đず doubtnut

India's Number 1 Education App

MATHS

BOOKS - RS AGGARWAL MATHS (HINGLISH)

TRIANGLES

Solved Examples
1.

In
the
given
figure,
$M N|\mid$
$A B, B C=7.5 \mathrm{~cm}, A M=4 \mathrm{~cm}$ and $M C=2 \mathrm{~cm}$. Find the length of BN .

A. 5 cm
B. 4 cm
C. 6 cm
D. 9 cm

Answer: A

- Watch Video Solution

2. In the given figure, $D E\left|\mid B C\right.$ and $\frac{A D}{D B}=\frac{3}{5}$. If $A C=4.8 \mathrm{~cm}$, find the length of $A E$.

A. 2.8 cm
B. 1.8 cm
C. 3.8 cm
D. 4.8 cm

Answer: B

- Watch Video Solution

3. In the given figure in $\triangle A B C, D E| | B C$ so that , $A D=(4 x-3) c m, A E=(8 x-7) c m, B D=(3 x-1) c m$ and $C E=(5 x$
. Find the value of x.

A. 1
B. 2
C. $\frac{-1}{2}$
D. $\frac{1}{2}$

Answer: A

- Watch Video Solution

4. If D and E are points on the sides AB and AC respectively of $\operatorname{DetlaABC}$ such that $A B=5.6 \mathrm{~cm}, A D=1.4 \mathrm{~cm}, A C=7.2 \mathrm{~cm}$ and $A E=1.8 \mathrm{~cm}$.

Show that $D E|\mid B C$.

- Watch Video Solution

5. In the adjoining figure, $M N|\mid Q R$.

Find (i) PN and (ii) PR.

A. $2.3 \mathrm{~cm}, 9.2 \mathrm{~cm}$
B. $5.3 \mathrm{~cm}, 8.2 \mathrm{~cm}$
C. $4.5 \mathrm{~cm}, 6.6 \mathrm{~cm}$
D. $8.2 \mathrm{~cm}, 9.1^{\mathrm{c}} \mathrm{cm}$

Answer: A

- Watch Video Solution

6. In the given figure, $\frac{A D}{D B}=\frac{A E}{E C}$ and $\angle A D E=\angle A C B$. Prove that $\triangle A B C$ is an isosceles triangle.

B

- Watch Video Solution

7. M and N are points on the sides AC and BC respectively of a $\triangle A B C$. In ech of the fopllowing cases, state whether $M N|\mid A B$.
(i) $C M=4.2 \mathrm{~cm} . M A=2.8 \mathrm{~cm}, N B=3.6 \mathrm{~cm}, 5.7$
(ii) $C B=6.92 \mathrm{~cm}, C N=1.04 \mathrm{~cm}, C a=1.73 \mathrm{~cm}, C M=0.26 \mathrm{~cm}$
(iii) $C M=5.1 \mathrm{~cm}, C A=6.8 \mathrm{~cm}, C B=5.6 \mathrm{~cm}, N B=1.4 \mathrm{~cm}$.

- Watch Video Solution

8. In the given figure, $D E \| A C$ and $D F \| A E$.

Prove that $\frac{B F}{F E}=\frac{B E}{E C}$

- Watch Video Solution

9. In the given figure, $L M\|C B\|$ and $L N|\mid C D$.

Prove that $\frac{A M}{A B}=\frac{A N}{A D}$

- Watch Video Solution

10. It is given figure, $A B\|D E\|$ and $B D|\mid E F$.

Prove that $D C^{2}=C F \times A C$.

- Watch Video Solution

11. In the given figure, $P Q \| A B$ and $P R \| A C$.

Prove that $Q R|\mid B C$

- Watch Video Solution

12. In the given figure, in $\triangle A B C, \angle B=\angle C$ and $B D=C E$. Prove that $D E|\mid B C$.

- Watch Video Solution

13. In $\triangle A B C, D$ and E two points on AB such that $\mathrm{AD}=\mathrm{BE}$. If $D P \| B C$ and $E Q \| A C$, prove that such $P Q|\mid A B$.

- Watch Video Solution

14. If three or more parallel lines are intersected by two transversal; Prove that the intercepts made by them on transversal are proportional.

- Watch Video Solution

15. $A B C D$ is a quadrilateral; $P, Q, R a n d S$ are the points of trisection of side $A B, B C, C D a n d D A$ respectively and are adjacent to $A a n d C$; prove that $P Q R S$ is parallelogram.

- Watch Video Solution

16. $A B C D$ is a trapezium with $A B \| D C . E$ and F are points on non-parallel sides $A D$ and $B C$ respectively such that $E F$ is parallel to $A B$. Show that $\frac{A E}{E D}=\frac{B F}{F C}$.

- Watch Video Solution

17. $A B C D$ is a trapezium such that $A B \| C D$. Its diagonals $A C$ and $B C$ intersect each other at 0 . Prove that $\frac{A O}{O C}=\frac{B O}{O D}$

- Watch Video Solution

18. The diagonals of a quadrilateral $A B C D$ intersect each other at the point O such that $\frac{A O}{B O}=\frac{C O}{D O}$. Show that ABCD is a trapezium.

- Watch Video Solution

19. In the given figure, $A B C D$ is trapezium whose diagonals $A C$ and $B D$ intersect at O such that $O A=(3 x-1) c m,(O B=(2 x+1) c m, O C=(5 x-3) c m$ and $O D=(6$. Then, $x=$?

A. 1 cm
B. 2 cm
C. 3 cm
D. 4 cm

Answer: B

- Watch Video Solution

20. The line segment joining the mid-points of any two sides of a triangle is parallel to the third side of a triangle.

- Watch Video Solution

21. The line drawn from the midpoint of one side of a triangle parallel to another side bisects the third side.
22. In $\triangle A B C, E$ is the midpoint of the median $A D$. $B E$ produced meets $A C$ at F. Prove that $A F=\left(\frac{1}{3}\right) A C$

- Watch Video Solution

23. Prove that the line segments joints joining the mid-points of the adjacent sides of a quadrilateral from a parallelogram.

- Watch Video Solution

24. The internal angle bisector of an angle of a triangle divide the opposite side internally in the ratio of the sides containgthe angle

- Watch Video Solution

25. In figure D is a point on side BC of a $\triangle A B C$ such that $\frac{B D}{C D}=\frac{A B}{A C}$. Prove that AD is the bisector of $\angle B A C$.
26. In the given figure, AD is the bisector of $\angle B A C$. If $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$ and $B C=12 \mathrm{~cm}$, find $B D$ and $D C$.

- Watch Video Solution

27. If the bisector of an angle of a triangle bisects the opposite side, prove that the triangle is isosceles.

- Watch Video Solution

28. If the diagonal BD of a quadrillateral ABCD bisects both $\angle B$ and $\angle D$. Prove that $\frac{A B}{B C}=\frac{A D}{C D}$.

- Watch Video Solution

29. $\triangle A H K$ is similar to $\triangle A B C$. If $\mathrm{AK}=10 \mathrm{~cm}, \mathrm{BC}=3.5 \mathrm{~cm}$ and $\mathrm{HK}=7 \mathrm{~cm}$, find $A C$.
A. 4 cm
B. 5 cm
C. 3 cm
D. 2 cm

Answer: B

- Watch Video Solution

30.

In
the
given
figure,
$D E||\mid B C, A D=2 \mathrm{~cm}, B D=2.5 \mathrm{~cm}, A E=3.2 \mathrm{~cm}$ and $D E=4 \mathrm{~cm}$.

Find $A C$ and $B C$.

31. In the given figure, $\mathrm{AB} \| \mathrm{CD}$. Prove that $\triangle A O B \sim \triangle D O C$.

- Watch Video Solution

32. In the given figure, $\mathrm{AB} \| \mathrm{CD}$. Prove that $\triangle A O B \sim \triangle D O C$.

0
 Watch Video Solution

33. Find $\angle P$ in the figure below.

- Watch Video Solution

34.

In
the
given
figure,
$\triangle O Q P \sim \triangle O A B, \angle O P Q=56^{\circ}$ and $\angle B O Q=132^{\circ}$. Find $\angle O A B$.

- Watch Video Solution

35. In the given figure, $A P \cdot A R=A S \cdot A Q$ prove that $\angle P=\angle S$ and $\angle Q=\angle R$.

- Watch Video Solution

36. A vertical stick which is 15 cm long casts a $12-\mathrm{cm}$ long shadow on the ground. At the same time, a vertical tower casts a 50 -m-long shadow on the ground. Find the height of the tower.

- Watch Video Solution

37. If two triangles are similar; prove that the ratio of the corresponding sides is same as the ratio of corresponding medians.

- Watch Video Solution

38. The perimeters of two similar triangles are 25 cm and 15 cm respectively. If one side of first triangle is 9 cm , what is the corresponding side of the other triangle?
A. 2.4 cm
B. 3.4 cm
C. 4.4 cm
D. 5.4 cm

Answer: D

- Watch Video Solution

39. In the given figure, D is a point on the side BC of $\triangle A B C$ such that $\angle A D C=\angle B A C$. Prove that $C A^{2}=C B \times C D$.

- Watch Video Solution

40. In the given figure, S and T are points on sides PR and QR of $\triangle P Q R$ such that $\angle P=\angle R T S$. Show that $\Delta R P Q \sim \Delta R T S$.

- Watch Video Solution

41. In that figure, if $\triangle A B E \cong \triangle A C D$, show that $\triangle A D E \cong \triangle A B C$.

42. In Figure altitudes $A D$ and $C E$ of DABC intersect each other at the point P. Show that: (i) $\triangle A E P \Delta C D P$ (ii) $\triangle A B D \Delta C B E$
$\triangle A E P \triangle A D B$ (iv) $\triangle P D C \triangle B E C$

- Watch Video Solution

43. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at the point O . Using a similarity criterion for two triangles, show that $\frac{O A}{O C}=\frac{O B}{O D}$
44. In triangle ABC , if $A D \perp B C$ and $A D^{2}=B D \cdot D C$. Then find the angle BAC

Watch Video Solution

45. In the given figure, $P A, Q B$ and $R C$ each is perpendicular to $A C$ such that $P A=x, R C=y, Q B=z, A B=a$, and $B C=b$

Prove that $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$

46. The side $A D$ of parallelogram $A B C D$ is produced to a point E. $B E$ intersects CD at F . Show that $\triangle A B E \sim \Delta C F B$.

- Watch Video Solution

47. In the given figure, $\angle A C B=90^{\circ}$ and $C D \perp A B$. Prove that $C D^{2}=B D \cdot A D$

- Watch Video Solution

48. In the given figure, $\triangle A B C$ and $\triangle A M P$ are right- angled at B and M respectively.

Prove that (i) $\triangle A B C \approx \triangle A M P$
(ii) $\frac{C A}{P A}=\frac{B C}{M P}$

- Watch Video Solution

49. ABC is a triangle in which $A B=A C$ and D is a point on $A C$ such that $B C^{2}=A C \times C D$. Prove that $B D=B C$.
50. In a $\triangle A B C \mathrm{P}$ and Q are points on AB and AC respectively and $\mathrm{PQ}|\mid \mathrm{BC}$. Prove that the median AD bisects PQ .

- Watch Video Solution

51. In the given figure, E is a point on side CB produced of an isosceles $\triangle A B C$ with $A B=A C$. . If $A D \perp B C$ and $E F \perp A C$, prove tha $\triangle A B D \sim \Delta E C F$

- Watch Video Solution

52. Prove that the line segments joining the mid-points of the sides of a triangle from four triangles, each of which is similar to the original triangle.
53. Two right triangles ABC and DBC are drawn on the same hypotenuse $B C$ and on the same side of $B C$. If $A C$ and $B D$ intersect at P, prove that $A P \times$ $P C=B P \times P D$.

- Watch Video Solution

54. Through the mid-point M of the side $C D$ of a parallelogram $A B C D$, the line $B M$ is drawn intersecting $A C$ at $\operatorname{Land} A D$ produced at E. Prove that $E L=2 B L$.

- Watch Video Solution

55. A lamb is 3.3 m above the ground. A boy 110 cm tall walks away from the base of this lamp at a speed of $0.8 \mathrm{~m} / \mathrm{s}$. Find the length of the shadow
of the boy after 4 second.

A. 1.5 m
B. 1.6 m
C. $1.4^{`} \mathrm{~m}$
D. 1.3 m

Answer: B

56. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides PQ and QR and median PM of $\triangle P Q R$. Show that $\triangle A B C \Delta P Q R$.

- Watch Video Solution

57. Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Prove that $\triangle A B C \sim \operatorname{DetlaPQR}$

- Watch Video Solution

58. If the area of two similar triangles are in the ratio 25 : 64 find the ratio of their corresponding sides.
A. 5:4
B. 3:5
C. 5:8
D. 6:7

Answer: C

- Watch Video Solution

59. In the adjoining figure, S and T are points on the sides PQ and PR respectively of $\triangle P Q R$ such that $P T=2 c m, T R=4 c m$ and $S T$ is
parallel to $Q R$. Find the ratio of the ares of $\triangle P S T$ and $\triangle P Q R$.

- Watch Video Solution

60. The areas of two similar triangles $\triangle A B C$ and $\triangle P Q R$ are $25 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If $Q R=9.8 \mathrm{~cm}$, find $B C$.

- Watch Video Solution

61. The areas of two similar triangles are $81 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If the altitude of the bigger triangle is 4.5 cm , find the corresponding altitude of the smaller triangle.

- Watch Video Solution

62. The areas of two similar triangles are $121 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$ respectively. If the median of the first triangle is 12.1 cm , find the corresponding median of the other.

- Watch Video Solution

63. $\triangle A B C \sim \triangle D E F$ in which AX and DY are the bisectors of $\angle A$ and $\angle D$ respectively. If $A X=6.5 \mathrm{~cm}$ and $D Y=5.2 \mathrm{~cm}$, find the ratio of the areas of $\triangle A B C$ and $\triangle D E F$.

- Watch Video Solution

64. In the given figure, line the segment $X Y$ is parallel to side $A C$ of $\triangle A B C$ and it divides the triangles into two parts of equal area. Prove that $A X: A B=(2-\sqrt{2}): 2$

- Watch Video Solution

65. In the same figure, $\triangle A B C$ and $\triangle D B C$ are on the same base BC. If $A D$ is intersects $B C$ at O, prove that

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}
$$

- Watch Video Solution

66. Diagonals of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at the point O. If $A B=2 C D$, find the ratio of the areas of
A. $4: 1$
B. 1: 4
C. 5:1
D. 1: 5

Answer: A

- Watch Video Solution

67. In a trapezium $A B C D, O$ is the point of intesection of $A C$ and $B D$, $A B\left|\mid C D\right.$ and $A B=2 \times C D$. If the area of $\triangle A O B=84 \mathrm{~cm}^{2}$. Find the area of $\triangle C O D$.
A. $21 \mathrm{~cm}^{2}$
B. $22 \mathrm{~cm}^{2}$
C. $23 \mathrm{~cm}^{2}$
D. $24 \mathrm{~cm}^{2}$

Answer: A

- Watch Video Solution

68. If D, E, F are the mid-points of the sides $B C, C a$ and $A B$ respectively of a triangle $A B C$, prove by vector method that Area of $\triangle D E F=1 / 4$ Area of $\triangle A B C$

- Watch Video Solution

69. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

- Watch Video Solution

70. Prove that the area of equilateral triangle described on the side of a square is half the area of the equilateral triangle described on its diagonal.

- Watch Video Solution

71. If D is a point on the side AB of $\triangle A B C$ such that $A D: B D=3: 2$ and E is a point on $B C$ such that $D E|\mid A C$, find the
ratio of the areas of $\triangle A B C$ and $\triangle D B E$

- Watch Video Solution

72. In the given figure $D E|\mid B C$ and $A D: D B=5: 4$

Find the ratio $\operatorname{ar}(\triangle D E F): \operatorname{ar}(\triangle C F B)$

- Watch Video Solution

73. Sides of some triangles are given below. Determine which of them are right triangles.
(i) $8 \mathrm{~cm}, 15 \mathrm{~cm}, 17 \mathrm{~cm}$
(ii) $9 \mathrm{~cm}, 11 \mathrm{~cm}, 6 \mathrm{~cm}$
(iii) $(2 a-1) c m, 2 \sqrt{2 a} c m$ and $(2 a+1) c m$
74. A man goes 15 metres due west and then 8 metres due north. How far is he from the starting point?

- Watch Video Solution

75. A ladder 25 m log just reaches the top of a building 24 m high from the ground. What is the distance of the foot of the ladder from the building ?

- Watch Video Solution

76. A ladder 15 m long reaches a window which is 9 m above the ground on one side of a street. Keeping its foot at the same point, the ladder is turned to other side of the street to reach a window 12 m high. Find the width of the street.
77. Two poles of height 6 meters and 11 meteras stand vertically on a plane ground. If the distance between their feet is 12 meters. Find the distance between their tops.

- Watch Video Solution

78. In a rhombus of side 10 cm , one of the diagonals is 12 cm long. The length of the second diagonals is

- Watch Video Solution

79. $\triangle A B D$ is a right triangle, right-angled at A and $A C \perp B D$. Prove that $A B^{2}=B C \times B D$.

- Watch Video Solution

80. BL and CM are medians of a triangle $A B C$ right angled at A. Prove that $4\left(B L^{2}+C M^{2}\right)=5 B C^{2}$

Watch Video Solution

81. In the given figure, the of a $\triangle A B C$, interesects BC at D such $D B=3 C D$. Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$

- Watch Video Solution

82. In a triangle $A B C, B=90^{\circ}$ and D is the mid-point of $B C$ then prove that $A C^{2}=A D^{2}+3 C D^{2}$

- Watch Video Solution

83. In right-angled triangle $A B C$ in which $\angle C=90 o$, if D is the midpoint of $B C$, prove that $A B^{2}=4 A D^{2}-3 A C^{2}$.

- Watch Video Solution

84. In an isosceles triangle ABC with $A B=A C, B D$ is perpendicular from B to the side $A C$. Prove $B D^{2}-C D^{2}=2 C D . A D$.

- Watch Video Solution

85. ABC is an isosceles right triangle, right-angled at C. Prove that: $A B^{2}=2 A C^{2}$.

- Watch Video Solution

86. $A B C$ is an isosceles triangle with $A C=B C$. If $A B^{2}=2 A C^{2}$, then $A B C$ is a right angled at

- Watch Video Solution

87. $A B C$ is a right triangle right-angled at C. Let $B C=a, C A=b, A B=c$ and let p be the length of perpendicular from C on $A B$, prove that (i) $c p=a b$ (ii) $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$

- Watch Video Solution

88. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

- Watch Video Solution

89. In an equilateral triangle with side a, prove that (i) Altitude $=\frac{a \sqrt{3}}{2}$
(ii) Area $=\frac{\sqrt{3}}{4} a^{2}$

- Watch Video Solution

90. O is a point in the interior of
$\triangle A B C, O D \perp B C, O E \perp A C$ and $O F \perp A B$, as shown in the figure,

Prove that :
(i) $O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$
(ii) $A F^{2}+B D^{2}+C E^{2}=A D^{2}+B F^{2}+C D^{2}$

- Watch Video Solution

91. O is any point inside a rectangle $A B C D$. Prove that $O B^{2}+O D^{2}=O A^{2}+O C^{2}$.

DEDUCTION In the given figure, O is a point inside a rectangle $A B C D$ such that $O B=6 \mathrm{~cm}, O D=8 \mathrm{~cm}$ and $O A=5 \mathrm{~cm}$, find the length of $O C$.

(Watch Video Solution

92. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

- Watch Video Solution

93. P and Q are points on the sides $C A$ and $C B$ respectively of $A B C$, right angled at C. Prove that $A Q^{2}+B P^{2}=A B^{2}+P Q^{2}$.

- Watch Video Solution

94. In the figure given below, $\triangle P Q R$ is right-angled at Q and the points S and T trisect the side QR . Prove that $8 P T^{2}=3 P R^{2}+5 P S^{2}$

- Watch Video Solution

95. In an isoscles $\triangle A B C, A B=A C$ and D is a point on BC . Prove that $A B^{2}-A D^{2}=B D \cdot C D$.
96. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.

- Watch Video Solution

97. In a quadrilateral $\mathrm{ABCD}, \angle B=90^{\circ}$ and $A D^{2}=A B^{2}+B C^{2}+C D^{2}$ prove that $\angle A C D=90^{\circ}$.

- Watch Video Solution

98. Prove that the area of the semicircle drawn on the hypotenuse of a right-angled triangle is equal to the sum of the areas of the semicircles drawn on the other two sides of the triangle

- Watch Video Solution

99. Given a right-angled $\triangle A B C$. The lengths of the sides containing the right angle are 6 cm and 8 cm . A circle is inscribed in $\triangle A B C$. Find the radius of the circle.

- Watch Video Solution

100. Prove by vector method that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

- Watch Video Solution

101. Given $a \triangle A B C$ in which $\angle B=90^{\circ}$ and $A B=\sqrt{3} B C$. Prove that $\angle C=60^{\circ}$

- Watch Video Solution

1. In the figue given along side, $D E \| O Q$ and $D F \| O R$. Show that $E F|\mid Q R$.

- Watch Video Solution

2. In the given figure, CD and GH are respectively the bisectors of $\angle A C B$ and $\angle F G E$ of $\triangle A B C$ and $\triangle E F G$ respectively . If $\triangle A B C \sim \Delta F E G$, prove that:
(a) $\triangle A D C \sim \triangle F H G$
(b) $\Delta B C D \sim \Delta E G H$
(c) $\frac{C D}{G H}=\frac{A C}{F G}$

- Watch Video Solution

3. In the given figure, BM and EN are respectively the medians of $\triangle A B C$ and $\triangle D E F$. If $\triangle A B C \sim \triangle D E F$, prove that:
(a) $\triangle A M B \sim \triangle D N E$
(b) $\Delta C M B \sim \Delta F N E$
(c) $\frac{B M}{E N}=\frac{A C}{D F}$

- Watch Video Solution

4. In the given figure, DEFG is a square and $\angle B A C=90^{\circ}$, Prove that
(i) $\triangle A G F \sim \Delta D B G$
(ii) $\triangle A G F \sim \Delta E F C$
$(i i i) D E^{2}=B D \times E C$

- Watch Video Solution

Exercise 7 A

1. D and E are points on the sides AB and AC respectively of a $\triangle A B C$ such that $D E|\mid B C$.
(i) If $A D=3.6 \mathrm{~cm}, A B=10 \mathrm{~cm}$ and $A E=4.5 \mathrm{~cm}$, find EC and AC .
(ii) If $A B=13.3 \mathrm{~cm}, a c=11 . \mathrm{cm}$, and $E C=5.1 \mathrm{~cm}$, find AD
(iii) If $\frac{A D}{D B}=\frac{4}{7}$ and $A C=6.6 \mathrm{~cm}$, find AE .
(iv) If $\frac{A D}{A B}=\frac{8}{15}$ and $E C=3 . \mathrm{cm}$, find AE .

- Watch Video Solution

Exercise 7 A

1. D and E are points on the sides AB and AC respectively of a $\triangle A B C$ such that $D E|\mid B C$.

Find the value of x, when
(i) $A D=x \mathrm{~cm}, D B=(x-2) \mathrm{cm}$,
$A E=(x+2) c m$ and $E C=(x-1) c m$.
(ii) $A D=4 c m, D B=(x-4) c m, A E=8 \mathrm{~cm}$
and $E C=(3 x-19) c m$.
(iii) $A D=(7 x-4) c m, A E=(5 x-2) c m, D B(3 x+4) c m$ and $E C=3 a$

- Watch Video Solution

2. D and E are points on the sides AB and AC respectively of $\triangle A B C$. In each of the following cases, determine whetheer $D E|\mid B C$ or not. (i)
$A D=5.7 \mathrm{~cm}, D B=9.5 \mathrm{~cm}, A e=4.8 \mathrm{~cm}$ and $E C=8 \mathrm{~cm}$.
$A B=11.7 \mathrm{~cm}, A C=11.2 \mathrm{~cm}, A D=6.5 \mathrm{~cm}$ and $A E=41.2 \mathrm{~cm}$,
$A B=10.8 \mathrm{~cm}, A D=6.3 \mathrm{~cm}, A C=9.6 \mathrm{~cm}$ and $E C=4 \mathrm{~cm}$.
$A D=7.2 \mathrm{~cm} A E=6.4 \mathrm{~cm} . A B=12 \mathrm{~cm}$ and $A C=10 \mathrm{~cm}$.

- Watch Video Solution

3. In a $\triangle A B C, A D$ is the bisector of $\angle A$.
(i) If $A B=6.4 \mathrm{~cm}, A C=8 \mathrm{~cm}$ and $B D=5.6 \mathrm{~cm}$, find DC .
(ii) If $A B=10 \mathrm{~cm}, A C=14 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$, find BD and DC .
(iii) If $A B=5.6 \mathrm{~cm}, B D=3.2 \mathrm{~cm}$, and $B C=6 \mathrm{~cm}$, find AC .
(iv) If $A B=5.6 \mathrm{~cm}, A C=4 \mathrm{~cm}$, and $D C 3 \mathrm{~cm}$, find BC .

- Watch Video Solution

4. M is a point on the side $B C$ of a parallelogram ABCD. $D M$ when produced meets AB produced at N. Prove that
(i) $\frac{D M}{M N}=\frac{D C}{B N} \quad$ (ii) $\frac{D N}{D M}=\frac{A N}{D C}$

- Watch Video Solution

5. Show that the line segment which joins the midpooints of the oblique sides of a trapesium is parallel to the sides.

- Watch Video Solution

6. In the adjoining figure, ABCD is a trapezium in which $C D|\mid A B$ and its diagonals intersect at 0. if

$$
A O=(5 x-7) c m, O C=(2 x+1) c m, B O=(7 x-5) c m \text { and } O D=(7 x
$$

, find the value of x.

- Watch Video Solution

7. In $\triangle A B C, M$ and N are points on the sides AB and AC respectively such that $B M=C N$. If $\angle A=\angle C$ then show that $M N|\mid B C$.

- Watch Video Solution

8. $\triangle A B C$ and $\triangle D B C$ lie on the same side of BC , show in the figure. From a point on $B C \cdot P Q \| A B$ and $P R \| B D$ are drawn, meeting AC at Q , and CD at R respectively. Prove that $Q R|\mid A D$.
9. In the given figure, side BC of $\triangle A B C$ is bisected at D and O is any point $A D . B O$ and $C O$ produced meet $A C$ and $A B$ at E and F respectively, and $A D$ is respectively, and $A D$ is produced to X so that D is the midpoint of OX. Prove that $A O: A X=A F: A B$ and show that $E F|\mid B C$.

- Watch Video Solution

10. $A B C D$ is a parallelogram in which P is the midpoint of $D C$ and Q is a point on AC such that $\mathrm{CQ}=\frac{1}{4} A C$. If PQ produced meets BC at R , prove that R is the midpoint of $B C$.

- Watch Video Solution

11. In the adjoining figure, $A B C$ is a triangle in whcich $A B=A C$. If D and E are poitns on $A B$ and $A C$ respecrtively such that $A D=A E$, show that the points
B, C, E and D are concyclic.

- Watch Video Solution

12. In $\triangle A B C$, the bisector of $\angle B$ meets AC at D . A line $P Q|\mid A C$ meets $A B, B C$ and $B D$ at P, Q and R respectively. Show that $B P \times Q R=B Q \times P R$.
13. In each of the given pairs of triangles, find which pair of triangles are similar. State the similarity criterion and write the similarity relation in symbolic form.

(iii)

14. In the
given
figure,
$\triangle O D C \sim \triangle O B A, \angle B O C=115^{\circ}$ and $\angle C O D=70^{\circ}$

Find (i) $\angle D O C(i i) \angle D C O(i i i) \angle O A B(i v) \angle O B A$

- Watch Video Solution

3. In the given figure, $\triangle O A B \sim \triangle O C D$. If $A B=8 \mathrm{~cm}, B O=6.4 \mathrm{~cm}, O C=3.5 \mathrm{~cm}$ and $C D=5 \mathrm{~cm}$ find (i) OA (ii) DO.

4. In the given figure, if $\angle A D E=\angle B$, show that $\triangle A D E \sim \triangle A B C$. If $A D=3.8 \mathrm{~cm}, A E=3.6 \mathrm{~cm}, B E=2.1 \mathrm{~cm}$, and $B C=4.2 \mathrm{~cm}$, find DE.

- Watch Video Solution

5. The perimetes of two similar triangles $A B C$ and $P Q R$ are 32 cm and 24 cm respectively. If $\mathrm{PQ}=12 \mathrm{~cm}$, find AB .

- Watch Video Solution

6. The corresponding sides of two similar triangles ABC and DEF are $B C=9.1 \mathrm{~cm}$, and $E F=6.5 \mathrm{~cm}$. If the perimete of $\triangle D E F$ is 25 cm , find the perimeter of $\triangle A B C$.

- Watch Video Solution

7. In the given figure, $\angle C A B=90^{\circ}$ and $A D \perp B C$. Show that
$\Delta B D A \sim \Delta B A C$. if $A C=75 \mathrm{~cm}, A B=1 \mathrm{~m}$ and $B C=1.25 \mathrm{~cm}$, find AD.

8. In the given figure, $\angle A B C=90^{\circ}$ and $B D \perp A C$. If $A B=5.7 \mathrm{~cm}, B D=3.8 \mathrm{~cm}$ and $C D=5.4 \mathrm{~cm}$, find BC .

- Watch Video Solution

9. In the given figure, $\angle A B C=90^{\circ}$ and $B D \perp A C$. If $B D=8 c m, A D=4 c m$ find CD.

- Watch Video Solution

10. P and Q are points on the sides AB and AC respectively of a $\triangle A B C$.

If $A P=2 \mathrm{~cm}, \mathrm{~PB}=4 \mathrm{~cm} A Q=3 \mathrm{~cm}$ and $\mathrm{QC}=6 \mathrm{~cm}$. Show that $\mathrm{BC}=3 \mathrm{PQ}$.

- Watch Video Solution

11. $A B C D$ is a parallelogram and E is a point, on $B C$. If the diagonal $B D$ intersects AE at F, prove that $A F \times F B \times E F \times F D$.

- Watch Video Solution

12. In the given figure, $D B \perp B C, D E \perp A B$ and $A C \perp B C$.

Prove that $\frac{B E}{D E}=\frac{A C}{B C}$

- Watch Video Solution

13. A vertical pole of length 7.5 m casts a shadow 5 long on the ground and at the same time a tower casts a shadow 24 m long. Find the height of the tower.

- Watch Video Solution

14. In an isosceles $\triangle A B C$, the base AB is produced both wasys in P and Q such that $A P \times B Q=A C^{2}$

Prove that $\triangle A C P \sim \Delta B C Q$.

- Watch Video Solution

15. In the given figure, $\angle 1=\angle 2$ and $\frac{A C}{B D}=\frac{C B}{C E}$ prove that $\triangle A C B \sim \triangle D C E$.

- Watch Video Solution

16. $A B C D$ is a quadirlateral in which $A D=B C$. If P, Q, R, S be the midpoints of $A B, A C, C D$ and $B D$ respectively, show that $P Q R S$ is a rhombus.

- Watch Video Solution

17. In a cricle, two chords $A B$ and $C D$ intersect at a point P inside the circle.

Prove that
(a) $\triangle P A C \sim \Delta P D B$
(b) $P A \cdot P B=P C \cdot P D$.

- Watch Video Solution

18. Two chords $A B$ and $C D$ of a circle intersect at a point outside the circle.

Prove that
(a) $\triangle P A C \sim \triangle P D B \quad$ (b) $P A \cdot P B=P C \cdot P D$.

- Watch Video Solution

19. In a right tringle $A B C$, right-angled at B, D is a point on hypotenuse such that $B D \perp A C$. If $D P \perp A B$ and $D Q \perp B C$ then prove that
(a) $D Q^{2}=D P \cdot Q C \quad D P^{2}=D Q \cdot A P$.

- Watch Video Solution

1. The areas of two similar $\triangle A B C$ and $\triangle P Q R$ are 64 sq. cm and 121 sq. cm. repsectively. If $Q R=15.4 \mathrm{~cm}$, find $B C$.

Watch Video Solution

2. The areas of two similar triangles $A B C$ and $P Q R$ are in the ratio 9:16 . If $B C=4.5 \mathrm{~cm}$, find the length of $Q R$.

- Watch Video Solution

3. $\triangle A B C \sim \triangle P Q R$ and $\operatorname{ar}(\triangle A B C)=4 a r(\triangle P Q R)$, If $B C=12 \mathrm{~cm}$ then find $Q R$
A. 7 cm
B. 8 cm
C. 10 cm
D. 6 cm

Answer: D

- Watch Video Solution

4. The areas of two similar triangles are $169 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$ respectively. If the longest side of the larger triangle is 26 cm , what is the length of the longest side of the smaller triangle?
A. 39 cm
B. 25 cm
C. 22 cm
D. 21 cm

Answer: C

5. $\triangle A B C \sim \triangle D E F$ and their areas are respectively $100 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$. If the altitude of $\triangle A B C$ is 5 cm find the correspoding altitude of $\triangle D E F . \backslash$

Watch Video Solution

6. The corresponding altitudes of two similar triangles are 6 cm and 9 cm respectively. Find the ratio of their areas.

- Watch Video Solution

7. The areas of two similar triangles are $81 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If the altitude of the triangle is 6.3 cm , find the corresponding altitude of the other.

- Watch Video Solution

8. The areas of two similar triangle are $100 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$ respectively. If a median of the smaller triangle is 5.6 cm , find th corresponding median of the other.

- Watch Video Solution

9. In the given figure, $A B C$ is triangle and $P Q$ is a stright line meeting $A B$ in P and AC in Q . if $A P=1 \mathrm{~cm}, P B=3 \mathrm{~cm}, A Q=1.5 \mathrm{~cm}, Q C=4.5 \mathrm{~cm}$ prove that area of $\triangle A P Q$ is $\frac{1}{16}$ of the area of $\triangle A B C$.

Watch Video Solution

10. In the given figure, $D E|\mid B C$. If
$D E=3 \mathrm{~cm}, B C=6$ and $\operatorname{ar}(\triangle A D E)=15 \mathrm{~cm}^{2}$, find the area of $\triangle A B C$.

- Watch Video Solution

11. $\triangle A B C$ is right-angled at A and $A D \perp B C$. If $B C=13 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}, \quad$ find the ratio of areas of
$\triangle A B C$ and $\triangle A D C$.

- Watch Video Solution

12. In the given figure, $D E|\mid B C$ and $D E: B C=3: 5$. Calculate the ratio of areas of $\triangle A D E$ and the trpezium BCED.

- Watch Video Solution

13. In $\triangle A B C, D$ and E are the midpoint of AB and AC respectively. Find the ratio of the areas of $\triangle A D E$ and $\triangle A B C$.

- Watch Video Solution

Exercise 7 D

1. Find in each cash whether the sides of the triangle, as given below form a right triangle or not
(1) $9 \mathrm{~cm}, 12 \mathrm{~cm}$ and 15 cm (ii) $8 \mathrm{~cm}, 15 \mathrm{~cm}$ and 17 cm
(iii) $7 \mathrm{~cm}, 24 \mathrm{~cm}$ and 25 cm

- Watch Video Solution

2. A man goes 80 m due east and then 150 m due north. How far is he from the starting point?

(D) Watch Video Solution

3. A man goes 10 m due south and then 24 n due west. How far is from the starting point ?

- Watch Video Solution

4. A $13-\mathrm{m}$ long ladder reaches a window of building 12 m above the ground. Determine the distance of the foot the ladder from the building.

Watch Video Solution

5. A ladder is placd in such a way that its foot is a distance of 15 m from a wall and its top reaches a window 20 m abvoe the ground. Find the leng of the ladder .
6. Two poles of height 9 m and 14 m stand on a plane ground. If the distance between their feet is 12 m , find the distance between their tops.
A. $11 m$
B. $12 m$
C. $13 m$
D. $14 m$

Answer: C

- Watch Video Solution

7. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?
8. In the given figure, O is point inside a $\triangle P Q R$ such that $\angle P O R=90^{\circ}, O P=6 \mathrm{~cm}$ and $O R=8 \mathrm{~cm}$.
$P Q=24 \mathrm{~cm}$ and $Q R=26 \mathrm{~cm}$, prove that $\triangle P Q R$ is right angled.

- Watch Video Solution

9. In an isosceles triangle $A B C$, if $A B=A C=13 \mathrm{~cm}$ and the altitude from A on $B C$ is 5 cm , find $B C$.
10. Find the length of altitude $A D$ of an isosceles $\triangle A B C$ in which $A B=A C=2 a$ units and $\mathrm{BC}=\mathrm{a}$ units.

- Watch Video Solution

11. $\triangle A B C$ is an equilateral triangle of side 2 a units. Find each of its altitudes.

- Watch Video Solution

12. Find the height of an equilateral triangle of side 12 cm

- Watch Video Solution

13. Find the length of a diagonal of reactangle whose adjacent sides are 30 and 16 cm
14. Find the length of each side of a rhombus whose diagonals are 24 cm and 10 m long.

Watch Video Solution

15. In $\triangle A B C, D$ is the midpoint of $B C$ and $A E \perp B C$. If $A C>A B$, show that $A B^{2}=A D^{2}-B C \cdot D E+\frac{1}{4} B C^{2}$

- Watch Video Solution

16. In the given figure $\angle A B C=90^{\circ}$ and $C D \perp A B$. Prove that $\frac{B C^{2}}{A C^{2}}=\frac{B D}{A D}$

- Watch Video Solution

17. In the given figure, D is the midpoint of side BC and $A E \perp B C$. If $B C=a, A C=b, A B=c, E D=x A D=p$ and $A E=h$ prove that
(i) $b^{2}=p^{2}+a x+\frac{a^{2}}{4}$
(ii) $c^{2}=p^{2}-a x+\frac{a^{2}}{4}$
(iii) $\left(b^{2}+c^{2}\right)=2 p^{2}+\frac{1}{2} a^{2}$
$(i v)\left(b^{2}-c^{2}\right)=2 a x$

- Watch Video Solution

18. In $\triangle A B C, A B=A C$. Side BC is produced to D . Prove that $\left(A D^{2}-A C^{2}\right)=B D \cdot C D$.

- Watch Video Solution

19. $A B C$ is an isosceles triangle, right-angled at B. Similar trianles $A C D$ and $A B E$ are constructed on sides $A C$ and $A B$. Find ratio between the areas of $\triangle A B E$ and $\triangle A C D$.

- Watch Video Solution

20. An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same tune, another aeroplane leaves the same airport
and flies due west at a speed of 1200 km per hour. |How far apart will be the two planes after $11 / 2$

- Watch Video Solution

21. In $a \Delta A B C, A D$ is a median and $A L \perp B C$.

Prove that
(a) $A C^{2}=A D^{2}+B C \cdot D L+\left(\frac{B C}{2}\right)^{2}$
(b) $A B^{2}=A D^{2}-B C \cdot D L+\left(\frac{B C}{2}\right)^{2}$
(c) $A C^{2}+A B^{2}=2 A D^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$

22. Nazinia is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that h

- Watch Video Solution

Exercise 7 E

1. State the two properties which are encessary for given two triangle to be similar.

- Watch Video Solution

2. State the basic proportionality theorem.
3. State basic proportionality theorem and its converse.

- Watch Video Solution

4. State the midpoint theorem.

- Watch Video Solution

5. AAA Similarity Criterion : If two triangles are equiangular; then they are similar

- Watch Video Solution

6. State $\forall A$ similarity criterion.

- Watch Video Solution

7. State $S S S$ similarity criterion.

- Watch Video Solution

8. State $S A S$ similarity criterion.

- Watch Video Solution

9. State Pythagoras theorem and its converse.

- Watch Video Solution

10. State Pythagoras theorem and its converse.
11. If D, E, F are the mid-points of the sides $B C, C A$ and $A B$ respectively of a triangle $A B C$, prove by vector method that Area of $\triangle D E F=1 / 4$ Area of $\triangle A B C$

- Watch Video Solution

12. Two triangles $A B C$ and $P Q R$ are such that
$A B=3 \mathrm{~cm}, A C=6 \mathrm{~cm}, \angle A=70^{\circ}, P R=9 \mathrm{~cm}, \angle P=70^{\circ}$ and $P Q=4 .!$
. Show that $\triangle A B C \sim \triangle P Q R$ and state the similarity criterion.

- Watch Video Solution

13. If $\triangle A B C \sim \triangle D E F$ such that $2 A B=D E$ and $B C=6 c m$ find EF .

- Watch Video Solution

14. In the given figure, $D E|\mid B C$ such that $A D=x c m, D B=(3 x+4) c m, A E=(x+3) c m$ and $E C=(3 x+19) c r$
. Find the value of x.

- Watch Video Solution

15. A ladder 10 m log reaches the window of a house 8 m above the ground. Find the distance of the foot of the ladder from the base of the wall.
16. Find the length of the altitude of an equilateral triangle of side 2 acm .

- Watch Video Solution

17.

$$
\triangle A B C \sim \triangle D E C
$$

such
that
$\operatorname{ar}(\triangle A B C)=64 \mathrm{~cm}^{2}$ and $\operatorname{ar}(\triangle D E F)=169 \mathrm{~cm}^{2}$. If $B C=4 \mathrm{~cm}$, find EF.

- Watch Video Solution

18. In a trapezium ABCD , it is given that $A B|\mid C D$ and $A B=2 C D$. Its diagonals $A C$ and $B D$ intersect at the point O such that $\operatorname{ar}(\triangle A O B)=84 \mathrm{~cm}^{2}$. Find $\operatorname{ar}(\triangle C O D)$

- Watch Video Solution

19. Corresponding sides of two triangles are in the ratio $2: 3$. If the area of the smaller triangle is $48 \mathrm{~cm}^{2}$, determine the area of the larger triangle.

- Watch Video Solution

20. In an equilateral triangle with side a, prove that Altitude $=\frac{a \sqrt{3}}{2}$ (ii) Area $=\frac{\sqrt{3}}{4} a^{2}$

- Watch Video Solution

21. Find the length of each side of a rhombus whose diagonals are 24 cm and 10 m long.

- Watch Video Solution

22. Two triangles DEF and GHK are sucht that $\angle D=48^{\circ}$ and $\angle H=57^{\circ}$. If $\triangle D E F \sim \Delta G H K$ then find the measure of $\angle F$.

Watch Video Solution

23. In the given figure, $M N|\mid B C$ and $A M: M B=1: 2$

Find $\frac{\operatorname{area}(\triangle A M N)}{\operatorname{area}(\triangle A B C)}$

- Watch Video Solution

24. In triangles BMP and CNR it is given that
$P B=5 \mathrm{~cm}, M P=6 \mathrm{~cm}, B M=9 \mathrm{~cm}$ and $N R=9 \mathrm{~cm}$.
$\Delta B M P \sim \Delta C N R$ then find the perimeter of $\triangle N C R$.

- Watch Video Solution

25. Each of the equqal sides of an isosceles triangles is 25 cm . Find the length of its altitude if the base is 14 cm .

- Watch Video Solution

26. A man goes 12 m dou south and then 35 m due west. How far is he from the starting point ?

- Watch Video Solution

27. If the lengths of the sides BC, CA and AB of $\triangle A B C$ are a, b, and c repspectively and AD is the bisector of $\angle A$ then find the length of BD and DC.

- Watch Video Solution

28. In the given figure, $\angle A M N=\angle M B C=76^{\circ}$. If p, q and r are the lengths of $A M, M B$ and $B C$ respectively then express the length of $M N$ in term of a, b and c .

- Watch Video Solution

29. The lengths of the diagonals of a rhombus are 40 cm and 42 cm . find the length of each side of the rhombus.

- Watch Video Solution

30. (i) Two circles with different radii are similar.
(ii) Any two rectangels are similar.
(iii) If two triangles are similar then their coresponding angles are equal and their corresponding sides are equal.
(iv) The lenghts of the line segment joining the midpoints of any two sides of a triangle is equal to half lenge of the third side.
(v) In a $\triangle A B C, A B=6 \mathrm{~cm}, \angle A=45^{\circ}$ and $A C=8 \mathrm{~cm}$ and in a $\triangle D E F, D F=9$ $\mathrm{cm} \angle \mathrm{D}=45^{\circ}$ and $\mathrm{DE}=12 \mathrm{~cm}$ then $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF} . \mathrm{t}$
(vi) The polygon formed by joining the midpoints of the sies of a quadrilaterla is a rhombus.
(vii) The ratio of the areas of two similar triangls is equal to the ratio of thier corresponding angle-bisector segments.
(viii) The ratio of the perimeeters of two similar triangles is the same as the ratio of their corresponding medians.
(ix) If O is any point inside a rectangle $A B C D$ then $O A^{2}+O C^{2}=O B^{2}+O D^{2}$
(x) The sum of the squares on the sides of a rhombus is equal to the sum of the squares on its diagonals.

Multiple Choice Questions Mcq

1. A man goes 24 m due west and then 10 m due north. How far is he from the starting point ?
A. 34 m
B. 17 m
C. 26 m
D. 28 m

Answer: C

- Watch Video Solution

2. Two poles of height 13 m and 7 m respectively stand vetically on a plane ground at a distance of 8 m of from each other. The distance btewen their
tops is
A. 9 m
B. 10 m
C. 11 m
D. 12 m

Answer: B

- Watch Video Solution

3. A vertical stick 1.8 m long casts a shadow 45 cm long on the ground. At the same time, what is the length or the shadow of a pole 6 m high?
A. $2.4 m$
B. 1.35 m
C. $1.5 m$
D. 13.5 m

Answer: C

- Watch Video Solution

4. A vertical pole 6 m log casts a shadow of length 3.6 m on the ground.

What is the height of tower which casts a shadow of length 18 m at the same time?
A. $10.8 m$
B. $28.8 m$
C. $32.4 m$
D. 30 m

Answer: D

5. The shadow of a 5 -m-long stick is 2 m long. At the same time, the length of the shadow of a $12.5 m$-m-high tree is
A. 3.0
B. 3.5
C. 4.5
D. 5.0

Answer: D

- Watch Video Solution

6. A ladder 25 m log just reaches the top of a building 24 m high from the ground. What is the distance of the foot of the ladder from the building ?
A. 7 m
B. 17 m
C. 21 m
D. $24.5 m$

Answer: A

- Watch Video Solution

7. In the given figure, O is point inside a $\triangle M N P$ such that $\angle M O P=90^{\circ} \quad O M=16 \mathrm{~cm}$ and $O P=12 \mathrm{~cm}$, If $M N=21 \mathrm{~cm}$ and $\angle N M P=90^{\circ}$ then $N P=?$
A. 25 cm
B. 29 cm
C. 33 cm
D. 35 cm

Answer: B

- Watch Video Solution

8. The hypotenuse of a right triangle is 25 cm . The difference between the lengths of the other two sides of the triangle is 5 cm . Find the lengths of these sides.
A. $10 \mathrm{~cm}, 15 \mathrm{~cm}$
B. $15 \mathrm{~cm}, 20 \mathrm{~cm}$
C. $12 \mathrm{~cm}, 17 \mathrm{~cm}$
D. $13 \mathrm{~cm}, 18 \mathrm{~cm}$

Answer: B

- Watch Video Solution

9. The height of an equilateral triangle having each side 12 cm , is
A. $6 \sqrt{2} \mathrm{~cm}$
B. $6 \sqrt{3} \mathrm{~cm}$
C. $3 \sqrt{6} \mathrm{~cm}$
D. $6 \sqrt{6} \mathrm{~cm}$

Answer: B

- Watch Video Solution

10. In an isosceles triangle $A B C$, if $A B=A C=13 \mathrm{~cm}$ and the altitude from A on $B C$ is 5 cm , find $B C$.
A. 12 cm
B. 16 cm
C. 18 cm
D. 24 cm

Answer: D

- Watch Video Solution

11. In $a \triangle A B C$ it is given that $A B=6 \mathrm{~cm}, A C=8 \mathrm{~cm}$ and $A D$ is the bisector of $\angle A$. Then $B D: D C=$?

A. $3: 4$
B. 9: 16
C. $4: 3$
D. $\sqrt{3}: 2$

Answer: A
12. In a $\triangle A B C$ it is given AD is internal bisector of $\angle A$. If $B D=4 \mathrm{~cm}, D C=5 \mathrm{~cm}$ and $A B=6 \mathrm{~cm}$, then $\mathrm{AC}=$?

- Watch Video Solution

13. In a $\triangle A B C$, it is give tha AD is the internal bisector of $\angle A$. If $A B=10 \mathrm{~cm}, A C=14 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$ then $\mathrm{CD}=$?

A. 4.8 cm
B. 3.5 cm
C. 7 cm
D. 10.5 cm

Answer: B

D Watch Video Solution

14. If the median to the base of a triangle is perpendicular to the base then triangle is isosceles.
A. right-angled
B. isosceles
C. scalene
D. obtuse-angled

Answer: B

- Watch Video Solution

15. In an equilateral triagnle ABC , if $A D \perp B C$ then which of the following is true?

A. $2 A B^{2}=3 A D^{2}$
B. $4 A B^{2}=3 A D^{2}$
C. $3 A B^{2}=4 A D^{2}$
D. $3 A B^{2}=2 A D^{2}$

Answer: C

16. In a rhombus of side 10 cm , one of the diagonals is 12 cm long. The length of the second diagonals is
A. 20 cm
B. 18 cm
C. 16 cm
D. 22 cm

Answer: C

- Watch Video Solution

17. The lengths of the diagonals of a rhombus are 24 cm and 10 cm . The length of each side of the rhombus is
A. 12 cm
B. 13 cm
C. 14 cm
D. 17 cm

Answer: B

- Watch Video Solution

18. If the diagonals of a quadirlateral divide each other proportionally then it is a
A. parallelogram
B. trapezium
C. rectangle
D. square

Answer: B

19. In the given figure, $A B C D$ is trapezium whow diagonals $A C$ and $B D$ intersect at o such that $O A=(3 x-1) c m,(O B=(2 x+1) c m, O C=(5 x-3) c m$ and $O D=(6$
. Then, $\mathrm{x}=$?

- Watch Video Solution

20. The line segments joining the midpoints of the adjacent sides of a quadrilateral form
A. a parallelogram
B. a rectangle
C. a square
D. a rhombus

Answer: A

- Watch Video Solution

21. If the bisector of an angle of a triangle bisects the opposite side, prove that the triangle is isosceles.
A. acalene
B. equilateral
C. isosceles
D. right-angled

Answer: C

D Watch Video Solution

22. In $\triangle A B C$ it is given that $\frac{A B}{A C}=\frac{B D}{D C}$. If $\angle B=70^{\circ}$ and $\angle C=50^{\circ}$ then $\angle B A D=?$

A. 30°
B. 40°
C. 45°
D. 50°

- Watch Video Solution

23. In
$\triangle A B C, D E| | B C$ so
that
$A D==2.4 \mathrm{~cm}, A E=3.2 \mathrm{~cm}$ and $E C=4.8 \mathrm{~cm}$, then, $\mathrm{AB}=$?

A. 3.6 cm
B. 6 cm
C. 6.4 cm
D. 7.2 cm

Answer: B

24. In a $\triangle A B C$, if DE is drawn parallel to BC , cutting AB and AC to D and E respectively such that $A B=7.2 \mathrm{~cm}, A C=6.4 \mathrm{~cm}$ and $A D=4.5 \mathrm{~cm}$. Then, $\mathrm{AE}=$?

A. 5.4 cm
B. 4 cm
C. 3.6 cm
D. 3.2 cm

Answer: B

$$
A D=(7 x-4) c m, A E=(5 x-2) c m, D B=(3 x+4) c m \text { and } E C=3 x
$$

. Then, we have

A. $x=3$
B. $x=5$
C. $x=4$
D. $x=2.5$

- Watch Video Solution

26. In $\triangle A B C, D E| | B C$ such that $\frac{A D}{D B}=\frac{3}{5}$. If $A C=5.6 \mathrm{~cm}$ then, $A E=$?

A. 4.2 cm
B. 3.1 cm
C. 2.8 cm
D. 2.1 cm

Answer: D

27. $\triangle A B C \sim \triangle D E F$ and the perimeters of $\triangle A B C d$ and $\triangle D E F$ are 30 cm and 18 cm respectively. If $B C=9 \mathrm{~cm}$, then $\mathrm{EF}=$?
A. 6.3 cm
B. 5.4 cm
C. 7.2 cm
D. 4.5 cm

Answer: B

- Watch Video Solution

28. The corresponding sides of two similar triangles ABC and DEF are $B C=9.1 \mathrm{~cm}$, and $E F=6.5 \mathrm{~cm}$. If the perimete of $\triangle D E F$ is 25 cm , find the perimeter of $\triangle A B C$.
A. 35 cm
B. 28 cm
C. 42 cm
D. 40 cm

Answer: A

- Watch Video Solution

29. In $\triangle A B C$,
it
is
given
that
$A B=9 \mathrm{~cm}, B C=6 \mathrm{~cm}$, and $C A=7.5 \mathrm{~cm}$. Also $\triangle D E F$ is givne such that $E F=8 \mathrm{~cm}$ and $\triangle D E F \sim \triangle A B C$. Then perimeter of $\triangle D E F$ is
A. 22.5 cm
B. 25 cm
C. 27 cm
D. 30 cm

Answer: D

30. $A B C$ and $B D E$ are two equilateral triangles such that D is the midpoint of $B C$. The ratio of the areas of the triangles $A B C$ and $B D E$ is
$2: 1$ (b) $1: 2$ (c) $4: 1$ (d) $1: 4$
A. 1:2
B. 2:1
C. 1: 4
D. 4: 1

Answer: D

- Watch Video Solution

31. If $\triangle A B C \sim \triangle D F E, \angle A=30, \angle C=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm}$ and $\mathrm{DF}=7.5$ cm . Then, which of the following is true?
A. $D E=12 \mathrm{~cm}, \angle F=50^{\circ}$
B. $D E=12 \mathrm{~cm}, \angle F=100^{\circ}$
C. $E F=12 \mathrm{~cm}, \angle D=100^{\circ}$
D. $E F=12 \mathrm{~cm}, \angle D=30^{\circ}$

Answer: B

- Watch Video Solution

32. In the given figure, $\angle B A C=90^{\circ}$ and $A D \perp B C$.then,

A. $B C \cdot C D=B C^{2}$
B. $A B \cdot A C=B C^{2}$
C. $B D \cdot C D=A D^{2}$
D. $A B \cdot A C=A D^{2}$

Answer: C

- Watch Video Solution

33. In $\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$. Then $\angle B$ is
A. 45°
B. 60°
C. 90°
D. 120°

Answer: C

34. In $\triangle A B C$ and $\triangle D E F$, it is given that $\frac{A B}{D E}=\frac{B C}{F D}$ then they will be similar when
A. $\angle B=\angle E$
B. $\angle B=\angle D$
C. $\angle B=\angle D$
D. Right-angled

Answer: C

- Watch Video Solution

35. In $\triangle D E F$ and $\triangle P Q R$, it is given that $\angle D=\angle Q$ and $\angle R=\angle E$, then which of the following is not true?
A. $\frac{E F}{P R}=\frac{D F}{P Q}$
B. $\frac{D E}{P Q}=\frac{E F}{R P}$
C. $\frac{D E}{Q R}=\frac{D F}{P Q}$
D. $\frac{E F}{R P}=\frac{D E}{Q R}$

Answer: B

- Watch Video Solution

36. If $\triangle A B C \sim \triangle E D F$ and $\triangle A B C$ is not similar to $\triangle D E F$ then which of the following is not ture?
A. $B C \cdot E F=A C \cdot F D$
B. $A B \cdot E F=A C \cdot D E$
C. $B C \cdot D E=A B \cdot E F$
D. $B C \cdot D E=A B \cdot F D$

Answer: C

- Watch Video Solution

37. In $\triangle A B C$ and $\triangle D E F$, it is given that
$\angle B=\angle E \angle F=\angle C$ and $A B=-3 D E$, then the two triangles are
A. congruent but not similar
B. similar but not congruent
C. neither congruent nor similar
D. similar as well as congruent

Answer: B

- Watch Video Solution

38. If in two $\triangle A B C$ and $\triangle P Q R, \frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$, then
A. $\triangle P Q R \sim \triangle C A B$
B. $\triangle P Q R \sim \triangle A B C$
C. $\triangle C A B \sim \Delta P Q R$
D. $\triangle B C A \sim \triangle P Q R$

Answer: A

- Watch Video Solution

39. In the given figure, two line segments AC and BD inersect each other
at the point P such that
$P A=6 \mathrm{~cm}, P B=3 \mathrm{~cm}, P C=2.5 \mathrm{~cm}, P D=5 \mathrm{~cm} \angle A P B=50^{\circ}$ and $\angle C 1$
then $\angle P B A=$?

A. 50°
B. 30°
C. 60°
D. 100°

- Watch Video Solution

40. Sides of two similar triangles are in the ratio 4:9 Areas of these triangles are in the ratio.
A. $2: 3$
B. $4: 9$
C. 9: 4
D. 16:81

Answer: D

D Watch Video Solution

41.

It
is
given
that
$\triangle A B C \sim \triangle P R Q$ and $\frac{B C}{Q R}=\frac{2}{3}$ then $\frac{\operatorname{ar}(\triangle P Q R)}{\operatorname{ar}(\Delta A B C)}=?$
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{4}{9}$
D. $\frac{9}{4}$

Answer: D

- Watch Video Solution

42. In an equilateral $\triangle A B C, D$ is the midpoint of AB and E is the midpoint of AC. Then, $\operatorname{ar}(\triangle A B C): \operatorname{ar}(\triangle A D E)=$?

A. 2: 1
B. $4: 1$
C. 1:2
D. 1: 4

Answer: B
43. In $\triangle A B C$ and $\triangle D E F$, we have $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}=\frac{5}{7}$, then $\operatorname{ar}(\triangle A B C): \operatorname{ar}(\Delta D F R)=?$
A. 5:7
B. 25: 49
C. 49: 25
D. 125: 343

Answer: B

- Watch Video Solution

44.

$\operatorname{ar}(\triangle A B C)=36 \mathrm{~cm}^{2}$ and $\operatorname{ar}(\triangle D E F) 49 \mathrm{~cm}^{2}$. Then, the ratio of their corresponding sides is
A. 36: 49
B. 6: 7
C. $7: 6$
D. $\sqrt{6}: \sqrt{7}$

Answer: B

- Watch Video Solution

45. Two isosceles triangles have their corresponding angles equal and their areas are in the ratio $25: 36$. The ratio of their corresponding heights is
A. 25: 36
B. $36: 25$
C. 5: 6
D. 6:5

Answer: C

46. Prove that the line segments joining the mid-points of the sides of a triangle from four triangles, each of which is similar to the original triangle.
A. congruent to the original triangle
B. similar to the original triangle
C. an isosceles triangle
D. an equilateral triangle

Answer: B

- Watch Video Solution

47.

$\triangle A B C \sim \Delta Q R P, \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{9}{4}, A B=18 \mathrm{~cm}$, and $B C=15 \mathrm{~cm}$, then $P R=$?
A. 8 cm
B. 10 cm
C. 12 cm
D. $\frac{20}{3} \mathrm{~cm}$

Answer: B

- Watch Video Solution

48. In the given figure, O is the point of intersection of two chords $A B$ and CD such that $O B=O D$ and $\angle A O C=45^{\circ}$. Then,$\triangle O A C$ and $\triangle O D B$

A. equilateral and similar
B. equilateral but not similar
C. isosceles and similar
D. isosceles but not similar
49. In an isosceles $\triangle A B C$, if $A C=B C$ and $A B^{2}=2 A C^{2}$ then
$\angle C=$?
A. 30°
B. 45°
C. 60°
D. 90°

Answer: D

- Watch Video Solution

50. In
$\triangle A B C$
$A B=16 \mathrm{~cm}, B C=12 \mathrm{~cm}$ and $A C=20 \mathrm{~cm}$, then $\triangle A B C$ is
A. acute-angled
B. right-angled
C. obtuse-angled
D. not possible

Answer: B

- Watch Video Solution

51. Which of the following is a true statement?
A. Two similar triangle are always congruent.
B. Two figures are similar if they have the same shape and size.
C. Two triangles are similar if their corresponding sides are proportional.
D. Two polygons are similar if their corresponding side are proportional.

Answer: C

52. Which of the following is a false statement ?
A. If the areas of two areas of two similar triangles are equal then the triangles are congruent.
B. The ratio of the area of two similar triangles is equal to the ratio of their corresponding sides.
C. The ratio of the area of two similar triangles is equal to the ratio of squares of their corresponding medians.
D. The ratio of the areas of two similar triangles is equal to the ratio of squares of their corresponding altitudes

Answer: B

- Watch Video Solution

53. Match the following columns :

The correct answer is
(a)
(b)
(c)........
(d)

- Watch Video Solution

Multpile Choice Questions Mcq Matching Of Columns

1. Match of the following columns :

Column I	Column II		
(a) In a given $\triangle A B C, D E \\| B C$ and $\frac{A D}{D B}=\frac{3}{5}$. If $A C=5.6 \mathrm{~cm}$ then $A E=$ \qquad cm . (b) If $\triangle A B C \sim \triangle D E F$ such that $2 A B=3 D E$ and $B C=6 \mathrm{~cm}$ then $E F=$ \qquad cm. (c) If $\triangle A B C \sim \triangle P Q R \quad$ such that $\operatorname{ar}(\triangle A B C): \operatorname{ar}(\triangle P Q R)=9: 16$ and $B C=4.5 \mathrm{~cm}$ then $Q R=\ldots \ldots \mathrm{cm}$. (d) In the given figure, $A B \\| C D$ and $O A=(2 x+4) \mathrm{cm}, O B=(9 x-21) \mathrm{cm}$, $O C=(2 x-1) \mathrm{cm}$ and $O D=3 \mathrm{~cm}$. Then $x=$?	(p) 6 (q) 4 (r) 3 (s) 2.1		

The correct answer is
(a) -......,
(b) $-\ldots \ldots$,
(c) $-\ldots \ldots$,
(d) $-\ldots \ldots$

The correct answer is
(a)
(b)
(c)
(d)

Watch Video Solution

1. $\triangle A B C \sim \triangle D E F$ and their perimeters are 32 cm and 24 cm respectively. If $A B=10 \mathrm{~cm}$ then $\mathrm{DE}=$?
A. 8 cm
B. 7.5 cm
C. 15 cm
D. $5 \sqrt{3} \mathrm{~cm}$

Answer: B

- Watch Video Solution

2. In the given figure, $D E|\mid B C$. If
$D E=5 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $A D=3.5 \mathrm{~cm}$ then $\mathrm{AB}=$?

A. 5.6 cm
B. 4.8 cm
C. 5.2 cm
D. 6.4 cm

Answer: A
3. Two poles of height 6 meters and 11 meteras stand vertically on a plane ground. If the distance between their feet is 12 meters. Find the distance between their tops.
A. 12 m
B. 13 m
C. 14 m
D. 15 m

Answer: B

- Watch Video Solution

4. The areas of two similar triangles are $25 \mathrm{~cm}^{2}$ and $36 \mathrm{~cm}^{2}$ respectively. If the altitude of the first triangle is 3.5 cm then the corresponding altitude of the other triangle is
A. 5.6 cm
B. 6.3 cm
C. 4.2 cm
D. 7 cm

Answer: C

D Watch Video Solution

5. If $\triangle A B C \sim \triangle D E F$ such that $2 A B=D E$ and $B C=6 \mathrm{~cm}$ find EF .
A. 6 cm
B. 12 cm
C. 10 cm
D. 8 cm

Answer: B

6. In the given figure, $D E|\mid B C$ such that $A D=x c m, D B=(3 x+4) c m A E=(x+3) c m$, and $E C=(3 x+19) c r$
. Find the value of x.

- Watch Video Solution

7. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.

- Watch Video Solution

8. Find the length of the altitude of an equilateral triangle of side $2 a \mathrm{~cm}$.

- Watch Video Solution

9.

$\triangle A B C \sim \triangle D E C$
such
that
$\operatorname{ar}(\triangle A B C)=64 \mathrm{~cm}^{2}$ and $\operatorname{ar}(\triangle D E F)=169 \mathrm{~cm}^{2}$. If $B C=4 \mathrm{~cm}$, find EF.
A. 9.5 cm
B. 6 cm
C. 6.5 cm
D. 4.5 cm

Answer: C

10. In a trapezium ABCD , it is given that $A B|\mid C D$ and $A B=2 C D$. Its diagonals $A C$ and $B D$ intersect at the point O such that $\operatorname{ar}(\triangle A O B)=84 \mathrm{~cm}^{2}$. Find $\operatorname{ar}(\triangle C O D)$

- Watch Video Solution

11. The corresonding sides of two similar triangle are in the ratio $2: 3$. If the area of the smaller trianle is $48 \mathrm{~cm}^{2}$, find the area of the larger triangle.

- Watch Video Solution

12. In the given figure, $L M\|C B\|$ and $L N|\mid C D$.

Prove that $\frac{A M}{A B}=\frac{A N}{A D}$

(Watch Video Solution

13. Prove: The internal angle bisector of an angle of a triangle divide the opposite side internally in the ratio of the sides containing the angle

D Watch Video Solution

14. In an equilateral triangle with side a, prove that area $=\frac{\sqrt{3}}{4} a^{2}$

Watch Video Solution

15. Find the length of each side of a rhombus whose diagonals are 24 cm and 10 m long.
A. 11 cm
B. 15 cm
C. 12 cm
D. 13 cm

Answer: D
16. Prove that the ratio of the perimeters of two similar triangles is the same as the ratio of their corresponding sides.

Watch Video Solution

17. In the given figure, $\triangle A B C$ and $\triangle D B C$ have the same base BC . If AD and BC intersect at O , prove that $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$

18. In the given figure, $X Y|\mid A C$ and $X Y$ divides $\triangle A B C$ into two regions, equal in area. Find the value of $\frac{A X}{A B}$

A. $\sqrt{2}$
B. $\frac{(2-\sqrt{2})}{2}$
C. $\frac{(2+\sqrt{2})}{2}$
D. none of these

D Watch Video Solution

19. In the given figure, $\triangle A B C$ is an obtuse triangle, obtuse-angled at B . If $A D \perp C B$ (produced) prot that $A C^{2}=A B^{2}+B C^{2}+2 B C \cdot B D$

- Watch Video Solution

20. In the given figure, each of $P A, Q B$ and $R C$ is perpendicular to $A c$. If $A P=x, Q B=z, R C=y, A B=a$ and $B C=b$, show that
$\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$

