

MATHS

BOOKS - RS AGGARWAL MATHS (HINGLISH)

POLYNOMIALS

Solved Examples

1. Let $p(x) = x^2 - 2x - 3$. Find (i) p(3) and (ii) p(-1).

What do you conclude?

2. Find the zeros of the polynomial $2x^2 + 5x - 12$ and verify

the relationship between its zeros and coefficients.

3. Find zeroes of the polynormial
$$6x^2 - 3 - 7x$$

A.
$$x = \frac{5}{2}$$
 or $x = \frac{1}{3}$.
B. $x = \frac{3}{2}$ or $x = \frac{5}{3}$.
C. $x = \frac{3}{2}$ or $x = \frac{7}{3}$.
D. $x = \frac{3}{2}$ or $x = -\frac{1}{3}$.

Answer: D

4. Find the zeros of the polynomial $f(x)=x^2-2$ and verify

the relationship between its zeros and coefficients.

Vatch Video Solution

5. Obtain the zeros of the quadratic polynomial $\sqrt{3}x^2 - 8x + 4\sqrt{3}$ and verify the relation between its zeros and coefficients.

A.
$$7\sqrt{3}$$
 and $\frac{2}{\sqrt{7}}$.
B. $5\sqrt{3}$ and $\frac{4}{\sqrt{3}}$.
C. $2\sqrt{3}$ and $\frac{2}{\sqrt{3}}$.
D. $4\sqrt{5}$ and $\frac{2}{\sqrt{5}}$.

Answer: C

7. Find the quadratic polynomial, the sum of whose zeros is $\sqrt{2}$ and their product is -12. Hence, find the zeros of the polynomial.

8. If the product of the zero of the polynomial $(ax^2 - 6x - 6)$ is 4. Find the value of a.

$$A. - \frac{7}{2}$$
$$B. - \frac{5}{2}$$
$$C. - \frac{3}{2}$$
$$D. - \frac{1}{2}$$

Answer: C

9. If one zero of the polynomial $\left(a^2+9
ight)x^2+13x+6a$ is

the reciprocal of the other, find a

A. a = 5B. a = -3C. a = 2

 $\mathsf{D}.\,a=3$

Answer: D

Watch Video Solution

10. Find a quadratic polynomial whose zeros are 1 and -3.

Verify the relation between the coefficients and zeros of the polynomial.

11. Verify that 3, -1 and $-\frac{1}{3}$ are the zeros of the cubic polynomial $p(x) = 3x^3 - 5x^2 - 11x - 3$ and then verify

the relationship between the zeros and its coefficients.

Watch Video Solution

12. Find a cubic polynomial with the sum, sum of the products of its zeros taken two at a time, and product of its zeros as 2, -7, -14 respectively.

Watch Video Solution

13. If the zeros of the polynomial $f(x) = x^3 - 3x^2 + x + 1$

are a-b, a, a+b, find a and b.

16. Divide
$$5x^3-13x^2+21x-14$$
 by $\left(3-2x+x^2
ight)$ and

verify the division algorithm.

17. What real number should be subtracted from the polynomial $\left(3x^3+10x^2-14x-9
ight)$ so that $\left(3x-2
ight)$ divides it exactly?

Watch Video Solution

18. If the polynomial $(x^4 + 2x^3 + 8x^2 + 12x + 18)$ is divided by another polynomial $(x^2 + 5)$, the remainder comes out to be (px + q). Find the values of p and q.

Watch Video Solution

19. On dividing $(x^3 - 3x^2 + x + 2)$ by a polynomial g(x), the quotient and remainder are (x - 2) and (-2x + 4) respectively. Find g(x).

20. It being given that 1 is a zero of the polynomial $(7x - x^3 - 6)$, find its other zeros.

 $\mathsf{A}.-2$ and 2

B.-3 and 2

C. -1 and 2

D.-4 and 2

Answer: B

21. Obtain all zeros of the polynomial $\left(2x^3-4x-x^2+2
ight),$

if two of its zeros are $\sqrt{2}$ and $\left(-\sqrt{2}\right)$.

23. Obtain other zeros of $(3x^4 - 15x^3 + 13x^2 + 25x - 30)$, if two of its zeros are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$. B. 2, 3

C. 3, 4

D. 2, 6

Answer: B

Exercise 2 A

1. Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients: $x^2 + 7x + 12$

 x^2-2x-8

Watch Video Solution

3. Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients:

 $x^2+3x-10$

 $4x^2 - 4x - 3$

Watch Video Solution

5. Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients:

 $5x^2-4-8x$

 $2\sqrt{3}x^2 - 5x + \sqrt{3}$

Watch Video Solution

7. Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients:

 $2x^2 - 11x + 15$

 $4x^2 - 4x + 1$

Watch Video Solution

9. Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients:

 $x^2 - 5$

 $8x^2 - 4$

Watch Video Solution

11. Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients:

 $5y^2 + 10y$

 $3x^2 - x - 4$

Watch Video Solution

13. Find the quadratic polynomial whose zeros are 2 and -6.verify the relation between the coefficients and the zeros of the polynomial.

14. Find the quadratic polynomial whose zeros are $\frac{2}{3}$ and $\frac{-1}{4}$. Verify the relation between the coefficients

and the zeros of the polynomial.

15. Find the quadratic polynomial, sum of whose zeros is 8 and their product is 12. Hence, find the zeros of the polynomial.

A. 6, 2 B. 5, 2 C. 4, 2

D.7, 2

Answer: A

16. Find the quadratic polynomial, the sum of whose zeros is O and their product is -1. Hence, find the zeros of the polynomial.

Watch Video Solution

17. Find the quadratic polynomial, the sum of whose zeros is

 $\left(rac{5}{2}
ight)$ and their product is 1. Hence, find the zeros of the

polynomial.

Watch Video Solution

18. Find the quadratic polynomial, the sum of whose roots is

$$\sqrt{2}$$
 and their product is $rac{1}{3}.$

19. If $x = \frac{2}{3}$ and x = -3 are the roots of the quadratic

equation $ax^2 + 7x + b = 0$ then find the values of a and b.

Watch Video Solution

20. If x+a is a factor of $2x^2 + 2ax + 5x + 10$, find the value

of a.

Watch Video Solution

21. One zero of the polynomial $3x^3 + 16x^2 + 15x - 18$ is $\frac{2}{3}$. Find the other zeroes of the polynomial.

1. Verify that 3, -2, 1 are the zeros of the cubic polynomial $p(x)=x^3-2x^2-5x+6$ and verify the relation between its zeros and coefficient.

Watch Video Solution

2. Verify that 5, -2 and $\frac{1}{3}$ are the zeros of the cubic polynomial $p(x) = 3x^3 - 10x^2 - 27x + 10$ and verify the relation between its zeros and coefficients.

3. Find a cubic polynomial whose zeros are 2, -3 and 4.

A.
$$x^3 - 3x^2 - 10x + 24$$

B. $x^3 - 3x^2 - 10x - 24$
C. $x^3 + 3x^2 - 10x + 24$
D. $x^3 - 3x^2 + 10x + 24$

Answer: A

4. Find a cubic polynomial whose zeros are
$$rac{1}{2}, 1 ext{ and } -3.$$

5. Find a cubic polymial with the sum, sum of the product of its zeros taken two at a time , and the product of its zeros as 5, -2 and -24 respectively.

Watch Video Solution

6. Apply the division algorithm to find the quotient and remainder on dividing $f(x)=x^3-3x^2+5x-3$ by $g(x)=x^2-2$

Watch Video Solution

7. Divide the polynomial $p(x) = x^4 - 3x^2 + 4x + 5$ by the polynomial $g(x) = x^2 - x + 1$ and find quotient and remainder.

9. Find the quotient and the remainder when

By actual division , show that x^2-3 is a factor of $2x^4+3x^3-2x^2-9x-12.$

10. On dividing $3x^3 + x^2 + 2x + 6$ by a polynomial g(x), the quotient and remainder are (3x-5) and (3x+21) respectively. Find g(x).

12. Find the quotient and the remainder when

It is given that -1 is one of the zeros of the polynomial $x^3 + 2x^2 - 11x - 12.$

Find all the zeros of the given polynomial.

14. Find the quotient and the remainder when

If $3 ext{ and } -3$ are two zeros of the polynomial $\left(x^4+x^3-11x^2-9x+18
ight)$, find all the zeros of the given

polynomial.

15. Find all the zeros of the polynomial
$$x^4 + x^3 - 34x^2 - 4x + 120$$

Watch Video Solution
16. Find the quotient and the remainder when
Find all the zeros of $(x^4 + x^3 - 23x^2 - 3x + 60)$, if it is
given that two of its zeros are $\sqrt{3}$ and $-\sqrt{3}$.

Watch Video Solution

17. Find the quotient and the remainder when

Find all the zeros of $(2x^4 - 3x^3 - 5x^2 + 9x - 3)$, it being given that two of its zeros are $\sqrt{3}$ and $-\sqrt{3}$.

18. Obtain all other zeros of $x^4 + 4x^3 - 2x^2 - 20x - 15$ if

two of its zeros are $\sqrt{5}$ and $-\sqrt{5}$

Watch Video Solution

19. Find the quotient and the remainder when

Find all the zeros of the polynomial $(2x^4 - 11x^3 + 7x^2 + 13x - 7)$, it being given that two its zeros are $(3 + \sqrt{2})$ and $(3 - \sqrt{2})$.

Watch Video Solution

Exercise 2 C

1. If one zero of the polynomial $x^3 - 4x + 1$ is $2 + \sqrt{3}$ write

the other zero

find the value of k.

A. k = 9

B. k = -9

 $\mathsf{C}.\,k=2$

D. None

Answer: A

Watch Video Solution

8. If 1 is a zero of the polynomial $ax^2 - 3(a-1)x - 1$, then

find the value of a.

9. If -2 is a zero of the polynomial $3x^2 + 4x + 2k$ then find the value of k.

11. If the sum of the zeros of the quadratic polynomial

 $f(x) = kx^2 - 3x + 5$ is 1, write the value of k .

12. If the product of zeros of the quadratic polynomial $f(x) = x^2 - 4x + k$ is 3, find the value of k .

13. If (x + a) is a factor of $2x^2 + 2ax + 5x + 10$, find a .

Watch Video Solution

14. If (a-b), a and (a+b) are zeros of the polynomial $2x^3 - 6x^2 + 5x - 7$, write the value of a.

15. If $f(x) = x^3 + x^2 - ax + b$ is divisible by $x^2 - x$ write the values of a and b .

$$A. a = 2 and -2$$

B.a = 2 and 0

$$\mathsf{C.}\,a=0 \; \text{and} \; -2$$

$$\mathsf{D}.\,a=2 \; \text{and} \; -3$$

Answer: B

Watch Video Solution

16. If alpah and β are the zeros of the polynomial $2x^2 + 7x + 5$, write the value of $\alpha + \beta + \alpha\beta$.

17. State division algorithm for polynomials.

18. The sum and product of the zeros of a quadratic polynomial are $-\frac{1}{2}$ and -3 respectively. What is the quadratic polynomial.

A.
$$x^2 + rac{1}{2}x + 3$$

B. $x^2 + rac{1}{7}x - 3$
C. $x^2 + rac{1}{2}x - 3$
D. $x^2 - rac{1}{2}x - 3$
Answer: C

19. Find the zeros of the quadratic polynomial $f(x) = 6x^2 - 3$, and verify the relation-ship between the zeros and its coefficients:

20. Write zeros of the polynomial

$$p(x) = 4\sqrt{3}x^2 + 5x - 2\sqrt{3}$$

A. $x = \frac{-2}{\sqrt{3}}$ or $x = \frac{\sqrt{5}}{4}$
B. $x = \frac{2}{\sqrt{3}}$ or $x = \frac{\sqrt{3}}{4}$

C.
$$x = \frac{-2}{\sqrt{3}}$$
 or $x = \frac{\sqrt{3}}{4}$

D. None of the above

Answer: C

21. If lpha and eta ar the zeros of the polynomial $f(x)=x^2-5x+k$ such that lpha-eta=1, find the value of k

A. 6

B. 5

C. 4

D. 3

Answer: A

22. If α and β are the zeros of the quadratic polynomial $f(x) = 6x^2 + x - 2$,find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$. A. $\frac{25}{12}$ B. $\frac{-25}{11}$ C. $\frac{-25}{12}$

D. none of these

Answer: C

23. If lpha and eta are the zeros of the polynomial $f(x)=5x^2-7x+1$, find the value of $igg(rac{1}{lpha}+rac{1}{eta}igg).$

Watch Video Solution

24. If lpha and eta are the zeros of the quadratic polynomial $f(x)=x^2+x-2$, find the value of $rac{1}{lpha}-rac{1}{eta}$

A.
$$-\frac{2}{3}$$

B. $-\frac{3}{2}$
C. $\frac{3}{2}$
D. $\frac{2}{3}$

Answer: B

25. If the zeros of the polynomial $f(x)=x^3-3x^2+x+1$ are $a-b,\ a,\ a+b,\ ext{find}\ a$ and b .

A.
$$a=1 \, ext{ and } \, b= \, \pm \sqrt{3}$$

$$\texttt{B.}\,a=2 ~~ \text{and} ~~ b=~ \pm \sqrt{2}$$

$$\mathsf{C}.\,a=1 \ \text{and} \ b=\sqrt{2}$$

D.
$$a=1 ext{ and } b= ext{ } \pm \sqrt{2}$$

Answer: D

Multiple Choice Questions Mcq

1. which one of the following is a polynomial ?

A.
$$x^2 - 5x + 4\sqrt{x} + 3$$

B. $x^{3/2} - x + x^{1/2} + 1$
C. $\sqrt{x} + \frac{1}{\sqrt{x}}$
D. $\sqrt{2}x^2 - 3\sqrt{3}x + \sqrt{6}$

Answer: D

2. Which of the following is not a polynomial?

A.
$$\sqrt{3}x^2-2\sqrt{3}x+5$$

B.
$$9x^2 - 4x + \sqrt{2}$$

C.
$$rac{2}{2}x^3 + 6x^2 - rac{1}{\sqrt{2}}x - 8$$

D. $x + rac{3}{x}$

Answer: D

3. The zeros of the polynomial x^2-2x-3 are

- A. -3, 1
- B. -3, -1
- C.3, -1
- D.3, 1

Answer: C

4. The zeros of the polynomial $x^2 - \sqrt{2}x - 12$ are

A.
$$\sqrt{2}, \ -\sqrt{2}$$

$$\mathsf{B}.\, 3\sqrt{2},\ -2\sqrt{2}$$

$$\mathsf{C}.-3\sqrt{2},\,2\sqrt{2}$$

D.
$$3\sqrt{2}, 2\sqrt{2}$$

Answer: B

5. The zeros of the polynomial $4x^2 + 5\sqrt{2}x - 3$ are :

A.
$$-3\sqrt{2}, \sqrt{2}$$

B. $-3\sqrt{2}, \frac{\sqrt{2}}{2}$
C. $\frac{-3\sqrt{2}}{2} \frac{\sqrt{2}}{4}$

D. none of these

Answer: C

6. The zeros of the polynomial
$$x^2 + rac{1}{6}x - 2$$
 are

A.
$$-3, 4$$

B. $\frac{-3}{2}, \frac{4}{3}$
C. $\frac{-4}{3}, \frac{3}{2}$

D. none of these

Answer: B

7. The zeros of the polynomial
$$7x^2 - rac{11x}{3} - rac{2}{3}$$
 are

A.
$$\frac{2}{3}, \frac{-1}{7}$$

B. $\frac{-2}{3}, \frac{-1}{3}$
C. $\frac{-2}{3}, \frac{1}{7}$

D. none of these

Answer: A

8. The sum and the product of the zeros of a quadratic polynomial are 3 and -10 respectively. The quadratic polynomial is

A.
$$x^2 - 3x + 10$$

B. $x^2 + 3x - 10$
C. $x^2 - 3x - 10$
D. $x^2 + 3x + 10$

Answer: C

9. A quadratic polynomial whose zeros are $5~{
m and}~-3$, is

A.
$$x^2 + 2x - 15$$

B.
$$x^2 - 2x + 15$$

 $C. x^2 - 2x - 15$

D. none of these

Answer: C

10. A quadratic polynomial whose zeros are
$$\frac{3}{5}$$
 and $\frac{-1}{2}$, is

A.
$$10x^2 + x + 3$$

B. $10x^2 + x - 3$
C. $10x^2 - x + 3$
D. $10x^2 - x - 3$

Answer: D

Watch Video Solution

11. The zeros of the quadratic polynomial $x^2+88x+125$

are

A. both positive

B. both negative

C. one positive and one negative

D. both equal

Answer: B

12. If $lpha \,$ and $\,eta$ are the zeros of x^2+5x+8 then the value of (lpha+eta) is

A. 5

B.-5

C. 8

D. - 8

Answer: B

13. If α and β are the zeros of $2x^2 + 5x - 9$ then the value of $\alpha\beta$ is

A.
$$\frac{-5}{2}$$

B.
$$\frac{5}{2}$$

C.
$$\frac{-9}{2}$$

D.
$$\frac{9}{2}$$

Answer: C

14. If one zero of the quadratic polynomial $kx^2 + 3x + k$ is 2

then the value of k is

A.
$$\frac{5}{6}$$

B. $\frac{-5}{6}$
C. $\frac{6}{5}$

D.
$$\frac{-6}{5}$$

Answer: D

Watch Video Solution

15. If one zero of the quadratic polynomial
$$(k-1)x^2 + kx + 1$$
 is -4 then the value of k is
A. $\frac{-5}{4}$
B. $\frac{5}{4}$
C. $\frac{-4}{3}$
D. $\frac{4}{3}$

Answer: B

16. If -2 and 3 are the zeros of the quadratic polynomial $x^2 + (a+1)x + b$ then

A.
$$a = -2, b = 6$$

B.
$$a = 2, b = -6$$

C.
$$a = -2, b = -6$$

D.
$$a = 2, b = 6$$

Answer: C

17. If one zero of $3x^2 + 8x + k$ be the reciprocal of the other then k = ?

A. 3

B.
$$-3$$

C. $\frac{1}{3}$
D. $\frac{-1}{3}$

Answer: A

Watch Video Solution

18. If the sum of the zeros of the quadratic polynomial $kx^2 + 2x + 3k$ is equal to the product of its zeros then k = ?

A.
$$\frac{1}{3}$$

B. $\frac{-1}{3}$
C. $\frac{2}{3}$
D. $\frac{-2}{3}$

Answer: D

19. If
$$\alpha, \beta$$
 are the zeros of the polynomial x^2+6x+2 then $\left(rac{1}{lpha}+rac{1}{eta}
ight)=?$ A. 3

 $\mathsf{B.}-3$

C. 12

 $\mathsf{D.}-12$

Answer: B

20. If
$$\alpha, \beta, \gamma$$
 are the zeros of the polynomial $x^3 - 6x^2 - x + 30$ then $(\alpha\beta + \beta\gamma + \gamma\alpha)$ =?

 $\mathsf{A.}-1$

B. 1

C.-5

D. 30

Answer: A

21. If $lpha,eta,\gamma$ are the zeros of the polynomial $2x^3+x^2-13x+6$ then $lphaeta\gamma$ =?

A.-3

B. 3

C.
$$rac{-1}{2}$$

D. $rac{-13}{2}$

Answer: A

22. If α , β , γ be the zeros of the polynomial p(x) such that $(\alpha + \beta + \gamma) = 3$, $(\alpha\beta + \beta\gamma + \gamma\alpha) = -10$ and $\alpha\beta\gamma = -24$ then p(x) = ?

A.
$$x^3 + 3x^2 - 10x + 24$$

B. $x^3 + 3x^2 + 10x - 24$
C. $x^3 - 3x^2 - 10x + 24$

D. none of these

Answer: C

23. If two of the zeros of the cubic polynomial $ax^3 + bx^2 + cx + d$ are 0 then the third zero is

A.
$$\frac{-b}{a}$$

B. $\frac{b}{a}$
C. $\frac{c}{a}$
D. $\frac{-d}{a}$

Answer: A

24. If one of the zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d$ is zero, the product of the other two zeroes is :

A.
$$\frac{-c}{a}$$

B. $\frac{c}{a}$

C. 0

D.
$$\frac{-b}{a}$$

Answer: B

Watch Video Solution

25. If one of the zeroes of the cubic polynomial $x^3 + ax^2 + bx + c$ is -1,then find the product of other two zeroes.

A. a - b - 1

B. b - a - 1

 $\mathsf{C.1} - a + b$

D. 1 + a - b

Answer: C

Watch Video Solution

26. If lpha, eta be the zeros of the polynomial $2x^2+5x+k$ such that $lpha^2+eta^2+lphaeta=rac{21}{4}$ then k= ?

A. 3

 $\mathsf{B.}-3$

C. -2

D. 2

Answer: D

27. On dividing a polynomial p(x) by a non-zero polynomial q(x), let g(x) be the quotient and r(x) be the remainder then $= q(x) \cdot g(x) + r(x)$, where

A. r(x) = 0 always

B. deg $r(x) > \deg q(x)$ always

C. either r(x) = 0 or deg $r(x) < \deg q(x)$

$$\mathsf{D}.\,r(x)=g(x)$$

Answer: C

28. Which of the following is a true statement ?

A. $x^2 + 5x - 3$ is a linear polynomial.

B. $x^2 + 4x - 1$ is a binomial.

 $\mathsf{C}. x + 1$ is a monomial.

D. $5x^3$ is a monomial.

Answer: D

Test Yourself

1. Zeros of $p(x)=x^2-2x-3$ are

A. 1, -3

B. 3, -1

C. -3, -1

D. 1, 3

Answer: B

Watch Video Solution

2. If $lpha,eta,\gamma$ are the zeros of the polynomial x^3-6x^2-x+30 then the value of $(lphaeta+eta\gamma+\gammalpha)$ is

A. - 1

B.1

C. - 5

D. 30

Answer: A

3. If lpha, eta are the zeros of $kx^2 - 2x + 3k$ such that lpha + eta = lpha eta then k = ?

A.
$$\frac{1}{3}$$

B. $\frac{-1}{3}$
C. $\frac{2}{3}$
D. $\frac{-2}{3}$

Answer: C

4. It is given that the difference between the zeros of $4x^2 - 8kx + 9$ is 4 and k > 0. Then, k = ?

A.
$$\frac{1}{2}$$

B. $\frac{3}{2}$
C. $\frac{5}{2}$
D. $\frac{7}{2}$

Answer: C

5. Find the zeros of the polynomial $x^2 + 2x - 195$.

6. 021 If one zero of the polynomial $\left(a^2+9
ight)x^2+13x+6a$

is the reciprocal of the other, find a

Watch Video Solution
7. Find a quadratic polynomial whose zeros are 2 and -5.
Watch Video Solution
8. If the zeros of the polynomial $f(x) = x^3 - 3x^2 + x + 1$
are $a-b, \;\; a, \;\; a+b, \;$ find a and b .

9. Verify that 2 is a zero of the polynomial $x^3+4x^2-3x-18.$

10. Find a quadratic polynomial, the sum and product of whose zeros are -5 and 6 respectively.

Watch Video Solution

11. Find a cubic polynomial whose zeros are 3, 5 and -2.

12. Using remainder theorem, find the remainder when $p(x) = x^3 + 3x^2 - 5x + 4$ is divided by (x-2).

14. If
$$lpha, eta, \gamma$$
 are the zeros of the polynomial $p(x)=6x^3+3x^2-5x+1,$ find the value of $\Big(rac{1}{lpha}+rac{1}{eta}+rac{1}{\gamma}\Big).$

B. 6

C. 3

D. 1

Answer: A

Watch Video Solution

15. If lpha and eta are the zeros of the polynomial $f(x)=x^2-5x+k$ such that lpha-eta=1, find the value of k

A. k=0

B. k = 6

 $\mathsf{C}.\,k=3$

 ${\rm D.}\,k=10$

Answer: B

zero.

18. Find all the zeros of the polynomial
$$f(x) = 2x^4 - 3x^3 - 3x^2 + 6x - 2$$
, if two of its zeros are $\sqrt{2}$ and $-\sqrt{2}$.
A. 1, $\frac{1}{2}$
B. 3, $\frac{\sqrt{3}}{2}$
C. 2, $\frac{\sqrt{1}}{2}$
D. 1, $\frac{\sqrt{5}}{2}$

Answer: A

$$\left(x^2+3x+1
ight).$$

Watch Video Solution

20. If the remainder on division of $x^3 + 2x^2 + kx + 3$ by x - 3 is 21, then find the quotient and the value of k. Hence, find the zeroes of the cubic polynomial $x^3 + 2x^2 + kx - 18$.

- A. k = -9
- B. k = -9
- C. k = -6

D.
$$k=-5$$

Answer: B

