©゙doubtnut

India's Number 1 Education App

CHEMISTRY

FOR IIT JEE ASPIRANTS OF CLASS 12 FOR CHEMISTRY

THERMODYNAMICS

Illustration

1. Show that pressure of a fixed amount of a ideal gas is a state function $V=\frac{n R T}{p}$

- Watch Video Solution

2. Find the work done when 18 ml of water is getting vapourised at 373 K is open vessel
(Assume the ideal behaviour of water vapour).
3. Calculate work for the expansion of a subsatnce from $3 m^{3}$ to $5 m^{3}$ against.

Constant pressure $=10^{5} \mathrm{~Pa}$

- Watch Video Solution

4. Calculate charge in interanl energy of 10 gm of H_{2},when it's state id charge from $(300 k, 1 \mathrm{Atm})$ to
(500K, 2Atm)

- Watch Video Solution

5. Calculate charge in interanl energy for a gas under going from state-I $\left(300 \mathrm{~K}, \times 2 \times 10^{-2} \mathrm{~m}^{3}\right)$ to state -II $\left(400 \mathrm{~K}, 4 \times 10^{-2} \mathrm{~m}^{3}\right)$ for one mol of vanderwaal gas.

$$
\left[C_{V}=121 \mathrm{~J} / \mathrm{K} / \mathrm{mole}\right]
$$

$$
\begin{aligned}
& \left\{\text { Given: }\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P\right. \\
& C_{V}=12 \mathrm{~J} / \mathrm{K} / \mathrm{mol} \\
& \left.a=2 \mathrm{~J} . \mathrm{m} . / \mathrm{mol}^{2}\right\}
\end{aligned}
$$

- Watch Video Solution

6. The pressue of a fluid is a linear function of volume ($\mathrm{P}=\mathrm{a}+\mathrm{bV}$) and the internal energy of the fluide is
$U=34+3 P V$ (S.I.units). Find a,b,w, ΔE and q for change is state from $\left(100 \mathrm{~Pa}, 3 \mathrm{~m}^{3}\right)$ to (400Pa, $6 m^{3}$)

- Watch Video Solution

7. 1 mole of real gas is subjected to a process from(2bar, 40lit. , 300 K) to (4, 30lit. , 400K). If

Change in interal energy is 20 kJ then calculate enthalpy charge for the process.
8. One mole of an ideal gas is expanded isothermally at 300 K from 10 atm to 1 atm. Calculate q,w, DeltaU
\& DeltaH under the following conditions.
(i) Expansion is carried out reversibly .
(ii) Expansion is carried out irreversibly.

- Watch Video Solution

9. One mol an ideal gas is expanded from(10atm, 10lit). (2atm, 50lit) isothermally. First against 5 atm
then against 2 atm . Calculate work done in each step and compare it with single step work done.

- Watch Video Solution

10. For 1 mole of monoatomic gas . Calculate $w, \Delta U, \Delta H, q$

- View Text Solution

11. One mole of an non liner triatomic ideal gas is expanded adiabaticlly at 300 K from 16 atm to 1 atm

Calculate Work done under the following conditions
(i) Expansion is carried out reversibly (ii) Expansion is carreid out irrevesibly

- Watch Video Solution

12. Calculate work done is process $B C$ for 1 mol of an ideal gas if total 600 cal heat is released by the gas is whole process
13.

- View Text Solution

14. Calculate maximum η for an heat engine operating between $27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$.

- Watch Video Solution

15. Calcuate entrophy change in each step for an ideal gas (monoatomic)
$\underset{(1 \mathrm{~atm}, 22.41,273 \mathrm{~K})}{\operatorname{State}(A)} \rightarrow \underset{(1 \mathrm{~atm}, 33.61,409.5 \mathrm{~K})}{\operatorname{State}(B)} \rightarrow \underset{(2 \mathrm{~atm}, 33.6 \mathrm{l}, 819 \mathrm{~K})}{\operatorname{State}(C)}$

- Watch Video Solution

16. One mole of an ideal gas is expanded isothermally jat 300 K from 10 atm to 1 atm. Find the values of
$\Delta S_{\text {sys }}, \Delta S_{\text {surr }}, \& \Delta S_{\text {total }}$ under the following conditions .
(i) Expansion is carried out reversibly
(ii) Expansion is carried out irreversibly
(iii) Expansion is free.

- Watch Video Solution

17. For the reaction

$$
\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}
$$

Given: at 1 atm , 300 K

$$
\begin{array}{ll}
S_{N_{2}}=180 \mathrm{~J} / \mathrm{mol} / \mathrm{K} & C_{P}\left(N_{2}\right)=30 \mathrm{~J} / \mathrm{mol} / \mathrm{K} \\
S_{O_{2}}=220 \mathrm{~J} / \mathrm{mol} / \mathrm{K} & C_{P}\left(O_{2}\right)=30 \mathrm{~J} / \mathrm{mol} / \mathrm{K} \\
S_{\mathrm{NO}_{2}}=240 \mathrm{~J} / \mathrm{mol} / \mathrm{K} & C_{P}\left(\mathrm{NO}_{2}\right)=40 \mathrm{~J} / \mathrm{mol} / \mathrm{K}
\end{array}
$$

Calculate (i) $\Delta S_{300} K, 5 \mathrm{~atm}$
(i) $\Delta S_{400} K, 5 a t m$

- Watch Video Solution

18. Calculate entropy charge
$\mathrm{H}_{2} \mathrm{O}\left(\mathrm{l}, 1 \mathrm{~atm}, 100^{\circ} \mathrm{C}\right)$ rarr $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{g}, 1 \mathrm{~atm}, 110^{\circ}\right)$
$\mathrm{H}_{2} \mathrm{O}\left(\mathrm{l}, 2 \mathrm{~atm}, 100^{\circ}\right)$ rarr $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{g}, 2 \mathrm{~atm}, 100^{\circ}\right)$
$\Delta H_{\text {vap }}=40 \mathrm{~kJ} / \mathrm{mole}$ " " $C_{p}(l)=75 \mathrm{~J} / \mathrm{mole} / K^{\prime \prime} " C_{p}(g)=35 \mathrm{~J} / \mathrm{mole} / K$

- Watch Video Solution

Solved Example

1. Value of γ for CH_{4} molecule is (Consider vibarational degree of freedom to be active).
A. $4 / 3$
B. $\frac{13}{12}$
C. $\frac{15}{14}$
D. $\frac{17}{15}$

Answer: B

2. gama for NH_{3} including contribution from vibrataional degree's freedom is
A. $4 / 3$
B. $\frac{10}{9}$
C. $\frac{7}{6}$
D. $\frac{13}{12}$

Answer: B

- Watch Video Solution

3. 1 mole of an ideal gas is expanded isokthermally and reversibly from 1 litre to litre. Which of the following is false for the process ?
A. $\Delta T=0$
B. $\Delta E=0$
C. $\Delta H=0$
D. heat supplied (q) $=0$

Answer: D

- Watch Video Solution

4. Pressure over 1 liter of s liquid is gradually increase from 1 vbar to 1001 bar under adiabatic condition.

If the final volume of the liquid is 990 ml , calculate ΔE and 'Delta H of the process assurimg linear variation of volume with pressure.

- View Text Solution

5. One mole of a real gas is subjected to a process from (2 bar, 30 lit ., 300k) to (2 bar , 40 , lit ., 500K)
Given : $C_{v}=25 \mathrm{~J} / \frac{\mathrm{mole}}{K}$
$C_{p}=40 \mathrm{~J} / \frac{\text { mole }}{K}$
Calculate ΔU.
A. 5000 J
B. 6000 J
C. 8000 J
D. 10000 J

Answer: B

- Watch Video Solution

6. One mole of ideal gas undergoes following cyclic process
(i) Isochoric heating from $\left(P_{1} V_{1} T_{1}\right)$ to double temperature.
(II) Isobaric expansion from to double voulme .
(III) Linear expansion (on PV curve) to $\left(P_{1}, 8 V_{1}\right)$.

Isobaric copmression to initial state.
Calculate the magnitude of work done in calories if initial tremperature of the gas in is $300 K$?

Given : $R=2 \frac{C a l}{m o l-K}$

- View Text Solution

7. Determine the total work done by gas (in Joule) if system follows an expansion process as shown in figure
[Given : 1 bar liter =100]]

- View Text Solution

8. A student is calculating the work during a reversible isothermal process , show by 2 mole of an ideal
gas. He by mistake calculate the area as show in the PV graph (Shaded area) equal to 49.26 liter atm .

Calculate the correct value of work (in litre atm) during the process.
(Given : R =0.0821 liter atm // "mole"/K)
A. 49.26
B. -34.14
C. -78.63
D. -98.52

Answer:

- Watch Video Solution

9. Calculate the magnitude of work done (in atm lit.) for the given cyclic process involing 1 mole of an
ideal gas .[Given : $\mathrm{R}=0.08 \mathrm{~atm}$ lit./mole /k]
10. Log P vs log V curve is plotted for an ideal gas, which is true for the gas ?
A. Monoatomic \& undergoing adiabitc chagre
B. Monatomic \& undergoing an isothermal change
C. Diamtomic \& undergoing an adiabitc charge
D. Triatomic \& undergoing an isothermal change

Answer: C

- View Text Solution

11. A certain mass of a gas is expanded from (1L, 10 atm) to ($4 \mathrm{~L}, 5 \mathrm{~atm}$) against a constant external pressure of 1 atm. If initial temperature of gas is 300 K and the heat capacity of process is $50 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. Calcate DeltaH'(in kJ$)$ of the process .(Given 1 L atm $=100 \mathrm{~J})$.
(Fill your answer by multiplying it with 100)
12. A liquid confined inside an adiabatic container is suddenly taken from state 1 to state 2 by a single stages process as shown, then ΔH is
A. $\Delta H=\frac{2 \gamma P_{0} V_{0}}{\gamma-1}$
B. $\Delta H=-P_{0} V_{0}$
C. $\Delta H=-3 P_{0} V_{0}$
D. $\Delta H=-\frac{3 \gamma P_{0} V_{0}}{\gamma-1}$

Answer: B

- Watch Video Solution

13. One mole of Argon is heated using $P V^{5 / 2}=$ constant . By what amount heat is absorded during the 'process, when temperture changes by $\Delta T=26 K$.
A. 100 J
B. 200 J
C. 180 J
D. 208 J

Answer: C

- Watch Video Solution

14. One mole monoatomic ideal gas was taken through process $A B C D$ as show in. Calculate
(i) $W_{A B}, W_{B C}, W_{C D}, W_{D A}$
(ii) $q_{A B}, q_{B C}, q_{C D}, q_{D A}$
(iii) $\Delta H_{A B}, \Delta H_{B C}, \Delta H_{C D}, \Delta H_{D A}$
$[U s e: \ln (3 / 2)=0.40: \operatorname{In}(4 / 3)=0.29]$
15. Work done (in kJ) by the gas in the following cyclic process is
A. -11
B. -11000
C. 11
D. 11000

Answer: A

- Watch Video Solution

16. Consider an isothernmal cylinder and massless kpiston assembly in which ideal gas is filled. Cross sectional
area of the cylinder $=1 m^{2}$. Three masses m_{1}, m_{2} and m_{3} are kept on the piston. When m_{1} id removed ,
piston moves upon point A. When $m_{1} \& m_{2}$ both are removed piston moves upto jkpint B \& when m_{1}
$m_{2} \& m_{3}$ all three are removed, piston moves upto ,Ipoint C. Calculate work done by the gas
(in joule) when piston moves from point B to point C.
$\left[\right.$ Given: $m_{1}=2 \times 10^{4} \mathrm{~kg}, m_{2}=3 \times 10^{4} \mathrm{~kg}, g=10 \mathrm{~m} / \mathrm{s}^{2}$]

View Text Solution

17. Calculate difference in work done in process -I to process -II.
(Given: $\pi=3$)

- View Text Solution

18. The external pressure 2 atm is applied frictionless movable piston, fitted in vessel containing 100 g of
$\mathrm{X}(\mathrm{I})$ at 450 K . Now heat is supplied keeping pressure constant till 40 g of X is evaporated to from $X(g)$
at 500 K (boiling pont). Calculate charge in internal (ΔU) energy in kJ
for overall processe.

Assume vapour of $X(I)$ behaves like an ideal gas.

Given : Molar heat capacity of $X(l)=60 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$:
DeltaH_(vaporisationm) $=30 \mathrm{~kJ} / / \mathrm{mol}: \mathrm{R}=8.3 \mathrm{~J} / / \mathrm{mol}-\mathrm{K}$ At. weitghof $\mathrm{X}=20$

G//MOL.

[Fill your answer by mutiplying it with 100.]

- View Text Solution

19. An ideal gas with adiabatic exponent γ undergoes a process in which internal energy depends on volume as $U=a V^{\alpha}$ then select the correct statement.
A. Change in internal energy is $\frac{\gamma-1}{\alpha} \Delta T$
B. Molar heat capacity of process is $\frac{R}{1-\gamma}+\frac{R}{\alpha}$
C. Heat exchange in the process is given by $\Delta U\left[1+\frac{1-\gamma}{\alpha}\right]$
D. Equation of process is given is $P V^{x}=$ constant , where

$$
x>0 \quad \text { if } \alpha<1
$$

Answer: D

- Watch Video Solution

20. An adiabatic cyclinder fitted with an adiabatic piston at the right end of cylinder, is dicided into equal
halves with a monoatomic gas of the left side and diatomic gas on right side, using animpermeable movales
adiabatic wall, . If the piston is pushed slowely to compress the diatomic gas to $\frac{3}{4} t h$ of its origanl volume.

The new volume of the monoatomic gas would be.
A. $V_{\text {new }}=V_{\text {initial }} \times\left[\frac{4}{3}\right]^{\frac{25}{21}}$
B. $V_{\mathrm{new}}=V_{\text {initial }} \times\left[\frac{7}{5}\right]^{\frac{3}{4}}$
C. $V_{\text {new }}=V_{\text {initial }} \times\left[\frac{3}{4}\right]^{\frac{21}{25}}$
D. $V_{\text {new }}=V_{\text {initial }} \times \frac{3}{4}$

Answer: C

- Watch Video Solution

21. Calculate the work done by system in an irrevesible (single step) adiabatic expansion of 1 mole of a polyatomic gas from 300 K and pressure 10 atm to $1 \mathrm{~atm} .(\gamma=1.33)$.

- Watch Video Solution

22. A cylinder container of volume 4.48 liters is containing equal no. Of moles of a monoatomic gas in two
section A and B separated by an adiabatic frictionless piston as show in figure. The initial temperature
and pressue of gases was 273 K and 1 atm . Now gas section ' A ' is slowly heated till the volume of
section A and B. (in cal/mole)

$$
\left[C_{v} \text { of monoatomic gas }=3 / 2 R, \gamma=5 / 3\right]
$$

$[U s e R=2 c a l / \operatorname{mol} \& \sqrt{2}=1.4]$

- View Text Solution

23. A gas $\left(C_{v . m}=\frac{5}{2} R\right)$ behaving ideally is allowed to expand reversibly and adiabatically from 1 litre to 32 litre. Its initial temperature is $327^{\circ} \mathrm{C}$. The molar enthalpy change (in J / mol) for the process is :
A. $-1125 R$
B. $-575 R$
C. $-1575 R$
D. None of these

Answer: C

24. 1000 gm water is heated from $27^{\circ} \mathrm{C}$ to $47^{\circ} \mathrm{C}$ at a constant pressure of 1 bar. The coefficient of volume expansion of water is $0.002 /{ }^{\circ} \mathrm{C}$ and the molar volume of water at 0° is $18.00 \mathrm{~cm}^{3} / \mathrm{mol}$. The magnitude
of work done (in J) by water is

- Watch Video Solution

25. The temperture of a definite amount of an ideal monoatomic gas becomes four times in a reversible process for which heat exchange is zero. Which of the following is correct relation between the final and initial parameters of gas?
A. $V_{f}=8 V_{i}$
B. $P_{f}=32 P_{i}$
C. $V_{f}=16 V_{i}$
D. $P_{f}=\frac{1}{16} P_{i}$

Answer: B

- Watch Video Solution

26. Inversion temperature $\left(T_{i}=\frac{2 a}{R b}\right)$ is defined as the temperature above which if gas is expanded
adiabatically it gets warm up but if temperature of gas is lower than T_{i} then it will cool down. What will
happen to gas if it is adiabatically expanded at $50^{\circ} \mathrm{C}$ if its Boyle's temperature is $20^{\circ} \mathrm{C}$
A. heating
B. cooling
C. constant
D. None of these

Answer: B

27. Which of the following statement(s) is /are correct:

Statement (a): The entropy of isolated system with P-V work only is always maximized at equilibrium

Statement (b) : It is possible for the entropy of closed system to decrease substanilly in a irreverrsible process.

Statement (c): Entrophy can be created but not destrpoyed .

Statment (d) : $\Delta S_{\text {system }}$ is always zero for reversible processe in an isolated system
A. Statement a, b, c
B. Statement b,d
C. Staement a,b,c
D. All

Answer: D

28.1 Kg stone at $27^{\circ} \mathrm{C}$ falls 100 m into a lake whose temperature is $27^{\circ} \mathrm{C}$.

Find the entropy charge of (a) the stone (b) the lake (c) the univers when
(i) stone is lowered reversibly
(ii) stone is dropped freely

Compare the loss of available energy in two cases

- Watch Video Solution

29. A mole of steam is condensed at $100^{\circ} \mathrm{C}$, the water is cooled to $0^{\circ} \mathrm{C}$ and frozen to i.e. What is the difference in entropies of the stem and ice? The heat of vaporization and fusion are $540 \mathrm{cal} \mathrm{gm}^{-1}$ and $80 \mathrm{cal} \mathrm{gm}^{-1}$ respectively. Use the average heat capacity of liquild water as $1 \mathrm{cal} \mathrm{gm}^{-1}$ degree $^{-1}$.

- Watch Video Solution

30. Heat capcaity of a solid $\mathrm{A}(\mathrm{s})$ given by $a T^{3}$ in vicinity at abbsolute zero . Taking heat capacity to be $a T^{3}$ ferom 0 K and 10 K , from 10 K to noramal
M.P at 150 K and c from 150 K to 200 K , find the absolute entropy of $\mathrm{A}(\mathrm{I})$ at 200 K .

Given $a=0.5 \times 10^{-3} J(\mathrm{k}$ mole $)$
$\mathrm{b}=15 \mathrm{~J}$ (K mole)
$\mathrm{c}=20 \mathrm{~J}$ (K mole)
$\Delta H_{\text {fusion }}=+30 K J / \mathrm{mole}$

- Watch Video Solution

31. For a perfectly crystalline solid $C_{\mathrm{p}, \mathrm{m}}=T^{3}+b T$, where a \& b are constant. If $C_{\mathrm{p}, \mathrm{m}}$ is $0.04 \mathrm{~J} / k-$ mole at 10 K and io $0.92 \mathrm{~J} / \mathrm{K}$ - mole at 20 k , Then molar entropy at 20 k is.
A. $0.92 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
B. $8.66 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
C. $0.813 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
D. None

Answer: C

- Watch Video Solution

32. Two mole of ideal gas is expanded irrversibly \& isothermally at $27^{\circ} \mathrm{C}$ until its volume is double and $3.3 k J$ heat is absorbed from surrounding. Determine $\Delta S_{\text {System }} \& \Delta S_{\text {surrounding }}$.

- Watch Video Solution

33. As ideal gas undergoing cyclie process $A B C$.A consisting of isothermal expansion $A B$, isobaric compression $B C$ \& adiabatic copmression CA. Find the \%(approximate) efficiency of cycle.

$$
\left[\text { Given }: T_{A}=T_{B}=400 K, \gamma=1.5, \operatorname{In} 2=0.7,2^{1 / 3}=0.8\right]
$$

- View Text Solution

34. 0.5 mole of an ideal monoatomic gas at STP conditions undergoes a process, if the final volume of gas is $(22.5 \times e)$ lit, then the entropy
change in thid process in $\mathrm{k} / \mathrm{J} / \mathrm{mol}$ is .
(Given: Process isobaric)
(Fill your answer by multiplying it with $\frac{100}{R}$)

- View Text Solution

35. When two equal sized pieces of the same mental at different temperature T_{h} (hot piece) and T_{c} (cold piece) are brought into thremal constant and isolated from it's surrounding. The total charge in entropy of system is given by

- View Text Solution

36. A reversible heat engine A(based on carnot cycle) absorbs heat from a reservoir at 1000 K and rejects
heat to a reservoir at T_{2}. A second reversible engine B absorbs, the same amount of heat as rejected by
the engine A, from the reservoir at T_{2} and rejects energy to a reservoir at 360 K.

If the efficienices of engines A and B are the same then the temperature T_{2} is .
A. 680 K
B. 640 K
C. 600 K
D. none

Answer: D

- View Text Solution

37. Whch of the following statement(s) is/are correct :

Statement (a) : In any closed system with P,V work only ,G is always minimized at eqilibrium .

Statement (b): ΔG is always zero for a

- View Text Solution

38. Select the correct statement(s).
A. $d G=V d p-S d T$ is applicale for all process involving both 'PV' and non
B.
C.
D.

Answer: B

- View Text Solution

39. Form the given T-S diagram of a reversible carnot engine, find
(i) work delivered by engine in one cycle
(ii) heat taken from the source in each cycle .
(iii) $\Delta S_{\sin k}$ in each cycle .

- View Text Solution

40. Fixed amount of an ideal gas contained in a sealed rigid vessl $(\mathrm{V}=24.6$ litre) at 1.0 bar is heated reversibly from 27° to 127° C. Determine charge in G ibb's energy $\left(|\Delta G|\right.$ in Joule) if entropy $s=10+10^{+2} T(J / K)$

- View Text Solution

41. A reaction at 300 K with $\Delta G^{\circ}=-1743 \mathrm{~J} / \mathrm{mol}$ consister of 3 mole of $A(g)$, mole of $B(g)$ and 3 mole of $C(g)$. If A, B and $C(g)$. If A, B and C are equal are in equilibrium in 1 liter container then the reaction may be
$\left[\right.$ Given: $\left.2=e^{0.7}, R=8.3 \mathrm{~J} / \mathrm{K}-\mathrm{mol}\right]$

- Watch Video Solution

Exercise

1. Select the intensive and extensive propertie from the following :

Entropy , specific entropy, triple point of water , volume of gas , pressure.
2. Show that Volume of a fixed amount of an ideal gas is a state function

- View Text Solution

3. Find the work done in each case :
(a) When one mole of ideal gas in 10 liter container aat 1 atm, is allowed to enter a vaccuated bulb of capacity 100 liter.
(b) When 1 mole of gas expands from 1 liter to 5 liter a against constant stamospherice pressue.

- View Text Solution

4. Calculate change in internal energy of CO_{2} for two mole, if temperatur change I s 100 K in very high tempertaure range.
5. One mole of an ideal gas expands from state-I (Atm, 20 litre) to (2 Atm , 10 litre) isothermally .

Caluclate, $w \& \Delta U$.

- Watch Video Solution

6. 1150 kcal heat is relased when following reaction is carried out constant volume 27°
$\mathrm{C}_{7} \mathrm{H}_{16}(\mathrm{l})+11 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 7 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2}(\mathrm{l})$
Find the heat change at const power .

- View Text Solution

7. Calculate work done for an ideal gas($\ln 2=0.7$)
8. Calculate $w=?(\ln 2=0.7)$

- View Text Solution

9. One mole of an non linear triatomic ideal gas is compressed adiabatically at 300 K from 1 atm to 16 atm.

Calculate Work done under the following conditions.
(i) Expansion is carried out reversibly
(ii) Expansion is carried out irreversibly.

- View Text Solution

10. One mole of ideal monatomic gas in taken in cyclice process ABCA as shown in the figure

Calculate :
(a) The work done by the gas
(b) The heat rejected by the gas in the path CA
(c) The net heat absorbed be the by gas in the path $B C$
(d) Maximum temperature obtained by the gas during the cycle.

- View Text Solution

11. One mole of an non linear triatomic ideal gas is expanded abiabatically at 300 K form 16 atm to 1 atm Itbr gt Find the value $\Delta S_{\text {sys }}, \Delta S_{\text {surr }} \& \Delta S_{\text {total }}$ under the following conditions.
(i) Expansion is carried out reversibly
(ii) Expansion is carried out irreversibly
(iii) Expansion is free.

- View Text Solution

12. For the reaction
$\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$
Given : at 1 atm, 300 K

$$
\begin{array}{ll}
S_{N_{2}}=180 \mathrm{~J} / \mathrm{mol} / \mathrm{K} & C_{P}\left(N_{2}\right)=30 \mathrm{~J} / \mathrm{mol} / \mathrm{K} \\
S_{O_{2}}=220 \mathrm{~J} / \mathrm{mol} / \mathrm{K} & C_{P}\left(O_{2}\right)=30 \mathrm{~J} / \mathrm{mol} / \mathrm{K} \\
S_{\mathrm{NO}_{2}}=240 \mathrm{~J} / \mathrm{mol} / \mathrm{K} & C_{P}\left(\mathrm{NO}_{2}\right)=40 \mathrm{~J} / \mathrm{mol} / \mathrm{K}
\end{array}
$$

Calculate (i) $\Delta S_{300} K, 5 \mathrm{~atm}$
(i) $\Delta S_{400} K, 5 a t m$

- View Text Solution

13. Calculate entropy change
$\mathrm{H}_{2} \mathrm{O}\left(\mathrm{l}, 1 \mathrm{~atm}, 100^{\circ}\right) \rightarrow \mathrm{H}_{2} \mathrm{O}\left(\mathrm{g}, 1 \mathrm{~atm}, 110^{\circ}\right)$
$\mathrm{H}_{2} \mathrm{O}\left(\mathrm{l}, 1 \mathrm{~atm}, 100^{\circ}\right) \rightarrow \mathrm{H}_{2} \mathrm{O}\left(\mathrm{g}, 2 \mathrm{~atm}, 100^{\circ}\right)$
$\Delta H_{\text {vap }}=40 \mathrm{~kJ} / \mathrm{mole"}$ " $C_{p}(l)=75 \mathrm{~J} / \mathrm{mole} / K^{\prime \prime} " C_{p}(g)=35 \mathrm{~J} / \mathrm{mole} / K$

- View Text Solution

14. Calculate ΔG for
(i) $\mathrm{H}_{2} \mathrm{O}(l, 2 a t m, 300 \mathrm{~K}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}, 2 \mathrm{~atm}, 300 \mathrm{~K})$
(ii) $\mathrm{H}_{2} \mathrm{O}(l, \mathrm{P} \quad$ atm, 300 K$) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}, \mathrm{P} \quad$ atm, 300 K$)$ Cacluate p for which $\Delta G=0$

Given: $\Delta H_{373}=40 k J$

$$
\begin{aligned}
& C_{P}\left(\mathrm{H}_{2} \mathrm{O}, l\right)=75 \mathrm{~J} / \mathrm{mol} / \mathrm{K} \\
& C_{P}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{~g}\right)=35 \mathrm{~J} / \mathrm{mol} / \mathrm{K}
\end{aligned}
$$

- View Text Solution

Exercise 1

1. Out of boiling pont (I), entropy (II), pH (III) and density (IV), Intensive properties are:
A. I,II
B. IIIIIIII
C. I,III,IV
D. All of these

Answer: C

2. Consider the reaction at 300 K
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$
$\Delta H=-185 \mathrm{~kJ} / \mathrm{mol}$

Calculate ΔU if 3 mole of H_{2} completely react with 3 mole f of $C l_{2}$ to from HCl .
A. 0
B. $-185 k J$
C. 555 kJ
D. None of these

Answer: D

- View Text Solution

3. Ethyl choride $\left(\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \mathrm{Cl}\right)$, is prepared byt reaction of ethylen with hydrogen chloride :
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{HCl} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{g})$

What is the value of ΔU (in kJ), if 70 g ethlene and 73 g of HCl are allowed to react at 300 K .
A. -69.8
B. -180.75
C. -174.5
D. -139.6

Answer: D

D View Text Solution

4. What is ΔU for the process described by figure. Heat supplied during the process $q=100 \mathrm{~kJ}$
A. $+50 k J$
B. -50 kJ
C. -150 KJ
D. +150 kJ

Answer: B

- View Text Solution

5. What is the change in internal energy when a gas constants from 377
ml to 177 ml under a constant
pressure of 1520 torr, while at the same time being cooled by removing

124 J heat?
[Take :(1 L atm)n= 100 J$]$
A. $-24 J$
B. $-84 J$
C. $-164 J$
D. $-248 J$

Answer: B

6. The heat capcity of liquild water is $75.6 \mathrm{~J} / \mathrm{mol}$. K, while the enthalpy of fusion of ice is $6.0 \mathrm{~kJ} / \mathrm{mol}$, What
is the smallest number of ice cubes at $0^{\circ} \mathrm{C}$, each containig 9.0 g of water ,needed to cool 500 g of liquild water from j 20° to $0^{\circ} \mathrm{C}$?
A. 1
B. 7
C. 14
D. None of these

Answer: C

- View Text Solution

7. An ideal gas is taken around the cycle ABCD A as shown in figure . The net work done during the cycle
is equal to :
A. zero
B. positive
C. negative
D. we cannot predict

Answer: A

- View Text Solution

8. Molar heat capacity of water in equilibrium with ice at canstant pressure is
A. zero
B. ∞
C. $40.45 k J K^{-1} \mathrm{~mol}^{-1}$
D. $75.48 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer: B

- View Text Solution

9. A cyclic process ABCD is show in PV diagram for a ideal gas. Which of the
following digram reppresents the same process?
A.
.
B.
.
C.
D.

Answer: C

10. One mole of an ideal monoatomic gas expanded irreversibly in two stage expansion .
State-1
(8.0 bar, 4.0 liters, 300K)

State-2 (2.0 bar, 16 liters, 300K)
State-3 (1.0 bar, 32 liters, 300K)
Total heat absored by the gas in the process is :
A. 116 J
B. 40 J
C. 4000 J
D. None of these

Answer: C

- View Text Solution

11. What is the net work done (in calories) by 1 mole of monatomic ideal gas in a process described by

1, 2,3, 4 in given V-T graph .

Use : $R=2$ cal /mole K
$\ln 2=0.7$
A. -600 cal
B. -660 cal
C. +660 cal
D. +600 cal

Answer: B

- View Text Solution

12. An insulated container of gas has two chambers separated by an insulating partition. One of the chambers has volume V_{1} and contains ideal gas at pressure P_{1} and temperature T_{1}. The other chamber has volume V_{2} and contains ideal gas at pressure P_{2} and temperature T_{2}. If
the partition is removed without doing any work on the gas, the final equilibrium temperature of the gas in the container will be
A. $\frac{T_{1} T_{2}\left(P_{1} V_{1}+P_{2} V_{2}\right)}{P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}}$
B. $\frac{P_{1} V_{1} T_{1}+P_{2} V_{2} T_{2}}{P_{1} V_{1}+P_{2} V_{2}}$
C. $\frac{P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}}{P_{1} V_{1}+P_{2} V_{2}}$
D. $\frac{T_{1} T_{2}\left(P_{1} V_{1}+P_{2} V_{2}\right)}{P_{1} V_{1} T_{1}+P_{2} V_{2} T_{2}}$

Answer: A

- Watch Video Solution

13. One mole of an ideal gas is allowed to expand reversible and adiabatically from a temperatureof $27^{\circ} C$) if the work done during the process is 3 kJ ,the final temperature will be equal to $\left(C_{v}=20 \mathrm{JK}^{-1}\right)$
A. $100 k$
B. $450 k$
C. $150 k$
D. $400 k$

Answer: C

- Watch Video Solution

14. A gas $\left(C_{v . m}=\frac{5}{2} R\right)$ behaving ideally was allowed to expand reversibly and adiabatically from 1 liter to

32 liter. It's initial at temperature was $327^{\circ} \mathrm{C}$. The molar enthalpy changes (in $J /$ mole) for the process is
A. $1125 R$
B. $-575 R$
C. $-1575 R$
D. None of these

Answer: C

15. Two moles of an ideal gas $\left(C_{V}=\frac{5}{2} R\right)$ was compressed adiabatically against constant pressure of 2 atm .

Which was initially at 350 K and 1 atm pressure. The work involve in the process is equal to.
A. $250 R$
B. $300 R$
C. $400 R$
D. $500 R$

Answer: D

- View Text Solution

16. A diatomic ideal gas initially at 273 K is given 100 cal heat due to which system did 209 J work.

Molar heat capacity $\left(C_{m}\right) \mathrm{n}$ of gas for the process is :
A. $\frac{3}{2} R$
B. $\frac{5}{2} R$
C. $\frac{5}{4} R$
D. 5 R

Answer: D

- View Text Solution

17. For an ideal monoatic gas during any process $T=k V$, find out the molar heat capacity od the gas
during the process. (Assme vibrational degree of freedom to be active) \backslash
A. $\frac{5}{2} R$
B. 3 R
C. $\frac{7}{5} R$
D. 4 R

D View Text Solution

18. The maximum efficiency of a heat engine operating between 100° and $25^{\circ} \mathrm{C}$ is
A. 20.11%
B. 22.2%
C. 25.17%
D. None

Answer: A

D Watch Video Solution

19. A heat engine operating n between 227° and $27^{\circ} \mathrm{C}$ absorbs 2 K a cal of heat from the 227° reservoir
reversibly per cycle . The amount of work done in one cycle is
A. 0.4 cal
B. 0.8 cal
C. 4 Kcal
D. 87 Kcal

Answer: B

- Watch Video Solution

20. A reversible heat engine A (based on carnot cycle) absorbs heat from a reservoir at 1000 K and rejects heat to a reservoir at T_{2}. A second reserviour at T_{2} and rejects energy to a reservoir at 360 K . If the efficiencies of engines A and B are the same then the temperature T_{2} is.
A. 680 K
B. 640 K
C. 600 K
D. None

Answer: C

- View Text Solution

21. The entropy change when two of ideal monoatomic gas is heated form $200 \rightarrow 300^{\circ} C$ reversiblity and isochorically?
A. $\frac{3}{2} R \ln$. $\left(\frac{300}{200}\right)$
B. $\frac{5}{2} R \ln$. $\left(\frac{573}{273}\right)$
C. $3 R \ln$. $\left(\frac{573}{473}\right)$
D. $\frac{3}{2} R \ln$. $\left(\frac{573}{473}\right)$

Answer: C

- Watch Video Solution

22. What can be concluded about the values of ΔH and ΔS from this graph ?

A. $\Delta H>0, \Delta S>0$
B. $\Delta H>0, \Delta S<0$
C. $\Delta H<0, \Delta S>0$
D. $\Delta H<0, \Delta S<0$

Answer: A

23. If $\Delta H_{\text {vaporisation }}$ of substance $\mathrm{X}(\mathrm{I})$ (molar mass :30 $\mathrm{g} / \mathrm{mol}$) is $300 \mathrm{~J} / \mathrm{g}$ at it's boiling piont $300 K$, then
molar entropy change for reversible conddensation process is
A. $30 \mathrm{~J} / \mathrm{mol}$. K
B. $-300 \mathrm{~J} / \mathrm{mol}$. K
C. $-30 \mathrm{~J} / \mathrm{mol}$. K
D. None of these

Answer: C

- Watch Video Solution

24. The change in entrophy of 2 moles of ideal gas upon isothermal expansion at $243.6 K$ from 20 liter until the pressure becomes 1 atm , is :

A. $1.385 \mathrm{cal} / \mathrm{K}$

B. $-1.2 \mathrm{cal} / \mathrm{K}$
C. $-30 \mathrm{~J} / \mathrm{mol}$. K
D. None of these

Answer: C

- View Text Solution

25. Pressure of 10 moles of an ideal gas is changed from 2 atm to 1 at against constant external pressure without change in temperature. If surrounding temperature (300K) and pressure (1 atm) always remains constant then calculate total entropy change $\left(\Delta S_{\text {system }}+\Delta S_{\text {surrounding }}\right)$ for given process.
[Given : ? $\mathrm{n} 2=0.70$ and $\mathrm{R}=8.0 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$]
A. $56 \mathrm{~J} / \mathrm{K}$
B. $14 \mathrm{~J} / \mathrm{K}$
C. $16 \mathrm{~J} / \mathrm{K}$
D. None of these

Answer: C

- Watch Video Solution

26. The enthalpy of tetramerization of X in gas phase $\left(4 X(g) \rightarrow X_{4}(g)\right)$ is $-100 \mathrm{~kJ} / \mathrm{mol}$ at 300 K .

The enthalpy of vaporisation for liquid X and X_{4} are respectively $30 \mathrm{~kJ} / \mathrm{mol}$ and $72 \mathrm{~kJ} / \mathrm{mol}$ respectively .
ΔS for tetramerization of X in liquid phase is $-125 \mathrm{~J} / \mathrm{K} \mathrm{mol}$ at 300 K .
What is the ΔG at 300n K for tetramerization of X liquid phase?
A. $-52 \mathrm{~kJ} / \mathrm{mol}$
B. $-89.5 \mathrm{~kJ} / \mathrm{mol}$
C. $-14.5 \mathrm{~kJ} / \mathrm{mol}$
D. None the these

Answer: C

- View Text Solution

27. Standard enthorpy of X_{2}, Y_{2} and $X Y_{3}$ are 60,40 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. For the reaction ,
$\frac{1}{2} X_{2}+\frac{3}{2} Y_{2} \rightarrow X Y_{3}, \Delta H=-30 k J$ to be at equilibrium, the temperature of will be
A. 1250 K
B. 500 K
C. 750 K
D. 1000 K

Answer: C

- View Text Solution

28. For the f reaction at 300 K
$A(g)+B(g) \rightarrow C(g)$
$\Delta U=-3.0 \mathrm{kcal}$
$\Delta S=-10.0 \mathrm{cal} / K$
Value of the ΔG is
A. -600 cal
B. -6600 cal
C. -6000 cal
D. None

Answer: A

- Watch Video Solution

29. The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K is

$$
\text { A. }-\Delta G^{\circ}=R T \ln K
$$

B. $\Delta G=R T \ln K$
C. $-\Delta G=R T \ln K$
D. $\Delta G^{\circ}=R T \ln K$

Answer: A

- View Text Solution

30. The value of ΔG_{f}° of gaseous mercury is $31 \mathrm{KJ} / \mathrm{mole}$. At what total external pressure mercury start boiling at $25^{\circ} C$. [$R=8.3 \mathrm{~J} / \mathrm{K}$ mole $]$
A. $10^{-5.44}$
B. $10^{-12.5}$
C. $10^{-6.52}$
D. $10^{-3.12}$

Answer: A

- Watch Video Solution

31. What is $\Delta_{r} G(\mathrm{KJ} / \mathrm{mol})$ for sysnthesis of ammonia at 298 K at following sets of partial pressure:

$$
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}, \Delta_{r} G^{\circ}=-33 \mathrm{KJ} / \mathrm{mol} .
$$

$$
[\text { Take } R=8.3 \mathrm{~J} / \text { Kmole, } \log 2=0.3, \log 3=0.48]
$$

$$
\underset{\text { Pressure(atm) }}{\text { Gas }} \quad \underset{1}{\mathrm{~N}_{2}} \quad \underset{3}{\mathrm{H}_{2}} \quad \underset{0.02}{\mathrm{NH}_{3}}
$$

A. +6.5
B. -6.5
C. +60.5
D. -60.5

Answer: D

- Watch Video Solution

32. For the reaction takes places at certain tempreature $N H_{4} H S(s) \Leftrightarrow N H_{3}(g)+H_{2} S(g)$,
if eqilibrium pressure is X bar, then $\Delta_{r} G^{\circ}$ would be
A. $-2 R T \ln X$
B. $-R T \ln (X-\ln 2)$
C. $-2 R T(\ln X-\ln 2)$
D. None of these

Answer: C

- Watch Video Solution

33. Calculate $\log _{10}\left\{[C]_{e q} /[A]_{e q}\right\}$ where [C] and [A] are equilirium molar concetration of respective
species, when 22 mole each of A and B were allowed to come to equilibrium at 900 K .
$A+B \stackrel{900 K}{\Longleftrightarrow} C+D \quad, \quad \Delta G^{\circ}=460.6$ Calorie
Take: $\ln X=2.303 \log X$
$R=2 C a l / K$ mole
A. 5.56×10^{-02}
B. 5.57×10^{-03}
C. 1.1×10^{-2}
D. 1.1×10^{-3}

Answer: A

- Watch Video Solution

34. What is the free energy charge (ΔG) when 1.0 mole of water at $100^{\circ} \mathrm{C}$ and 1 atm pressure is converted into steam at $100^{\circ} \mathrm{C}$ and 1 atm pressure ?
A. 80 cal
B. 540 cal
C. 620 cal
D. zero

Answer: D

35. What is the free energy charge (ΔG) when 1.0 n mole of water at $100^{\circ} \mathrm{C}$ and 1 atm pressue is converted into steam at $100^{\circ} \mathrm{C}$ and 2 atm pressure ?
A. zero cal
B. 540 cal
C. 517.13 cal
D. 510 cal

Answer: C

- Watch Video Solution

Paragraph Type

1. A cyclindrical container of volume 44.8 litres is containing equal no.of moles (in integer no.) of an ideal
monoatomic gas in two sections A and B separeted by an adiabatic frictionless piston as show in figure

The initinal temperature and pressure of gas in both section B becomes $(1 / 8)^{t h}$ of initial volume.

Given : $R=2 \mathrm{cal} / \mathrm{mole}-K, C_{v, m}$ of monoatmic gas $=\frac{3}{2} R$, At $1 \mathrm{~atm} \& 0^{\circ}$ ideal gas occupy 22.4 liter .

What will be the final pressure in contianer B :
A. 2 atm
B. 8 atm
C. 16 atm
D. 32 atm

Answer: D

- View Text Solution

2. A cyclindrical container of volume 44.8 litres is containing equal no.of moles (in integer no.) of an ideal
monoatomic gas in two sections A and B separeted by an adiabatic frictionless piston as show in figure

The initinal temperature and pressure of gas in both section B becomes
$(1 / 8)^{t h}$ of initial volume.

Given : $R=2 c a l /$ mole $-\mathrm{K}, C_{v, m}$ of monoatmic gas $=\frac{3}{2} R$,
At $1 \mathrm{~atm} \& 0^{\circ}$ ideal gas occupy 22.4 liter .
Find temperature in container A will be
A. 1638 K
B. 6988 k
C. 3274 K
D. 51 K

Answer: A

3. A cyclindrical container of volume 44.8 litres is containing equal no.of moles (in integer no.) of an ideal monoatomic gas in two sections A and B separeted by an adiabatic frictionless piston as show in figure

The initinal temperature and pressure of gas in both section B becomes $(1 / 8)^{t h}$ of initial volume.

Given : $R=2 \mathrm{cal} / \mathrm{mole}-\mathrm{K}, C_{v, m}$ of monoatmic gas $=\frac{3}{2} R$,
At $1 \mathrm{~atm} \& 0^{\circ}$ ideal gas occupy 22.4 liter .
Change in enthalpy for section A in K cal.
A. 48.3
B. 80.53
C. 4.83
D. 8.05

Answer: B

4. An ideal gas $\left(C_{P} / C_{V}=\gamma\right)$ is expanded so that the amount of heat transferred to the gas the is equal to the decrease in its internal energy .

What is the molar heat capacity of gas in this process?
A. C_{V}
B. $-C_{V}$
C. C_{P}
D. $2 C_{V}$

Answer: B

- Watch Video Solution

5. An ideal gas $\left(C_{P} / C_{V}=\gamma\right)$ is expanded so that the amount of heat transferred to the gas the is equal to the
decrease in its internal energy .
What is the relationship between temperature and volume of gas in this process?
A. $T \cdot V^{2(\gamma-1)}=$ constant
B. T. $V^{\gamma-1}=$ constant
C. $T \cdot V^{(\gamma-1 / 2)}=$ constant
D.T. $V^{\gamma}=$ constant

Answer: C

- View Text Solution

6. An ideal gas $\left(C_{P} / C_{V}=\gamma\right)$ is expanded so that the amount of heat transferred to the gas the is equal to the decrease in its internal energy .

What is the magnitude of work performed by one mole of the gas when its volume increase eight times
if the initinal temperature of the gas is $300 K$? C_{V} for the gas is $1.5 R$. ($R=2 \mathrm{cal} / \mathrm{mol} / \mathrm{K})$
A. 900 cal
B. 450 cal
C. 1247.7 cal
D. 623.8 cal

Answer: A

- Watch Video Solution

7. Two moles of helium gas are taken over the cycle ABCDA , as shown in the P -Tdigram

Assuming the gas to be ideal the work done on the gas in taking if from A to B is -
A. 200 R
B. 300 R
C. $-400 R$
D. 500 R

Answer: C

- View Text Solution

8. Two moles of helium gas are taken over the cycle ABCDA , as shown in the P -Tdigram

The work done the gas in taking it from D to A is -
A. $-414 R$
B. $+414 R$
C. $-690 R$
D. $+690 R$

Answer: B

- View Text Solution

9. Two moles of helium gas are taken over the cycle ABCDA , as shown in the P-Tdigram

The net work done on the gas in the cycle ABCD A is -.
A. Zero
B. $-276 R$
C. $1076 R$
D. $1904 R$

Answer: B

1. These question consists of two statements each, printed as Statement-I and Statement-II . While answering
these Question you are required to choose any one of the following four responses.

Statement-I : There is no change in enthalpy of an ideal gas during compression at constant temperature .

Statement -II : Enthalpy of an ideal gas is a function of temperature and pressure.
A. If both Statement I \& Statement are True \& the Statement-II is a correct explanation of the Statement -
B. If both Statement I \& Statement are True \& the Statement-II is not a correct explanation of the Statement -I
C. If Statement-I is True but the Statement-II is False.
D. If Statement-I is True but the Statement-II is True .

Answer: C

- Watch Video Solution

2. These question consists of two statements each, printed as Statement-I and Statement-II . While answering
these Question you are required to choose any one of the following four responses.

Statement -I : Due to adiabatic expansion, temperature of an ideal gas always decreases.

Statment -II: For an adiabatic expansion $\Delta U=W$.
A. If both Statement ו-I \& Statement are True \& the Statement-II is a correct explanation of the Statement -I
B. If both Statement -I \& Statement are True \& the Statement-II is not a correct explanation of the Statement - ו
C. If Statement-I is True but the Statement-II is False.
D. If Statement-I is false but the Statement-II is True .

Answer: D

- Watch Video Solution

Multiple Correct Choice Type

1. Which of the following is true for reversible adiabatic process involving an ideal gas ?
A. Gas with higher γ has high magnitude of slope in a $P($ y-axis $) v / s T(\mathrm{x}-\mathrm{axis})$ curve
B. Gas with higher γ has high magnitude of slope in a $V(\mathrm{y}$-axis $) v / s T(\mathrm{x}$ - axis) curve
C. Gas with higher γ has high magnitude of slope in a $P(\mathrm{y}$-axis $) v / s V(\mathrm{x}$ - axis) curve
D. Gas with higher γ has low magnitude of slope in a $P(\mathrm{y}$-axis $) v / s T(\mathrm{x}$ - axis) curve

Answer: C::D

D View Text Solution

2. An ideal gass is taken from state A (Pressuer P, VolumeV) to the state B (Pressure P/2, Volume 2V) along a stright line path in PV diagram as shown in the adjacent figure .

Select the correct statement (s) among the following .
A. The work done by gas in the process A to B exceeds the work that
would be done by gas in if the system were taken from A to B along
the isotherm.
B. In The T-V diagram, the path $A B$ become part of parabola.
C. In the P-T diagram, the path $A B$ becomes a part of hyperbola.
D. In going from A to B, the temperature T of the gas first increase to a maximum value then decreases.

- View Text Solution

3. If one mole monoatmic ideal gas was taken through process $A B$ as shown is figure, then select correcgt option(s).

Given: In1.5 $=0.4$
A. $W_{A B}=-1496.52 J$
B. $q_{A B}=5237.82 J$
C. $\Delta H_{A B}=3741.3 J$
D. $\Delta S_{A B}$ is + ve

Answer: A::B::D

- View Text Solution

4. The normal boiling point of a liquild 'A' is $350 \mathrm{~K} . \Delta H_{\text {vap }}$ to be normal point is $35 k J / m o \leq$. Pick out
the correct statement(s). (Assume $\Delta H_{v a p}$ to be independent of pressure).
A. $\Delta S_{\text {vaporisation }}>10 \mathrm{~J} / \mathrm{Kmoleat} 350 \mathrm{~K}$ and 0.5 atm
B. $\Delta S_{\text {vaporisation }}<10 \mathrm{~J} / \mathrm{Kmoleat} 350 \mathrm{~K}$ and 0.5 atm
C. $\Delta S_{\text {vaporisation }}<10 \mathrm{~J} / \mathrm{Kmoleat} 350 \mathrm{~K}$ and 2 atm
D. $\Delta S_{\text {vaporisation }}=10 \mathrm{~J} / \mathrm{Kmoleat} 350 \mathrm{~K}$ and 2 atm

Answer: A:C

- View Text Solution

5. Which is the correct is/are correcct :
A. Final temperature in reversible adiabatic expansion is lesser than in irreversible adiabatic expansion .
B. When heat is supplied to an ideal gas in isothermal process, kinetic energy of gas will increasase.
C. When an ideal gas is subjected to adiabatic expansion it gets cooled
D. Entropy increases in atomisation of dihydrgen

Answer: A::C::D

- View Text Solution

6. which is / are correct statement .
A. $W_{\text {adiabatic }}>W_{\text {isothermal }}$ in an ideal gas compression from same initial state to same final volume .
B. The value of $\gamma\left(\gamma=\frac{C_{p}}{C_{v}}\right)$ remains constant for diatomic gas at all temperature .
C. Entropy increases when an ideal gas expanded isothermally.
D. $\Delta_{r} H \& \Delta_{r} S$ both are + ve for the decomposition of MgCO_{3}.

Answer: A::C::D

7. In isothermal ideal gas compression :
A. W is +ve
B. ΔH is zero
C. $\Delta S_{g a s}$ is +ve
D. ΔG is + ve

Answer: A::B::D

- View Text Solution

8. Which of the following statement (s)is / are false:
A. $\Delta_{r} S$ for $\frac{1}{2} N_{2}(g) \rightarrow N(g)$ is positive
B. $\Delta G_{\text {system }}$ is always zero for a reversible process in a clossed system.
C. ΔG° for an ideal is a function of temperature and pressure.
D. enthropy of a closed system maximized at equilibrium

Answer: B::C::D

- View Text Solution

9. Assume ideal gas behaviour for all the gas considered \& vibrational degrees of freedom to be active.

Separated equimolar sample of $\mathrm{He}, \mathrm{H}_{2}, \mathrm{SO}_{2} \& \mathrm{CH}_{4}$ were subjected to a two step process as mentioned.

Initially all are at same state of tempreature \& prssure.
Step-I \rightarrow All undergo reversible adiabatic expansion to attain same final volume, which is
double the original volume thereby causing the decreases in their temperature .

Step -II \rightarrow After step I all are given appropriate amount of heat isochorically to restore the

Mark the correct option(s).
A. Due to step -l only, the decrease in the tempreature will be maximum for CH_{4}
B. During step II, heat given will be maximum for CH_{4}
C. There will be no change in internal energy for any of the gas after both the steps of process are completed.
D. The P-V graph of $\mathrm{CH}_{4} \& \mathrm{SO}_{2}$ will be same.

Answer: B::C

- View Text Solution

10. The normal boiling point of a liquild 'A' is $350 \mathrm{~K} . \Delta H_{\text {vap }}$ to be normal point is $35 \mathrm{~kJ} / \mathrm{mo} \leq$. Pick out the correct statement(s). (Assume $\Delta H_{\text {vap }}$ to be independent of pressure).
A. $\Delta S_{\text {vaporisation }}>10 \mathrm{~J} / \mathrm{K} /$ moleat 350 K and 0.5 atm
B. $\Delta S_{\text {vaporisation }}<0$ at 350 K and 0.5 atm
C. $\Delta S_{\text {vaporisation }}<100 \mathrm{~J} / \mathrm{K} /$ mole at 350 K and 2 atm
D. $\Delta G_{\text {vaporisation }}>0$ at 350 K and 2 atm

Answer: A::B::C::D

- View Text Solution

11. Select the correct statement(s).
A. For the equuilibrium pressure is constant
B. For equilibrium temperature is constant
C. For equilibrium $\left(\frac{\partial G}{\partial n}\right)_{P, T}$ is constant
D. For equilibrium pressure \& temperature is variable .

Answer: A: $\mathrm{B}:: \mathrm{C}$

- View Text Solution

Exercise 3

1. Predict sigh of work done in following reactions at constant pressure.

- View Text Solution

2. The gas is cooled such that it loses 65 J of heat. The gas contracts as it cools and work done on the system equal to 20 J is excharged with the surrounding. What are q, w and ΔU ?

- View Text Solution

3. The enthalpy of combustion of glucose is- $2808 \mathrm{kJmol}^{-1}$ at $25^{\circ} \mathrm{C}$. How many grams of gluc

- Watch Video Solution

4. When a system is taken from state A and B along the path $A C B, 80 J$ of heat flows into the system and the system does 30 J of work.
(a) How much heat flows into the system along path ADB if the work done by the system is 10 ?
(b) When the system is returned from state B to A along curved path, the work done on the system is 20 J. Does the system absorb or liberate heat, and how much ?
(c) If $U_{D}-U_{A}=40 J$, find the heat absorbed in the process AD and DB

- View Text Solution

5. Five moles of an ideal gas at 300 K , expanded isothermally from an intinal pressue of 4 atm to a final
pressure of 1 atm against a cont. ext pressure of 1 atm . Calculate $q, w, \Delta U \& \Delta H$. Calculate the corresponding of all if the above process is carried out reversibly.

- View Text Solution

6. Find the work done when one mole of the gas is expanded reversibly po and isothermally from 5 atm to 1e atm at $25^{\circ} C$.

- View Text Solution

7. Two mole of ideal diatomic gas $\left(C_{\mathrm{v}, \mathrm{m}}=5 / 2 R\right)$ at 300 K and 5 atm expanded irreversly \& adiabatically to a final pressure of 2 atm against a constant pressure of 1 atm. Calculate $\mathrm{q}, \mathrm{w}, \Delta H \& \Delta U$.

- Watch Video Solution

8. Calculate the work done the system in a irreversible (single step) adiabatic expansion of 1 mole of a polyatomic gas $(\gamma=4 / 3)$ from 300 K and pressue 10 atm to 1 atm .
9. 1 mole of CO_{2} gas as at 300 K is expanded under reversible adiabatic condition such that its volume becomes

27 times.

- Watch Video Solution

10. One mole of an ideal monoatomic gas is carried through the reversily cycle of the given figure consisiting
of step A, and C and involving state 1,2 and 3 . Fill in the blank space in the the table given below assuming reversible steps.
11. One mole of an ideal monoatomic gas is put throught reverslible path as show in figure .Fill in the blank in the table given below :

D View Text Solution

12. One mole of a prefect put throught a cycle consiting of the following three reversible steps :
(CA) Isothermal comoression from 2 atm and 10 litres to 20 atm and litre.
(AB) Isobaric expansion to return the gas to the origanl volume of 10
litre with T going from T_{1} to T_{2}
(BC) Cooling at constant volume to bring the gas to the origanl pressure It brgt and temperature .

The steps are shown schematically in the figure shown.
Calculate T_{1} to T_{2}.
(b) Calculate 'DeltaU, q and will be in calories, for each step and for the cycle.
13. Water expands when it freezes. Determine amount of work done in joules, when a system consisting of

1. $0 L$ of liquid water fressze under a constant pressure of 1.0 atm and froms $1.1 L$ of ice .

- Watch Video Solution

14. Lime is made commercially by decomposition of limestonese, CaCO_{3}. What is the change in intremal energy when 1.00 mole of soild $\mathrm{CaCO}_{3}(\mathrm{~V}=34.2 \mathrm{ml})$ absobs 177.9 kJ of heat and decomposese at
$25^{\circ} \mathrm{C}$ agnist a pressure of 1.0 atm to give solid $\mathrm{CaO} .($ Volume $=16.9 \mathrm{ml})$ and $\mathrm{CO}_{2}(\mathrm{~g})(\mathrm{V}=24.4 \mathrm{~L})$.

- Watch Video Solution

15. The enthy change for the reaction of 50 ml of ethylene with 50.0 ml of H_{2} at 1.5 atm pressure is $\Delta H=-0.31 \mathrm{KJ}$. What is the ΔU ?

- Watch Video Solution

16. What is ΔU when 2.0 mole of liquid water vaporise at $100^{\circ} C$? The heat of vaporistaion, ΔH vap. of water at $100^{\circ} \mathrm{C}$ is $40.66 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

17. If 1.0 kcal of heat is added to 1.2 L of O_{2} in a cyclinder of constant pressure of 1 atm, the volume increase to 1.5 L . Calculate ΔU and ΔH of the process.

- Watch Video Solution

18. A heat engine absorbs 760 kJ heat from a source at 380 kK . It rejects (1) 650 kJ , (ii) 560 kJ , (iii) 504 kJ of heat to sink at 280 K . State which of these represent a reversible , an irreversible and an impossible cycle .

- Watch Video Solution

19. The efficiency of a carnot cycle is $1 / 6$. On decreasing the tempertaure of the sink by $65^{\circ} C$, the efficiency increases to $1 / 3$.Calculate the tempretaure of source and sink.

- Watch Video Solution

20. A Carnot cycle has an efficiency of 40%. Its low temperature resrvoir is at $7^{\circ} C$. What is the temperature of source?

- Watch Video Solution

21. One mole of $\mathrm{NaCl}(\mathrm{s})$ on melting observed 30.5 kJ of heat and its entropy is increased by $28.8 \mathrm{JK}^{-1}$. What is the melting point of sodium chloride?

- Watch Video Solution

22. Oxygen is heated from 300 to 600 at a constant pressure of 1 bar.

What is the increases in molar
entropy ? The molar heat capacity in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ for the O_{2} is (Given in
2=0.7)
$C_{P}=10+10^{-2} T-10^{6} T^{2}$

- Watch Video Solution

23. Calculate ΔS_{r}° at 298 K of,
(i) $\mathrm{Na}(\mathrm{s})+\frac{1}{2} \mathrm{CL}_{2}(g) \rightarrow \mathrm{NaCl}(s)$,
(ii) $\frac{1}{2} \mathrm{~N}_{2}(s)+2 \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{Cl}_{2}(g) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
(iii) C(graphite) to C(diamond).

The values of S° of $\mathrm{Na}, \mathrm{Cl}_{2}, \mathrm{NaCl}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}, \mathrm{H}_{2}$,"diamond\& graphite are" $51,223,72,95,192$,
$131,2.43 \& 5.69 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively .

- View Text Solution

24. The standard enthaply for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is -285.76 kJ at 298 K.
Calculate the value of ΔH at 373 K . The molar heat capcities at constant pressure $\left(C_{P}\right)$ in the given temperature range of $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are respectively 38.83,16 and $75.312 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

- Watch Video Solution

25. Methane (Considered to be an ideal gas) initially at $25^{\circ} \mathrm{C}$ and 1 bar pressure is heated at constant
pressure until the volume has dobbled. The variation of the molar heat capacity with absolute temperature
is given by $C_{P}=20+0.001 T$
where C_{P} is in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Calculate molar (a) ΔH (b) ΔU.

- Watch Video Solution

26. Calculate the free eneryg change at 298 K for the reaction , $B r_{2}(l)+C l_{2}(g) \rightarrow B r C l(g)$. For the reaction $\Delta H^{\circ}=29.3 k J \&$

- Watch Video Solution

27. Animals operate under conditons of constant pressure and most of the process tht maintain life are isothermal (in a broad sense). How much energy is available for sustaining this type of muscular and nervous activity from the combustion of 1 mol of glucose molecules under standard conditons at $37^{\circ} \mathrm{C}$ (blood temperature) ? The entropy change is $+182.4 \mathrm{JK}^{-1}$ for the reaction stated above
$\Delta H_{\text {combustion }}$ [glucose] $=-2808 \mathrm{KJ}$
28. The entropies of $H_{2}(g)$ and $H(g)$ are 130.6 and $114.6 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ respectively at 298 K . Using the data given below calculate ΔH° (in kJ/ mol) of the reaction given below.

$$
\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{~g}), \Delta G^{\circ}=406.62 \mathrm{~kJ} / \mathrm{mol}
$$

- Watch Video Solution

29.5 mole $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at 373 K and 1 atm is converted into $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at 373 K and $5 \mathrm{~atm} . \Delta G$ for this process is [Given: $\mathrm{R}=2 \mathrm{cal} / \mathrm{K}-\mathrm{mol}]$

- Watch Video Solution

30. The K_{P} for reaction $A+B \Leftrightarrow C+D$ is 1.34 at $60^{\circ} C$ and 6.64 at $100^{\circ} \mathrm{C}$. Determine the standard free energy change of this reaction at each temperature and ΔH° for the reaction over this range of temperature?
31. For the reaction at 298 K
$A(g)+B(g) \Leftrightarrow C(g)+D(g)$
$\Delta H^{\circ}=-29.8 \mathrm{Kcal}, \Delta S^{\circ}=-0.1 \mathrm{Kcal} / \mathrm{K}$
Calculate ΔG° and K .

- Watch Video Solution

32. The equilibrium constant of the reaction
$2 C_{3} H_{6}(g) \Leftrightarrow C_{2} H_{4}(g)+C_{4} H_{8}(g)$ is found to fit the expression $I n K_{e q}=-1.04-\frac{1088}{T / K}$
(where T / k is temperature expressed in Kelvin scale)
Calculate the standard reaction enthalpy and entrophy at 400 K.

- View Text Solution

33. 3 moles of ideal gas $X\left(C_{p, m}=\frac{5}{2}\right)$ and 2 moles of ideal gas $Y\left(C_{p, m}=\frac{7}{2} R\right)$ are taken in vessa and compressed reversibly and adiabitically, during this process temperature of gaseous mixture increased
from 300 K to 400 K . Calculate change in internal energy (ΔU) in cal of gaseous mixture
(Given $R=2 \mathrm{cal} / \mathrm{mol} . \mathrm{K}$)

D View Text Solution

34. One mole of an ideal monoatomic gas $\left(C_{V \cdot M}=1.5 R\right)$ is subjected to the following sequence of steps:
(a) The gas is heated reversibly at constant pressure of 1 atm from 298 K to 373 K .
(b) Next, the gas is heated reversibly and isothermally to double its volume.
(c) Finally , the gas is cooled reversibly and adiabatically to 308 K .

Calcuated $\mathrm{q}, \mathrm{w}, \Delta H$ for the overall porcess.

- View Text Solution

35. Pressure over 1000 ml of a liquid is gradually increases from 1 bar to 1001 bar under adiabitic conditions. If the final volume of the liquid is 990 ml , calculate ΔU and ΔH of the process, assuming linear variation of volume with pressure.

- View Text Solution

36. One mole of a monoatomic gas behving ideally is used as
working substance in an engine working in the cycle as shown in the figure. The process $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA are respectively reversible isobaric, adiabatic isochoric and isothermal .The ratio of maximum to volume and temperature during the cycle is $8 \sqrt{2}$ and 4 respectively. If the maximum T is 800 K and $\gamma=5 / 3$. Calculate ΔE (in kJ$)$ for the process BC .

Given $R=8.3 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$.
37. 2 mole of ideal momoatmic gas was subjected to reversible adiabatic compression from initianl state of
$\mathrm{P}=1$ and $\mathrm{T}=300 \mathrm{~K}$ till the pressrue is $4 \sqrt{2}$ atm and temperature is TK . The gas is then subjected
to reversible isothermal expansion at $\mathrm{T} K$ till the internal pressure is one atm. The gas is now isobarically cooled to attain initial state. Find $W_{\text {Net }}$ (in calorie) for whole process . [Use $\ln 2=0.7]$

- View Text Solution

38. one of an ideal gas is expanded isothermally at 298 K unit its volume is tripled. Find the values of

Delat $S_{\text {gas }}$ and $\Delta S_{\text {total }}$ under the following conditions.
(i) Expansion is carried out reversiby .
(ii) Expansion is carried out irreversibly where 836.8J of heat is less
absorbed than in (i)
(iii) Expansion is free.

- View Text Solution

39.10 g of neon initinally at a pressure of 506.625 kPa and temperature of 473 K expand adiabatically to a pressure of 202.65 kPa . Calculate entropy of the system and of total entropy change for the following
ways of carrying out is this expamsion.
(i) Expansion is carried out expansion .
(ii) Expansion occurs aganist a constant external pressure of 202.65 kPa .
(iii) Expansion is a free expansion.

- View Text Solution

40. The enthalpy change for vapouriztion of liquid ' A ' at 200 K at 1 atm is $22 \mathrm{~kJ} / \mathrm{mol}$. Find out $\Delta S_{\text {vapourisation }}$
for liquid 'A' at 200 K ? The normal Boiling point of liquid 'A' is 300 K ?
$A(l)[200 \mathrm{~K} 1 \mathrm{~atm}] \rightarrow A(\mathrm{~g})[200 \mathrm{~K} 1 \mathrm{~atm}]$
Given: $C_{p, m}(A, l)=40 \mathrm{~J} / \mathrm{mol}-K$
Use, $\ln (3 / 2)=0.405$

- View Text Solution

41. At $298 \quad \mathrm{~K} \quad, \quad \Delta H_{\text {combustio }}^{\circ} \quad$ (sucrose)
$=-5737 \mathrm{KJ} / \mathrm{mol} \& \Delta G_{\text {combustio }}^{\circ}($ sucrose $)$
$=$

Estimate additional non- PV work that is obtained by raising temperature to 310 K ,

Assume $\Delta_{r} C_{p}=0$ for this temperature change

- View Text Solution

42. Compute $\Delta_{r} G$ for the reaction
$\mathrm{H}_{2} \mathrm{O}(l, 1, a t m, 323 \mathrm{~K}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}, 1 \mathrm{~atm}, 232 \mathrm{~K})$
Given
that
$\Delta_{\text {vap }} H a t 373 \mathrm{~K}=40.639 \mathrm{kJol}^{-1}, C_{p}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{l}\right)=75.312 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$,

$$
C_{p}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{~g}\right)=33.305 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} .
$$

- View Text Solution

43. Given are the following standard free energies of formation at 293 K .
$\Delta_{f} G^{\circ} / k J m o l^{-1}$ $\mathrm{CO}(g)$
$\mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\begin{array}{cccc}-137.17 & -394.36 & -228.57 & -237.13\end{array}$
H_{2}
(a) Find $D \delta_{r} G^{\circ}$ and the standard equilibrium constant K_{p}^{0} at 298 K for the reaction

$$
\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

(b) If $\mathrm{CO}, \mathrm{CO}_{2}$ and H_{2} are mixed so that the partical pressure of each is 101.325 kPa and the mixture is
brought into contact with excess of liquid water, what will be the partial pressure of gas when
equilibrium is attained at 298 K . The volume available to the gases is contant.

- View Text Solution

