

MATHS

BOOKS - RS AGGARWAL MATHS (HINGLISH)

HYPERBOLA

Solved Examples

1. Find the lengths of the axes, the coordinates

of the vertices and the foci, the eccentricity

and length of the latus rectum of the hyperbola $rac{x^2}{36} - rac{y^2}{64} = 1.$ Watch Video Solution

2. Find the lengths of the axes, the coordinates of the vertices and the foci, the eccentricity and length of the latus rectum of the hyperbola

$$9x^2 - 16y^2 = 144.$$

3. Find the equations of the hyperbola satisfying the given conditions :Vertices $(\pm 2, 0), foci(\pm 3, 0)$

Watch Video Solution

4. Find the equations of the hyperbola satisfying the given conditions :Foci (\pm 5, 0), the transverse axis is of length 8.

5. Find the equations of the hyperbola satisfying the given conditions :Foci $(\pm 4, 0)$, the latus rectum is of length 12

6. Find the equation of the hyperbola whose vertices are $(\pm 7, 0)$ and the eccentricity is $\frac{4}{3}$.

7. Find the equation of the hyperbola whose eccentricity is $\frac{3}{2}$ and whose foci are $(\pm 2, 0)$.

Watch Video Solution

8. Find the length of the axes , the coordinates of the vertices and the foci, the eccentricity and length of the latus rectum of the hyperbola $x^2 = x^2$

$$rac{y^2}{4} - rac{x^2}{9} = 1,$$

9. Find the length of the axes , the coordinates of the vertices and the foci, the eccentricity and length of the latus rectum of the hyperbola

$$y^2 - 16x^2 = 16.$$

Watch Video Solution

10. Find the equation of the hyperbola whose vertices are $(0, \pm 3)$ and the foci are $(0, \pm 5)$.

11. Find the equation of the hyperbola whose eccentricity is $\frac{5}{3}$ and whose vertices are $(0, \pm 6)$. Also, find the coordinates of its foci

13. Find the equation of the hyperbola with centre at the origin , length of the transverse axis 6 and one focus at (0,4) .

14. Find the equation of the hyperbola whose foci are at $(0, \pm 6)$ and the length of whose conjugate axis is $2\sqrt{11}$.

A.
$$rac{y^2}{25} - rac{x^2}{11} = 1$$

B. $rac{y^2}{11} - rac{x^2}{25} = 1$
C. $rac{y^2}{11} + rac{x^2}{25} = 1$
D. $rac{y^2}{16} - rac{x^2}{25} = 1$

Answer: A

15. Referred to the principal axes as the axes of coordinates find the equation of the

hyperbola whose foci are at $\left(0,\ \pm\sqrt{10}
ight)$ and

which passes through the point (2,3).

1. Find the (i)length of the axis(ii)coordinate of

vertices (iii)coordinate of the focii

(iv)ecentricity(v)length of latus rectum

$$rac{x^2}{9} - rac{y^2}{16} = 1$$

2. Find the (i)length of the axis(ii)coordinate of

vertices (iii)coordinate of the focii

(iv)ecentricity(v)length of latus rectum

$$rac{x^2}{25} - rac{y^2}{4} = 1$$

Watch Video Solution

3. Find the (i)length of the axis(ii)coordinate of

vertices (iii)coordinate of the focii

(iv)ecentricity(v)length of latus rectum

$$x^2-y^2=1$$

Watch Video Solution

vertices (iii)coordinate of the focii (iv)ecentricity(v)length of latus rectum

$$3x^2 - 2y^2 = 6$$

5. Find the (i)length of the axis(ii)coordinate of vertices (iii)coordinate of the focii (iv)ecentricity(v)length of latus rectum $25x^2 - 9y^2 = 225$ Watch Video Solution

6. Find the (i)length of the axis(ii)coordinate of vertices (iii)coordinate of the focii (iv)ecentricity(v)length of latus rectum $24x^2 - 25y^2 = 600$

7. Find the (i)length of the axis(ii)coordinate of vertices (iii)coordinate of the focii (iv)ecentricity(v)length of latus rectum $\frac{y^2}{16} - \frac{x^2}{49} = 1$ Watch Video Solution

8. Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas. $\frac{y^2}{9} - \frac{x^2}{27} = 1$

vertices (iii)coordinate of the focii (iv)ecentricity(v)length of latus rectum $3y^2-x^2=108$

Watch Video Solution

10. Find the (i)length of the axis(ii)coordinate

of vertices (iii)coordinate of the focii

(iv)ecentricity(v)length of latus rectum

$$5y^2 - 9x^2 = 36$$

> Watch Video Solution

11. Find the equation of the hyperbola with

vertices at $(\pm 6, 0)$ and foci at $(\pm 8, 0)$.

Watch Video Solution

12. Find the equations of the hyperbola satisfying the given conditions :Vertices

 $(0, \pm 5), foci(0, \pm 8)$

13. Find the equation of the hyperbola whose foci are $(\pm\sqrt{29},0)$ and the transverse axis is of the length 10.

Watch Video Solution

14. Find the equation of the hyperbola whose foci are $(\,\pm\,5,0)$ and the conjugate axis is of

the length 8. Also ,Find its eccentricity .

15. Find the equations of the hyperbola satisfying the given conditions :Foci $(\pm 3\sqrt{5}, 0)$, the latus rectum is of length 8.

Watch Video Solution

16. The equation of the hyperbola whose foci are (-2, 0) and (2,0) and eccentricity is 2 is

18. Find the equation of the hyperbola , the length of whose latus rectum is 4 and the

19. Find the equation of the hyperbola with eccentricity $\sqrt{2}$ and the distance between whose foci is 16.

Watch Video Solution

20. Find the equation of the hyperbola whose vertices are $(0, \pm 3)$ and the eccentricity is $\frac{4}{3}$

,Also find the coordinates of its foci .

21. Find the equation of the hyperbola whose foci are (0 ± 13) and the length of whose conjugate axis is 24.

Watch Video Solution

22. Find the equation of the hyperbola whose foci are $(0,\ \pm\ 10)$ and the length of whose

latus rectum is 9 units .

23. Find the equation of the hyperbola having its foci at $\left(0,\ \pm\sqrt{14}
ight)$ and passing through the point P(3,4).