©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - RS AGGARWAL MATHS
 (HINGLISH)

ELLIPSE

Solved Examples

1. Find the coordinates of the foci, the vertices,
the length of major axis, the minor axis, the
eccentricity and the length of the latus rectum
of the ellipse. $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

D Watch Video Solution

2. Find the lengths of the major and minor axes, coordinates of the vertices and the foci, the eccentricity and length of the latus rectum of the ellipse:
$4 x^{2}+9 y^{2}=144$.

D Watch Video Solution

3. Find the lengths of the major and minor axes, coordinates of the vertices and the foci, the eccentricity and length of the latus rectum of the ellipse:
$\frac{x^{2}}{4}+\frac{y^{2}}{36}=1$.

- Watch Video Solution

4. Find the lengths of the major and minor axes, coordinates of the vertices and the foci, the eccentricity and length of the latus rectum
of the ellipse:
$4 x^{2}+y^{2}=100$.

- Watch Video Solution

5. Find the equation if the ellipse whose axes are along the coordinate axes, vertices are
$(\pm 5,0)$ and foci at $(\pm 4,-0)$.

- Watch Video Solution

6. Find the equation of the ellipse whose foci are $(\pm 4,0)$ and eccentricity is $\frac{1}{3}$.

D Watch Video Solution

7. Find the equation for the ellipse that satisfies the given conditions: Major axis on
the xaxis and passes through the points (4, 3) and (6, 2).

D Watch Video Solution

8. Find the equation for the ellipse that satisfies the given conditions:Ends of major axis $(\pm 3,0)$, ends of minor axis $(0, \pm 2)$

- Watch Video Solution

9. Find the equation of an ellipse whose eccentricity is $2 / 3$, the latus rectum is 5 and the centre is at the origin.
10. Find the equation of ellipse whose vertices are $(0, \pm 13)$ and foci $(0, \pm 5)$.

- Watch Video Solution

11. Find the equation of the ellipse in the following case: Length of minor axis 16 foci $(0, \pm 6)$
(D) Watch Video Solution
12. Find the equation of the ellipse, whose length of the major axis is 20 and foci are $(0, \pm 5)$.

D Watch Video Solution

13. Find the equation of an ellipse whose vertices are $(0, \pm 10)$ and eccentricity $e=\frac{4}{5}$

D Watch Video Solution

14. Find the equation of ellipse, Centre at (0,0), major axis on the y-axis and passes through the points (3,2) and $(1,6)$.

- Watch Video Solution

Exercise

1. Find the coordinates of the foci, the vertices,
the length of major axis, the minor axis, the
eccentricity and the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

D Watch Video Solution
2. Find the coordinates of the foci, the vertices,
the length of major axis, the minor axis, the eccentricity and the length of the latus rectum
of the ellipse. $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$

D Watch Video Solution

3. Find the (i) lengths of major and minor axes,
(ii) coordinates of the vertices, (iii) coordinates of the foci, (iv) eccentricity, and (v) length of the latus rectum of each of the following ellipses.
$16 x^{2}+25 y^{2}=400$

- Watch Video Solution

4. Find the (i) lengths of major and minor axes,
(ii) coordinates of the vertices, (iii) coordinates
of the foci, (iv) eccentricity, and (v) length of the latus rectum of each of the following ellipses.
$x^{2}+4 y^{2}=100$

- Watch Video Solution

5. Find the (i) lengths of major and minor axes,
(ii) coordinates of the vertices, (iii) coordinates
of the foci, (iv) eccentricity, and (v) length of
the latus rectum of each of the following
ellipses.
$9 x^{2}+16 y^{2}=144$

- Watch Video Solution

6. Find the eccentricity coordinates of foci
length of the latus rectum of the following
ellipse: $4 x^{2}=9 y^{2}=1$

- Watch Video Solution

7. Find the coordinates of the foci, the vertices,
the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$

- Watch Video Solution

8. Find the coordinates of the foci, the vertices,
the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

Watch Video Solution

9. Find the (i) lengths of major and minor axes,
(ii) coordinates of the vertices, (iii) coordinates
of the foci, (iv) eccentricity, and (v) length of the latus rectum of each of the following ellipses.
$3 x^{2}+2 y^{2}=18$

- Watch Video Solution

10. Find the coordinates of the foci, the vertices, the lengths of major and minor axes and the eccentricity of the ellipse $9 x^{2}+4 y^{2}=36$.

D Watch Video Solution

11. Find the coordinates of the foci, the
vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. $16 x^{2}+y^{2}=16$
12. Find the (i) lengths of major and minor axes, (ii) coordinates of the vertices,
coordinates of the foci, (iv) eccentricity, and (v)
length of the latus rectum of each of the
following ellipses.
$25 x^{2}+4 y^{2}=100$

- Watch Video Solution

13. Find the equation of the ellipse whose vertices are $(\pm 6,0)$ and foci are ($\pm 4,0)$.

D Watch Video Solution

14. Find the equation of the ellipse whose vertices are at $(0, \pm 4)$ and foci at $(0, \pm \sqrt{7})$.

D Watch Video Solution

15. Find the equation of the ellipse the ends of whose major and minor axes are $(\pm 4,0)$ and $(0, \pm 3)$ respectively.

D Watch Video Solution

16. The length of the major axis of an ellipse is

20 units and its foci are $(\pm 5 \sqrt{3}, 0)$.
Find the equation of the ellipse.
17. Find the equation of the ellipse whose foci
are $(\pm 2,0)$ and eccentricity is $\frac{1}{3}$.

- Watch Video Solution

18. Find the equation of the ellipse whose foci
are at $(\pm 1,0)$ and $e=\frac{1}{2}$.

D Watch Video Solution

19. Find the equation of the ellipse whose axes
are along the coordinate axes, foci at
$(0, \pm 4)$ and eccentricity $4 / 5$.

D Watch Video Solution

20. Find the equation of the ellipse, with major axis along the x-axis and passing through the points $(4,3)$ and $(-1,4)$.
21. Find the equation of the ellipse with eccentricity $\frac{3}{4}$, foci on the y-axis, centre at the origin and passing through the point $(6,4)$.

D Watch Video Solution

22. Find the equation of an ellipse whose foci are at $(\pm 3,0)$ and which passes through $(4,1)$.

D Watch Video Solution

23. Find the equation of an ellipse, the lengths of whose major and minor axes are 10 and 8 units respectively.

D Watch Video Solution

24. Find the equation of an ellipse whose eccentricity is $2 / 3$, the latus rectum is 5 and the centre is at the origin.

D
 Watch Video Solution

25. Find the eccentricity of the ellipse whose
(i) latus rectum is half of minor axis
(ii) minor axis is half of major axis.

D Watch Video Solution
26. Find the eccentricity of an ellipse whose
latus rectum in one half of its major axis.

D Watch Video Solution

