C}$ were mixed in an adiabatic constant pressure calorimeter. One contains 400 ml of 0.2 M weak monoprotic acid solution. The other contain 100 ml of 0.80 M NaOH . After mixing temperature increased to $26.2^{\circ} \mathrm{C}$. How much heat is evolved in the neutralization of 1 mole of acid? Assume density of solution $1.0 \mathrm{~g} / \mathrm{cm}^{3}$, and specific heat of solution $4.2 \mathrm{~J} / \mathrm{g}-\mathrm{K}$. Neglect heat capacity of the Calorimeter.

- View Text Solution

23. Benzoic acid is a common standard used in Bomb calorimaters, which maintain a constant volume. If 1.2 gm of benzoic acid gives off 31.723 J of energy when burned in the presence of excess oxygen at an initial temperature of $24.6^{\circ} \mathrm{C}$, calculate heat capacity at constant volume of final product mixture if final temperature is $47.34^{\circ} \mathrm{C}$. Also calculate, w and ΔU for the given amount, assuming ideal gas behaviour.
24. Calculate the electron gain enthalpy of fluorine atom using the following data. Make Born-Haber's cycle. All the values are in $\mathrm{kJ} \mathrm{mol}^{-1}$ at $25^{\circ} \mathrm{C}$.
$\Delta H_{\text {diss }}\left(F_{2}\right)=160, \Delta_{f} H(N a F(s))=-571, I . E .[N a(g)]=494, \Delta H_{\text {sub }}[i$
. Lattice enthalpy of $N a F(s)=894$.

- Watch Video Solution

25. The Born -Haber cycle for formation of rubidium chloride (RbCl) is given below
(the enthalpies are in $\mathrm{KCalmol}^{-1}$)

Find the value of x.

- View Text Solution

26. The enthalpy of formation of ethane, ethylene and benzene from the gaseous atoms are -2839.2, -2275.2 and $-5506 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Calculate the resonance energy of benzene. The bond enthalpy of $C-H$ bond is given as equal to $+410.87 \mathrm{~kJ} / \mathrm{mol}$.

- View Text Solution

27. Calculate the enthalpy of combustion of methyl alcohol at 298 K from the following data

- View Text Solution

28. Using the data given below, establish that the vapourisation of $C C l_{4}(l)$ at 298 K to produce $C C l_{4}(g)$ at 1 atm pressue does not occur spontaneously.
(Given :, $C C l_{4}(l, 1 a t m) \rightarrow C C l_{4}(g, 1 a t m),,, \Delta S^{\circ}=94.98 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

- View Text Solution

29. From the given table answer the following question:

	$\mathrm{CO}(\mathrm{g})$	$\mathrm{CO}_{2}(\mathrm{~g})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\mathrm{H}_{2}(g)$
$\Delta H_{298}^{\circ}(-\mathrm{KCal} / \mathrm{mole})$	-26.42	-94.05	-57.8	0
$\Delta H_{298}^{\circ}(-\mathrm{KCal} / \mathrm{mole})$	-32.79	-94.24	-54.64	0
$S_{298}^{\circ}(-\mathrm{Cal} / \mathrm{k} \mathrm{mol})$	47.3	51.1	$?$	31.2
Reaction: $\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g) \Leftrightarrow \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g)$				
Calculate $\mathrm{S}_{298}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(g)\right]$				

- Watch Video Solution

30. At temperature above 85 K , decarboxylation of acetic acid becomes a spontaneous process under standard state conditions. What is the
standard entropy change (in J/K-mol) of the reaction.

$$
\begin{array}{ll}
\mathrm{CH}_{3} \mathrm{COOH}(a q) \rightarrow \mathrm{CH}_{4}(g)+\mathrm{CO}_{2}(g) \\
\text { Given: } \Delta H_{f}^{\circ}\left[\mathrm{CH}_{3} \mathrm{COOH}(a q)\right] & =-484 \mathrm{~kJ} / \mathrm{mole} \\
\Delta H_{f}^{\circ}\left[\mathrm{CO}_{2}(g)\right] & =-392 \mathrm{~kJ} / \mathrm{mole} \\
\Delta H_{f}^{\circ}\left[\mathrm{CH}_{4}(g)\right] & =-75 \mathrm{~kJ} / \mathrm{mole}
\end{array}
$$

- View Text Solution

31. By using the following data draw an appropriate enthalpy cycle \&

Calculate the enthalpy change of hydration of (i) the chloride ion, (ii) the iodide ion.

Comment on the difference in their values.

* enthalpy change of solution of $\mathrm{NaCl}(s)=-2 \mathrm{~kJ} / \mathrm{mol}$.
* enthalpy change of solution of $N a I(s)=+2 \mathrm{~kJ} / \mathrm{mol}$. enthalpy change of hydration of $N a^{+}(g)=-390 \mathrm{~kJ} / \mathrm{mol}$. lattice anthalpy of $\mathrm{NaCl}=-772 \mathrm{~kJ} / \mathrm{mol}$. lattice enthalpy of $N a I=-699 \mathrm{~kJ} / \mathrm{mol}$.

- View Text Solution

32. Calculate the heat produced when 3.785 litre of actane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ reacts with oxygen to form $C O$ \& water vapour at $25^{\circ} \mathrm{C}$. The density of octane is $0.7025 \mathrm{gm} / \mathrm{ml}$. enthalpy of combustion of $C_{8} H_{18}$ is $-1302.7 \mathrm{k} \mathrm{Cal} / \mathrm{mol}$. $\left(\Delta H_{f}^{\circ} C O_{2}(g)=-94.05 \mathrm{k} \mathrm{Cal} \mathrm{mol}^{-1},,, \Delta H_{f}^{\circ} C O(g)=-26.41 \mathrm{k} \mathrm{Cal}\right.$

- Watch Video Solution

33. Calculate the enthalpy of combustion of benzene (l) on the basis of the following data:
a. Resonance energy of benzene $(l)=-152 k J / m o l$
b. Enthalpy of hydrogenation of cyclohexene $(l)=-119 \mathrm{~kJ} / \mathrm{mol}$
c. $\Delta_{f} H^{\Theta} C_{6} H_{12}(l)=-156 \mathrm{kJmol}^{-1}$
d. $\Delta_{f} H^{\Theta}$ of $H_{2} O(l)=-285.8 \mathrm{kJmol}^{-1}$
e. $\Delta_{f} H^{\Theta}$ ofCO $O_{2}(g)=-393.5 \mathrm{kJmol}^{-1}$

- Watch Video Solution

34. The enthalpy of formation of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})$ is $-66 \mathrm{kCal} / \mathrm{mol}$. The enthalpy of combustion of $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$ is $-348 \mathrm{kCal} / \mathrm{mol}$. Given that the enthalpies of formation of $\mathrm{CO}_{2}(g)$ and $\mathrm{H}_{2} \mathrm{O}(l)$ are $-94 k C a l / \mathrm{mol} \&-68 \mathrm{kCal} / \mathrm{mol}$ respectively, calculate ΔH for the isomerisation of ethanol to methoxymethane. All data are all $25^{\circ} \mathrm{C}$.

D View Text Solution

35. A person takes 15 breaths per minute. The volume of air inhaled in each breath is 448 ml and contains 21% of oxygen by volume. The exhaled air contains 16% of oxygen by volume. If all the oxygen is used in the combustion of sucrose, how much of the Sucrose is burnt in the body per day \& how much heat is evolved. $\Delta H_{\text {com }}$ of sucrose is $=6000 \mathrm{kJmol}^{-1}$. Take temperature to be 300 K throughout. [Assuming $\left.V_{\text {inhaled air }}=V_{\text {exhalded air }}, P_{\text {atm }}=1 a t m\right]$

- Watch Video Solution

36. The standard enthalpy of combustion of sucrose is $-5645 \mathrm{kJmol}^{-1}$. What is the advantage (in kJmol^{-1} of energy released as heat) of complete aerobic oxidation compared to anaerobic hydrolysis of sucrose to lactic acid ? ΔH_{f}° for lactic acid, CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ is $-694,-395.0$ and - 286.0 respectively.

- View Text Solution

37. The enthalpies of neutralization of a weak acid HA \& a weak acid HB by

NaOH are -6900 Cal/equivalent \& -2900 Cal/equivalent repsectively. When one equivalent of NaOH is added to a solution containing one equivalent of HB , the enthalpy change was -3900 Calories. In what ratio is the base distribute between HA \& HB ?

- Watch Video Solution

38. Calculate the mass of mercury which can be liberated from HgO at $25^{\circ} \mathrm{C}$ by the treatment of excess HgO with 41.84 kJ of heat at : (a)
constant pressure (b) constant volume
Given : $\Delta H_{f}^{\circ}(H g O, s)=-90.8 \mathrm{kJmol}^{-1} \& M(H g)=200.6 \mathrm{gmol}^{-1}$.

- View Text Solution

39. An intimate mixture of ferric oxide and aluminium is used as solid fuel in rockets. Calculate the fuel value per cm^{3} of the mixture. Heats of formation and densities are as follows:
$H_{f\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)}=-399 \mathrm{kcal} \mathrm{mol}^{-1}, H_{f\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)}=-199 \mathrm{kcal} \mathrm{mol}^{-1}$ Itbr. Density of $\mathrm{Fe}_{2} \mathrm{O}_{3}=5.2 \mathrm{~g} / \mathrm{cm}^{3}$, Density of $\mathrm{Al}=2.7 \mathrm{~g} / \mathrm{cm}^{3}$

- Watch Video Solution

40. Calculate the enthalpy change for the following reaction:
$X e F_{4} \rightarrow X e^{\oplus}+F^{\Theta}+F_{2}+F$. The average $X e-F$ bond energy is $34 \mathrm{kcalmol}^{-1}$, first $I E$ of $X e$ is $279 \mathrm{kcalmol}^{-1}, E A$ of F is $85 \mathrm{kcalmol}^{-1}$ and bond dissociation enegry of F_{2} is $38 \mathrm{kcalmol}^{-1}$
41. During one of his adventure Chacha Chaudhary got trapped in an underground cave which was sealed two hundred years back. The air inside was poisonous and contains $C O$ in addition to O_{2} and N_{2}. Sabu, being huge, could not enter cave. In order to save Chacha Chaudhary he started sucking the poisonous air out of the cave by mouth. In each cycle he used to fill his lungs with cave air and exhale it out in the surroundings. In the mean time fresh air $\left(N_{2}+O_{2}\right)$ from the surrounding effused into cave till the pressure was 1 atmosphere. Each time Sabu sucked air,the pressure in the cave dropped ito $1 / 2 a t m$. An initial sample of air taken from the cave measured $11.2 m L$ at STP and give $7 J$ on complete combusion at constant pressure.
(a) If the safe level of $C O$ required in cave for life is less thatn 0.001% by volume, how many times does Sabu need to suck out air in order to save Chacha Chaudhary ?
(b) Sabu should rescue Chacha Chaudhary within 10 minutes else he will die. Precious 80 second are wasted in thinking of a way to rescue him. At maximum how much time should each cycle of inhaling - exhaling take.

Given, $\Delta H_{\text {comb }} C O=-280 \mathrm{kJmol}^{-1}$? Neglect Graham's law effect during operations.

- Watch Video Solution

42. For an ionic solid $M X_{2}$, where X is monovalent, the enthalpy of formation of the enthalpy of formation of the solid from $\mathrm{M}(\mathrm{s})$ and $X_{2}(g)$ is 1.5 times the electron gain enthalpy of $X(g)$. The first and second ionisation enthalpies of the meta (M) are 1.2 and 2.8 times of the enthalpy of sublimation of $M(s)$. The bond dissociation enthalpy of $X_{2}(g)$ is 0.8 times the first ionisation enthalpy of metal and it is also equal to one fifth of the magnitude of lattice enthalpy of $M X_{2}$. If the electron gain enthalpy of $X(g)$ is $-96 \mathrm{Kcal} / \mathrm{mol}$, the answer the enthalpy of sublimation of metal (M) in $\mathrm{K} \mathrm{cal} / \mathrm{mol}$

Exercise 4

1. Which of the following is not an endothermic reaction?
A. Combustion of methane
B. Decomposition of water
C. Dehydrogenation of ethane to ethylene
D. Conversion of graphite to diamond

Answer: A

- Watch Video Solution

2. Estimate the average $S-F$ bond enthalpy in $S F_{6}$. The values of standard enthalpy of formation of $S F_{6}(g), S(g)$ and $F(g)$ are :-1100, 274 and $80 \mathrm{kJmol}^{-1}$ respectively.
3. Diborane is a potential rocket fuel which undergoes combustion according to the reaction,
$\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
from the following data, the enthalpy change for the combustion of diborane will be :
$2 B(s)+\frac{3}{2} O_{2}(g) \rightarrow B_{2} O_{3}(s), \quad \Delta H=-1273 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \quad \Delta H=-286 \mathrm{~kJ}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \quad \Delta H=44 \mathrm{~kJ}$
$2 B(s)+3 H_{2}(g) \rightarrow B_{2} H_{6}(g), \quad \Delta H=46 \mathrm{~kJ}$

- Watch Video Solution

4. ΔH_{1}° for $\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are $-393.5,-110.5$ and $-241.8 \mathrm{kJmol}^{-1}$ respectively. Standard enthalpy change for the reaction $\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is
A. 524.1
B. 41.2
C. -262.5
D. -41.2

Answer: B

- Watch Video Solution

5. Which of the following reactions defines ΔH_{f}° ?
A. $C_{(\text {diamond })}+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
B. $1 / 2 H_{2}(g)+1 / 2 F_{2}(g) \rightarrow H F(g)$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}$
D. $\mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$

Answer: B

6. In a constant volume calorimeter, 3.5 g of a gas with molecular weight 28 was burnt in excess oxygen at 298.0 K . The temperature process. Given that the heat capacity of the calorimeter is was found to increase from 298.0 K to 298.45 K due to the combustion process. Given that the heat capacity of the calorimeter is $2.5 \mathrm{kJK}^{-1}$, the numerical value for the enthalpy of combustion of the gas in $\mathrm{kJ} \mathrm{mol}{ }^{-1}$ is

D View Text Solution

7. The species which by definition has ZERO standard molar enthyalpy of formation at 298 K is
A. $B r_{2}(g)$
B. $C l_{2}(g)$
C. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. $\mathrm{CH}_{4}(\mathrm{~g})$

Answer: B

- View Text Solution

8. Match the transformation in column I with appropriate option in column II

Column I
(A) $\mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
(B) $\mathrm{CaCO}_{3}(s) \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
(C) $2 \mathrm{H}^{\cdot} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$
(D) $P_{(\text {white, solid })} \rightarrow P_{(\text {red, solid })}$

Column II
(p) phase transition
(q) allotropic change
(r) ΔH is positive
(s) ΔS is positive
(t) ΔS is negative

- View Text Solution

9. The standard enthalpies of formation of $\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ and glucose (s) at $25^{\circ} C$ are $-400 \mathrm{~kJ} / \mathrm{mol},-300 \mathrm{~kJ} / \mathrm{mol}$ and $-1300 \mathrm{~kJ} / \mathrm{mol}$, respectively. The standard enthalpy of combustion per gram of glucose at $25^{\circ} \mathrm{C}$ is :
A. +2900 kJ
B. -2900 kJ
C. -16.11 kJ
D. +16.11 kJ

Answer: C

- View Text Solution

10. When 100 mL of 1.0 MHCl was mixed with 100 mL of 0.1 MNaOH in an insulated beaker at constant pressure, a temperature increase of $5.7^{\circ} \mathrm{C}$ was measured for the beaker and its contents. Because the enthypy of neutralization of a strong acid with a strong base is a constant $\left(-57.0 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$, this experiment could used to measure the calorimeter constant. In a second experiment 100 mL of 2.0 M acetic acid $\left(K_{a}=2.0 \times 10^{-5}\right)$ was mixed with 100 mL of 1.0 MNaOH (under identical conditions of Expt. 1) where a temperature rise of $5.6^{\circ} \mathrm{C}$ was measured.
(Consider heat capacity of all solutions as $4.2 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$ and density of all solutions as $1.0 \mathrm{gmL} L^{-1}$)

Enthalpy of dissociation (in $\mathrm{kJ} \mathrm{mol}^{-1}$) of acetic acid from the Expt. 2 is
A. 1.0
B. 10.0
C. 24.5
D. 51.4

Answer: A

- View Text Solution

11. When 100 mL of 1.0 MHCl was mixed with 100 mL of 0.1 MNaOH in an insulated beaker at constant pressure, a temperature increase of $5.7^{\circ} \mathrm{C}$ was measured for the beaker and its contents. Because the enthypy of neutralization of a strong acid with a strong base is a constant $\left(-57.0 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$, this experiment could used to measure the calorimeter constant.

In a second experiment 100 mL of 2.0 M acetic acid $\left(K_{a}=2.0 \times 10^{-5}\right)$
was mixed with 100 mL of 1.0 MNaOH (under identical conditions of Expt. 1) where a temperature rise of $5.6^{\circ} \mathrm{C}$ was measured.
(Consider heat capacity of all solutions as $4.2 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$ and density of all solutions as $1.0 \mathrm{gm} L^{-1}$)

The $p H$ of the solution after Expt. 2 is
A. 2.8
B. 4.7
C. 5.0
D. 7.0

Answer: B

- View Text Solution

12. Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below :

$$
\frac{1}{2} C l_{2}(g) \xrightarrow{\frac{1}{2} \Delta_{\mathrm{diss}} H^{\ominus}} C l(g) \xrightarrow{\Delta_{e g} H^{\ominus}} C l^{-}(g) \xrightarrow{\Delta_{\mathrm{hyd}} H^{\ominus}} C l^{-}(a q)
$$

The energy involved in the conversion of $\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})$ to $\mathrm{Cl}^{-}(a q)$ (using the
$\Delta_{\mathrm{diss}} H_{C l_{2}}^{\Theta}=240 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{\mathrm{eg}} H_{C l}^{\Theta}=-349 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{\mathrm{hyd}} H_{C l^{-}}^{\Theta}=-$
) will be -
A. $-610 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-850 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $+120 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $+152 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: A

D View Text Solution

13. Standard entropy of X_{2}, Y_{2} and $X Y_{3}$ are 60,40 and $50 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, respectively. For the reaction, $\frac{1}{2} X_{2}+\frac{3}{2} Y_{2} \rightarrow X Y_{3} \Delta H=-30 k J$, to be at equilibrium, the temperature will be
A. 500 K
B. 750 K
C. 1000 K

D. 1250 K

Answer: B

- View Text Solution

14. On the basis of the following thermochemical data $\left(\Delta f G^{\circ} H_{(a q)}^{+}=0\right)$
$\mathrm{H}_{2} \mathrm{O}(l) \rightarrow H^{+}(a q)+O H^{-}(a q), \Delta H=57.32 k J$
$H_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow H_{2} O(l), \Delta H=-286.20 k J$
The value of enthalpy of formation of $O H^{-}$ion at $25^{\circ} \mathrm{C}$ is -
A. $-228.88 k J$
B. $+228.88 k J$
C. $-343.52 k J$
D. $-22.88 k J$

Answer: A

15. In a fuel cell methanol is used as fuel and oxygen gas is used as an oxidizer. The reaction is $\mathrm{CH}_{3} \mathrm{OH}(l)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$ at 298 K standard Gibb's energies of formation for $\mathrm{CH}_{3} \mathrm{OH}(l), \mathrm{H}_{2} \mathrm{O}(l)$ and $\mathrm{CO}_{2}(g)$ are $-166.2,-237.2$ and $-394.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. If standard enthalpy of combustion of methanol is $-726 \mathrm{~kJ} \mathrm{~mol}^{-1}$, efficiency of the fuel cell will be -
A. 87%
B. 90%
C. 97%
D. 80%

Answer: C

- View Text Solution

