© 'doubtnut

MATHS

BOOKS - RS AGGARWAL MATHS (HINGLISH)

PRINCIPLE OF MATHEMATICAL INDUCTION

Solved Examples

1. If $p(n)=1+3+5+\ldots+(2 n-1)=n^{2}$ then $\mathrm{p}(1)+\mathrm{p}(2)+\mathrm{p}(3)$ is
A. 6
B. 9
C. 14
D. None of these
2. By the principle of mathematical induction that for all $n \in N$: $1+4+7+\ldots+(3 n-2)=\frac{1}{2} n(3 n-1)$ Write $\mathrm{P}(\mathrm{k}+1)$
A. $\frac{1}{2} k(3 k-1)$
B. $\frac{1}{2}(k+1)(3 k)$
C. $\frac{1}{2}(k+1)(3 k+2)$
D. $\frac{1}{2}(k+1)(3 k+3)$

Answer: C

Watch Video Solution

3. Prove by the principle of mathematical induction that for all $n \in N$:
$1^{2}+2^{2}+3^{2}++n^{2}=\frac{1}{6} n(n+1)(2 n+1)$
4. According to principle of mathematical induction for all $n \in N$:
$P(n)=1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ Find $\mathrm{P}(2)$
A. 8
B. 9
C. 10
D. 2

Answer: B

- Watch Video Solution

5. Prove the following by using the principle of mathematical induction for all $n \in N: 1.2+2.3+3.4+\ldots+n(n+1)=\left[\frac{n(n+1)(n+2)}{3}\right]$

- Watch Video Solution

6. Prove the following by the principle of mathematical induction:
$1.3+2.4+3.5++(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}$

- Watch Video Solution

7. Using the principle of mathematical induction, prove that :
8. $2.3+2.3 .4++n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$ for all $n \in N$.

- Watch Video Solution

8. Using the principle of mathematical induction, prove that

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n(n+1)}=\frac{n}{(n+1)} .
$$

- Watch Video Solution

9. Prove the following by the principle of mathematical induction:

$$
\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}
$$

- Watch Video Solution

10. Using the principle of mathematical induction prove that $\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}++\frac{1}{n(n+1)(n+2)}=($ for all $n \in N)$
A. $\frac{n(n+4)}{4(n+1)(n+2)}$
B. $\frac{n(n+3)}{4(n+1)(n+2)}$
C. $\frac{n(n+3)}{4(n+4)(n+2)}$
D. None of these

Answer: B

- Watch Video Solution

11. Using the principle of mathematical induction prove that :
12. $3+2.3^{2}+3.3^{3}++n .3^{n}=\frac{(2 n+1) 3^{n+1}+3}{4}$ for all $n \in N$.

- Watch Video Solution

12. Using the principle of mathematical induction, prove that

$$
\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right) \ldots\left(1-\frac{1}{n+1}\right)=\frac{1}{(n+1)} \text { for all } n \in N
$$

- Watch Video Solution

13. Prove the following by using the principle of mathematical induction for all $n \in N: a+a r+a r^{2}+\stackrel{\vdots}{+} a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$

- Watch Video Solution

14. Prove the following by the principle of mathematical induction:
$(a b)^{n}=a^{n} b^{n}$ for all $n \in N$.

Watch Video Solution

15. Using the principle of mathematical induction, prove that $\left(n^{2}+n\right)$ is seven for all $n \in N$.

- Watch Video Solution

16. Prove the following by using the principle of mathematical induction for all $n \in N: n(n+1)(n+5)$ is a multiple of 3 .

- Watch Video Solution

17. Using the principle of mathematical induction, prove that $\left(7^{n}-3^{n}\right)$ is divisible by (for all $n \in N$).
A. 3
B. 4
C. 5
D. 6

Answer: B

- Watch Video Solution

18. Prove the following by using the principle of mathematical induction for all $n \in N: 10^{2 n-1}+1$ is divisible by 11 .

(Watch Video Solution

19. Prove the following by the principle of mathematical induction:
20. $7^{n}+3.5^{n}-5$ is divisible 25 for all $n \in N$.
21. Using the principle of mathematical induction. Prove that $\left(x^{n}-y^{n}\right)$ is divisible by $(x-y)$ for all $n \in N$.

- Watch Video Solution

21. Using the principle of mathematical induction ,prove that $(1+x)^{n} \geq(1+n x)$ for all $n \in N$, where $\mathrm{x}>-1$.

- Watch Video Solution

22. Using the principle of mathematical induction, prove that $n<2^{n}$ for all $n \in N$

- Watch Video Solution

23. Prove the following by using the principle of mathematical induction for all $n \in N:(2 n+7)<(n+3)^{2}$.
24. Using the principle of mathematical induction. Prove that $\left(1^{2}+2^{2}+\ldots+n^{2}\right)>\frac{n^{3}}{3}$ for all values of $n \in N$.

- Watch Video Solution

25. Prove the following by using the principle of mathematical induction for all $n \in N: 1+2+3+\ldots+n<\frac{1}{8}(2 n+1)^{2}$.

- Watch Video Solution

Exercise 4

1. Using the principle of mathematical induction, prove each of the following for all $n \in N$
$1+2+3+4+\ldots+N=\frac{1}{2} N(N+1)$.
2. Using the principle of mathematical induction, prove each of the following for all $n \in N$
$2+4+6+8+\ldots+2 n=n(n+1)$.

- Watch Video Solution

3. Prove the following by using the principle of mathematical induction
for all $n \in N: 1+3+3^{2}+\dot{+} 3^{n-1}=\frac{\left(3^{n}-1\right)}{2}$

- Watch Video Solution

4. Using the principle of mathmatical induction, prove each of the following for all $n \in N$
$2+6+18+\ldots+2 \cdot 3^{n-1}=\left(3^{n}-1\right)$.
5. Prove the following by using the principle of mathematical induction for all $n \in N: \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$

- Watch Video Solution

6. Prove the following by using the principle of mathematical induction
for all $n \in N: 1^{2}+3^{2}+5^{2}+\dot{+}(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$

- Watch Video Solution

7. Prove the following by using the principle of mathematical induction for all $n \in N: 1.2+2.2^{2}+3.2^{2}+\ldots+n .2^{n}=(n-1) 2^{n+1}+2$

- Watch Video Solution

8. Prove by using the principle of mathemtical induction: $3.2^{2}+3^{2.2}{ }^{\wedge} 3+\ldots+3^{n} .2^{n+1}=\frac{12}{5}\left(6^{n}-1\right)$
9. Using the principle of mathematical induction prove that $1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}++\frac{1}{1+2+3++n}=\frac{2 r}{n+}$ for all $n \in N$

- Watch Video Solution

10. Prove the following by using the principle of mathematical induction

$$
\begin{aligned}
& \text { for } \\
& \frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{(6 n+4)}
\end{aligned}
$$

(Watch Video Solution

11. Using the principle of mathematical induction, prove each of the following for all $n \in N$

$$
\frac{1}{1 \cdot 4}+\frac{1}{4 \cdot 7}+\frac{1}{7 \cdot 10}+\ldots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)} .
$$

12. Using the principle of mathmatical induction, prove each of the following for all $n \in N$
$\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{(2 n+1)}$

- Watch Video Solution

13. Prove the following by using the principle of mathematical induction for all $n \in N:$
$\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}++\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{(6 n+4)}$

- Watch Video Solution

14. Prove the following by using the principle of mathematical induction

$$
\begin{array}{ll}
\text { for } & n \in N \text { : } \\
\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 n+1)}{n^{2}}\right)=(n+1)^{2} &
\end{array}
$$

15. Using the principle of mathmatical induction, prove each of the following for all $n \in N$
$\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{n}\right)=(n+1)$.

- Watch Video Solution

16. Using the principle of mathmatical induction, prove each of the following for all $n \in N$
$n(n+1)(n+2)$ is a multiple of 6 .

- Watch Video Solution

17. Prove the following by using the principle of mathematical induction for all $n \in N: x^{2 n}-y^{2 n}$ is divisible by $x+y$.

- Watch Video Solution

18. Using the principle of mathematical induction, prove each of the following for all $n \in N$
$\left(x^{2 n}-1\right)$ is divisible by $(x-1)$ and $(x+1)$.

- Watch Video Solution

19. Prove the following by using the principle of mathematical induction for all $n \in N: 41^{n}-14^{n}$ is a multiple of 27 .

- Watch Video Solution

20. Using the principle of mathmatical induction, prove each of the following for all $n \in N$
$\left(4^{n}+15 n-1\right)$ is divisible by 9 .

- Watch Video Solution

21. Prove the following by using the principle of mathematical induction for all $n \in N: 3^{2 n+2}-8 n-9$ is divisible by 8 .

Watch Video Solution

22. Using the principle of mathematical induction, prove that $\left(2^{3 n}-1\right)$ is divisible by 7 for all $n \in N$.

- Watch Video Solution

23. Using the principle of mathematical induction, prove each of the following for all $n \in N$

$$
3^{n} \geq 2^{n}
$$

- Watch Video Solution

