đず doubtnut

MATHS

BOOKS - RS AGGARWAL MATHS (HINGLISH)

APPLICATIONS OF DERIVATIVES

Solved Examples

1. The rate of change of the area of a circle with respect to its radius r at $r=6 \mathrm{~cm}$ is
A. 10π
B. 12π
C. 8π

Answer: B

- Watch Video Solution

2. A stone is dropped into a quiet lake and waves move in circles at a speed of 4 cm per second. At the instant, when the radius of the circular wave is 10 cm , how fast is the enclosed area increasing?

- Watch Video Solution

3. A spherical soap bubble is expanding so that its radius is increasing at the rate of $0.02 \mathrm{~cm} / \mathrm{sec}$. At what rate is the surface area increasing when its radius is 5 cm ? (Take $\pi=3.14$)
4.6) The volume of a spherical balloon is increasing at the rate of $20 \mathrm{~cm} / \mathrm{sec}$. Find the rate of change of its surface area at the instant when its radius is 8 cm .

- Watch Video Solution

5. The surface area of a spherical bubble is increasing at the rate of $2 \mathrm{~cm}^{2} / \mathrm{s}$. When the radius of the bubble is 6 cm , at what rate is the volume of the bubble increasing?

- Watch Video Solution

6. The volume of a cube is increasing at a rate of $7 \mathrm{~cm}^{3} / \mathrm{se}$. How fast is the surface area increasing when the length of an edge is

- Watch Video Solution

7. The length x of a rectangle is decreasing at the rate of 5 $\mathrm{cm} /$ minute and the width y is increasing at the rate of 4 $\mathrm{cm} /$ minute. When $x=8 \mathrm{~cm}$ and $\mathrm{y}=6 \mathrm{~cm}$, find the rates of change of
(a) the perimeter, and (b) the area of the rectangle

- Watch Video Solution

8. Water is leaking from a conical funnel at the rate of $5 c \frac{\mathrm{~m}^{3}}{\mathrm{sec}}$. If the radius of the base of the funnel is 5 cm and its altitude is 10 cm , find the rate at which the water level is dropping when it is 2.5 cm from the top.
9. Sand is pouring from a pipe at the rate of $12 \mathrm{~cm}^{3} / \mathrm{s}$. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when t

- Watch Video Solution

10. A ladder 5 m long is leaning against a wall. The bottom of the
ladder is pulled along the ground, away from the wall, at the rate of $2 \mathrm{~cm} / \mathrm{s}$. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?
11. The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of $3 \mathrm{~cm} / \mathrm{s}$. How fast is the area decreasing when the two equal sides are equal to the base?

- Watch Video Solution

12. A point source of light along a straight road is at a height of 'a' metres. A boy 'b' metres in height is walking along the road. How fast is his shadow increasing if he is walking away from the light at the rate of 'c' metres per minute ?

- Watch Video Solution

13. A man 160 cm tall, walks away from a source of light situated at the top of a pole 6 m high at the rate of $1.1 \mathrm{~m} / \mathrm{sec}$. How fast is
the length of his shadow increasing when he is 1 metre away from the pole.

- Watch Video Solution

14. A particle moves along the curve $6 y=x^{3}+2$. Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate.

- Watch Video Solution

15. Find the point on the curve $y^{2} .=8 x$. for which the abscissa and ordinate change at the same rate.
16. The points of the ellipse $16 x^{2}+9 y^{2}=400$ at which the ordinate decreases at the same rate at which the abcissa increases is

D Watch Video Solution

17. The total cost $C(x)$ of producing x items in a firm is given by $C(x)=0.0005 x^{3}-0.002 x^{2}+30 x+6000$ Find the marginal cost when 4 units are produced

- Watch Video Solution

18. The total revenue received from the sale of x units of a product is given by

$$
R(x)=3 x^{2}+40 x+10
$$

Find the marginal revenue when $x=5$

- Watch Video Solution

19. Using differentials, find the approximate value of $(82)^{\frac{1}{4}}$ upto 3 places of decimal .

- Watch Video Solution

20. Use differentials to approximate the cube root of 127 .

- Watch Video Solution

21. Using differentials, find the approximate value of $\sqrt{26}$

- Watch Video Solution

22. Using differentials, find the approximate value of $\sqrt{0.037}$, correct upto thre decimal places.

D Watch Video Solution

23. Using differentials find the approximate value of $\tan 46^{\circ}$, if it is being given that $1^{0}=0.01745$ radians.

- Watch Video Solution

24. Using differentials, find the approximate value of $(\log)_{10} 10.1$, it being given that $(\log)_{10} e=0.4343$.

- Watch Video Solution

25. If $f(x)=3 x^{2}+15 x+5$, then find the approximate value of $f(3.02)$ using differentials

D Watch Video Solution

26. If radius of a circle increases from 5 to 5.1 , find the increase in area.

D Watch Video Solution

27. If $y=x^{4}-12$ and if x changes from 2 to 1.99 , what is the approximate change in y

- Watch Video Solution

28. If there is an error of 2% in measuring the length of simple pendulum, then percentage error in its period is: 1% (b) 2% (c) 3% (d) 4\%

- Watch Video Solution

29. If the error committed in measuring the radius of a circle be 0.01%, find the corresponding error in calculating the area.
A. 0.02%
B. 0.03%
C. 0.04%
D. 0.05%

Answer: A
30. If in a triangle $A B C$, the side c and the angle C remain constant, while the remaining elements are changed slightly, show that $\frac{d a}{\cos A}+\frac{d b}{\cos B}=0$.

- Watch Video Solution

31. The area S of a triangle is calculated by measuring the sides b and c , and $\angle A$. If there be an error δA in the measurement of
$\angle A$, show that the relative error in area is given by $\frac{\delta S}{S}=\cot A . \delta A$
32. Verify Rolles theorem for the function $f(x)=x^{3}-6 x^{2}+11 x-6$ on the interval [1,3].

D Watch Video Solution

33. Verify Rolle's therorem for the function $f(x)=x(x-1)^{2}$ in the interval $[0,1]$

- Watch Video Solution

34. Verify Rolles theorem for the function
$f(x)=(x-a)^{m}(x-b)^{n}$ on the interval $[a, b]$, where m, n are positive integers.

- Watch Video Solution

35. Verify Rolle's theorem for each of the following functions:
(i) $f(x)=\sin 2 x$ in $\left[0, \frac{\pi}{2}\right]$
(ii) $f(x)=(\sin x+\cos x)$ in $\left[0, \frac{\pi}{2}\right]$
(iii) $f(x)=\cos 2\left(x-\frac{\pi}{4}\right)$ in $\left[0, \frac{\pi}{2}\right]$
(iv) $f(x)=(\sin x-\sin 2 x)$ in $[0, \pi]$

D Watch Video Solution

36. Verify Rolle's theorem for each of the following functions:
(i) $f(x)=\sin ^{2} x$ in $0 \leq x \leq \pi$
(ii) $f(x)=e^{x} \cos x$ in $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
(iii) $f(x)=\frac{\sin x}{e^{x}}$ in $0 \leq x \leq \pi$

- Watch Video Solution

37. verify Rolle's theorem for the function $f(x)=x(x+3) e^{-\frac{x}{2}}$ in $[-3,0]$

- Watch Video Solution

38. Verify Rolles theorem for function
$f(x)=\log \left(x^{2}+2\right)-\log 3$ on $[-1,1]$

D Watch Video Solution

39. Verify Rolle's theorem for the following functions
(i) $f(x)=\sqrt{4-x^{2}}$ in $[-2,2]$
(ii) $f(x)=\log \left(\frac{x^{2}+a b}{(a+b) x}\right]$ in $[a, b]$, where $0<a<b$

- Watch Video Solution

40. Verify Rolle's theorem for the function $f(x)=2 x^{3}+x^{2}-4 x-2$.

- Watch Video Solution

41. Discuss the applicability of Rolle's theorem to the functions:
(i) $f(x)=x^{2}$ in $[1,2]$
(ii) $f(x)=x^{2 / 3}$ in $[-1,1]$

- Watch Video Solution

42. Discuss the applicability of Rolle's theorem on :
(i) $f(x)=|x|$ in $[-1,1]$ (ii) $f(x)=\tan x$ in $[0, \pi]$

- Watch Video Solution

43. Discuss the applicability of Rolle's theorem on the function
$f(x)= \begin{cases}\left(x^{2}+1\right) & \text { when } 0 \leq x \leq 1 \\ (3-x) & \text { when } 1<x \leq 2\end{cases}$

- Watch Video Solution

44. If Rolle's theorem holds for the function
$f(x)=x^{3}+b x^{2}+a x+5$ on $[1,3]$ with $c=\left(2+\frac{1}{\sqrt{3}}\right)$, find the value of a and b

- Watch Video Solution

45. At what points on the curve $y=(\cos x-1)$ in $[0,2 \pi]$, is the tangent parallel to the x-axis?
46. Verify Lagrange's mean-value theorem for the given functions: (i) $f(x)=x(2-x)$ in $[0,1]$

- Watch Video Solution

47. Verify the hypothesis and conclusion of Lagrange's meanvalue theorem for the function $f(x)=\frac{1}{(4 x-1)}, 1 \leq x \leq 4$

- Watch Video Solution

48. Find ' c ' of the mean -value theorem for the functions
(i) $f(x)=2 x^{2}-10 x+29$ in $[2,7]$
(ii) $f(x)=x(x-1)(x-2)$ in $\left[0, \frac{1}{2}\right]$
49. Using LaGrange's mean value theorem, find a point on the curve $y=\sqrt{x-2}$ defined on the interval $[2,3]$, where the tangent is parallel to the chord joining the end points of the curve.

- Watch Video Solution

50. Find a point on the parabola $y=(x-3)^{2}$, where the tangent is parallel to the chord joining $(3,0)$ and $(4,1)$

- Watch Video Solution

51. Without using the derivative, find the maximum or minium values, if any of the function $f(x)=4 x^{2}-4 x+7$ for all $x \in R$
52. Find the maximum and minimum values, if any, of the following functions given by
$f(x)=|x+2| 1$
$g(x)=|x+1|+3$
$h(x) \quad=\quad s \in \quad(2 x) \quad+\quad 5(i v)$ 'f" "(x)" "=" "|" "s in" "4x" "+"

- Watch Video Solution

53. Find the local maxima or local minima, if any, of
(i) $f(x)=\frac{1}{\left(x^{2}+2\right)}$ (ii) $f(x)=\left(x^{3}-3 x\right)$

In each case, find the local maximum or the local minimum values, as the case may be

- Watch Video Solution

54. Find the local maxima or local minima of $f(x)=x^{3}-6 x^{2}+9 x+15$ Also, find the local maximum or local minimum values as the case may be

- Watch Video Solution

55. Find the points of local maxima, local minima and the points of inflection of the function $f(x)=x^{5}-5 x^{4}+5 x^{3}-1$. Also, find the corresponding local maximum and local minimum values

- Watch Video Solution

56. Find all the points of local maxima and local minima as well as the corresponding local maximum and local minimum values for the function $f(x)=(x-1)^{3}(x+1)^{2}$.
57. Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function $f(x)=-\frac{3}{4} x^{4}-8 x^{3}-\frac{45}{2} x^{2}+105$.

- Watch Video Solution

58. Find the local maxima and local minima of the functions:
(i) $f(x)=\sin 2 x$, when $0<x<\pi$
(ii) $f(x)=(\sin 2 x-x)$, when $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$

- Watch Video Solution

59. Find the local maxima and local minima of the functions:
(i) $f(x)=(\sin x-\cos x)$, When $0<x<\frac{\pi}{2}$
(ii) $f(x)=(2 \cos x+x)$, when $0<x<\pi$

- Watch Video Solution

60. Find the point of local maxima or local minima of the function

$$
f(x)=\left(\sin ^{4} x+\cos ^{4} x\right) \text { in } 0<x<\frac{\pi}{2}
$$

A.
$\therefore x=(\pi / 4)$ is a point of local minimum.
B.
$\therefore x=(\pi / 4)$ is a point of local maxima.
C.
$\therefore x=(\pi / 2)$ is a point of local minimum.
D.
$\therefore x=(\pi / 2)$ is a point of local mixima.

Answer: A

D Watch Video Solution

61. Find the local maxima and local minima, and the corresponding local maximum and local minimum values of the following functions:
(i) $f(x)=x \sqrt{1-x}$, where $x>0$
(ii) $f(x)=\frac{x}{(x-1)(x-4)}$, where $1<x<4$

- Watch Video Solution

62. prove that maximum value of $\left(\frac{1}{x}\right)^{x}$ is $e^{\frac{1}{e}}$

D Watch Video Solution

63. Find the point on the parabola $y^{2}=2 x$ which is closest to the point $(1,4)$

- Watch Video Solution

64. Prove that the following functions do not have maxima or minima:(i) $\quad f(x)=e x$
(ii) $\quad g(x)=\log x$ (iii)
$h(x)=x^{3}+x^{2}+x+1$

Watch Video Solution
65. Show that $s \in^{p} \theta \cos ^{q} \theta$ attains a maximum, when
$\theta=\tan ^{-1} \sqrt{\frac{p}{q}}$.
66. Find both the maximum value and the minimum value of $3 x^{4}-8 x^{3}+12 x^{2}-48 x+25$ on the interval [0,3].

- Watch Video Solution

67. Find the maximum and minimum values of $x+s \in 2 x$ on $[0,2 \pi]$.

- Watch Video Solution

68. Show that $f(x)=\sin x(1+\cos x)$ is maximum at $x=\frac{\pi}{3}$ in the interval $[0, \pi]$.
69. Amongst all pairs of positive number with sum 24 , find those whose product is maximum

- Watch Video Solution

70. Amongst all pairs of positive numbers with product 256 , find those whose sum is the least.

- Watch Video Solution

71. Find two positive numbers x and y such that $x+y=60$ and $x y^{3}$ is maximum.

D Watch Video Solution

72. Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.

D Watch Video Solution

73. Show that all the rectangles with a given perimeter, the square has the largest area.

D Watch Video Solution

74. Show that of all the rectangles of given area, the square has
the smallest perimeter.

D Watch Video Solution

75. Prove that the area of right-angled triangle of given hypotenuse is maximum when the triangle is isosceles.

- Watch Video Solution

76. If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is $\frac{\pi}{3}$.

- Watch Video Solution

77. Two sides of a triangle are given. The angle between them
such that the area is maximum, is given by
78. Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.

- Watch Video Solution

79. Show that the triangle of maximum area that can be inscribed in a given circle is an equilateral triangle.

- Watch Video Solution

80. The combined resistance R of two resistors
R_{1} and R_{2} where $R_{1}, R_{2}>0$ is given by $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
If $R_{1}+R_{2}=C$ (constant), show that the maximum reistance R is obtained by chossing $R_{1}=R_{2}$
81. A beam of length l is supported at one end. If W is the uniform load per unit length, the bending moment M at a distance x from the end is given by $M=\frac{1}{2} l x-\frac{1}{2} W x^{2}$. Find the point on the beam at which the bending moment has the maximum value.

- Watch Video Solution

82. A wire of length 25 m is to be cut into two pieces. One of the wires is to be made into a square and the other into a circle.

What should be the lengths of the two pieces so that the combined area of the square and the circle is minimum ?

- Watch Video Solution

83. Show that a cylinder of a given volume which is open at the top has minimum total surface area, when its height is equal to the radius of its base.

- Watch Video Solution

84. Show that the right circular cylinder, open at the top, and of given surface area and maximum volume is such that its height is equal to the radius of the base.

- Watch Video Solution

85. Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is $\frac{\cos ^{-1} 1}{\sqrt{3}}$
86. Show that semi-vertical angle of right circular cone of given surface area and maximum volume is $\sin ^{-1}\left(\frac{1}{3}\right)$.

- Watch Video Solution

87. Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.

- Watch Video Solution

88. Show that the height of a closed right circular cylinder of given surface and maximum volume, is equal to the diameter of its base.
89. A closed cylinder has volume 2156 cm 3 . What will be the radius of its base so that its total surface area is minimum?

- Watch Video Solution

90. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $2 \frac{R}{\sqrt{3}}$. Also find maximum volume.

- Watch Video Solution

91. Show that the cone of greatest volume which can be inscribed
in a given sphere is such that three times its altitude is twice the diameter of the sphere. Find the volume of the largest come inscribed ina sphere of radius R.
92. Prove that the area of right-angled triangle of given hypotenuse is maximum when the triangle is isosceles.

- Watch Video Solution

93. An open box is to be made out of a piece of cardboard measuring ($24 \mathrm{~cm} \times 24 \mathrm{~cm}$) by cutting off equal square from the corners and turning up the sides. Find the height of the box when it has maximum volume.

- Watch Video Solution

94. Show that $f(x)=3 x+5$ is a strictly increasing function on

- Watch Video Solution

95. Show that the function $f(x)=e^{x}$ is strictly increasing on R .

- Watch Video Solution

96. Show that $f(x)=e^{-x}$ is a strictly decreasing function on Rgt

- Watch Video Solution

97. Show that the function $f(x)=a^{x}, a>1$ is strictly increasing on R.
98. If a is real number such that $0<a<1$, show that the function $f(x)=a^{x}$ is strictly decreasing on R .

- Watch Video Solution

99. Show that the function $f(x)=\left(x^{3}-6 x^{2}+12 x-18\right)$ is an increasing function on R .

D Watch Video Solution

100. Show that the function $f(x)=e^{x}$ is strictly increasing on R .

- Watch Video Solution

101. Show that $f(x)=e^{1 / x}$ is a strictly decreasing function for

- Watch Video Solution

102. Show that $f(x)=(x-1) e^{x}+1$ is an increasing function for all $x>0$.

- Watch Video Solution

103. Show that $f(x)=x-\sin x$ is increasing for all $x R$.

- Watch Video Solution

104. Prove that the function $f(x)=\cos ^{2} x$ is strictly decreasing in $\left(0, \frac{\pi}{2}\right)$
105. Show that $f(x)=\log \sin x$ is increasing on $(0, \pi / 2)$ and decreasing on $(\pi / 2, \pi)$.

- Watch Video Solution

106. Show that $f(x)=\sin x$ is increasing on ($0, \pi / 2$) and decreasing on $(\pi / 2, \pi)$ and neither increasing nor decreasing in $(0, \pi)$.

- Watch Video Solution

107. Show that the function $x^{2}-x+1$ is neither increasing nor decreasing on $(0,1)$.
108. Prove that the function $f(x)=10^{x}$ is strictly increasing on R

- Watch Video Solution

109. Show that the function f given by
$f(x)=\tan ^{-1}(\sin x+\cos x), x>0$ is always an strictly increasing function in $\left(0, \frac{\pi}{4}\right)$.

- Watch Video Solution

110. Find the intervals on which the function
$f(x)=10-6 x-2 x^{2}$ is
(a) strictly increasing
(b) strictly
decreasing.
111. Find the intervals in which the given functions are strictly increasing decreasing: $-2 x^{3}-9 x^{2}-12 x+1$

- Watch Video Solution

112. Find the intervals on which the function
$f(x)=2 x^{3}-15 x^{2}+36 x+6$ is (a) increasing (b) decreasing.

- Watch Video Solution

113. find intervals in which function $x^{3}+2 x^{2}-1$ is increasing and decreasing?
114. Find the intervals on which the function $f(x)=x^{3}+3 x^{2}-105 x+25$ is (a) increasing (b) decreasing

D Watch Video Solution

115. Find the intervals in which $f(x)=5+36 x+3 x^{2}-2 x^{3}$ is increasing or decreasing.
A. $f(x)$ is increasing on $[-2,7]$ and decreasing on

$$
[-\infty, 2] \cup[3, \infty]
$$

B. $f(x)$ is increasing on $(-2,3)$ and decreasing on

$$
(-\infty,-2) \cup(3, \infty)
$$

C. $f(x)$ is increasing on $[-8,3]$ and decreasing on

$$
[-\infty,-2] \cup[3, \infty]
$$

D. $f(x)$ is increasing on $[-2,3]$ and decreasing on

$$
[-\infty,-2] \cup[3, \infty]
$$

Answer: D

- Watch Video Solution

116. Find the intervals on which the function $f(x)=(x+1)^{3}(x-3)^{3}$ is (a) increasing (b) decreasing

D Watch Video Solution

117. Find the intervals in which $f(x)=\frac{4 x^{2}+1}{x}$ is increasing or decreasing.
118. Find the intervals on which the function $f(x)=\frac{x}{\left(x^{2}+1\right)}$ is (a) increasing (b) decreasing

- Watch Video Solution

119. Find the intervals in which $f(x)=(x+2) e^{-x}$ is increasing or decreasing.

- Watch Video Solution

120. Find the intervals in which the $f(x)=\log (1+x)-\frac{x}{1+x}$ is (i) increasing (ii) decreasing

- Watch Video Solution

121. Find the intervals in which $f(x)=\sin x-\cos x$, where ${ }^{`} 0$

D Watch Video Solution

122. Separate the interval $[0, \pi / 2]$ into sub-intervals in which $f(x)=s \in^{4} x+\cos ^{4} x$ is increasing or decreasing.

- Watch Video Solution

123. Separate $\left[0, \frac{\pi}{2}\right]$ into subintervals in which $f(x)=\sin 3 x$ is
(a) increasing (b) decreasing

- Watch Video Solution

124. Prove that $\tan x>x$ for all $x \in\left[0, \frac{\pi}{2}\right]$
125. Determine the values of x for which $f(x)=x^{x}, x>0$ is increasing or decreasing.

- Watch Video Solution

126. Find the intervals for which $f(x)=x^{4}-2 x^{2}$ is increasing or decreasing.

- Watch Video Solution

127. Prove that $\frac{x}{(1+x)}<\log (1+x)<x$ for $x>0$

- Watch Video Solution

128. Find the equations of the tangent and the normal to the curve $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at the point $(1,3)$

- Watch Video Solution

129. Find the equation of the tangent $y=x^{2}+4 x+1$ and the normal to the curve $y=x^{2}+4 x+1$ at the point where $x=3$
A. equation of the tangent $y-10 x+8=0$ and equation of the normal $15 x+10 y-223=0$
B. equation of the tangent $y-10 x+8=0$ and equation of the normal $x+10 y-223=0$
C. equation of the tangent $y-10 x-8=0$ and equation of the normal $x-10 y-223=0$
D. equation of the tangent $y-15 x+8=0$ and equation of the normal $x+10 y-223=0$

Answer: B

- Watch Video Solution

130. Show that the equation of the tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $\left(x_{1}, y_{1}\right)$ is $\frac{\mathrm{xx}_{1}}{a^{2}}+\frac{\mathrm{yy}_{1}}{b^{2}}=1$

- Watch Video Solution

131. Find the equation of the tangent line to the curve $y=\sqrt{5 x-3}-2$ which is parallel to the line $4 x-2 y+3=0$
132. Find the equation(s) of normal(s) to the curve $3 x^{2}-y^{2}=8$ which is (are) parallel to the line $x+3 y=4$.

D Watch Video Solution

133. Prove that $\left(\frac{x}{a}\right)^{n}=\left(\frac{y}{b}\right)^{N}=2$ touches the straight line $\frac{x}{a}+\frac{y}{b}=2$ for all $n N$, at the point (a, b).

- Watch Video Solution

134. At what point will be tangents to the curve $y=2 x^{3}-15 x^{2}+36 x-21$ by parallel to $\mathrm{x}=\mathrm{axis}$? Also, find the equations of the tangents to the curve at these points.
135. Prove that points of the curve $y^{2}=4 a\left\{x+a \sin \left(\frac{x}{a}\right)\right\}$ at which tangents are parallel to x-axis lie on the parabola.

- Watch Video Solution

136. Tangents are drawn from the origin to the curve $y=\sin x$.

Prove that their points of contact lie on the curve $x^{2} y^{2}=\left(x^{2}-y^{2}\right)$

- Watch Video Solution

137. Determine the points on the curve $2 y=\left(3-x^{2}\right)$ at which the tangent is parallel to the line $x+y=0$

- Watch Video Solution

138. Find the points on the curve $4 x^{2}+9 y^{2}=1$, where the tangents are perpendicular to the line $2 y+x=0$.

- Watch Video Solution

139. Find the coordinates of the points on the curve $y=x^{2}+3 x+4$, the tangents at which pass through the origin.

- Watch Video Solution

140. If the straight line $x \cos \alpha+y \sin \alpha=p$ touches the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then prove that $a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha=p^{2}$.
141. if the straight line $x \cos \alpha+y \sin \alpha=p$ touches the curve

$$
\begin{array}{ll}
x^{m} y^{n}=a^{m+n} & \text { prove } \\
p^{m+n} m^{m} n^{n}=(m+n)^{m+n} a^{m+n} \sin ^{n} \alpha \cos ^{m} \alpha
\end{array}
$$

- Watch Video Solution

142. Find the equation of the normal to the curve $y=2 \sin ^{2} 3 x$ at $\quad x=\frac{\pi}{6}$

- Watch Video Solution

143. Find the equations of the tangent and the normal to the curve $y(x-2)(x-3)-x+7=0$ at the point where it cuts the x-axis
144. Show that the line $\frac{d}{a}+\frac{y}{b}=1$ touches the curve $y=b e^{-\frac{x}{a}}$ at the point where it crosses the y-axis.

D Watch Video Solution

145. Find the equation of the tangent and the normal at the point 't, on the curve $x=a \sin ^{3} t, y=b \cos ^{3} t$.

D Watch Video Solution

146. Find the equations of the tangent and normal to the curve
$x=a \sin 3 t, y=\cos 2 t$ at $t=\frac{\pi}{4}$

D Watch Video Solution

147. For the curve $y=4 x^{3}-2 x^{5}$, find all the points at which the tangents pass through the origin.

D Watch Video Solution

Exercise 11 A

1. The side of a square in increasing at the rate of $0.2 \mathrm{~cm} / \mathrm{sec}$.

Find the rate of increase of the perimeter of the square.

- Watch Video Solution

2. The radius of a circle is increasing at the rate of $0.7 \mathrm{~cm} / \mathrm{sec}$.

What is the rate of increase of its circumference?
3. The radius of a circle is increasing uniformly at the rate of 0.3 centimetre per second. At what rate is the area increasing when the radius is 10 cm ? (Take $\pi=3.14$)

- Watch Video Solution

4. The side of a square sheet of metal is increasing at 3 centimetres per minute. At what rate is the area increasing when the side is 10 cm long ?

- Watch Video Solution

5. The radius of a spherical soap bubble is increasing at the rate of $0.2 \mathrm{~cm} / \mathrm{sec}$. Find the rate of increase of its surface area, when the radius is 7 cm .

- Watch Video Solution

6. The radius of an air bubble is increasing at the rate of 0.5 $\mathrm{cm} / \mathrm{sec}$. At what rate is the volume of the bubble increasing when the radius is 1 cm ?

- Watch Video Solution

7. The volume of a spherical balloon is increasing at a rate of $25 \mathrm{~cm}^{3} / \mathrm{sec}$. Find the rate of increase of its curved surface when the radius of balloon is 5 cm .

- Watch Video Solution

8. A balloon which always remains spherical, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon is increasing when the radius is 15 cm .

- Watch Video Solution

9. The bottom of a rectangular swimming tank is 25 m by 40 m .

Water is pumped into the tank at the rate of 500 cubic metres per minute. Find the rate at which the level of water in the tank is rising.

D Watch Video Solution

10. A stone is dropped into a quiet lake and waves move in circles
at a speed of 3.5 cm per second. At the instant when the radius
of the circular wave is 7.5 cm , how fast is the enclosed area increasing ? (Take $\pi=22 / 7$)

- Watch Video Solution

11. A man 2 metres high walks at a uniform speed of $5 \mathrm{~km} / \mathrm{hr}$ away from a lamp-post 6 metres high. Find the rate at which the length of his shadow increases.

- Watch Video Solution

12. An inverted cone has a depth of 40 cm and a base of radius 5 cm . Water is poured into it at a rate of 1.5 cubic centimetres per minutes. Find the rate at which the level of water in the cone is rising when the depth is 4 cm
13. Sand is pouring from a pipe at the rate of $18 \mathrm{~cm}^{3} / \mathrm{s}$. The falling sand forms a cone on the ground in such a way that the height of the cone is one-sixth of the radius of the base. How fast is the height of the sand cone increasing when its height is 3 cm ?

- Watch Video Solution

14. Water is dripping out from a conical funnel at a uniform rate of $4 \mathrm{~cm}^{3} / \mathrm{cm}$ through a tiny hole at the vertex in the bottom.

When the slant height of the water is 3 cm , find the rate of decrease of the slant height of the water-cone. Given that the vertical angle of the funnel is 120°.
15. Oil is leaking at the rate of $16 \mathrm{~mL} / \mathrm{s}$ from a vertically kept cylindrical drum containing oil. If the radius of the drum is 7 cm and its height is 60 cm , find the rate at which the level of the oil is changing when the oil level is 18 cm

- Watch Video Solution

16. A $13-\mathrm{m}$ long ladder is leaning against a wall. The bottom of the
ladder is pulled along the ground, away from the wall, at the rate of $2 \mathrm{~m} / \mathrm{s}$. How fast is its height on the wall decreasing when the foot of the ladder is 5 m aways from the wall ?

- Watch Video Solution

17. A man is moving away from a 40-m high tower at a speed of 2
m / s. Find the rate at which the angle of elevation of the top of
the tower is changing when he is at a distance of 30 metres from the foot of the tower. Assume that the eye level of the man is 1.6 m from the ground.

(-) Watch Video Solution

18. Find an angle theta, 0
19. The radius of a balloon is increasing at the rate of $10 \mathrm{~cm} / \mathrm{sec}$.

At what rate is the surface area of the balloon increasing when the radius is 15 cm ?

- Watch Video Solution

20. An edge of a variable cube is increasing at the rate of $5 \mathrm{~cm} / \mathrm{s}$. How fast is the volume of the cube increasing when the edge is 10 cm long ?

- Watch Video Solution

21. The sides of an equilateral triangle are increasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which the area increases, when the side is 10 cm .
22. Using differentials, find the approximate value of $\sqrt{37}$

- Watch Video Solution

2. Use differentials and find approximate value of $(29)^{1 / 3}$

- Watch Video Solution

3. Using differentials, find the approximate value of : $\sqrt[3]{127}$
4. Using differentials, find the approximate values of the following:
$\sqrt{0.24}$

(Watch Video Solution

5. Using differentials, find the approximate value of $\sqrt{49.5}$

- Watch Video Solution

6. Using differentials, find the approximate value of $(15)^{1 / 4}$

- Watch Video Solution

7. Using differentials, find the approximate value of $\frac{1}{(2.002)^{2}}$
8. $\log _{e} 10.02$, given that $\log _{e} 10=2.3026$

- Watch Video Solution

9. Find the value of $\log _{10}(4.04)$, it being given that $\log _{10} 4=0.6021$ and $\log _{10} e=0.4343$

- Watch Video Solution

10. $\cos 61^{\circ}$,
it being
given
that
$\sin 60^{\circ}=0.86603$ and $1^{\circ}=0.01745$ radian.

- Watch Video Solution

11. If $y=\sin x$ and x changes from $\pi / 2$ to $22 / 14$, what is the approximate change in y ?

- Watch Video Solution

12. A circular metal plate expands under heating so that its radius increases by 2%. Find the approximate increase in the area of the plate if the radius of the plate before heating is 10 cm.

- Watch Video Solution

13. If the length of a simple pendulum is decreased by 2%, find the percentage decrease in its period T , where $T=2 \pi \sqrt{\frac{l}{g}}$
14. The pressure p and the volume V of a gas are connected by the relation, $p V^{1 / 4}=k$, where k is a contant. Find the percentage increase in the pressure, corresponding to a diminution of 0.5% in the volume

- Watch Video Solution

15. The radius of a sphere shrinks from 10 cm to 9.8 cm . Find approximately the decrease in (i) surface area

- Watch Video Solution

16. If there is an error of 0.1% in the measurement of the radius
of a sphere, find approximately the percentage error in the calculation of the volume of the sphere.

- Watch Video Solution

17. Show that the relative error in the volume of a sphere, due to an error in measuring the diameter, is three times the relative error in the diameter.

- Watch Video Solution

Exercise 11 C

1. Verify Rolle's theorem for each of the following functions :
$f(x)=x^{2}$ on $[-1,1]$

- Watch Video Solution

2. Verify Rolle's theorem for each of the following functions :

$$
f(x)=x^{2}-x-12 \text { in }[-3,4]
$$

- Watch Video Solution

3. Verify Rolle's theorem for each of the following functions :

$$
f(x)=x^{2}-5 x+6 \text { in }[2,3]
$$

D Watch Video Solution

4. Verify Rolle's theorem for each of the following functions :

$$
f(x)=x^{2}-3 x-18 \text { in }[-3,6]
$$

D Watch Video Solution

5. Verify Rolle's theorem for each of the following functions :

$$
f(x)=x^{2}-4 x+3 \text { in }[1,3]
$$

- Watch Video Solution

6. Verify Rolle's theorem for the following functions in the given intervals.
$\mathrm{f}(\mathrm{x})=x(x-4)^{2}$ in the interval $[0,4]$.

- Watch Video Solution

7. Verify Rolle's theorem for each of the following functions :

$$
f(x)=x^{3}-7 x^{2}+16 x-12 \text { in }[2,3]
$$

- Watch Video Solution

8. Verify Rolle's theorem for each of the following functions :

$$
f(x)=x^{3}+3 x^{2}-24 x-80 \text { in }[-4,5]
$$

- Watch Video Solution

9. Verify Rolle's theorem for each of the following functions :
$f(x)=(x-1)(x-2)(x-3)$ in $[1,3]$

- Watch Video Solution

10. Verify Rolle's theorem for each of the following functions:

$$
f(x)=(x-1)(x-2)^{2} \text { in }[1,2]
$$

- Watch Video Solution

11. Verify Rolle's theorem for the following functions in the given intervals.
$\mathrm{f}(\mathrm{x})=(x-2)^{4}(x-3)^{3}$ in the interval $[2,3]$.

- Watch Video Solution

12. Verify Rolle's theorem for each of the following functions :
$f(x)=\sqrt{1-x^{2}}$ in $[-1,1]$

- Watch Video Solution

13. Verify Rolle's theorem for each of the following functions :
$f(x)=\cos x$ in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
14. Verify Rolle's theorem for each of the following functions :
$f(x)=\cos 2 x$ in $[0, \pi]$

- Watch Video Solution

15. Verify Rolle's theorem for the following functions in the given intervals.
$f(x)=\sin 3 x$ in the interval $[0, \pi]$.

- Watch Video Solution

16. Verify Rolle's theorem for each of the following functions :
$f(x)=\sin x+\cos x$ in $\left[0, \frac{\pi}{2}\right]$
17. Verify Rolle's theorem for each of the following functions :
$f(x)=e^{-x} \sin x$ in $[0, \pi]$

D Watch Video Solution

18. Verify Rolle's theorem for each of the following functions :
$f(x)=e^{-x}(\sin x-\cos x)$ in $\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right]$

- Watch Video Solution

19. Verify Rolle's theorem for each of the following functions:
$f(x)=\sin x-\sin 2 x$ in $[0,2 \pi]$
20. Verify Rolle's theorem for each of the following functions :
$f(x)=x(x+2) e^{x}$ in $[-2,1]$

- Watch Video Solution

21. Verify Rolle's theorem for each of the following functions:

Show that $f(x)=x(x-5)^{2}$ satisfies Rolle's theorem on [0,5]
and that the value of c is $(5 / 3)$

- Watch Video Solution

22. Discuss the applicability of Rolle's theorem, when :

$$
f(x)=(x-1)(2 x-3), \quad \text { where } 1 \leq x \leq 3
$$

- Watch Video Solution

23. Discuss the applicability of Rolle's theorem, when :

$$
f(x)=x^{1 / 2} \quad \text { on }[-1,1]
$$

- Watch Video Solution

24. Discuss the applicability of Rolle's theorem, when :

$$
f(x)=2+(x-1)^{2 / 3} \text { on }[0,2]
$$

- Watch Video Solution

25. Discuss the applicability of Rolle's theorem, when :
$f(x)=\cos \frac{1}{x} o n[-1,1]$

- Watch Video Solution

26. Discuss the applicability of Rolle's theorem, when :
$f(x)=[x]$ on $[-1,1]$ where $[\mathrm{x}]$ denotes the greatest integer not exceeding x

- Watch Video Solution

27. Using Rolle's theorem, find the point on the curve

$$
y=x(x-4), x \in[0,4]
$$

- Watch Video Solution

Exercise 11 D

1. Verify Lagrange's mean-value theorem for each of the following
functions

$$
f(x)=x^{2}+2 x+3 \text { on }[4,6]
$$

- Watch Video Solution

2. Verify Lagrange's mean-value theorem for each of the following
functions
$f(x)=x^{2}+x-1$ on $[0,4]$

- Watch Video Solution

3. Verify Lagrange's mean-value theorem for each of the following functions

$$
f(x)=2 x^{2}-3 x+1 \text { on }[1,3]
$$

- Watch Video Solution

4. Verify Lagrange's mean-value theorem for each of the following functions
$f(x)=x^{3}+x^{2}-6 x$ on $[-1,4]$

- Watch Video Solution

5. Verify Lagrange's mean-value theorem for each of the following functions
$f(x)=(x-4)(x-6)(x-8)$ on $[4,10]$

- Watch Video Solution

6. Verify Lagrange's mean-value theorem for each of the following functions

$$
f(x)=e^{x} \text { on }[0,1]
$$

7. Verify Lagrange's mean-value theorem for each of the following functions

$$
f(x)=x^{2 / 3} \text { on }[1,0]
$$

- Watch Video Solution

8. Verify Lagrange's mean-value theorem for each of the following functions
$f(x)=\log x$ on $[1, e]$

- Watch Video Solution

9. Verify Lagrange's mean-value theorem for each of the following

$$
f(x)=\tan ^{-1} x \quad \text { on }[0,1]
$$

- Watch Video Solution

10. Verify Lagrange's mean-value theorem for each of the following functions
$f(x)=\sin x \quad$ on $\left[\frac{\pi}{2}, \frac{5 \pi}{2}\right]$

D Watch Video Solution

11. Verify Lagrange's mean-value theorem for each of the following functions

$$
f(x)=(\sin x+\cos x) \quad \text { on }\left[0, \frac{\pi}{2}\right]
$$

D Watch Video Solution

12. Show that Lagrange's mean-value theorem is not applicable to $f(x)=|x|$ on $[-1,1]$

- Watch Video Solution

13. Show that Lagrange's mean-value theorem is not applicable to $f(x)=\frac{1}{x}$ on $[-1,1]$

D Watch Video Solution

14. Find 'c' of Lagrange's mean-value theorem for
(i) $f(x)=\left(x^{3}-3 x^{2}+2 x\right)$ on $\left[0, \frac{1}{2}\right]$
(ii) $f(x)=\sqrt{25-x^{2}}$ on $[1,5]$
(iii) $f(x)=\sqrt{x+2})$ on $[4,6]$
15. Using Lagrange's mean-value theorem, find a point on the curve $y=x^{2}$, where the tangent is parallel to the line joining the points $(1,1)$ and $(2,4)$

- Watch Video Solution

16. Find a point on the curve $y=x^{3}$, where the tangent to the curve is parallel to the chord joining the points $(1,1)$ and $(3,27)$

- Watch Video Solution

17. Find the points on the curve $y=x^{3}-3 x$, where the tangent to the curve is parallel to the chord joining $(1,-2)$ and $(2,2)$
18. If $f(x)=x(1-\log x)$, where $x>0$, show that $(a-b) \log c=b(1-\log b)-a(1-\log a), \quad$ where $0<a<c<b$

D Watch Video Solution

Exercise 11 E

1. Find the maximum or minium values, if any, without using derivatives, of the functions:
$(5 x-1)^{2}+4$

- Watch Video Solution

2. Find the maximum or minium values, if any, without using derivatives, of the functions:
$-(x-3)^{2}+9$

- Watch Video Solution

3. Find the maximum or minium values, if any, without using derivatives, of the functions:
$-|x+4|+6$

D Watch Video Solution

4. Find the maximum or minium values, if any, without using derivatives, of the functions:
$\sin 2 x+5$

- Watch Video Solution

5. Find the maximum or minium values, if any, without using derivatives, of the functions:
$|\sin 4 x+3|$

- Watch Video Solution

6. Find the points of local maxima or local minima and the corresponding local maximum and minimum values of each of the following functions:

$$
f(x)=(x-3)^{4}
$$

- Watch Video Solution

7. Find the points of local maxima or local minima and the corresponding local maximum and minimum values of each of
the following functions:

$$
f(x)=x^{2}
$$

- Watch Video Solution

8. Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function $f(x)=2 x^{3}-21 x^{2}+36 x-20$.

- Watch Video Solution

9. Find the points of local maxima or minima and corresponding local maximum and minimum values of $f(x)=x^{3}-6 x^{2}+9 x+15$. Also, find the points of inflection, if any:
10. Find the points of local maxima or local minima and corresponding local maximum and local minimum values of each of the following functions. Also, find the points of inflection, if any: $f(x)=x^{4}-62 x^{2}+120 x+9$

- Watch Video Solution

11. Find the points of local maxima or local minima and the corresponding local maximum and minimum values of each of the following functions: $f(x)=-x^{3}+12 x^{2}-5$

- Watch Video Solution

12. Find the points of local maxima or local minima and the corresponding local maximum and minimum values of each of
the following functions:

$$
f(x)=(x-1)(x+2)^{2}
$$

- Watch Video Solution

13. Find the points of local maxima or local minima and the corresponding local maximum and minimum values of each of the following functions:

$$
f(x)=(x-1)^{3}(x+1)^{2}
$$

- Watch Video Solution

14. Find the points of local maxima or local minima and the corresponding local maximum and minimum values of each of the following functions:

$$
f(x)=\frac{x}{2}+\frac{2}{x}, x>0
$$

15. Find the maximum and minimum values of $2 x^{3}-24 x+107$ on the interval $[-3,3]$

- Watch Video Solution

16. Find both the maximum and the minimum value of $3 x^{4}-8 x^{3}+12 x^{2}-48 x+1$ on the interval $[1,4]$.

- Watch Video Solution

17. Find the maximum and minimum values of

$$
f(x)=\sin x+\frac{1}{2} \cos 2 x \text { in }[0, \pi / 2]
$$

- Watch Video Solution

18. The maximum value of $x^{\frac{1}{x}}, x>0$ is $e^{\frac{1}{e}}$ (b) $\left(\frac{1}{e}\right)^{e}$ (c) 1 (d) none of these

- Watch Video Solution

19. Show that the maximum value of $f(x)=x+\frac{1}{x}$ is less than its minimum value.

- Watch Video Solution

20. Find the maximum profit that a company can make, if the profit function is given $P(x)=41+24 x-18 x^{2}$.
21. A jet of an enemy is flying along the curve $y=x^{2}+2$. A soldier is placed at the point $(3,2)$. What is the shortest distance between the soldier and the jet?

- Watch Video Solution

22. Find the maximum and minimum values of $f(x)=(-x+2 \sin x)$ on $[0,2 \pi]$

- Watch Video Solution

Exercise 11 F

1. Find two positive numbers whose product is 49 and the sum is minimum.
2. Find two positive numbers whose sum is 16 and the sum of whose squares is minimum

- Watch Video Solution

3. Divide 15 into two parts such that product of square of one part and cube of other is maximum

- Watch Video Solution

4. Divide 8 into two positive parts such that the sum of the square of one and the cube of the other is minimum.

- Watch Video Solution

5. Divide a into two parts such that the product of the pth power of one part and the qth power of the second part may be maximum

- Watch Video Solution

6. The rate of working of an engine is given by
$R=15 v+\frac{6000}{v}$, where $0<v<30$
and v is the speed of the engine. Show that R is the least when v
$=20$

- Watch Video Solution

7. Find the dimension of the rectangle of area $96 \mathrm{~cm}^{2}$ whose perimeter is the least, Also, find the perimeter of the rectangle
8. Show that all the rectangles with a given perimeter, the square has the largest area.

- Watch Video Solution

9. Given the perimeter of a rectangle, show that its diagonal is minimum when it is a square

D Watch Video Solution

10. Show that the rectangle of maximum perimeter which can be inscribed in a circle of radius a is a square of side $\sqrt{2} a$.
11. Given the sum of the perimeters of a square and a circle, show that the sum of their areas is least when one side of the square is equal to diameter of the circle.

- Watch Video Solution

12. Show that the right triangle of maximum area that can be inscribed in a circle is an isosceles triangle

- Watch Video Solution

13. Prove that the perimeter of a right-angled triangle of given hypotenuse is maximum when the triangle is isosceles
14. The perimeter of a triangle is 8 cm . If one of the sides of the triangle be 3 cm , what will be the other two sides for maximum area of the triangle?

- Watch Video Solution

15. A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 meters.

Find the dimensions of the rectangle so as to admit maximum light through the whole opening.

- Watch Video Solution

16. A square piece of tin of side 12 cm is to be made into a box without a lid by cutting a square from each corner and folding up the flaps to form the sides. What should be the side of the
square to be cut off so that the volume of the box is maximum?

Also, find this maximum volume

- Watch Video Solution

17. OR An open box with a square base is to be made out of a given quantity of cardboard of area c^{2} square units. Show that the maximum volume of the box is $\frac{c^{3}}{6 \sqrt{3}}$ cubic units.

- Watch Video Solution

18. A cylindrical can to be made to hold 1 litres of oil. Find the dimensions which will minimize the cost of the metal to make the can.
19. Show that the right-circular cone of least curved surface and given volume has an altitude equal to $\sqrt{2}$ times the radius of the base.

D Watch Video Solution

20. Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?

- Watch Video Solution

21. The height of a closed cylinder of given volume and the minimum surface area is (a) equal to its diameter (b) half of its diameter (c) double of its diameter (d) None of these
22. Prove that the volume of the largest cone, that can be inscribed in a sphere of radius R. is $\frac{8}{27}$ of the volume of the sphere.

- Watch Video Solution

23. The fraction exceeds its $p^{t h}$ power by the greatest number possible, where $p \geq 2$ is

D Watch Video Solution

24. Find the point on the curve $y^{2}=4 x$ which is nearest to the point $(2,-8)$.
25. A right circular cylinder is inscribed in a cone. Show that the curved surface area of the cylinder is maximum when the diameter of the cylinder is equal to the radius of the base of the cone.

- Watch Video Solution

26. Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.

- Watch Video Solution

27. A rectangle is inscribed in a semi-circle of radius r with one of its sides on diameter of semi-circle. Find the dimensions of the rectangle so that its area is maximum. Find also the area.

- Watch Video Solution

28. Two sides of a triangle have lengths ' a ' and ' b ' and the angle between them is θ. What value of θ will maximize the area of the triangle? Find the maximum area of the triangle also.

D Watch Video Solution

29. Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius $5 \sqrt{3} \mathrm{~cm}$ is $500 \pi \mathrm{~cm}^{3}$.

D Watch Video Solution

30. A square-based tank of capacity 250 cu m has to bedug out.

The cost of land is Rs 50 per sq m. The cost of digging increases
with the depth and for the whole tank the cost is Rs $400 \times(\text { depth })^{2}$. Find the dimensions of the tank for the least total cost.

- Watch Video Solution

31. A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Also, find the maximum volume.

D Watch Video Solution

32. An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of
water. Show that the cost of the material will be least when depth of the tank is half of its width.

- Watch Video Solution

33. A wire of length 36 cm is cut into the two pieces, one of the pieces is turned in the form of a square and other in form of an equilateral triangle. Find the length of each piece so that the sum of the areas of the two be minimum

- Watch Video Solution

34. Find the largest possible area of a right angled triangle whose hypotenuse is 5 cm long.
35. Show that the function $f(x)=5 x-2$ is a strictly increasing function on R

- Watch Video Solution

2. Show that the function $f(x)=-2 x+7$ is a strictly decreasing function on R

- Watch Video Solution

3. Prove that $f(x)=a x+b$, where a, b are constants and $a>0$ is an increasing function on R.
4. Show that the function given by $f(x)=e^{2 x}$ is strictly increasing on R .

- Watch Video Solution

5. Show that the function $f(x)=x^{2}$ is
(a) strictly increasing on $[0, \infty]$
(b) strictly decreasing on $[-\infty, 0]$
(c) neither strictly increasing nor strictly decreasing on R

- Watch Video Solution

6. Show that the function $f(x)=|x|$ is
(a) striclty increasing on $[0, \infty]$
(b) strictly decreasing on $[-\infty, 0]$
7. Prove that function $f(x)=\log _{e} x$ is strictly increasing in the interval $(0, \infty)$

- Watch Video Solution

8. 9. Prove that the function $f(x)=\log _{a} x$ is increasing on $(0, \infty)$ if $\mathrm{a}>1$ and decreasing on $(0, \infty)$, if ` 0

- Watch Video Solution

9. Prove that $f(x)=3^{x}$ is strictly increasing on R

- Watch Video Solution

10. Show that $f(x)=x^{3}-15 x^{2}+75 x-50$ is an increasing function for all $x \in R$.

- Watch Video Solution

11. Show that $f(x)=\left(x-\frac{1}{x}\right)$ is increasing for all $x \in R$, where $x \neq 0$

- Watch Video Solution

12. Show that $f(x)=\left(\frac{3}{x}+5\right)$ is decreasing for all $x \in R$, where $x \neq 0$

- Watch Video Solution

13. Show that $f(x)=\frac{1}{\left(1+x^{2}\right)}$ is increasing for all $x \leq 0$

- Watch Video Solution

14. Show that $f(x)=\left(x^{3}+\frac{1}{x^{3}}\right)$ is decreasing on $[-1,1]$

- Watch Video Solution

15. Show that $f(x)=\frac{x}{\sin x}$ is increasing on $\left[0, \frac{\pi}{2}\right]$

- Watch Video Solution

16. Prove that the following functions are strictly increasing:
$f(x)=\log (1+x)-\frac{2 x}{2+x}$
17. Let I be an interval disjointed from $[-1,1]$. Prove that the function $f(x)=x+\frac{1}{x}$ is increasing on I.

- Watch Video Solution

18. Show that $f(x)=\frac{(x-2)}{(x+1)}$ is increasing for all $x \in R$, except at $x=-1$

- Watch Video Solution

19. Find the intervals in which the function f given by $f(x)=2 x^{2}-3 x$ is(a) strictly increasing (b) strictly decreasing

- Watch Video Solution

20. Find the intervals in which the function f given by $f(x)=2 x^{3}-3 x^{2}-36 x+7$ is (a) strictly increasing (b) strictly decreasing

- Watch Video Solution

21. Find the intervals on which the function $f(x)=6-9 x-x^{2}$ is (a) strictly increasing (b) strictly decreasing

- Watch Video Solution

22. Find the intervals in which the function $f(x)=x^{4}-\frac{x^{3}}{3}$ is increasing or decreasing.

- Watch Video Solution

23. Find the intervals in which the function $\mathrm{f} \backslash(\mathrm{x})=\backslash \mathrm{x}^{3}-\backslash 12 \mathrm{x}^{2}+\backslash 36 \mathrm{x}+17 \backslash \quad$ is (a) increasing, (b) decreasing.

- Watch Video Solution

24. Find the intervals on which each of the following functions is
(a) increasing (b) decreasing
$f(x)=\left(x^{3}-6 x^{2}+9 x+10\right)$

D Watch Video Solution

25. Find the intervals in which $f(x)=6+12 x+3 x^{2}-2 x^{3}$ is increasing or decreasing.
26. Find the intervals on which each of the following functions is
(a) increasing (b) decreasing
$f(x)=2 x^{3}-24 x+5$

- Watch Video Solution

27. Find the intervals in which $f(x)=(x-1)(x-2)^{2}$ is increasing or decreasing.

- Watch Video Solution

28. Find the intervals in which $f(x)=x^{4}-4 x^{3}+4 x^{2}+15$ is increasing or decreasing.
29. Find the intervals on which each of the following functions is
(a) increasing (b) decreasing

$$
f(x)=2 x^{3}+9 x^{2}+12 x+15
$$

- Watch Video Solution

30. Determine the intervals in which the function $f(x)=x^{4}-8 x^{3}+22 x^{2}-24 x+21$ is decreasing or increasing.

- Watch Video Solution

31. Find the intervals in which the function
$f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$ is (a) strictly increasing
strictly decreasing
32. Find the intervals in which the function given by $f(x)=\frac{3}{10} x^{4}=\frac{4}{5} x^{3}-3 x^{2}+\frac{36}{5} x+11 \quad$ is \quad (a) \quad strictly increasing (b) strictly decreasing.

- Watch Video Solution

Exercise 11 H

1. Find the slope of the tangent of the curve
(i) $y=\left(x^{3}-x\right)$ at $x=2$
(ii) $y=\left(2 x^{2}+3 \sin x\right)$ at $x=0$
(iii) $y=(\sin 2 x+\cot x+2)^{2}$ at $x=\frac{\pi}{2}$
2. Find the equations of the tangent and the normal to the given curve at the indicated point :

$$
y=x^{3}-2 x+7 \text { at }(1,6)
$$

- Watch Video Solution

3. Find the equations of the tangent and the normal to the given curve at the indicated point :

$$
y^{2}=4 a x \quad \text { at } \quad\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right)
$$

- Watch Video Solution

4. Find the equations of the tangent and the normal to the given curve at the indicated point :
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $(a \cos \theta, b \sin \theta)$
5. Find the equations of the tangent and the normal to the given curve at the indicated point : $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 a t^{\prime}(a \sec \theta, b \tan \theta)$

- Watch Video Solution

6. Find the equations of the tangent and the normal to the given curve at the indicated point :

$$
y=x^{3} \quad \text { at } P(1,1)
$$

- Watch Video Solution

7. Find the equations of the tangent and normal to the parabola $y^{2}=4 a x$ at the point $\left(a t^{2}, 2 a t\right)$.

- Watch Video Solution

8. Find the equations of the tangent and the normal to the given curve at the indicated point :
$y=\cot ^{2} x-2 \cot x+2$ at $x=\frac{\pi}{4}$

D Watch Video Solution

9. Find the equations of the tangent and the normal to the given
curve at the indicated point :

$$
16 x^{2}+9 y^{2}=144 \text { at }\left(2, y_{1}\right), \text { where } y_{1}>0
$$

- Watch Video Solution

10. Find the equations of the tangent and the normal to the curve $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at the point $(1,3)$

- Watch Video Solution

11. Find the equation of the tangent to the curve $\sqrt{x}+\sqrt{y}=a$ at the point $\left(\frac{a^{2}}{4}, \frac{a^{2}}{4}\right)$

- Watch Video Solution

12. Show that the equation of the tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $\left(x_{1}, y_{1}\right)$ is $\frac{\mathrm{xx}_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=1$

- Watch Video Solution

13. Find the equation of the tangent to the curve $y=\left(\sec ^{4} x-\tan ^{4} x\right)$ at $x=\frac{\pi}{3}$

- Watch Video Solution

14. Find the equation of the normal to the curve $y=(\sin 2 x+\cot x+2)^{2}$ at $x=\frac{\pi}{2}$

- Watch Video Solution

15. Show that the tangents to the curve $y=2 x^{3}-4$ at the points $x=2$ and $x=-2$ are parallel
16. Find the equation of the tangent to the curve $x^{2}+3 y=3$, which is parallel to the line $y-4 x+5=0$

- Watch Video Solution

17. At what points on the curve $x^{2}+y^{2}-2 x-4 y+1=0$, the tangents are parallel to the $y-a \xi s$?

- Watch Video Solution

18. Find the points on the curve $x^{2}+y^{2}-2 x-3=0$ at which the tangents are parallel to the x-axis.
19. Prove that the tangents to the curve $y=x^{2}-5+6$ at the points $(2,0)$ and $(3,0)$ are at right angles.

- Watch Video Solution

20. The co-ordinates of the points on the curve $y=x^{2}+3 x+4$ at which the tangent passes through the origin are

- Watch Video Solution

21. Find the point on the curve $y=x^{3}-11 x+5$ at which the equation of tangent is $y=x-11$
22. Find the equation of the tangents to the curve $2 x^{2}+3 y^{2}=14$, parallel to the line $x+3 y=4$

- Watch Video Solution

23. The equation of the tangent to the curve $x^{2}+2 y=8$ which is the perpendicular to $x-2 y+1=0$ is

- Watch Video Solution

24. Find the point on the curve $y=2 x^{2}-6 x-4$ at which the tangent is parallel to the x-axis
25. Find the point on the parabola $y=(x-3)^{2}$, where the tangent is parabola to the line joining (3,0) and (4,1

- Watch Video Solution

26. Show that the curves $x=y^{2}$ and $x y=k$ cut at right angles; if $8 k^{2}=1$

- Watch Video Solution

27. Show that the curves $x y=a^{2} a n d x^{2}+y^{2}=2 a^{2}$ touch each other
28. The two curves $x^{3}-3 x y^{2}+2=0$ and $3 x^{2} y-y^{3}-2=0$

- Watch Video Solution

29. Find the equation of the tangent to the curve $x=\theta+\sin \theta, y=1+\cos \theta$ at $\theta=\frac{\pi}{4}$

- Watch Video Solution

30. Find the equation of tangent to the curve
$x=\sin 3 t, y=\cos 2 t$ at $t=\frac{\pi}{4}$

- Watch Video Solution

1. If $y=2^{x}$ then $\frac{d y}{d x}=$?
A. $x\left(2^{x-1}\right)$
B. $\frac{2^{x}}{(\log 2)}$
C. $2^{x}(\log 2)$
D. none of these

Answer: C

- Watch Video Solution

2. If $y=\log _{10} x$ then $\frac{d y}{d x}=$?
A. $\frac{1}{x}$
B. $\frac{1}{x}(\log 10)$
C. $\frac{1}{x(\log 10)}$
D. none of these

Answer: C

- Watch Video Solution

3. If $y=e^{1 / x}$ then $\frac{d y}{d x}=$?
A. $\frac{1}{x} \cdot e^{(1 / x-1)}$
B. $\frac{-e^{1 / x}}{x^{2}}$
C. $e^{1 / x} \log x$
D. none of these

Answer: B

4. if $y=x^{x}$ then $\frac{d y}{d x}$
A. $x^{x} \log x$
B. $x^{x}(1+\log x)$
C. $x(1+\log x)$
D. none of these

Answer: B

- Watch Video Solution

5. If $y=x^{\sin x}$ then $\frac{d y}{d x}=$?
A. $(\sin x) \cdot x^{(\sin x-1)}$
B. $(\sin x \cos x) \cdot x^{(\sin x-1)}$
C. $x^{\sin x}\left\{\frac{\sin x+x \log x \cdot \cos x}{x}\right\}$
D. none of these

Answer: C

- Watch Video Solution

6. If $y=x^{\sqrt{x}}$ then $\frac{d y}{d x}=$?
A. $\sqrt{x} \cdot x^{(\sqrt{x}-1)}$
B. $\frac{s^{\sqrt{x}} \log x}{2 \sqrt{x}}$
C. $x^{\sqrt{x}}\left\{\frac{2+\log x}{2 \sqrt{x}}\right\}$
D. none of these

Answer: C

7. If $y=e^{\sin \sqrt{x}}$ then $\frac{d y}{d x}=$?
A. $e^{\sin \sqrt{x}} \cdot \cos \sqrt{x}$
B. $\frac{e^{\sin \sqrt{x}} \cos \sqrt{x}}{2 \sqrt{x}}$
C. $\frac{e^{\sin \sqrt{x}}}{2 \sqrt{x}}$
D. none of these

Answer: B

- Watch Video Solution

8. If $y=(\tan x)^{\cot x}$ then $\frac{d y}{d x}=$?
A. $\cot x \cdot(\tan x)^{\cot x-1} \cdot \sec ^{2} x$
B. $-(\tan x)^{\cot x} \cdot \operatorname{cosec}^{2} c$
C. $(\tan x)^{\cot x} \cdot \operatorname{cosec}^{2} x(1-\log \tan x)$

Answer: C

- Watch Video Solution

9. If $y=(\sin x)^{\log x}$ then $\frac{d y}{d x}=$?
A. $(\log x) \cdot(\sin x)^{(\log x-1)} \cdot \cos x$
B. $(\sin x)^{\log x} \cdot\left\{\frac{x \log x+\log \sin x}{x}\right\}$
C. $(\sin x)^{\log x} \cdot\left\{\frac{(x \log x) \cot x+\log \sin x}{x}\right\}$
D. none of these

Answer: C

10. If $y=\sin \left(x^{x}\right)$ then $\frac{d y}{d x}=$?
A. $x^{x} \cos \left(x^{x}\right)$
B. $x^{x} \cos x^{x}(1+\log x)$
C. $x^{x} \cos x^{x} \log x$
D. none of these

Answer: B

- Watch Video Solution

11. If $y=\sqrt{x \sin x}$ then $\frac{d y}{d x}=$?
A. $\frac{(x \cos x+\sin x)}{2 \sqrt{x \sin x}}$
B. $\frac{1}{2}(x \cos x+\sin x) \cdot \sqrt{x \sin x}$
C. $\frac{1}{2 \sqrt{x \sin x}}$
D. none of these

Answer: A

- Watch Video Solution

12. If $e^{x+y}=x y$ then $\frac{d y}{d x}=$?
A. $\frac{x(1-y)}{y(x-1)}$
B. $\frac{y(1-x)}{x(y-1)}$
C. $\frac{(x-x y)}{x y-y}$
D. none of these

Answer: B

13. If $(x+y)=\sin (x+y)$ then $(d y) ?(d x)=$?
A. -1
B. 1
C. $\frac{1-\cos (x+y)}{\cos ^{2}(x+y)}$
D. none of these

Answer: A

- Watch Video Solution

14. If $\sqrt{x}+\sqrt{y}=\sqrt{a}$ then $\frac{d y}{d x}=$?
A. $\frac{-\sqrt{x}}{\sqrt{y}}$
B. $-\frac{1}{2} \cdot \frac{\sqrt{y}}{\sqrt{x}}$
C. $\frac{-\sqrt{y}}{\sqrt{x}}$
D. none of these

Answer: C

- Watch Video Solution

15. If $x^{y}=y^{x}$ then $\frac{d y}{d x}=$?
A. $\frac{(y-x \log y)}{(x-y \log x)}$
B. $\frac{y(y-x \log y)}{x(x-y \log x)}$
C. $\frac{y(y+x \log y)}{x(x+y \log x)}$
D. none of these

Answer: B
16. If $x^{p} y^{q}=(x+y)^{(p+q)} \quad$ then $\frac{d y}{d x}=$?
A. $\frac{x}{y}$
B. $\frac{y}{x}$
C. $\frac{x^{p-1}}{y^{q-1}}$
D. none of these

Answer: B

- Watch Video Solution

17. If $y=x^{2} \sin \frac{1}{x}$ then $\frac{d y}{d x}=$?
A. $x \sin \frac{1}{x}-\cos \frac{1}{x}$
B. $-\cos \frac{1}{x}+2 x \sin \frac{1}{x}$
C. $-x \sin \frac{1}{x}+\cos \frac{1}{x}$
D. none of these

Answer: B

- Watch Video Solution

18. If $y=\cos ^{2} x^{3}$ then $\frac{d y}{d x}=$?
A. $-3 x^{2} \sin \left(2 x^{3}\right)$
B. $-3 x^{2} \sin ^{2} x^{3}$
C. $-3 x^{2} \cos ^{2}\left(2 x^{3}\right)$
D. none of these

Answer: A
19. If $y=\log \left(x+\sqrt{x^{2}+a^{2}}\right)$ then $\frac{d y}{d x}=$?
A. $\frac{1}{2\left(x+\sqrt{x^{2}+a^{2}}\right)}$
B. $\frac{-1}{\sqrt{x^{2}+a^{2}}}$
C. $\frac{1}{\sqrt{x^{2}+a^{2}}}$
D. none of these

Answer: C

- Watch Video Solution

20. If $y=\log \left(\frac{1+\sqrt{x}}{1-\sqrt{x}}\right)$ then $\frac{d y}{d x}=$?
A. $\frac{1}{\sqrt{x}(1-x)}$
B. $\frac{-1}{x(1-\sqrt{x})^{2}}$
C. $\frac{-\sqrt{x}}{2(1-\sqrt{x})}$
D. none of these

Answer: A

- Watch Video Solution

21. If $y=\log \left(\frac{\sqrt{1+x^{2}}+x}{\sqrt{1+x^{2}}-x}\right)$ then $\frac{d y}{d x}=$?
A. $\frac{2}{\sqrt{1+x^{2}}}$
B. $\frac{2 \sqrt{1+x^{2}}}{x^{2}}$
C. $\frac{-2}{\sqrt{1+x^{2}}}$
D. none of these

Answer: A
22. If $y=\sqrt{\frac{1+\sin x}{1-\sin x}}$ then $\frac{d y}{d x}=$?
A. $\frac{1}{2} \sec ^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right)$
B. $\frac{1}{2} \operatorname{cosec}^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right)$
C. $\frac{1}{2} \operatorname{cosec}\left(\frac{\pi}{4}-\frac{x}{2}\right) \cot \left(\frac{\pi}{4}-\frac{x}{2}\right)$
D. none of these

Answer: B

- Watch Video Solution

23. If $y=\sqrt{\frac{\sec x-1}{\sec x+1}}$ then $\frac{d y}{d x}=$?
A. $\sec ^{2} x$
B. $\frac{1}{2} \sec ^{2} \frac{x}{2}$
C. $\frac{-1}{2} \operatorname{cosec}^{2} \frac{x}{2}$
D. none of these

Answer: B

- Watch Video Solution

24. If $y=\sqrt{\frac{1+\tan x}{1-\tan x}}$ then $\frac{d y}{d x}=$?
A. $\frac{1}{2} \sec ^{2} x \cdot \tan \left(x+\frac{\pi}{4}\right)$
B. $\sec ^{2}\left(x+\frac{\pi}{4}\right)$
$2 \sqrt{\tan \left(x+\frac{\pi}{4}\right)}$
C. $\frac{\sec ^{2}\left(\frac{x}{4}\right)}{\sqrt{\tan \left(x+\frac{\pi}{4}\right)}}$
D. none of these

Watch Video Solution

25. If $y=\tan ^{-1}\left(\frac{1-\cos x}{\sin x}\right)$ then $\frac{d y}{d x}=$?
A. 1
B. -1
C. $\frac{1}{2}$
D. $\frac{-1}{2}$

Answer: C

- Watch Video Solution

26. If $y=\tan ^{-1}\left\{\frac{\cos x+\sin x}{\cos x-\sin x}\right\}$ then $\frac{d y}{d x}=$?
A. 1
B. -1
C. $\frac{1}{2}$
D. $\frac{-1}{2}$

Answer: A

- Watch Video Solution

27. If $y=\tan ^{-1}\left\{\frac{\cos x}{1+\sin x}\right\}$ then $\frac{d y}{d x}=$?
A. $\frac{1}{2}$
B. $\frac{-1}{2}$
C. 1
D. -1
28. If $y=\tan ^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}}$, prove that $\frac{d y}{d x}=\frac{1}{2}$.
A. $\frac{-1}{2}$
B. $\frac{1}{2}$
C. $\frac{1}{\left(1+x^{2}\right)}$
D. none of these

Answer: B

D Watch Video Solution

29. If $y=\tan ^{-1}\left(\frac{a \cos x-b \sin x}{b \cos x+a \sin x}\right)$ then $\frac{d y}{d x}=$?
A. $\frac{a}{b}$
B. $\frac{-b}{a}$
C. 1
D. -1

Answer: D

- Watch Video Solution

30. If $y=\sin ^{-1}\left(3 x-4 x^{3}\right)$ then $\frac{d y}{d x}=$?
A. $\frac{3}{\sqrt{1-x^{2}}}$
B. $\frac{-4}{\sqrt{1-x^{2}}}$
C. $\frac{3}{\sqrt{1+x^{3}}}$
D. none of these

Watch Video Solution

31. If $y=\cos ^{-1}\left(4 x^{3}-3 x\right)$ then $\frac{d y}{d x}=$?
A. $\frac{3}{\sqrt{1-x^{2}}}$
B. $\frac{-3}{\sqrt{1-x^{2}}}$
C. $\frac{4}{\sqrt{1-x^{2}}}$
D. $\frac{-4}{\left(3 x^{2}-1\right)}$

Answer: B

- Watch Video Solution

32. If $y=\tan ^{-1}\left(\frac{\sqrt{a}+\sqrt{x}}{1-\sqrt{a x}}\right)$ then $\frac{d y}{d x}=$?
A. $\frac{1}{(1+x)}$
B. $\frac{1}{\sqrt{x}(1+x)}$
C. $\frac{2}{\sqrt{x}(1+x)}$
D. $\frac{1}{2 \sqrt{x}(1+x)}$

Answer: D

- Watch Video Solution

33. If $y=\cos ^{-1}\left(\frac{x^{2}-1}{x^{2}+1}\right)$ then $\frac{d y}{d x}=$?
A. $\frac{2}{\left(1+x^{2}\right)}$
B. $\frac{-2}{\left(1+x^{2}\right)}$
C. $\frac{2 x}{\left(1+x^{2}\right)}$
D. none of these
34. If $y=\tan ^{-1}\left(\frac{1+x^{2}}{1-x^{2}}\right)$ then $\frac{d y}{d x}=$?
A. $\frac{2 x}{\left(1+x^{4}\right)}$
B. $\frac{-2 x}{\left(1+x^{4}\right)}$
C. $\frac{x}{\left(1+x^{4}\right)}$
D. none of these

Answer: A

D Watch Video Solution

35. If $y=\cos ^{-1} x^{3}$ then $\frac{d y}{d x}=$?
A. $\frac{-1}{(1+x)}$
B. $\frac{2}{\sqrt{(1+x)}}$
C. $\frac{-1}{2 \sqrt{x}(1+x)}$
D. none of these

Answer: C

D Watch Video Solution

36. If $y=\cos ^{-1} x^{3}$ then $\frac{d y}{d x}=$?
A. $\frac{-1}{\sqrt{1-x^{6}}}$
B. $\frac{-3 x^{2}}{\sqrt{1-x^{6}}}$
C.
$\frac{-3}{x^{2} \sqrt{1-x^{6}}}$
D. none of these

- Watch Video Solution

37. If $y=\tan ^{-1}(\sec x+\tan x)$ then $\frac{d y}{d x}=$?
A. $\frac{1}{2}$
B. $\frac{-1}{2}$
C. 1
D. none of these

Answer: A

D Watch Video Solution
38. If $y=\cot ^{-1}\left(\frac{1-x}{1+x}\right)$ then $\frac{d y}{d x}=$?
A. $\frac{-1}{\left(1+x^{2}\right)}$
B. $\frac{1}{\left(1+x^{2}\right)}$
C. $\frac{1}{\left(1+x^{2}\right)^{3 / 2}}$
D. none of these

Answer: B

- Watch Video Solution

39. If $y=\sqrt{\frac{1+x}{1-x}}$ then $\frac{d y}{d x}=$?
A. $\frac{2}{(1-x)^{2}}$
B. $\frac{x}{(1-x)^{3 / 2}}$
C. $\frac{1}{(1-x)^{3 / 2} \cdot(1+x)^{1 / 2}}$
D. none of these

(-) Watch Video Solution

40. If $y=\sec ^{-1}\left(\frac{x^{2}+1}{x^{2}-1}\right)$ then $\frac{d y}{d x}=$?
A. $\frac{-2}{\left(1+x^{2}\right)}$
B. $\frac{2}{\left(1+X^{2}\right)}$
C. $\frac{-1}{\left(1-X^{2}\right)}$
D. none of these

Answer: A

- Watch Video Solution

41. If $y=\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right)$ then $\frac{d y}{d x}=$?
A. $\frac{-2}{\left(1+x^{2}\right)}$
B. $\frac{-2}{\left(1-x^{2}\right)}$
C. $\frac{-2}{\sqrt{1-x^{2}}}$
D. none of these

Answer: C

- Watch Video Solution

42. If $y=\tan ^{-1}\left\{\frac{\sqrt{1+x^{2}}-1}{x}\right\}$ then $\frac{d y}{d x}=$?
A. $\frac{1}{\left(1+x^{2}\right)}$
B. $\frac{2}{\left(1+x^{2}\right)}$
C. $\frac{1}{2\left(1+x^{2}\right)}$
D. none of these

- Watch Video Solution

43. $y=\sin ^{-1}\left\{\frac{\sqrt{1+x}+\sqrt{1-x}}{2}\right\}$ then $\frac{d y}{d x}=$?
A. $\frac{-1}{2 \sqrt{1-x^{2}}}$
B. $\frac{1}{2 \sqrt{1-x^{2}}}$
C. $\frac{1}{2\left(1+x^{2}\right)}$
D. none of these

Answer: A

- Watch Video Solution

44. If $x=a t^{2}$ and $y=2 a t$ then find the value of $\left(\frac{d y}{d x}\right)^{2}$
A. $\frac{1}{t}$
B. $\frac{-1}{t^{2}}$
C. $\frac{-2}{t}$
D. none of these

Answer: A

- Watch Video Solution

45. If $x=a \sec \theta, y=b \tan \theta$ then $\frac{d y}{d x}=$?
A. $\frac{b}{a} \sec \theta$
B. $\frac{b}{a} \operatorname{cosec} \theta$
C. $\frac{b}{a} \cot \theta$
D. none of these

- Watch Video Solution

46. If $x=a \cos ^{2} \theta, y=b \sin ^{2} \theta$ then $\frac{d y}{d x}=$?
A. $\frac{-a}{b}$
B. $\frac{a}{b} \cot \theta$
C. $\frac{-b}{a}$
D. none of these

Answer: C

47. Find $\frac{d y}{d x}$, when $x=a(\cos \theta+\theta \sin \theta) \quad$ and $y=a(\sin \theta-\theta \cos \theta)$
A. $\cot \theta$
B. $\tan \theta$
C. $a \cot \theta$
D. $a \tan \theta$

Answer: B

D Watch Video Solution

48. If $y=x^{x} \wedge x \wedge((((\infty))))$, find $\frac{d y}{d x}$.
A. $\frac{y}{x(1-\log x)}$
B. $\frac{y^{2}}{x(1-\log x)}$
C. $\frac{y^{2}}{x(1-y \log x)}$
D. none of these

Answer: C

- Watch Video Solution

49. If $y=\sqrt{x+\sqrt{x+\sqrt{x}+\ldots \ldots \ldots \ldots \infty}}$, then $\frac{d y}{d x}$
A. $\frac{1}{(2 y-1)}$
B. $\frac{1}{\left(y^{2}-1\right)}$
C. $\frac{2 y}{\left(y^{2}-1\right)}$
D. none of these

Answer: A

50. If $y=\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\cdots \infty}}}$, prove that
$\frac{d y}{d x}=\frac{\cos x}{2 y-1}$
A. $\frac{\sin x}{(2 y-1)}$
B. $\frac{\cos x}{(y-1)}$
C. $\frac{\cos x}{(2 y-1)}$
D. none of these

Answer: C

- Watch Video Solution

51. If $y=e^{x}+e^{x+\ldots \infty}$ then $\frac{d y}{d x}=$?
A. $\frac{1}{(1-y)}$
B. $\frac{y}{(1-y)}$
C. $\frac{y}{(y-1)}$
D. none of these

Answer: B

- Watch Video Solution

52. The value of k for which $f(x)=\left\{\begin{aligned} \frac{\sin 5 x}{3 x}, & \text { if } x \neq 0 \\ \mathrm{k}, & \text { if } x=0\end{aligned}\right.$ is contnuous at $\mathrm{x}=0$ is
A. $\frac{1}{3}$
B. 0
C. $\frac{3}{5}$
D. $\frac{5}{3}$

- Watch Video Solution

53. Let $f(x)=\left\{\begin{aligned} x \sin \frac{1}{x}, & \text { if } x \neq 0 \\ 0, & \text { where } x=0\end{aligned}\right.$

Then, which of the following is the true statement?
A. $f(x)$ is not defined at $x=0$
B. $\lim _{x \rightarrow 0} f(x)$ does not exist
C. $f(x)$ is continuous at $x=0$
D. $f(x)$ is discontinuous at $\mathrm{x}=0$

Answer: C

54.

$$
f(x)=\left\{\begin{array}{cl}
\frac{3 x+4 \tan x}{x}, & \text { where } x \neq 0 \\
\mathrm{k}, & \text { where } x=0
\end{array} \text { is continuous at } \mathrm{x}=0,\right. \text { is }
$$

A. 7
B. 4
C. 3
D. none of these

Answer: A

- Watch Video Solution

55. Let $f(x)=x^{3 / 2}$. Then, $f^{\prime}(0)=$?
A. $\frac{3}{2}$
B. $\frac{1}{2}$
C. does not exist
D. none of these

Answer: C

- Watch Video Solution

56. The function $f(x)=|x| \forall x \in R$ is
A. continuous but not differentiable at $x=0$
B. differentiable but not continuous at $x=0$
C. neighter continuous nor differentiable at $\mathrm{x}=0$
D. none of these

Answer: A

57. The function $f(x)=\left\{\begin{array}{l}1+x, \text { when } x \leq 2 \\ 5-x, \text { when } x>2\end{array}\right.$ is
A. continuous as well as differntiable at $x=2$
B. continuous but not differntiable at $x=2$
C. differentiable but not continuous at $x=2$
D. none of these

Answer: B

D Watch Video Solution

58. If the function $f(x)=\left\{\begin{array}{l}k x+5, \text { when } x \leq 2 \\ x-1, \text { when } x>2\end{array}\right.$ is continuous at $\mathrm{x}=2$ then $\mathrm{k}=$?
A. 2
B. -2
C. 3
D. -3

Answer: B

- Watch Video Solution

59. If the function $f(x)\left\{\begin{array}{cl}\frac{1-\cos 4 x}{8 x^{2}}, & x \neq 0 \\ \mathrm{k}, & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$ then $\mathrm{k}=$?
A. 1
B. 2
C. $\frac{1}{2}$
D. $\frac{-1}{2}$

Answer: C

- Watch Video Solution

60. If the function $f(x)=\left\{\begin{array}{cl}\frac{\sin ^{2} a x}{x^{2}}, & \text { when } x \neq 0 \\ \mathrm{k}, & \text { when } x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$ then $\mathrm{k}=$?
A. a
B. a^{2}
C. -2
D. -4

Answer: B

61. If the function $f(x)=\left\{\begin{array}{cl}\frac{\sin ^{2} a x}{x^{2}}, & \text { when } x \neq 0 \\ \mathrm{k}, & \text { when } x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$ then $\mathrm{k}=$?
A. 3
B. -3
C. -5
D. 6

Answer: D

- Watch Video Solution

62. At $x=2, f(x)=[x]$ is
A. continuous but not differentiable
B. differentiable but not continuous
C. continuous as well as differentiable
D. none of these

Answer: D

- Watch Video Solution

63. Let $f(x)=\left\{\begin{aligned} \frac{x^{2}-2 x-3}{x+1}, & \text { when } x \neq-1 \\ \mathrm{k}, & \text { when } x=-1\end{aligned}\right.$ If $\mathrm{f}(\mathrm{x})$ is continuous at $x=-1$ then $\mathrm{k}=$?
A. 4
B. -4
C. -3
D. 2

- Watch Video Solution

64. The function $f(x)=x^{3}-6 x^{2}+15 x-12$ is
A. strictly decreasing on R
B. strictly increasing on R
C. increasing in $(-\infty, 2]$ and decreasing in $(2, \infty)$
D. none of these

Answer: B

- Watch Video Solution

65. The function $f(x)=4-3 x+3 x^{2}-x^{3}$ is
A. decreasing on R
B. increasing on R
C. strictly decreasing on R
D. strictly increasing on R

Answer: A

- Watch Video Solution

66. Prove that the function $f(x)=3 x+\cos 3 x$ is increasing on R

- Watch Video Solution

67. The function $f(x)=x^{3}-6 x^{2}+9 x+3$ is decreasing for
A. $1<x<3$
B. $x>1$
C. $x<1$
D. $x<1$ or $x>3$

Answer: A

- Watch Video Solution

68. The function $f(x)=x^{3}-27 x+8$ is increasing when
A. $|x|<3$
B. $|x|>3$
C. $-3<x<3$
D. none of these
69. $f(x)=\sin x$ is increasing in
A. $\left(\frac{\pi}{2}, \pi\right)$
B. $\left(\pi, \frac{3 \pi}{2}\right)$
C. $(0, \pi)$
D. $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

Answer: D

- Watch Video Solution

70. $f(x)=\frac{2 x}{\log x}$ is increasing in
A. $(0,1)$
B. $(1, e)$
C. (e, ∞)
D. $(-\infty, e)$

Answer: C

- Watch Video Solution

71. Find the intervals in which $f(x)=\sin x-\cos x$, where ${ }^{\circ} 0$
A. $\left(0, \frac{3 \pi}{4}\right)$
B. $\left(\frac{3 \pi}{4}, \frac{7 \pi}{4}\right)$
C. $\left(\frac{7 \pi}{4}, 2 \pi\right)$
D. none of these
72. $f(x)=\frac{x}{\sin x}$ is
A. increasing in $(0,1)$
B. decreasing in $(0,1)$
C. increasing in $\left(0, \frac{1}{2}\right)$ and decreasing in $\left(\frac{1}{2}, 1\right)$
D. none of these

Answer: A

- Watch Video Solution

73. $f(x)=x^{x}$ is decreasing in the interval
A. $(0, e)$
B. $\left(0, \frac{1}{e}\right)$
C. $(0,1)$
D. none of these

Answer: B

- Watch Video Solution

74. $f(x)=x^{2} e^{-x}$ is increasing in
A. $(-2,0)$
B. $(0,2)$
C. $(2, \infty)$
D. $(-\infty, \infty)$
75. $f(x)=\sin x-k x$ is decreasing for all $x \in R$, when
A. $k<1$
B. $k \leq 1$
C. $k>1$
D. $k \geq 1$

Answer: C

- Watch Video Solution

76. $f(x)=(x+1)^{3}(x-3)^{3}$ is increasing in
A. $(-\infty, 1)$
B. $(-1,3)$
C. $(3, \infty)$
D. $(1, \infty)$

Answer: D

- Watch Video Solution

77. $f(x)=[x(x-3)]^{2}$ is increasing in
A. $(0, \infty)$
B. $(-\infty, 0)$
C. $(1,3)$
D. $\left(0, \frac{3}{2}\right) \cup(3, \infty)$
78. If the function $f(x)=k x^{3}-9 x^{2}+9 x+3$ is monotonically increasing in every interval, then
A. $k>3$
B. $k \geq 3$
C. $k<3$
D. $k \leq 3$

Answer: A

- Watch Video Solution

79. $f(x)=\frac{x}{\left(x^{2}+1\right)}$ is increasing in
A. $(-1,1)$
B. $(-1, \infty)$
C. $(-\infty,-1) \cup(1, \infty)$
D. none of these

Answer: A

- Watch Video Solution

80. Find the least value of k for which the function $x^{2}+k x+1$
is an increasing function in the interval $1<x<2$
A. -2
B. -1
C. 1
D. 2

- Watch Video Solution

81. $f(x)=|x|$ has
A. minimum at $x=0$
B. maximum at $x=0$
C. neither a maximum nor a minimum at $\mathrm{x}=0$
D. none of these

Answer: A

- Watch Video Solution

82. When x is positive, the minimum value of x^{x} is
A. e^{e}
B. $\frac{e^{1}}{e}$
C. $e^{-1 / e}$
D. $\left({ }^{1} / e\right)$

Answer: C

- Watch Video Solution

83. The maximum value of $\left(\frac{\log x}{x}\right)$ is
A. $\left(\frac{1}{e}\right)$
B. $\frac{2}{e}$
C. e
D. 1

- Watch Video Solution

84. $f(x)=\operatorname{cosec} x$ in $(-\pi, 0)$ has a maxima at
A. $x=0$
B. $x=\frac{-\pi}{4}$
C. $x=\frac{-\pi}{3}$
D. $x=\frac{-\pi}{2}$

Answer: D

- Watch Video Solution

85. If $x>0$ and $x y=1$, the minimum value of $(x+y)$ is
A. -2
B. 1
C. 2
D. none of these

Answer: C

- Watch Video Solution

86. Show that the minimum value of $\left(x^{2}+\frac{250}{x}\right)$ is 75
A. 0
B.
C.
D.

- Watch Video Solution

87. Find the maximum value and the minimum value and the minimum value of $3 x^{4}-8 x^{3}+12 x^{2}-48 x+25$ on the interval $[0,3]$.
A. 16
B. 25
C. -39
D. none of these

Answer: C

88. The maximum value of $f(x)=(x-2)(x-3)^{2}$ is
A. $\frac{4}{27}$
B. $-\frac{4}{27}$
C. $\frac{7}{3}$
D. 0

Answer: A

- Watch Video Solution

89. Prove that the least value of $f(x)=\left(e^{x}+e^{-x}\right)$ is 2

- Watch Video Solution

