# ©゙" doubtnut 

India's Number 1 Education App

## MATHS

## BOOKS - RS AGGARWAL MATHS

## (HINGLISH)

## HYPERBOLA

Solved Examples

1. Find the lengths of the axes, the coordinates
of the vertices and the foci, the eccentricity
and length of the latus rectum of the hyperbola
$\frac{x^{2}}{36}-\frac{y^{2}}{64}=1$.

## D Watch Video Solution

2. Find the lengths of the axes, the coordinates of the vertices and the foci, the eccentricity and length of the latus rectum of the hyperbola
$9 x^{2}-16 y^{2}=144$.
3. Find the equations of the hyperbola satisfying the given conditions :Vertices
$( \pm 2,0)$, foci $( \pm 3,0)$

## - Watch Video Solution

4. Find the equations of the hyperbola satisfying the given conditions :Foci $( \pm 5,0)$, the transverse axis is of length 8.
5. Find the equations of the hyperbola satisfying the given conditions :Foci $( \pm 4,0)$, the latus rectum is of length 12

## D Watch Video Solution

6. Find the equation of the hyperbola whose
vertices are $( \pm 7,0)$ and the eccentricity is
$\frac{4}{3}$.

## D Watch Video Solution

7. Find the equation of the hyperbola whose eccentricity is $\frac{3}{2}$ and whose foci are $( \pm 2,0)$.

## - Watch Video Solution

8. Find the length of the axes, the coordinates
of the vertices and the foci, the eccentricity
and length of the latus rectum of the hyperbola
$\frac{y^{2}}{4}-\frac{x^{2}}{9}=1$,
9. Find the length of the axes, the coordinates
of the vertices and the foci, the eccentricity and length of the latus rectum of the hyperbola
$y^{2}-16 x^{2}=16$.

## D Watch Video Solution

10. Find the equation of the hyperbola whose vertices are $(0, \pm 3)$ and the foci are $(0, \pm 5)$.
11. Find the equation of the hyperbola whose eccentricity is $\frac{5}{3}$ and whose vertices are $(0, \pm 6)$. Also, find the coordinates of its foci

## D Watch Video Solution

12. Find the equation of the hyperbola where foci are $(0, \pm 12)$ and the length of the latus rectum is 36 .
13. Find the equation of the hyperbola with centre at the origin , length of the transverse axis 6 and one focus at $(0,4)$.

## - Watch Video Solution

14. Find the equation of the hyperbola whose
foci are at $(0, \pm 6)$ and the length of whose conjugate axis is $2 \sqrt{11}$.
A. $\frac{y^{2}}{25}-\frac{x^{2}}{11}=1$
B. $\frac{y^{2}}{11}-\frac{x^{2}}{25}=1$
C. $\frac{y^{2}}{11}+\frac{x^{2}}{25}=1$
D. $\frac{y^{2}}{16}-\frac{x^{2}}{25}=1$

Answer: A

## D Watch Video Solution

15. Referred to the principal axes as the axes of coordinates find the equation of the
hyperbola whose foci are at $(0, \pm \sqrt{10})$ and which passes through the point $(2,3)$.

## D Watch Video Solution

## Exercise 24

1. Find the (i)length of the axis(ii)coordinate of vertices (iii)coordinate of the focii
(iv)ecentricity(v)length of latus rectum

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

2. Find the (i)length of the axis(ii)coordinate of vertices (iii)coordinate of the focii
(iv)ecentricity(v)length of latus rectum
$\frac{x^{2}}{25}-\frac{y^{2}}{4}=1$

- Watch Video Solution

3. Find the (i)length of the axis(ii)coordinate of vertices (iii)coordinate of the focii
(iv)ecentricity(v)length of latus rectum
$x^{2}-y^{2}=1$

## - Watch Video Solution

4. Find the (i)length of the axis(ii)coordinate of vertices (iii)coordinate of the focii
(iv)ecentricity(v)length of latus rectum
$3 x^{2}-2 y^{2}=6$
5. Find the (i)length of the axis(ii)coordinate of vertices (iii)coordinate of the focii
(iv)ecentricity(v)length of latus rectum $25 x^{2}-9 y^{2}=225$

## D Watch Video Solution

6. Find the (i)length of the axis(ii)coordinate of vertices (iii)coordinate of the
ity(v)length of latus rectum
$24 x^{2}-25 y^{2}=600$
7. Find the (i)length of the axis(ii)coordinate of vertices (iii)coordinate of the focii
(iv)ecentricity(v)length of latus rectum $\frac{y^{2}}{16}-\frac{x^{2}}{49}=1$

- Watch Video Solution

8. Find the coordinates of the foci and the vertices, the eccentricity and the length of the
latus rectum of the hyperbolas. $\frac{y^{2}}{9}-\frac{x^{2}}{27}=1$
9. Find the (i)length of the axis(ii)coordinate of vertices (iii)coordinate of the focii
(iv)ecentricity(v)length of latus rectum $3 y^{2}-x^{2}=108$

## - Watch Video Solution

10. Find the (i)length of the axis(ii)coordinate of vertices (iii)coordinate of the focii
(iv)ecentricity(v)length of latus rectum
$5 y^{2}-9 x^{2}=36$

## D Watch Video Solution

11. Find the equation of the hyperbola with vertices at $( \pm 6,0)$ and foci at $( \pm 8,0)$.

## D Watch Video Solution

12. Find the equations of the hyperbola satisfying the given conditions :Vertices

## $(0, \pm 5)$, foci $(0, \pm 8)$

## - Watch Video Solution

13. Find the equation of the hyperbola whose
foci are $( \pm \sqrt{29}, 0)$ and the transverse axis is of the length 10.

## D Watch Video Solution

14. Find the equation of the hyperbola whose
foci are $( \pm 5,0)$ and the conjugate axis is of
the length 8. Also ,Find its eccentricity .

## - Watch Video Solution

15. Find the equations of the hyperbola satisfying the given conditions :Foci
$( \pm 3 \sqrt{5}, 0)$, the latus rectum is of length 8.

## D Watch Video Solution

16. The equation of the hyperbola whose foci
are $(-2,0)$ and $(2,0)$ and eccentricity is 2 is

## given by

## - Watch Video Solution

17. Find the equation of the hyperbola whose foci are $( \pm \sqrt{5}, 0)$ and the eccentricity is $\sqrt{\frac{5}{3}}$.

## D Watch Video Solution

18. Find the equation of the hyperbola, the
length of whose latus rectum is 4 and the
eccentricity is 3.

## D Watch Video Solution

19. Find the equation of the hyperbola with eccentricity $\sqrt{2}$ and the distance between whose foci is 16.

## - Watch Video Solution

20. Find the equation of the hyperbola whose vertices are $(0, \pm 3)$ and the eccentricity is $\frac{4}{3}$
,Also find the coordinates of its foci .

## - Watch Video Solution

21. Find the equation of the hyperbola whose foci are $(0 \pm 13)$ and the length of whose conjugate axis is 24 .

## - Watch Video Solution

22. Find the equation of the hyperbola whose
foci are $(0, \pm 10)$ and the length of whose
latus rectum is 9 units.

## - Watch Video Solution

23. Find the equation of the hyperbola having
its foci at $(0, \pm \sqrt{14})$ and passing through
the point $P(3,4)$.
( Watch Video Solution
