

MATHS

BOOKS - RS AGGARWAL MATHS (HINGLISH)

PRINCIPLE OF MATHEMATICAL INDUCTION

Solved Examples

1. If $p(n) = 1 + 3 + 5 + ... + (2n - 1) = n^2$ then p(1)+p(2)+p(3) is

A. 6

B. 9

C. 14

D. None of these

Answer: C

2. By the principle of mathematical induction that for all $n \in N$: $1+4+7+...+(3n-2)=\frac{1}{2}n(3n-1)$ Write P(k+1) A. $\frac{1}{2}k(3k-1)$ B. $\frac{1}{2}(k+1)(3k)$ C. $\frac{1}{2}(k+1)(3k+2)$

D.
$$\frac{1}{2}(k+1)(3k+3)$$

Answer: C

Watch Video Solution

3. Prove by the principle of mathematical induction that for all $n\in N$:

$$1^2+2^2+3^2+\ +n^2=rac{1}{6}n(n+1)(2n+1)$$

4. According to principle of mathematical induction for all $n \in N$: $P(n) = 1^3 + 2^3 + 3^3 + ... + n^3 = \left(rac{n(n+1)}{2}
ight)^2$ Find P(2) A. 8 B. 9

C. 10

D. 2

Answer: B

Watch Video Solution

5. Prove the following by using the principle of mathematical induction

for all
$$n \in N$$
:1. $2+2$. $3+3$. $4+...+n(n+1)=\left[rac{n(n+1)(n+2)}{3}
ight]$

6. Prove the following by the principle of mathematical induction:

$$1.3 + 2.4 + 3.5 + + (2n - 1)(2n + 1) = \frac{n(4n^2 + 6n - 1)}{3}$$

Watch Video Solution

7. Using the principle of mathematical induction, prove that : $1.2.3+2.3.4++n(n+1)(n+2)=rac{n(n+1)(n+2)(n+3)}{4}$ for all $n\in N$.

Watch Video Solution

8. Using the principle of mathematical induction, prove that

$$rac{1}{1\cdot 2} + rac{1}{2\cdot 3} + rac{1}{3\cdot 4} + \ldots + rac{1}{n(n+1)} = rac{n}{(n+1)}.$$

9. Prove the following by the principle of mathematical induction:

$$\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}$$
Watch Video Solution

10. Using the principle of mathematical induction prove that $\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \frac{1}{n(n+1)(n+2)} = \text{(for all } n \in N\text{)}$ A. $\frac{n(n+4)}{4(n+1)(n+2)}$ B. $\frac{n(n+3)}{4(n+1)(n+2)}$ C. $\frac{n(n+3)}{4(n+4)(n+2)}$

D. None of these

Answer: B

11. Using the principle of mathematical induction prove that :
$$1.3+2.3^2+3.3^3++n.3^n=rac{(2n+1)3^{n+1}+3}{4}$$
 for all $n\in N$.

Watch Video Solution

12. Using the principle of mathematical induction, prove that

$$igg(1-rac{1}{2}igg)igg(1-rac{1}{3}igg)igg(1-rac{1}{4}igg)...igg(1-rac{1}{n+1}igg)=rac{1}{(n+1)} \ \ ext{for all} \ \ n\in N$$

Watch Video Solution

13. Prove the following by using the principle of mathematical induction

for all
$$n\in N{:}a+ar+ar^2++ar^{n-1}=rac{a(r^n-1)}{r-1}$$

14. Prove the following by the principle of mathematical induction: $(ab)^n=a^nb^n$ for all $n\in N.$

15. Using the principle of mathematical induction, prove that $\left(n^2+n
ight)$ is seven for all $n\in N.$

Watch Video Solution

16. Prove the following by using the principle of mathematical induction

for all $n \in N:n(n+1)(n+5)$ is a multiple of 3.

17. Using the principle of mathematical induction, prove that (7^n-3^n) is divisible by (for all $n\in N$).

A. 3		
B. 4		
C. 5		
D. 6		

Answer: B

Watch Video Solution

18. Prove the following by using the principle of mathematical induction

for all $n \in N$: $10^{2n-1} + 1$ is divisible by 11.

Watch Video Solution

19. Prove the following by the principle of mathematical induction: $2.\ 7^n+3.\ 5^n-5$ is divisible 25 for all $n\in N$.

20. Using the principle of mathematical induction. Prove that (x^n-y^n) is

divisible by (x - y) for all $n \in N$.

21. Using the principle of mathematical induction ,prove that $(1+x)^n \ge (1+nx)$ for all $n \in N$, where x>-1.

Watch Video Solution

22. Using the principle of mathematical induction, prove that $n < 2^n$ for

 $\text{all } n \in N$

23. Prove the following by using the principle of mathematical induction

for all
$$n\in N{:}(2n+7)<(n+3)^2.$$

24. Using the principle of mathematical induction. Prove that $\left(1^2+2^2+\ldots+n^2\right)>rac{n^3}{3}$ for all values of $n\in N.$

Watch Video Solution

25. Prove the following by using the principle of mathematical induction

for all
$$n \in N:1+2+3+...+n < rac{1}{8}(2n+1)^2.$$

Watch Video Solution

Exercise 4

1. Using the principle of mathematical induction, prove each of the following for all $n \in N$ $1+2+3+4+\ldots+N=rac{1}{2}N(N+1).$ 2. Using the principle of mathematical induction, prove each of the

following for all $n \in N$

$$2+4+6+8+\ldots+2n = n(n+1).$$

Watch Video Solution

3. Prove the following by using the principle of mathematical induction

for all
$$n \in N$$
: $1+3+3^2++3^{n-1}=rac{(3^n-1)}{2}$

Watch Video Solution

4. Using the principle of mathmatical induction, prove each of the following for all $n \in N$ $2+6+18+\ldots+2\cdot 3^{n-1}=(3^n-1).$ 5. Prove the following by using the principle of mathematical induction for all $n \in N: \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ... + \frac{1}{2^n} = 1 - \frac{1}{2^n}$ Watch Video Solution

6. Prove the following by using the principle of mathematical induction

for all
$$n \in N$$
: $1^2 + 3^2 + 5^2 + + (2n-1)^2 = rac{n(2n-1)(2n+1)}{3}$

Watch Video Solution

7. Prove the following by using the principle of mathematical induction

for all
$$n \in N$$
:1. $2+2$. 2^2+3 . $2^2+...+n.2^n=(n-1)2^{n+1}+2$

Watch Video Solution

8. Prove by using the principle of mathematical induction: $3.2^2 + 3^{2.2} \cdot 3 + \ldots + 3^n \cdot 2^{n+1} = \frac{12}{5}(6^n - 1)$

 $\begin{array}{cccc} {\sf following} & {\sf for} & {\sf all} & n \in N \\ \\ \frac{1}{1\cdot 4} + \frac{1}{4\cdot 7} + \frac{1}{7\cdot 10} + \ldots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{(3n+1)}. \end{array}$

12. Using the principle of mathmatical induction, prove each of the following for all $n \in N$ $\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{(2n+1)}$ Watch Video Solution

13. Prove the following by using the principle of mathematical induction

for
$$all n \in N$$
:
 $\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \frac{1}{1} + \frac{1}{(3n-1)(3n+2)} = \frac{n}{(6n+4)}$
Vatch Video Solution

14. Prove the following by using the principle of mathematical induction

for all
$$n \in N$$
: $\left(1+rac{3}{1}
ight)\left(1+rac{5}{4}
ight)\left(1+rac{7}{9}
ight)...\left(1+rac{(2n+1)}{n^2}
ight)=(n+1)^2$

15. Using the principle of mathmatical induction, prove each of the

following for all $n \in N$

$$\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)...\left(1+\frac{1}{n}\right) = (n+1).$$

Watch Video Solution

16. Using the principle of mathmatical induction, prove each of the following for all $n \in N$

n(n+1)(n+2) is a multiple of 6.

Watch Video Solution

17. Prove the following by using the principle of mathematical induction

for all $n \in N : \! x^{2n} - y^{2n}$ is divisible by x + y.

18. Using the principle of mathematical induction, prove each of the following for all $n \in N$

$$ig(x^{2n}-1ig)$$
 is divisible by $(x-1)$ and $(x+1).$

Watch Video Solution

19. Prove the following by using the principle of mathematical induction

for all $n \in N$: $41^n - 14^n$ is a multiple of 27.

Watch Video Solution

20. Using the principle of mathmatical induction, prove each of the

following for all $n \in N$

 $(4^n + 15n - 1)$ is divisible by 9.

21. Prove the following by using the principle of mathematical induction for all $n \in N:3^{2n+2} - 8n - 9$ is divisible by 8.

22. Using the principle of mathematical induction, prove that $\left(2^{3n}-1
ight)$ is

divisible by 7 for all $n \in N$.

Watch Video Solution

23. Using the principle of mathematical induction, prove each of the following for all $n \in N$

 $3^n \geq 2^n$