© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - RS AGGARWAL MATHS (HINGLISH)

STRAIGHT LINES

Solved Example

1. Find the distance the points, $(2,-3)$ and $(-6,3)$
A. 15 units
B. 5 units
C. 10 units
D. 9 units

Answer: C

2. Using the distance formula, prove that the points $A(-2,3), B(1,2)$ and $C(7,0)$ are collinear.

- Watch Video Solution

3. Prove that the points $(0,5),(-2,-2),(5,0)$ and $(7,7)$ are the vertices of a rhombus

- Watch Video Solution

4. Find the area of the triangle whose vertices are $A(4,4), B(3,-16)$ and $C(3,-2)$
A. 9 sq. units
B. 7 sq. units
C. 5 sq. units
D. 4 sq. units

Answer: B

- Watch Video Solution

5. Find the coordinates of the point which divides the line segment joining the points $A(5,-2)$ and $B(9,6)$ in the ratio $3: 1$
A. $(8,4)$
B. $(2,4)$
C. $(7,-4)$
D. $(7,5)$

Answer: A

- Watch Video Solution

6. Find the coordinates of the midpoint of the ilne segment joining the points, $A(-2,-5)$ and $B(3,-1)$

Watch Video Solution

7. In what ratio, the line joining $(-1,1) \operatorname{and}(5,7)$ is divided by the line
$x+y=4$?
A. $2: 7$
B. 1:3
C. 1:2
D. 3: 2

Answer: C

8. Reduce the equation $\sqrt{3} y+y+2=0$ to
(i) slope-intercept form and final the slope and y-intercept.
(ii) intercepts form and find the intercepts on the axes.

- Watch Video Solution

9. Reduce the equation $3 x-2 y+4=0$ to intercepts form and find the length of the segment intercept the axes.

- Watch Video Solution

10. Reduce the equation $\sqrt{3}+y+2=0$ to the normal form $x \cos \alpha+y \sin \alpha=p$, and hence find the value of α and p.

- Watch Video Solution

11. Reduce the equation $\sqrt{3}+y+2=0$ to the normal form $x \cos \alpha+y \sin \alpha=p$, and hence find the value of α and p.

Watch Video Solution

12. Reduce the equation $y+4=0$ to the normal form $x \cos a l h p h a+y \sin \alpha=p$ and hence find the values of α and p.

- Watch Video Solution

13. Find the distance of the point $(4,1)$ from the line $3 x-4 y+12=0$

- Watch Video Solution

14. Find the distance of the point $(-1,1)$ and the given line is $12 x-5 y+82=0$
15. Find the length of the perpendicular from the point (a, b) to the line $\frac{x}{a}+\frac{y}{b}=1$

- Watch Video Solution

16. Find the length of the perpendicular from the origin to the line $4 x+3 y-$ $2=0$

- Watch Video Solution

17. If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b , then show that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.

- Watch Video Solution

18. Find the perpendicular distance of line joining the points $A(\cos \theta, \sin \theta) B(\cos \phi, \sin \phi)$ from the origin

- Watch Video Solution

19. If p_{1} and p_{2} are the lengths of the perpendicular form the orgin to the line $\quad x \sec \theta+y \operatorname{cosec} \theta=a$ and $x \cos \theta-y \sin \theta=a \cos 2 \theta$ respectively then prove that $4 p_{1}^{2}+p_{2}^{2}=a^{2}$

- Watch Video Solution

20. What are the points on the y-axis whose perpendicular distance from the line $\frac{x}{3}-\frac{y}{4}=1$ is 3 units

- Watch Video Solution

21. Find the distance between the parallel line $15 x+8 y-34=0$ and $15 x+8 y+31=0$.

- Watch Video Solution

22. Find
the
distance
between the line
$3 x-4 y+9=0$ and $6 x-8 y-17=0$

- Watch Video Solution

23. Prove that the line $5 x-2 y-1=0$ is midpoint to the line $5 x-2 y-9=0$ and $5 x-2 y+7=0$

- Watch Video Solution

24. Find the equation of the line midway between the parallel lines $9 x+6 y-7=0$ and $3 x+2 y+6=0$
25. Find the coordinates of a point on $x+y+3=0$, whose distance from $x+2 y+2=0$ is $\sqrt{5}$.

- Watch Video Solution

26. If the given be shifted to the point $(2,3)$ by a translation of coordinate axes, find the new coordinates of the point $(4,7)$.

- Watch Video Solution

27. If the origin is shifted to the point $(2,3)$ the coordinates of a point become (5,-4). Find the original coordinates, which the axes are parallel.

- Watch Video Solution

28. The coordinates of the point $(4,5)$ in the new system, when its origin is shifted to $(3,7)$ are

- Watch Video Solution

29. Find the transformed equation of the straight line $2 x \backslash 3 y+\backslash 5 \backslash=\backslash 0$, when the origin is shifted to the point $(3, \backslash 1)$ after translation of axes.

- Watch Video Solution

30. Find the point to which the origin should be shifted after a translation of axes so that the following equations will have no first degree term: $y^{2}+x^{2}-4 x-8 y+3=0$

- Watch Video Solution

31. Find the equation of the line drawn through the point interseciton of the line $4 x-3 y+7=0$ and $2 x+3 y+5=0$ and passing through the point $(-4,5)$.

- Watch Video Solution

32. Find the equation of the line through the intersection of lines $3 x+4 y=7$ and $x-y+2=0$ and whose slope is 5.

- Watch Video Solution

33. Find the equation of the line through the intersection of lines $x+2 y 3=0$ and $4 x y+7=0$ and which is parallel to $5 x+4 y 20=0$

- Watch Video Solution

34. Find the equation of the line through the intersection of the lines $3 x+y-9=0$ and $4 x+3 y-7=0$ and which is perpendicular to the line $5 x-4 y+1=0$.

- Watch Video Solution

35. Find the equation of line parallel to the y-axis and drawn through the point of intersection of $x 7 y+5=0$ and $3 x+y 7=0$.

- Watch Video Solution

36. Find the equation of the line through the intersection of the lines $2 x+\backslash 3 y \backslash 4 \backslash=\backslash 0$ and $x \backslash 5 y=\backslash 7$ that has its x-intercept equal to $\backslash 4$.
37. Find the slope of the lines whose iclination is given :
(i) $45^{\circ}(i i) 60^{\circ}(i i i) 120^{\circ}$

- Watch Video Solution

2. What is the inclination of a line whose slope is
A. zero
B. positive
C. negative?
D. not defined?

Answer: D

- Watch Video Solution

3. Find the slope of the line passing through the points
$(i)(-2,3)$ and $(8,-5)$
(ii) $(4,-3)$ and $(6,-3)$
$(i i)(3,-1)$ anc
4. If the slope of the line passing through the points $(2,5)$ and $(x, 3)$ is 2 . find the value of x.

- Watch Video Solution

5. Find the value of x so that the inclination of the line joining the points $(x,-3)$ and $(2,5)$ is 135°

- Watch Video Solution

6. Find the angle between the X-axis and the line joining the points
$(3,-1)$ and $(4,-2)$.

- Watch Video Solution

7. Show that the line joining $(2,-3)$ and $(-5,1)$ is parallel to the line joining ($7,-1$) and (0,3).

- Watch Video Solution

8. Show that the joining $(2,-5)$ and $(-2,5)$ is perpendicular to the line joining (6,3) and (1,1).

- Watch Video Solution

9. Line through the points $(-2,6)$ and $(4,80$ is perpendicular to the line through the points $(8,12)$ and $(x, 24)$. Find the value of x.

- Watch Video Solution

10. Without using Pythagoras theorem, show that $A(4,4), B(3,5)$ and $C(-1,-1)$ are the vertices of a right angled
triangle.

- Watch Video Solution

11. Prove that the points $(5,1),(1,-1)$ and $(11,4)$ are collinear. Also find the equation of the straight line on which these points lie.

- Watch Video Solution

12. Find the value of x for which the points $(x-1),(2,1)$ and $(4,5)$ are collinear.

- Watch Video Solution

13. If $(h, 0),(a, b)$ and $(0, k)$ lie on a line, show that $\frac{a}{h}+\frac{b}{k}=1$

- Watch Video Solution

14. By using the concept of slope, show that the points $(-2,-10,(4,0),(3,3)$ and $(-3,2)$ are the vertices f a parallelogram.

- Watch Video Solution

15. A quadrilateral has the vertices at the points $(-4,2),(2,6),(8,5)$ and $(9,-7)$. Show that the mid points of the sides of this quadrilateral are the vertices of a parallelogram.

- Watch Video Solution

16. Find the angle between the lines whose slope are $\frac{1}{2}$ and 3 .

- Watch Video Solution

17. If $\mathrm{A}(-2,1), \mathrm{B}(2,3)$ and $\mathrm{C}(-2,-4)$ be the vertices of a $\triangle A B C$, show that $\tan B=\frac{2}{3}$
18. If the angle between two lines is $\frac{\pi}{4}$ and slope of one of the lines is $\frac{1}{2}$, find the slope of the other line.

- Watch Video Solution

19. Write down the equation of the following lines: $x-a \xi s$

- Watch Video Solution

20. Write down the equation of a line parallel to the x-axis
(i) at a distance of 5 units above the x-axis.
(ii) at a distance of 4 units below the x-axis.

- Watch Video Solution

21. Write down the equation of a line parallel to the y-axis
(i) at a distance of 7 units on left-hand side of the $y=-a x i s$
(ii) at a distance of 3 on right-hand side of the y-axis.

- Watch Video Solution

22. Find the equations of a line parallel to the axes and passing through the point $(-3,5)$.

- Watch Video Solution

23. Find the values of k for which the line $(k-3) x-\left(4-k^{2}\right)$ $y+k^{2}-7 k+6=0$ is (a) Parallel to the xaxis, (b) Parallel to the vaxis, (c) Passing through the origin.

- Watch Video Solution

24. Find the equations of aline which is equidistant from the liines $x=-3$ and $\mathrm{x}=5$.

- Watch Video Solution

25. Find the equation of a line passing through the point $(4,-3)$ and having slope 2.

- Watch Video Solution

26. Find the equation of a line which makes an angle of 135° with the x axis and passes through the point $(3,5)$.

- Watch Video Solution

27. Find the equation of a line passsing through the point $(3,-4)$ and parallel to the x-axis.
28. Find the equation of a line passing through the points $(-1,1)$ and $(2,-4)$
A. $5 x-3 y-2=0$
B. $5 x-3 y+2=0$
C. $5 x+3 y+2=0$
D. $5 x+6 y+2=0$

Answer: C

- Watch Video Solution

29. Show that the three points (3,0),(-2,-2) and (8,2) are collinear. Also, find the equation of the straight line on which these points lie.

- Watch Video Solution

30. Show that the points (a,0),(0,b) and (3a,-2b) are collinear. Also, find the equation of line containing them.

- Watch Video Solution

31. find the equations of the sides of the triangle whose vertices are $(-1,8),(4,2)$ and $(-5,-3)$. Also find the equation the median through ($-1,-8$)

- Watch Video Solution

32. Find the equation of the medians of the triangle $A B C$ whose vertices are $A(2,5) B(-4,9)$ and $C(-2,-1)$.

- Watch Video Solution

33. Find the equation of the perpendicular bisector of the line segment joining the points $A(2,3)$ and $B(6,-5)$
A. $x-2 y-6=0$
B. $3 x-2 y-6=0$
C. $x+2 y+6=0$
D. $x+2 y-6=0$

Answer: A

- Watch Video Solution

34. $\mathrm{A}(2,3), \mathrm{B}(-2,1)$ and $\mathrm{C}(4,-3)$ are the vertices of $\triangle A B C$. Find the slope of
(i) side $A B$ (ii) altitude through A (iii) median through A (iv) perpendicular bisector of $A B$.
35. Find the equation of the bisector of $\angle A o f \triangle A B C$, whose vertices are $A(-2,4), B(5,5)$ and $C(4,-2)$.

Watch Video Solution

36. Find the equation of a line whose slope is $\frac{1}{2}$ and y-intercept equal to $\frac{-5}{4}$

- Watch Video Solution

37. Find the equation of the line which intersects the y-axis at a distance of 2 units above the origin and makes an angle of 30° with the positive direction of the x-axis.

- Watch Video Solution

38. Find the equation of a straight line which cuts off an intercept of 5 units on negative direction of y-axis and makes an angle 120° with the positive direction of x-axis.

- Watch Video Solution

39. Find the equation of a line for which $\tan \theta=\frac{1}{3}$ and x -intercept equal to 5 units.

- Watch Video Solution

40. Find the equation of a straight line: with slope -2 and intersecting the x-axis at a distance of 3 units to the left of origin.

- Watch Video Solution

41. Reduce the equation $6 x+3 y-5=0$ to the slope-intercept form and find its slope and y-intercept.

Watch Video Solution

42. Prove that the line $x+2 y-9=0$ and $2 x+4 y+5=0$ are parallel.

- Watch Video Solution

43. Show that the line $27 x-18 y+25=0$ and $2 x+3 y+7=0$ are perpendicular to each other.

- Watch Video Solution

44. Find the angle made by the line $x+\sqrt{3} y-6=0$ with the positive direction of the x-axis.
45. Find the angle made by the line $\mathrm{x} \cos 30^{\circ}+y \sin 30^{\circ}+\sin 120^{\circ}=0$ with the positive direction of the x-axis.

- Watch Video Solution

46. Find angles between the lines $\sqrt{3} x+y=1$ and $x+\sqrt{3} y=1$.

- Watch Video Solution

47.

> Show
that
the
lines
$a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, where $b_{1}, b_{2} \neq 0$ are (i) paralle

- Watch Video Solution

48. Find the equation of the line passing through the point $(2,-5)$ and parallel to the line $2 x-3 y=7$.

Watch Video Solution

49. Find the tion of the line passing through the point ($-2,-4$) and perpendicular to the line $3 x-y+5=0$

- Watch Video Solution

50. Find the equation of the line y-intercept is -3 and which is perpendicular to the line $3 x-2 y+5=0$

- Watch Video Solution

51. Find equation of the line perpendicular to the line $x-7 y+5=0$ and having x intercept 3 .
52. Find the equation of the lines through the point $(3,2)$ which make an angle of 45° with the line $x-2 y=3$.

- Watch Video Solution

53. Find the equation of a line which is at a distance of 5 units from origin and the perpendicular from origin to this line makes an angle of 30° from the positive direction of X-axis.

- Watch Video Solution

54. Find the equation of the line whose perpendicular distance from the origin is 3 units and the angle between the positive direction of x-axis and the perpendicular is 15°.
55. Find the equation of a line whose perpendicular disatnce from the origin is $\sqrt{8}$ units and the angle between the positive direction of the x axis and the perpendicular is 135°.

- Watch Video Solution

56. Find the equation of a line whose perpendicular distance from the origin is 2 units and the angle between the perpendicular segment and the positive of the x-axis is 240°.

- Watch Video Solution

Solved Example

1. Find the equation of the line, which makes intercepts 3 and 2 on the x and y axes respectively.

$$
\text { A. } 3 x-2 y-12=0
$$

B. $5 x-y-6=0$
C. $5 x-2 y-6=0$
D. $2 x+3 y-6=0$

Answer: D

- Watch Video Solution

2. Find the equations of the line which passes through the point $(3,4)$ and the sum of its intercepts on the axes is 14 .

- Watch Video Solution

3. Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and -6 , respectively.

- Watch Video Solution

4. $P(a, b)$ is the midpoint of a line segment between axes. Show that equation of the line is $\frac{x}{a}+\frac{y}{b}=2$.

- Watch Video Solution

5. Find the equation of a line which passes through the point $(-3,7)$ and makes intercepts on the axes, equal in magnitude but opposite in sign.

- Watch Video Solution

6. Find the intercepts cut off the line $2 x-y+16=0$ on the coordintate axes.

- Watch Video Solution

7. Find the equation of the line through $(2,3)$ so that the segment of the line intercepted between the axes is bisected at this point.
8. Find the equation of the line so that the segment intercept between the axes is divided by the point $\mathrm{P}(5,-4)$ in the ratio 1:2

- Watch Video Solution

9. Find the equation of a line drawn perpendicular to the line $\frac{x}{4}+\frac{y}{6}=1$ through the point where it meets the y axis.

- Watch Video Solution

10. Find the equation of the line passing through the point of intersection of the lines $4 x+7 y-3=0$ and $2 x-3 y+1=0$, which has equal intercepts on the axes.

- Watch Video Solution

11. Find the area of triangle formed by the line $a x+b y=2 a b$ and the coordinate axes.

- Watch Video Solution

12. The area of the triangle formed by the coordinates axes and a line is 6 square units and the length of the hypotenuse is 5units. Find the equation of the line.

- Watch Video Solution

Miscellaneous Problems

1. Find the point of intersection of the line $5 x+7 y=3$ and $2 x-3 y=7$

- Watch Video Solution

2. Find the equation of the line parallel to the y-axis and drawn through the point of intersection of the lines $x-7 y+15=0$ and $2 x+y=0$.

Watch Video Solution

3. Find the equation of the line passing through the intersection of the lines $x+2 y+3=0$ and $3 x+4 y+7=0$, and parallel to the lie $\mathrm{y}-\mathrm{x}=8$

- Watch Video Solution

4. Find the value of k for which the lines $3 x+y=2, k x+2 y=3$ and $2 x-y=3$ may interested at a point.

- Watch Video Solution

5. Show that the lines $x-y=6,4 x-4 y=20$ and $6 x+5 y+8=0$ are concurrent. Also find the point of intersection.
6. If three lines whose equations are $y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and

$$
\begin{aligned}
& y=m_{3} x+c_{3} \text { are concurrent, then show that } \\
& m_{1}\left(c_{2}-c_{3}\right)+m_{2}\left(c_{3}-c_{1}\right)+m_{3}\left(c_{1}-c_{2}\right)=0 .
\end{aligned}
$$

- Watch Video Solution

7. Find the area of the triangle formed by the lines $y-x=0, x+y=0$ and $x-k=0$.

- Watch Video Solution

8. Show that the area of the triangle formed by the lines
$y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $x=0$ is $\frac{\left(c_{1}-c_{2}\right)^{2}}{2\left|m_{1}-m_{2}\right|}$

- Watch Video Solution

9. Find the image of the point $(3,8)$ with respect to the line $x+3 y=7$ assuming the line to be a plane mirror.

- Watch Video Solution

Exercise 20 A

1. Find the distance between the points $(0,-3)$ and $(3,0)$
A. $A(2,-3)$ and $B(-6,3)$
B. $C(-1,1)$ and $D(8,11)$
C. $P(-8,-3)$ and $Q(-2,-5)$
D. $R(a+, a-b)$ and $S(a-b, a+b)$

Answer: A::B

2. Find the distance of the point $(6,-6)$ from the origin

- Watch Video Solution

3. If a point $P(x, y)$ is equidistant from the points $A(6 .-1)$ and $B(2,3)$ relation between x and y.

- Watch Video Solution

4. Find a point on the x-axis which is equidistant from the points $(7,6)$ and ($-3,4$).

- Watch Video Solution

5. Find the distance between $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ when i. $P Q$ is parallel to the y-axis ii. PQ is parallel to the x-axis.
6. A is a point on the x-axis with abscissa -8 and B is a point on the y-axis with ordinate 15 . Find the distance AB.

- Watch Video Solution

7. Find a point on the y -axis which is equidistant from $\mathrm{A}(-4,3)$ and $\mathrm{B}(5,2)$.

- Watch Video Solution

8. Using the distance formula, show that the points $A(3,-2), B(5,2)$ and $C(8,8)$ are collinear.

- Watch Video Solution

9. Show that the points $A(7,10), B(-2,5)$ and $C(3,-4)$ are the vertices of an isosceles right-angled triangle.
10. Show that the points $\mathrm{A}(1,1), \mathrm{B}(-1,-1)$ and $C(-\sqrt{3}, \sqrt{3})$ are the vertices of an equilateral triangle each of whose sides is $2 \sqrt{2}$ units.

- Watch Video Solution

11. Show that the points $A(2,-2), B(8,4), C(5,7)$ and $D(-1,1)$ are the angular points of a rectangle.

- Watch Video Solution

12. Show that $A(3,2), B(0,5), C(-3,2)$ and $D(0,-1)$ are the vertices of a square.

- Watch Video Solution

13. Show that the points $A(1,-2), B(3,6), \quad C(5,10)$ and $D(3,2)$ are the vertices of a parallelogram.

- Watch Video Solution

14. Show that the points $A(2,-1), B(3,4), C(-2,3)$ and $D(-3,-2)$ are the vertices of a rhombus.

- Watch Video Solution

15. If the points $(-2,-1),(1,0),(x, 3)$ and $(1, y)$ form a parallelogram, find the values of x and y.

- Watch Video Solution

16. Find the area of $\triangle A B C$ whose vertices are $\mathrm{A}(-3,-5), \mathrm{B}(5,2)$ and $C(-9,-3)$.
17. Show that the points $A(-5,1), B(5,5)$ and $C(10,7)$ are collinear.

- Watch Video Solution

18. Find the value of k for which the points $A(-2,3), B(1,2)$ and $C(k, 0)$ are collinear.

- Watch Video Solution

19. Find the area of the quadrilateral whose vertices are $A(-4,5), B(0,7)$, $C(5,-5)$ and $D(-4,-2)$.
20. Find the area of $\triangle A B C$, the midpoints of whose sides AB, BC and $C A$ are $D(3,-1), E(5,3)$ and $F(1,-3)$ respectively.

- Watch Video Solution

21. Find the coordinates of the point which divides the join of $A(-5,11)$ and $B(4,7)$ in the ratio 2:7.

- Watch Video Solution

22. Find the ratio in which the x-axis cuts the join of the points $A(4,5)$ and $B(-10,-2)$. Also, find the point of intersection.

- Watch Video Solution

23. In what ratio is the line segment joining the points $A(-4,2)$ and $B(8,3)$ divided by the y-axis? Also, find the point of intersection.

Exercise 20 B

1. Find the angle of inclination of the line whose slope is $(i) \frac{1}{\sqrt{3}}$, $(i i)-\sqrt{3}$.

(Watch Video Solution

2. Find the slope of the lines whose iclination is given :
$(i) 45^{\circ}(i i) 60^{\circ}(i i i) 120^{\circ}$

- Watch Video Solution

3. Find the slope of a line which passes through the points
(i) $(0,0)$ and $(4,-2)$ (ii) $(0,-3)$ and (2,1)
(iii)(2,5) and (-4,-4) (iv)(-2,3) and (4,-6)
4. If the slope of the line joining the points $A(x, 2)$ and $B(6,-8)$ is find the value of x.

- Watch Video Solution

5. Show that the line through the points $(5,6)$ and $(2,3)$ is parallel to the line through the points ($9,-2$) and ($6,-5$).

- Watch Video Solution

6. What is the value of y so that the line through $(3, y)$ and $(2,7)$ is parallel to the line through $(-1,4)$ and $(0,6)$?

- Watch Video Solution

7. Show that the line through the points $(-2,6)$ and $(4,8)$ is perpendicular to the line through the points $(3,-3)$ and $(5,-9)$.

- Watch Video Solution

8. If $A(2,-5), B(-2,5), C(x, 3)$ and $D(1,1)$ be four points such that $A B$ and $C D$ are perpendicular to each other, find the value of x.

- Watch Video Solution

9. Without using Pythagoras's theorem, show that the points $A(1,2), B(4$,
5) and $C(6,3)$ are the vertices of a right-angled triangle.

- Watch Video Solution

10. Using slopes, show that the points $A(6,-1), B(5,0)$ and $C(2,3)$ are collinear.
11. Using slopes, find the value of x for which the points $A(5,1), B(1,-1)$ and $C(x-4)$ are collinear.

- Watch Video Solution

12. Show that the points $(-4,-1),(-2,-4),(4,0)$ and $(2,3)$ are the vertices points of a rectangle.

- Watch Video Solution

13. Prove that the points $(-2,-1),(1,0),(4,3)$, and $(1,2)$ are the vertices of a parallelogram. Is it a rectangle?

- Watch Video Solution

14. Three points $P(h, k), Q\left(x_{1}, y_{1}\right)$ and $R\left(x_{2}, y_{2}\right)$ lie on a line. Show that $\left(h-x_{1}\right)\left(y_{2}-y_{1}\right)=\left(k-y_{1}\right)\left(x_{2}-x_{1}\right)$.

- Watch Video Solution

15. If points $(a, 0),(0, b)$ and (x, y) are collinear, using the concept of slope prove that $\frac{x}{a}+\frac{y}{b}=1$.

- Watch Video Solution

16. A line passes through the points $A(4,-6)$ and $B(-2,-5)$. Show that the line $A B$ makes an obtuse angle with the x-axis.

- Watch Video Solution

17. The vertices of a quadrilateral are $A(-4,2), B(2,6), C(8,5)$ and $D(9,7)$. Using slopes, show that the midpoints of the sides of the quad. ABCD
form a parallelogram.

- Watch Video Solution

18. Find the slope of the line, which makes an angle of 300 with the positive direction of yaxis measured anticlockwise.

- Watch Video Solution

19. Find the angle between the lines whose slopes are $\sqrt{3}$ and $\frac{1}{\sqrt{3}}$.

- Watch Video Solution

20. Find the angle between the lines whose slopes are $(2-\sqrt{3})$ and $(2+\sqrt{3})$.

- Watch Video Solution

21. If $A(1,2), B(-3,2)$ and $C(3,-2)$ be the vertices of a $A B C$, show that $\tan A=2 \quad \tan B=\frac{2}{3} \quad$ (iii) $\tan C=\frac{4}{7}$

Watch Video Solution

22. If θ is the angle between the lines joining the points $A(0,0)$ and $B(2,3)$, and the points $C(2,-2)$ and $D(3,5)$, show that $\tan \theta=\frac{11}{23}$

- Watch Video Solution

23. If θ is the angle between the diagonals of a parallelogram $A B C D$ whose vertices are $A(0,2), B(2,-1), C(4,0)$ and $D(2,3)$. Show that $\tan \theta=2$.

- Watch Video Solution

24. Show that the points $A(0,6), B(2,1)$ and $C(7,3)$ are three corners of a square $A B C D$. Find (i) the slope of the diagonal $B D$ and (i) the coordinates of the fourth vertex D.

- Watch Video Solution

25. $\mathrm{A}(1,1), \mathrm{B}(7,3)$ and $\mathrm{C}(3,6)$ are the vertices of a $\triangle A B C$. If D is the midpoint of $B C$ and $A L B C$, find the slopes of (i) $A D$ and (ii) $A L$.

- Watch Video Solution

Exercise 20 C

1. Find the equation of a line parallel to the x-axis ata distance of
(i) 4 units above it (ii) 5 units below it.

- Watch Video Solution

2. Find the equation of a line parallel to the y-axis at a distance of
(i) 6 units to its right (ii) 3 units to its left.

- Watch Video Solution

3. Find the equation of a line parallel to the x-axis and having intercept-3 on the y-axis

- Watch Video Solution

4. Find the equation of a horizontal line passing through the point (4,-2).

- Watch Video Solution

5. Find the equation of a vertical line passing through the point $(-5,6)$.
6. Find the equation of a line which is equidistant from the lines $x=-2$ and $\mathrm{x}=6$.

- Watch Video Solution

7. Find the equation of a line which is equidistant from the lines $y=8$ and $y=-2$

- Watch Video Solution

8. Find the equation of a line
(i) whose slope is 4 and which passes through the point ($5,-7$),
(ii) whose slope is -3 and which passes through the point $(-2,3)$,
(iii) which makes an angle of $\left(\frac{2 \pi}{3}\right)$ with the positive direction of the x axis and passes through the point $(0,2)$.

- Watch Video Solution

9. Find the equation of a line whose inclination with the x-axis is 30° and which passes through the point $(0,5)$.

Watch Video Solution

10. Find the equation of a line whose inclination with the x-axis is 150° and which passes through the point $(3,-5)$.

- Watch Video Solution

11. Find the equation of a line passing through the origin and making an angle of 120° with the positive direction of the x-axis.

- Watch Video Solution

12. Find the equation of a line which cuts off intercept 5 on the x-axis and makes an angle of 60° with the positive direction of the x-axis.
13. Find the equation of the line passing through the point $\mathrm{P}(4,-5)$ and parallel to the line joining the points $A(3,7)$ and $B(-2,4)$.

- Watch Video Solution

14. Find the equation of the line passing through the point $P(-3,5)$ and perpendicular to the line passing through the points $A(2,5)$ and $B(-3,6)$.

- Watch Video Solution

15. Find the slope and the equation of the line passing through the points:
(i) (3,-2) and (-5,-7) (ii)(-1,1) and (2,-4)
$(5,3)$ and (-5,-3) (iv) (a,b) and (-a,b)
16. Find the angle which the line joining the points $(1, \sqrt{3})$ and $(\sqrt{2}, \sqrt{6})$ makes with the x-axis.

Watch Video Solution

17. Prove that the points $A(1,4), B(3,-2)$ and $C(4,-5)$ are collinear. Also find the equation of the line on which these points lie.

- Watch Video Solution

18. If $\mathrm{A}(0,0), \mathrm{B}(2,4)$ and $\mathrm{C}(6,4)$ are the vertices of a $\triangle A B C$, find the equations of its sides.

- Watch Video Solution

19. If $\mathrm{A}(-1,6), \mathrm{B}(-3,-9)$ and $\mathrm{C}(5,-8)$ are the vertices of a $\triangle A B C$, find the equations of its medians.
20. Find the equation of the perpendicular bisector of the line segment whose end points are $\mathrm{A}(10,4)$ and $\mathrm{B}(-4,9)$

- Watch Video Solution

21. Find the equations of the altitudes of a $\triangle A B C$, whose vertices are $\mathrm{A}(2,-2), \mathrm{B}(1,1)$ and $\mathrm{C}(-1,0)$.

- Watch Video Solution

22. If $\mathrm{A}(4,3), \mathrm{B}(0,0)$ and $\mathrm{C}(2,3)$ are the vertices of a $\triangle A B C$, find the equation of the bisector of $\angle A$.

- Watch Video Solution

23. The midpoints of the sides BC, CA and AB of a $\triangle A B C$ are $\mathrm{D}(2,1)$, $\mathrm{E}(-5,7)$ and $\mathrm{F}-5,-5)$ respectively. Find the equations of the sides of $\triangle A B C$

- Watch Video Solution

24. If $\mathrm{A}(1,4), \mathrm{B}(2,3)$ and $\mathrm{C}(-1,-2)$ are the vertices of a $\triangle A B C$, find the equation of
(i) the median through A
(ii) the altitude through A
(iii) the perpendicular bisector of BC .

- Watch Video Solution

Exercise 20 D

1. Find the equation of the line whose
(i) slope=3 and y-intercept=5
(ii) slope=-1 and y-intercept=4
(iii) slope $=-\frac{2}{5}$ and y-intercept $=-3$

- Watch Video Solution

2. Find eqn of line which cut off an intercept of 4 units on the x - axis and makes an angle of 30° with positive direction of y-axis.

- Watch Video Solution

3. Find the equation of the line whose inclination is $\frac{5 \pi}{6}$ and which makes an intercept of 6 units on the negative direction of the y-axis.

- Watch Video Solution

4. Find the equation of the line cutting off an intercept-2 from the y-axis and equally inclined to the axes.
5. Find the equation of the bisectors of the angles between the coordinate axes.

- Watch Video Solution

6. Find the equation of the line through the point $(-1,5)$ and making an intercept of -2 on the y-axis.

- Watch Video Solution

7. Find the equation of the line which is parallel to the line $2 x-3 y=8$ and whose y-intercpt is 5 units.

- Watch Video Solution

8. Find the equation of the line passing through the point $(0,3)$ and perpendicular to the line $x-2 y+5=0$.

Watch Video Solution

9. Find the equation of the line passing through the point $(2,3)$ and perpendicular to the line $4 x+3 y=10$.

- Watch Video Solution

10. Find the equation of the line passing through the point $(2,4)$ and perpendicular to the x-axis.

- Watch Video Solution

11. Find the equation of the line that has x-intercept-3 and which is perpendicular to the line $3 x+5 y=4$
12. Find the equation of the line which is perpendicular to the line $3 x+2 y=8(4,-2)$ and passes through the midpoint of the line joining the points (6,4) and (4,-2)

- Watch Video Solution

13. Find the equation of the line whose y-intercept is -3 and which is perpendicular to the line joining the points $(-2,3)$ and ($4,-5$).

- Watch Video Solution

14. Find the equation of the line passing through $(-3,5)$ and perpendicular to the line through the points $(2,5)$ and $(-3,6)$.

- Watch Video Solution

15. A line perpendicular to the line segment joining the points $(1,0)$ and $(2,3)$ divides it in the ratio $1: 2$. Find the equation of the line.

- Watch Video Solution

Exercise 20 E

1. Find the equation of the line which cuts off intercepts-3 and 5 on the x axis and y-axis respectively.

- Watch Video Solution

2. Find the equation of the line which cuts off intercepts 4 and -6 on the x-axis and y-axis respectively.

- Watch Video Solution

3. Find the equation of the line that cuts off equal intercepts on the coordinate axes and passes through the point $(4,7)$.

- Watch Video Solution

4. Find the equation of the line which passes through the point $(3,-5)$ and cuts off intercepts on the axes which are equal in magnitude but opposite in sign.

- Watch Video Solution

5. Find equation of the line passing through the point $(2,2)$ and cutting off intercepts on the axes whose sum is 9 .

- Watch Video Solution

6. Find the equation of the line which passes through the point (22,-6) and whose intercept on the x-axis exceeds the intercept on the y-axis by 5 .

Watch Video Solution

7. Find the equation of the line whose portion intercepted between the axes is bisected at the point $(3,-2)$

- Watch Video Solution

8. Find the equation of the line whose portion intercepted between the coordinate axes is divided at the point $(5,6)$ in the ratio 3:1.

- Watch Video Solution

9. A straight line passes through the point ($-5,2$) and the portion of the line intercepted between the axes is divided at this point in the ratio 2:3.

Find the equation of the line.

- Watch Video Solution

10. If the straight line $\frac{x}{a}+\frac{y}{b}=1$ passes through the points $(8,9)$ and $(12,-15)$ find the values of a and b.

- Watch Video Solution

Exercise 20 F

1. Find the equation of the line for which
(i) $p=3$ and $\alpha=45^{\circ}$ (ii) $p=5$ and $\alpha=135^{\circ}$
(iii) $p=8 \alpha=150^{\circ}$ (iv) $p=3$ and $\alpha=225^{\circ}$
(v) $p=2$ and $\alpha=300^{\circ}$ (vi) $p=4$ and $\alpha=180^{\circ}$

- Watch Video Solution

2. The length of the perpendicular segment from the origin to a line is 2 units and the inclination of this perpendicular is α such that sin $\alpha=\frac{1}{3}$ and α is acute. Find the equation of the line.

- Watch Video Solution

3. Find the equation of the line which is ata distance of 3 units from the origin such that $\tan \alpha=\frac{5}{12}$, where α is the acute angle which this perpendicular makes with the positive direction of the x-axis.

- Watch Video Solution

Exercise 20 G

1. Reduce the equation $2 x-3 y-5=0$ to slope-intercept form, and find from it the slope and y -intercept
2. Reduce the equation $5 x+7 y-35=0$ to slope-intercept form, and hence find the slope and the y-intercept of the line

- Watch Video Solution

3. Reduce the equation $y+5=0$ to slope-intercept form, and hence find the slope and the y-intercept of the line.

- Watch Video Solution

4. Reduce the equation $3 x-4 y+12=0$ to intercepts form. Hence, find the length of the portion of the line intercepted between the axes.

- Watch Video Solution

5. Reduce the equation $5 x-12 y=60$ to intercepts form. Hence, find the length of the portion of the line intercepted between the axes.

- Watch Video Solution

6. Find the inclination of the line $(\mathrm{i}) x+\sqrt{3} y+6=0$
$3 x+3 y+8=0$ (iii) $\sqrt{3} x-y-4=0$

- Watch Video Solution

7. Reduce the equation $x+y-\sqrt{2}=0$ to the normal form $x \cos \alpha+y \sin \alpha=p$, and hence find the values of α and p.

- Watch Video Solution

8. Reduce the equation $x+\sqrt{3} y-4=0$ to the normal form $x \cos \alpha+y \sin \alpha=p$, and hence find the values of α and p.

- Watch Video Solution

9. Reduce each of the followringequations to normal form:
(i) $\mathrm{x}+\mathrm{y}-2=0$ (ii) $x+y+\sqrt{2}=0$ (iii) $\mathrm{x}+5=0$ (iv) $2 \mathrm{y}-3=0$ (v) $4 \mathrm{x}+3 \mathrm{y}-9=0$

- Watch Video Solution

Exercise 20 H

1. Find the distance of the point $(3,-5)$ from the line $3 x-4 y=27$.

- Watch Video Solution

2. Find the distance of the point $(-2,3)$ from the line $12 x=5 y+13$.

- Watch Video Solution

3. Find the distance of the point $(-4,3)$ from the line $4(x+5)=3(y-6)$
4. Find the distance of the point $(2,3)$ from the line $\mathrm{y}=4$.

- Watch Video Solution

5. Find the distance of the point $(4,2)$ from the line joining the points (4,
1) and (2,3).

- Watch Video Solution

6. Find the length of perpendicular from the origin to each of the following (i) $7 \mathrm{x}+24 \mathrm{y}=50$ (ii) $4 \mathrm{x}+3 \mathrm{y}=9$ (iii) $\mathrm{x}=4$

- Watch Video Solution

7. Prove that the product of the lengths of the perpendiculars drawn from the points $\left(\sqrt{a^{2}-b^{2}}, 0\right)$ and $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to the line $\frac{x}{a} \cos \theta+\frac{y}{b}$
$\sin \theta=1$ is b^{2}.

- Watch Video Solution

8. Find the values of k for which the length of perpendicular from the point $(4,1)$ on the line $3 x-4 y+k=0$ is 2 units

- Watch Video Solution

9. Show that the length of perpendicular from the point $(7,0)$ to the line $5 x+12 y-9=0$ is double the length of perpendicular to it from the point $(2,1)$.

- Watch Video Solution

10. The points $A(2,3), B(4,-1)$ and $C(-1,2)$ are the vertices of $A B C$. Find the length of perpendicular from C on $A B$ and hence find the area of $\triangle A B C$.
11. What are the points on the yaxis whose distance from the line $\frac{x}{3}+\frac{y}{4}=1$ is 4 units.

- Watch Video Solution

12. The points on $x+y=4$ that lie at a unit distance from the line $4 x+3 y-10=$ are

- Watch Video Solution

13. A vertex of a square is at the origin and its one side lies along the line $3 x-4 y-10=0$. Find the area of the square.

- Watch Video Solution

14. Find the distance between the parallel lines $4 x-3 y+5=0$ and $4 x-3 y=0$
15. Pind the distance between the parallel lines $8 x+15 y-36=0$ and $8 x+15 y+32=0$.

- Watch Video Solution

16. Find the distance between the parallel lines $y=m x+c$ and $y=m x+d$.

- Watch Video Solution

17. Find the distance between the parallel lines $p(x+y)+g=0$ and $p(x+y)-r=0$.

- Watch Video Solution

18. Prove that the line $12 x-5 y-3=0$ is mid-parallel to the lines $12 x-5 y+7=0$ and $12 x-5 y-13=0$
19. The perpendicular distance of a line from the origin is 5 units and its slope is -1 . Find the equation of the line.

- Watch Video Solution

Exercise 201

1. Find the points of interesting of the lines ${ }^{`} 4 x+3 y=5$ and $x=2 y-7$

- Watch Video Solution

2. Show that the lines $x+7 y=23$ and $5 x+2 y=16$ interest at the point $(2,3)$
3. Show that the lines $3 x-4 y+5=0,7 x-8 y+5=0$ and $4 x+5 y=45$ are concurrent. Also find their point of intersection.

Watch Video Solution

4. Find the value of k so that the lines $3 x-y-2=0,5 x+k y-3=0$ and $2 x+y-3=0$ are concurrent.

- Watch Video Solution

5. Find the image of the point $P(1,2)$ in the line $x-3 y+4=0$

(D) Watch Video Solution

6. Find the area of triangle formed by the lines : $x+y-6=0, x-3 y-2=0$ and $5 x-3 y+2=0$
7. Find the area of the triangle formed by the lines $\mathrm{x}=0, \mathrm{y}=1$ and $2 \mathrm{x}+\mathrm{y}=2$.

- Watch Video Solution

8. Find the area of the triangle, the equations of whose sides are $y=x, y=2 x$ and $\mathrm{y}-3 \mathrm{x}=4$.

- Watch Video Solution

9. Find the equation of the perpendicular drawn from the origin to the line $4 x-3 y+5=0$. Also, find the coordinates of the foot of the perpendicular.

- Watch Video Solution

10. Find the equation of the perpendicular drawn from the point $P(-2,3)$ to the line $x-4 y+7=0$. Also, find the coordinates of the foot of the
perpendicular.

- Watch Video Solution

11. Find the equations of the medians of a triangle, the equations of whose sides are: $3 x+2 y+6=0,2 x-5 y+4=0$ and $x-3 y-6=0$

- Watch Video Solution

Exercise 20 J

1. If the origin is shifted to the point $(1,2)$ by a translation of the axes, find the new coordinates of the point $(3,-4)$

- Watch Video Solution

2. If the origin is shifted to the point $(-3,-2)$ by a translation of the axes, find the new coordinates of the point $(3,-5)$.

- Watch Video Solution

3. If the origin is shifted to the point $(0,-2)$ by a translation of the axes, the coordinates of a point become (3, 2). Find the original coordinates of the point.

- Watch Video Solution

4. If the origin is shifted to the point $(2,-1)$ by a translation of the axes, the coordinates of a point become ($-3,5$). Find the original coordinates of the point.

- Watch Video Solution

5. At what point must the origin be shifted, if the coordinates of a point $(4,2)$ become $(3,-2)$?

- Watch Video Solution

6. The equation $x^{2}+x y-3 x-y+2=0$ beome when the origin is shifted to the point $(1,1)$ is

- Watch Video Solution

7. Find what the following equation become when the origin is shifted to the point (1,1): $x y-y^{2}-x+y=0$

- Watch Video Solution

8. Find what the following equation become when the origin is shifted to the point (1,1): $x^{2}-y^{2}-2 x+2 y=0$
9. Find what the following equation become when the origin is shifted to the point (1,1): $x y-x-y+1=0$

- Watch Video Solution

10. Transform the equation $2 x^{2}+y^{2}-4 x+4 y=0$ to parallel axes when the origin is shifted to the point $(1,-2)$

- Watch Video Solution

Exercise 20 K

1. Find the equation of the line drawn through the point of intersection of the lines $x-2 y+3=0$ and $2 x-3 y+4=0$ and passing through the point $(4,-5)$.
2. Find the equation of the line drawn through the point of intersection of the lines $x-y=7$ and $2 x+y=2$ and passing through the origin.

- Watch Video Solution

3. Find the equation of the line drawn through the point of intersection of the lines $x+y=9$ and $2 x-3 y+7=0$ and whose slope is $\frac{-2}{3}$

- Watch Video Solution

4. Find the equation of the line drawn through the point of intersection of the lines $x-y=1$ and $2 x-3 y+1=0$ and which is parallel to the line $3 x+4 y=12$

- Watch Video Solution

5. Find the equation of the line through the intersection of the lines $5 x-$ $3 y=1$ and $2 x+3 y=23$ and which is perpendicular to the line $5 x-3 y=1$

- Watch Video Solution

6. Find the equation of the line through the intersection of the lines $2 x-$ $3 y=0$ and $4 x-5 y=2$ and which is perpendicular to the line $x+2 y+1=0$.

- Watch Video Solution

7. Find the equation of the line through the intersection of the lines x $7 y+5=0$ and $3 x+y-7=0$ and which is parallel to x-axis.

- Watch Video Solution

8. Find the equation of the line through the intersection of the lines $2 x-$ $3 y+1=0$ and $x+y-2=0$ and drawn parallel to y-axis.
9. Find the equation of the line through the intersection of the lines $2 x+3 y-2=0$ and $x-2 y+1=0$ and having x-intercept equal to 3 .

- Watch Video Solution

10. Find the equation of the line passing through the intersection of the lines $3 x-4 y+1=0$ and $5 x+y-1=0$ and which cuts off equal intercepts from the axes.
