©゙doubtnut
 India's Number 1 Education App

MATHS

FOR IIT JEE ASPIRANTS OF CLASS 12 FOR MATHS

MASTER PRACTICE PROBLEM

Match The Column

1. On LHS certain observations regarding a moving elevator are given. On RHS possible deductions about motion of elevator are given. More than

- View Text Solution

2. Trajectory of a particle in a projectile motion is given by $y=x-\frac{x^{2}}{80}$ where x and y are in meters. Match the column-1 and column- 2 .

Column-II
(A) x coordinate at height of 15 m
(P) 20 m
(B) vertical distnce of particle from
point of projection at $x=100 \mathrm{~m}$
(C) Horizontal range
(R) 60 m
(S) 25 m

- Watch Video Solution

3. A block is placed on a rough horizontal surface having coefficient of friction mu. A variable force $F=k t,\left(0<t<\frac{m g}{k \sin \theta}\right.$ acts on it at an angle θ to

Quantities

(A) Normal reaction
(B) Friction
(C) Icoeleration
(D) leloct

Variation as a function of time
(P)

(Q)

(S)

4. Figure shows a block pressed against a rough vertical wall with a force F as shown in side view. Column I shows angle at which force F is applied and column -ll gives information about corresponding friction force. Match them

$$
\begin{aligned}
& F=100 \mathrm{~N} \\
& \mathrm{~m}=7.5 \mathrm{~kg} \\
& \mu=0.1
\end{aligned}
$$

- View Text Solution

5. A bob tied to an ideal string of length I is released from the horizontal position shown. A peg P whose height is adjustable, can arrest the free
swing of the pendulum, as shown in Figure.

- View Text Solution

6. Initially springs are in natural length. An application of external varying force F causes the block to move slowly towards the wall, on smooth floor by a distance x .

7. In the system shown, there is some friction at all surfaces but it is not sufficient to prevent slipping. Match the quantities in column I with their possible direction (s) as shown in column II.

Column I
(A) Acceleration of A
(B) Net force applied by A on B
(C) Acceleration of A relative to B
(D) Net ferce applied by ground on B

Column II

8. Two men of mass 60 kg and 80 kg stand on a plank of mass 20 kg Both of them can jump with a velocity of $1 \mathrm{~m} / / \mathrm{s}$ relative to the plank \ln each event shown in column-I, match the velocity of plank after the event, given in column II

(, Column-I, , Column-II), ((A), Ram alone jumps to the left, , $(P)-\frac{17}{40}$

"(D)",underset("that shyam jumps to right")"Ram jumps to left and after"," (S)-1/8m//s):\}

- View Text Solution

9. In each situation of column - a uniform disc of mass m and radius R rolls on a rough fixed horizontal surface as shown At $t=0$ (initially)the
angular velocity of disc is omega_(0) and velocity of centre of mass of disc is $v_{-}(0)$ (in horizontal direction). The relation between $v_{-}(0)$ and ω_{0} and the initial sense of rotation is given for each situation in column-I then match the statement in column-I with the corresponding results in column-II.
(A)

(B)

(C)

(C)

(Q) The kinetic energy of disc after it starts rolling without slipping is !ess than its initial kinetic energy.
(R) In the duration disc rolls with slipping, the friction acts on disc for sometime to right and for sometime to left.

Column-II
(P) The angular momentum of disc about point A (as shown in figure remains conserved.)

- View Text Solution

10. A spool is lying on a rough horizontal surface. In the following question. Some situations, are given in column I and some conclusions or
relevent data in column-II Match the columnI with column II
Column-I
Column- 11
(P) $a_{a m}$ istomardsleft
(B)

(民) am istowards right
(R) friction a intowards left
(S) friction a lowardsrighi

- View Text Solution

11. A copper rod (initially at room temperature $20^{\circ} \mathrm{C}$) of non-uniform cross section is placed between a steam chamber at $100^{\circ} \mathrm{C}$ and ice-water chamber at $0^{\circ} C$. A and B are cross sections are as shown in figure. Then match the statements in column - with results in columns-II using comparing only between cross section A and B. (The mathematical expressions in column-I have usual meaning in heat transfer).

Column-I

(A) initially rate of heat flow $\left(\frac{d Q}{d t}\right)$ will be
(B) At steady state rate of heat flow $\left(\frac{d Q}{d t}\right)$ will be
(C) At steady state temperature gradient $\left|\left(\frac{d T}{d x}\right)\right|$ will be
(D) At steady state rate of change of temperature $\left(\frac{d T}{d t}\right)$ at a certain poir

- Watch Video Solution

12. A satellite is a circular orbit radius 7000 km around the Earth. If it is transferred to circular orbit of double the radius,

Column I

(A) Angular momentum
(B) Area of Earth covered by satellite signal
(C) potential energy
(D) kinetic energy

Column II
(P) increase.
(Q) decreases.
(R) becomes double.
(S) becomes half.
13. Shown below is a cylinder of radius R floating in vessel containning liquids A and B Neglecting atmospheric pressure match the quantities mentioned in column-I with corresponding expression in column-II.

Column-I
(A) Net force exerted by liquid A of density rho on the cylinder
(B) Net force exerted by liquid B of
density 2 rho on the cylinder
(C) Net force exerted by liquids A and B on the left half of the curved part of cylinder
(D) Net force exerted by liquids
A and B on the cylinder

Column-II
(P) $9 \rho g R h^{2}$
(Q) $\pi \rho g R^{2} h$
(R) $4 \pi \rho g R^{2} h$
(S) $3 \pi \rho g R^{2} h$

- View Text Solution

14. A sine wave $\mathrm{y}=\sin (2 \pi x-2 \pi t+\pi / 3)$ is propagating in the medium. Match the description of the motion of particles of the medium with entries in columnl

Column-I
Column-II
(A) $x=\frac{1}{3} \mathrm{~m}, \mathrm{t}=\frac{1}{3} \mathrm{sec}$
(B) $x=\frac{1}{3} \mathrm{~m}, \mathrm{t}=1 \mathrm{sec}$
(C) $x=1 \mathrm{~m}, \mathrm{t}=\frac{1}{3} \mathrm{sec}$
(D) $x=1 \mathrm{~m}, \mathrm{t}=1 \mathrm{sec}$
(P)Velocity is in positive y direction
(Q)Velocity is in negative y direction
(R)Particle is stationary
(S)Particle has positive displacement
(T)Particle has negative displacement

- Watch Video Solution

15. A small pulse travelling with speed v in a string is shown at $\mathrm{t}=0$ moving towards free end. Select the shape of string column-II at moments shown
in column-I

Column-I

(A) $i=\frac{L}{v}$
(B) $t=\frac{2 L}{v}$
(C) $t=\frac{3 L}{v}$

Column-II

(P)

(Q)

(R)
(S)

- View Text Solution

16. The graphs show the standing wave on a string at two successive instants of time t_{1}, t_{2}.A,B,C are points on the string (S_(0) is the maximum displacement amplitude of the standing wave) column-II gives observations about net mechanical energy for the time interval between t_(1) \& t_(2) Match the column

The string is straight here

Column-I Column-II
(A) A
(P)kinetic energy at this element is increasing
(B) B
(Q)Energy is flowing towards right through this point
(C) C
(R)Energy is flowing left through this point
(S)No net energy ever crosses this point

- View Text Solution

17. Sound is travelling in a long tube towards right and the graph of excess pressure variation Vs position (at some instant) is given below.

Match

velocities in column-I with column-II $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}$ are medium particles inside the tube.

Column-I
(A) velocity is towards right
(B) velocity is towards left
(C) velocity is zero
(D) Speed is maximum
(P)P
(Q) Q
(R)R
(S)S
(T)T

- View Text Solution

18.

Observers O_{1} and O_{2} are at rest and the wall is moving with velocity V_(w) Cart is moving with constant velocity $\mathrm{V}_{-}(\mathrm{s})$ towards wall. The source of sound is in the cart, the original frequency of the wave is f. sound has velocity C w.r.t. ground (medium is stationary) Then match the column with column-II

Column-I

(A) Wavelength received by O_{1} directly from cart
(B) Wavelength received by O_{2} directly from cart
(C) Wavelength received by driver of the cart after reflection from wall

Column-II
(P) $\left(\frac{C-V_{w}}{C+V_{w}}\right) \frac{\left(C-V_{s}\right.}{f}$
(Q) $\frac{C+V_{s}}{f}$
(R) $\left(\frac{C+V_{w}}{C-V_{w}}\right) \frac{\left(C-V_{s}\right.}{f}$
(D) Wavelength received by O_{1} after reflection from wall
(S) $\frac{C-V_{s}}{f}$
(T)None of these

- View Text Solution

19.

The diagram shows plane wavefronts for sound wave travelling in air towards right Each of these wavefronts represent successive pressure maxima for the pressure wave. Initally the source S , observer O and medium are all at rest. The source is a large plane diaphragm and observer is a detector Wave fronts being considered in column-II have been emitted after the action in column-II has taken place.
Column-I
Column-II
(A) Source starts moving towards right
(B) Air starts moving towards right
(C) Observer and source both move towards left with same speed
(D) Source and medium air both move towards right with same speed
(P)distance between any two
(Q)distance between any two
(R)the time needed by sound point A to B in space will incre
(S)time needed by sound to n point A to B in spce will decre
(T)frequency received by obs

- View Text Solution

20. Entries in column I consist of diagrams of thermal conductors. The type of conductor \& direction of heat flow are listed below Entries in column-II consist of the magnitude of rate of heat flow belonging to any of the entries in column I if temperature difference in all the cases is
($T_{1}-T_{2}$) then match the columns

Columal

Thuen cilodrical
whell heat How along axis

Ihick spherical shell, radial flos

Column II

(S) $6 \pi k_{0} R\left(T_{1}-T_{2}\right)$
(Q) $\frac{\pi k_{0} R}{3 \ln 2}\left(T_{1}-T_{2}\right)$

$$
\therefore,-1,1, T)
$$

(C)

This uly frice
shell racoul in in
21. In column-I some situations have been described and in column-II corresponding graph is given. Match the entries in column-I with appropriate entries in column-II.

```
(r,luma-1
```

(is) Atiallisthresnup ori rough arclined plane. it r'lt: up witheut slipping. Ifuring its upward irifirn graph between angular speed and time.
(f;) $\quad 1$ and $T_{2}\left(T_{1}>T_{2}\right)$ is the temperature maintained at in's ends of lagged rod of uniform cross-sectional irea In steady state variation of temperature of a point on the rod with distance from higher iemperature end.
(C) A uniform rod is rotated in horizontal plare about one of its end. Variation of strain developed in rod with distance from axis of rotation.

Column-II

(P)

(Q)

(R)

(S)

- View Text Solution

22. We have three solid bodies of same material A rightarrow a solid cube of edge length 'r' Brightarrow a solid sphere of radius 'r' and C rightarrow a solid hemisphere of radius 'r' In coloumnl certain situation related to these bodies are given Match the appropriate outcome indicated in

Column-I

(A) All 3 bodies are heated to some temperature of 350 k and kept in a roo 300 k Then rate of fall of temperature with time
(B) All 3 bodies are kept on level ground

C is kept with base on ground height of centre of mass from ground
(C) All 3 bodies are rotated about an axis passing through their repective for cube and hemisphere is perpendicular to the fase and base respectively N

- View Text Solution

23. In each situation of column-I a process A rightarrow B rightarrow C is given for an ideal gas. Match each situation of column-I with correct result in column II $\begin{array}{ll}\text { (I) } & \text { (P) Temperature increases continuously } \\ \text { (D) } & \text { (R) Temperature first decreases \& then increases }\end{array}$
24. A spherical metallic conductor has a spherical cavity. A positive charge is placed inside the cavity at its centre. Another positive charge is placed

- View Text Solution

25. Column I shows graphs of electric potential V versus x and Y in a certain region for four situations Column II shows the range of angle which the electric field vector makes with positive x-direction.

Column I
(V versus x)
(V versus y)
(A)

(C)

(D)

(P) $0 \leq \theta<45^{\circ}$
(Q) $45^{\circ} \leq \theta<90^{\circ}$

Column II
(R) $90^{\circ} \leq \theta<135^{\circ}$
(S) $135^{\circ} \leq \theta \leq 180^{\circ}$
26. A circuit involving five ideal cells, three resistance ($R_{-}(1), R_{-}(2)$ and 200mega) and a capacitor of capacitance $C=1 \mu F$ is shown Match the conditions in column-I with results given in Column-II [Assuming circuit is in steady state]

Column-I
(A) K_{2} is open and K_{1} is in position C
(B) K_{2} is open and K_{1} is in position D
(C) K_{2} is closed and K_{1} is in position C
(D) K_{2} is closed and K_{1} is in position D

Column-II
(P)Potential at point A is
(Q)Current through R_{1}
(R)Current through R_{2}
(S)Charge on capacitor is

D View Text Solution

27. In the circuit, both capacitors are identical. Column-I indicates action done on capacitor and Column II indicates effect on capacitor 2. Select
correct alternative.

〔:(,"Column-l","Column-II"),("(A)","Plates are moved further apart"," (P)Amount of charge on left plate increases"),("(B)","Area increased"," (Q)Potential difference increases"),("(C)","Left plate is earthed","(R)Amount of charge on right plate decreases"),("(D)","It's plates are short circuited",""
(S)None of the above effects"):\}'

- View Text Solution

28. Some events related to a capacitor are listed in column-I Match these events with their effect (s) is column-II

〔:(,"Column-I","Column-II"),("(A)","Insertion of dielectric while battery remain attached","(P)Electric field between plates changes"),(" (B)","Removal of dielectric while battery is not present","(Q)Charge present on plates changes"),("(C)","Slow decrease in separation between plates while battery is attached","(R)Energy stored in capacitor
increases"),("(D)","Slow increase of separation between plates while battery is not present","(S)Work done by external agent is positive"): $\}^{\prime}$

- View Text Solution

29.

Column-I

(A) Plates of an isolated charged parallel

Plate air core capacitor are slowly pulled apart
(B) A dielectric is slowly inserted inside an isolated and charged parallel air cored capacitor to completely fill the space between plates
(C) Plates of a parallel plate capacitor connected across a battery are slowly pulled apart
(D) A dielectric slab is slowly inserted inside a parallel plate capacitor co a battery to completely fill the space between plates

- View Text Solution

30. Column I gives physical quantities based on a situation in which an ideal cell of emf V is connected across a cylindrical rod of uniform crosssection area and conductivity (sigma) as shown in figure E , J, phi and I are electric field at, current density through, electric flux through and current
through shaded cross section repectively as shown in figure. Physical quantities in column-II are equal to those in column i Match the expression in Column I with the statement in Column II

Column-I Column-II
(A) $\frac{\phi}{i}$
(P)Conductivity of rod
(B) $\frac{E}{J}$
(Q) Resistance of rod
(C) $\sigma \phi V$
(R)Resistivity of rod
(D) $\frac{V}{\sigma} \phi$
(S)Power delivered to rod

- View Text Solution

31. A charged particle having non zero initial velocity is subjected to certain conditions given in column -I column-II gives possible trajectories of the particle Match the conditions in column-I with the results in column-II

Column-I
(A) In only uniform electric field
(B) in only uniform magnetic field
(C) in uniform magnetic and uniform electric field
(D) Subjected to a net force of constant magnitude

Column-II
(P)the path of the
(Q)the path of the
(R)the path of the
(S)the path of the
(T) the path of the

- View Text Solution

32. Column-I shows some charge distributions and current distributions accompanied by their descriptions Column-II shows the instantaneous characteristic Here alpha symbolizes the system on which results are to
be obtained.
(A)

Column I

Circular ring (α) half positive and other half negative placed in a uniform electric field, with centre at origir.
(B)

Dipule (α) is placed infront of a long uniformly negatively charged wire parallel to x-axis, such that $\overrightarrow{\mathrm{p}}$ is perpendicular to \vec{r} and dipole is kept parallel to z-axis

A square current carrying coil (α) is placed in $x y$-plane with centre at origin and sides parallel to x-axis and y-axis, and a long wire placed parallel above square on z -axis and parallel to x -axis.
(D)

A circular current coil (α) with one half in yz-plane other 'ralf in $x z$-plane, placed in a uniform magnetic field in x-direction.

Column II
(P) Net force on α is zero.
(Q) Net force on α have no x-component.
(R) Net torque on α is along x-axis
(S) Net torque on α is zero.
(T) Direction of magnetic dipole moment or electric dipole moment is in $x-y$ planc.

- View Text Solution

33. Column I shows four current configurations Match each entry of
origin has positive component

Column I

Column II
|tve component (0) of magnetic field at origin|
(A)

(P) x
(Q) y
$(\mathrm{K}) \mathrm{z}$
(S) nonc
34. in column - I certain situations are shown Column-II has different values of phase difference Match them [take $\pi^{2}=10$ wherever required]

Column-I

(A) Phase difference hetween current through circuit and voltage across source

(B) Two pendulum of length lm and tan w.:n
(B) Twe pendulum of length Im and tin shat
oscillating in ame phase the phase ditionce
betucen them fter I se is betucen them after I see 1 .

1. A progressive wave of frequency 100 Hz is travelling in a taut string with tension 100 N and mass/length $10 \mathrm{gm} / \mathrm{m}$. The phase difference between two points at a distance of 0.5 m .

Column-ll
(P) $\frac{\pi}{3}$

(-) View Text Solution

35. Column-I describe the value of variables indicated in column-II Assume potential energy in gravitation and electrostatics to be zero at infinity if the quantity mentioned in columnll is a vector positive and negative refer to the direction and increasing or decreasing refer to magnitude Match
the appropriate entries.
(A) Pobllive and increatime:

He יjetm
(ii) Posilive and decreasing.
(C) Negalive and incicasing.
(D) Negative and decreasing.

Column-II
(P) Λ bxaly of mass m is projected upward from surface of a planct. The gravitational potential energy of
(())

In the situation shown, energy of the magnetic field just after closing.
(R) An air bubble is released from middle of a collumn of viscous liquid. Upward direction is assumed to be positive. The velocity of the air bubble
(S) A point source is moving along the principal axis of a stationary convex lens. The direction of velocity of the source is positive. The velocity of image
(T) Two balls of opposite charge are released in vacuum. As time passes, the ir electiostatic potential eriergy

- View Text Solution

36. A homogeneous magnetic field B is perpendicular to a sufficiently long
trach of width I which is horizontal A frictionless conducting resistanceless rod of mass m stradless the two rails of the track as shown
in the figure. Entire arrangement lies in horizontal plane. For the situation suggested in column-II match the appropriate entries in column-I the rails are also resistancesless.

(15)

As, a hanged aphater. The system has no resistance. The ind is initially at rest.
(Q) The rod moves with a constant velocity after a long time.
(R) After a certain time interval rod will change its direction of motion.
(() \triangle is an inductor with initial current i_{0}. It is having no resistance.

(D) \mathbf{A} is a resistance. The rod is projected to the right with a velocity V_{0}
(S) If a constant force is applied on the rod to the right, it can move with a constant velocity.
(T) The rod stops after some time in absence of an external force.

- View Text Solution

37. A spherical fish bowl of radius R is placed in front of a plane vertical mirror (M) The thickness of the wall of the fish bowl is very thin The
centre (C) of the spherical bowl is at distance of $3 R$ from the plane mirror.
The bowl is filled with water and contains a fish (F) Fish(F) is at a distance of R from the centre of the spherical bowl as shown in the figure Refractive index of water is $4 / 3$ two surfaces are indicated in the bowl as first surface (1) and second surface(2)

Column-I
Optical Event
(A)Refraction at first surface
(B)Refraction at second surface after reflection from mirror
(C)Refraction at first surface after reflection
from mirror and refraction from second surface

ColumnNature o
(P)Virtu
(Q)Real
(R)Magn
(S)Dimir
38. Consider the situation shown in column-I a real object is moving towards a fixed optical component or an optical component is moving towards a fixed object. Match the possible direction and magnitude to velocity of image as shown in Column-II (All velocities in column-II are equal to $v_{-}(0)$)

Column-I
(A)

Colame-II
(P) \longleftarrow
$(\mathrm{Q}) \longrightarrow$
(R) More than v_{0}
(C)

(B)
(S) Less than v_{0}
(T) Equal to v_{0}

- View Text Solution

39. Light is incident at surface PQ of prism as shown in column I then match the column I with column II (Surrounding medium is air in all

cases)

(A)

Column II

 Surface (I)
(B)

(Q) I.ight emerges nurmally from the surface $Q R$
(R) Light emerges parallel to surface (I)R
(S) Wheri light ray passes throuyh the prism it is parallel to the base $P R$

- View Text Solution

40. An extended object is moving in front of concave mirror as shown in figure On L.H.S velocity of object and position is given On R.H.S some properties of image and its velocity is given Consider velocity along x-axis only

Object

(A) +ve velocity and object is between focus and centre of curvature
(B) -ve velocity and object is between focus and pole
(C) -ve velocity and object is beyond centre of curvature
(D) -ve velocity and object is virtual

D View Text Solution

41. A bird in air is diving vertically over a tank with speed $6 \mathrm{~cm} / / \mathrm{s}$ Base of the tank is silvered A fish in the tank is rising upward along the same line with speed $4 \mathrm{~cm} / / \mathrm{s}[$ Take:mu_(water)=4//3]

Column-I

Colum
(A) Speed of the image of fish as seen by the bird directly
(B) Speed of the image of fish formed after reflection from the mirror as seen by the bird
(C) Speed of image of bird relative to the fish looking upwards \quad (R) 9
(D) Speed of image of bird relative to the fish looking
42. In a standard Yound's Double Slit Experiment light of wavelength $\lambda=6000 A$ is used screen distance (D) $=1 \mathrm{~m}$ and slit separation (d$)=0.5 \mathrm{~mm}$ intensity of light on screen emerging from slits are individually I_(0) and 4I_(0) Column I indicates distance of certain point P on screen from central maxima Match the columns

Column-I Column-II
(A) $y=2 \mathrm{~mm}$
(P)Intensity $=7 I_{0}$ at P
(B) $\mathrm{y}=2.2 \mathrm{~mm}$
(Q)Intensity $=3 I_{0}$ at P
(C) $y=2.6 \mathrm{~mm}$
(R)P lies between2 ${ }^{\text {nd }}$ minima and $3^{r d}$ maxima
(C) $\mathrm{y}=2.6 \mathrm{~mm}$
(S)P lies between $3^{r d}$ minima and $2{ }^{\text {nd }}$ maxima

- View Text Solution

43. A ray of light is incident on a thin film Two of the reflected rays are shown, and two of the transmitted rays are shown in figure. Consider phase difference by comparing them with the phase of incident ray on the film. Match statements about phase difference in column-I with the correct order of refractive indices in column -II

Column-I

(A) Rays a and b have an extra phase difference over and above that due to extra optical path caused by reflection at various interfaces
(B) Rays a and chave an extra phase difference over and above that due to extra optical path caused by reflection at various interfaces
(C) Rays a and d have an extra phase difference over and above that due to extra optical path caused by reflection at various interfaces
(D) Rays b and chave an extra phase difference over and above that due to extra optical path caused by reflection at various interfaces

- View Text Solution

44. Light from sources $S(|u|<|f|)$ falls on lens and screen is placed on the other side the lens is formed by cutting it alond principal axis into two equal parts and are joined as indicated in column II

Column I

(A) Plane of image moves tow ards screen if $|\mathrm{f}|$ is increased
(B) Imags, formed will be virtial
(C) Interference pattern can be obtained if screen is suitably positioned.

Cohemen 1
(P)

Small portion of each part near pole is removed. The remaining parts are joinec.
(Q)

I he two parts are separated slightiv.
li.ceap, is filled by opaque material
(R)

The two parts are separated slightly. The gap is filled by opaque material.
(S)

Small portion of each part near pole is removed. The remaining parts are joined.

- View Text Solution

45. Three physical quantities are listed in column I and their values are
listed in column II in random order Match the oppropriate quantities.

Column-I

(a) binding energy of heavy nuclei per nucleon
(b) X-ray photon energy
(c) Photon energy of visible light

- View Text Solution

46. Then choose the correct option in which matching is correct

Column-I

(A) Angular momentum of system is conserved about centre of circular path.
(B) Mechanical energy of system can increase for $1>0$.
(C) Kinetic energy of system reamins, constant.

Column-II

(P) System: An clectron revolving around nucleus in hydrogen atom in ground state. Event: A photon corresponding to first line of lyman series is incident on it just beforet $=0$ and is absorbed.
(Q) System : A ball.

Event: It is projected on a rough surface with some angular velocity at $\mathrm{t}=0$ as shown

(R) System: A small ball. It is attached to a cond passing through a hole on a frictionless horizontal surface and rotating as shown Event: The cord is slowly pulled inside th. an external agent at $^{\mathrm{t}} \mathrm{t}=0$.

(T) System: A charged ball is revoluige in a circular path made on a smooth horizontal table. Event : A uniform ragnetic field is switched on in vertically upward direction at $t=0$ which oradually increases in magnitude

- View Text Solution

47.

Column-I

(A) beta-rays
(B) y-rays
(C) absorption spectrum of Hydrogen
(D) X-rays

Column-II
(P)Continous energy distributi
(Q)Continuous energy distribu
(R)Continuous energy distribu
(S)Discrete energy distributior

- View Text Solution

48. Q is energy released in the decay $m_{-}(x)$ is atomic mass of parent nucleus $m_{-}(y)$ is atomic mass of daughter nucleus and $m_{-}(e)$ is mass of
elctron then match the following:
Column-I Column-II
(A) k capture $\quad(P) Q=\left(m_{x}-m_{y}\right) c^{2}$
(B) β^{-}decay
$(Q) Q=\left(m_{x}-m_{y}-m_{c}\right) c^{2}$
(C) β^{+}decay
$(R) Q=\left(m_{x}-m_{y}-2 m_{e}\right) c^{2}$
$(S) Q=\left(m_{x}-m_{y}+2 m_{e}\right) c^{2}$
